xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantRange.cpp (revision f126890ac5386406dadf7c4cfa9566cbb56537c5)
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <optional>
41 
42 using namespace llvm;
43 
44 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
45     : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
46       Upper(Lower) {}
47 
48 ConstantRange::ConstantRange(APInt V)
49     : Lower(std::move(V)), Upper(Lower + 1) {}
50 
51 ConstantRange::ConstantRange(APInt L, APInt U)
52     : Lower(std::move(L)), Upper(std::move(U)) {
53   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
54          "ConstantRange with unequal bit widths");
55   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
56          "Lower == Upper, but they aren't min or max value!");
57 }
58 
59 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
60                                            bool IsSigned) {
61   assert(!Known.hasConflict() && "Expected valid KnownBits");
62 
63   if (Known.isUnknown())
64     return getFull(Known.getBitWidth());
65 
66   // For unsigned ranges, or signed ranges with known sign bit, create a simple
67   // range between the smallest and largest possible value.
68   if (!IsSigned || Known.isNegative() || Known.isNonNegative())
69     return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
70 
71   // If we don't know the sign bit, pick the lower bound as a negative number
72   // and the upper bound as a non-negative one.
73   APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
74   Lower.setSignBit();
75   Upper.clearSignBit();
76   return ConstantRange(Lower, Upper + 1);
77 }
78 
79 KnownBits ConstantRange::toKnownBits() const {
80   // TODO: We could return conflicting known bits here, but consumers are
81   // likely not prepared for that.
82   if (isEmptySet())
83     return KnownBits(getBitWidth());
84 
85   // We can only retain the top bits that are the same between min and max.
86   APInt Min = getUnsignedMin();
87   APInt Max = getUnsignedMax();
88   KnownBits Known = KnownBits::makeConstant(Min);
89   if (std::optional<unsigned> DifferentBit =
90           APIntOps::GetMostSignificantDifferentBit(Min, Max)) {
91     Known.Zero.clearLowBits(*DifferentBit + 1);
92     Known.One.clearLowBits(*DifferentBit + 1);
93   }
94   return Known;
95 }
96 
97 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
98                                                    const ConstantRange &CR) {
99   if (CR.isEmptySet())
100     return CR;
101 
102   uint32_t W = CR.getBitWidth();
103   switch (Pred) {
104   default:
105     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
106   case CmpInst::ICMP_EQ:
107     return CR;
108   case CmpInst::ICMP_NE:
109     if (CR.isSingleElement())
110       return ConstantRange(CR.getUpper(), CR.getLower());
111     return getFull(W);
112   case CmpInst::ICMP_ULT: {
113     APInt UMax(CR.getUnsignedMax());
114     if (UMax.isMinValue())
115       return getEmpty(W);
116     return ConstantRange(APInt::getMinValue(W), std::move(UMax));
117   }
118   case CmpInst::ICMP_SLT: {
119     APInt SMax(CR.getSignedMax());
120     if (SMax.isMinSignedValue())
121       return getEmpty(W);
122     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
123   }
124   case CmpInst::ICMP_ULE:
125     return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
126   case CmpInst::ICMP_SLE:
127     return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
128   case CmpInst::ICMP_UGT: {
129     APInt UMin(CR.getUnsignedMin());
130     if (UMin.isMaxValue())
131       return getEmpty(W);
132     return ConstantRange(std::move(UMin) + 1, APInt::getZero(W));
133   }
134   case CmpInst::ICMP_SGT: {
135     APInt SMin(CR.getSignedMin());
136     if (SMin.isMaxSignedValue())
137       return getEmpty(W);
138     return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
139   }
140   case CmpInst::ICMP_UGE:
141     return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W));
142   case CmpInst::ICMP_SGE:
143     return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
144   }
145 }
146 
147 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
148                                                       const ConstantRange &CR) {
149   // Follows from De-Morgan's laws:
150   //
151   // ~(~A union ~B) == A intersect B.
152   //
153   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
154       .inverse();
155 }
156 
157 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
158                                                  const APInt &C) {
159   // Computes the exact range that is equal to both the constant ranges returned
160   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
161   // when RHS is a singleton such as an APInt and so the assert is valid.
162   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
163   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
164   //
165   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
166   return makeAllowedICmpRegion(Pred, C);
167 }
168 
169 bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate(
170     const ConstantRange &CR1, const ConstantRange &CR2) {
171   if (CR1.isEmptySet() || CR2.isEmptySet())
172     return true;
173 
174   return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) ||
175          (CR1.isAllNegative() && CR2.isAllNegative());
176 }
177 
178 bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate(
179     const ConstantRange &CR1, const ConstantRange &CR2) {
180   if (CR1.isEmptySet() || CR2.isEmptySet())
181     return true;
182 
183   return (CR1.isAllNonNegative() && CR2.isAllNegative()) ||
184          (CR1.isAllNegative() && CR2.isAllNonNegative());
185 }
186 
187 CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness(
188     CmpInst::Predicate Pred, const ConstantRange &CR1,
189     const ConstantRange &CR2) {
190   assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) &&
191          "Only for relational integer predicates!");
192 
193   CmpInst::Predicate FlippedSignednessPred =
194       CmpInst::getFlippedSignednessPredicate(Pred);
195 
196   if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2))
197     return FlippedSignednessPred;
198 
199   if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2))
200     return CmpInst::getInversePredicate(FlippedSignednessPred);
201 
202   return CmpInst::Predicate::BAD_ICMP_PREDICATE;
203 }
204 
205 void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
206                                       APInt &RHS, APInt &Offset) const {
207   Offset = APInt(getBitWidth(), 0);
208   if (isFullSet() || isEmptySet()) {
209     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
210     RHS = APInt(getBitWidth(), 0);
211   } else if (auto *OnlyElt = getSingleElement()) {
212     Pred = CmpInst::ICMP_EQ;
213     RHS = *OnlyElt;
214   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
215     Pred = CmpInst::ICMP_NE;
216     RHS = *OnlyMissingElt;
217   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
218     Pred =
219         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
220     RHS = getUpper();
221   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
222     Pred =
223         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
224     RHS = getLower();
225   } else {
226     Pred = CmpInst::ICMP_ULT;
227     RHS = getUpper() - getLower();
228     Offset = -getLower();
229   }
230 
231   assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) &&
232          "Bad result!");
233 }
234 
235 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
236                                       APInt &RHS) const {
237   APInt Offset;
238   getEquivalentICmp(Pred, RHS, Offset);
239   return Offset.isZero();
240 }
241 
242 bool ConstantRange::icmp(CmpInst::Predicate Pred,
243                          const ConstantRange &Other) const {
244   return makeSatisfyingICmpRegion(Pred, Other).contains(*this);
245 }
246 
247 /// Exact mul nuw region for single element RHS.
248 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
249   unsigned BitWidth = V.getBitWidth();
250   if (V == 0)
251     return ConstantRange::getFull(V.getBitWidth());
252 
253   return ConstantRange::getNonEmpty(
254       APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
255                              APInt::Rounding::UP),
256       APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
257                              APInt::Rounding::DOWN) + 1);
258 }
259 
260 /// Exact mul nsw region for single element RHS.
261 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
262   // Handle 0 and -1 separately to avoid division by zero or overflow.
263   unsigned BitWidth = V.getBitWidth();
264   if (V == 0)
265     return ConstantRange::getFull(BitWidth);
266 
267   APInt MinValue = APInt::getSignedMinValue(BitWidth);
268   APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
269   // e.g. Returning [-127, 127], represented as [-127, -128).
270   if (V.isAllOnes())
271     return ConstantRange(-MaxValue, MinValue);
272 
273   APInt Lower, Upper;
274   if (V.isNegative()) {
275     Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
276     Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
277   } else {
278     Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
279     Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
280   }
281   return ConstantRange::getNonEmpty(Lower, Upper + 1);
282 }
283 
284 ConstantRange
285 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
286                                           const ConstantRange &Other,
287                                           unsigned NoWrapKind) {
288   using OBO = OverflowingBinaryOperator;
289 
290   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
291 
292   assert((NoWrapKind == OBO::NoSignedWrap ||
293           NoWrapKind == OBO::NoUnsignedWrap) &&
294          "NoWrapKind invalid!");
295 
296   bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
297   unsigned BitWidth = Other.getBitWidth();
298 
299   switch (BinOp) {
300   default:
301     llvm_unreachable("Unsupported binary op");
302 
303   case Instruction::Add: {
304     if (Unsigned)
305       return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax());
306 
307     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
308     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
309     return getNonEmpty(
310         SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
311         SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
312   }
313 
314   case Instruction::Sub: {
315     if (Unsigned)
316       return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
317 
318     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
319     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
320     return getNonEmpty(
321         SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
322         SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
323   }
324 
325   case Instruction::Mul:
326     if (Unsigned)
327       return makeExactMulNUWRegion(Other.getUnsignedMax());
328 
329     return makeExactMulNSWRegion(Other.getSignedMin())
330         .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
331 
332   case Instruction::Shl: {
333     // For given range of shift amounts, if we ignore all illegal shift amounts
334     // (that always produce poison), what shift amount range is left?
335     ConstantRange ShAmt = Other.intersectWith(
336         ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
337     if (ShAmt.isEmptySet()) {
338       // If the entire range of shift amounts is already poison-producing,
339       // then we can freely add more poison-producing flags ontop of that.
340       return getFull(BitWidth);
341     }
342     // There are some legal shift amounts, we can compute conservatively-correct
343     // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
344     // to be at most bitwidth-1, which results in most conservative range.
345     APInt ShAmtUMax = ShAmt.getUnsignedMax();
346     if (Unsigned)
347       return getNonEmpty(APInt::getZero(BitWidth),
348                          APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
349     return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
350                        APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
351   }
352   }
353 }
354 
355 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
356                                                    const APInt &Other,
357                                                    unsigned NoWrapKind) {
358   // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
359   // "for all" and "for any" coincide in this case.
360   return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
361 }
362 
363 bool ConstantRange::isFullSet() const {
364   return Lower == Upper && Lower.isMaxValue();
365 }
366 
367 bool ConstantRange::isEmptySet() const {
368   return Lower == Upper && Lower.isMinValue();
369 }
370 
371 bool ConstantRange::isWrappedSet() const {
372   return Lower.ugt(Upper) && !Upper.isZero();
373 }
374 
375 bool ConstantRange::isUpperWrapped() const {
376   return Lower.ugt(Upper);
377 }
378 
379 bool ConstantRange::isSignWrappedSet() const {
380   return Lower.sgt(Upper) && !Upper.isMinSignedValue();
381 }
382 
383 bool ConstantRange::isUpperSignWrapped() const {
384   return Lower.sgt(Upper);
385 }
386 
387 bool
388 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
389   assert(getBitWidth() == Other.getBitWidth());
390   if (isFullSet())
391     return false;
392   if (Other.isFullSet())
393     return true;
394   return (Upper - Lower).ult(Other.Upper - Other.Lower);
395 }
396 
397 bool
398 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
399   // If this a full set, we need special handling to avoid needing an extra bit
400   // to represent the size.
401   if (isFullSet())
402     return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
403 
404   return (Upper - Lower).ugt(MaxSize);
405 }
406 
407 bool ConstantRange::isAllNegative() const {
408   // Empty set is all negative, full set is not.
409   if (isEmptySet())
410     return true;
411   if (isFullSet())
412     return false;
413 
414   return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
415 }
416 
417 bool ConstantRange::isAllNonNegative() const {
418   // Empty and full set are automatically treated correctly.
419   return !isSignWrappedSet() && Lower.isNonNegative();
420 }
421 
422 APInt ConstantRange::getUnsignedMax() const {
423   if (isFullSet() || isUpperWrapped())
424     return APInt::getMaxValue(getBitWidth());
425   return getUpper() - 1;
426 }
427 
428 APInt ConstantRange::getUnsignedMin() const {
429   if (isFullSet() || isWrappedSet())
430     return APInt::getMinValue(getBitWidth());
431   return getLower();
432 }
433 
434 APInt ConstantRange::getSignedMax() const {
435   if (isFullSet() || isUpperSignWrapped())
436     return APInt::getSignedMaxValue(getBitWidth());
437   return getUpper() - 1;
438 }
439 
440 APInt ConstantRange::getSignedMin() const {
441   if (isFullSet() || isSignWrappedSet())
442     return APInt::getSignedMinValue(getBitWidth());
443   return getLower();
444 }
445 
446 bool ConstantRange::contains(const APInt &V) const {
447   if (Lower == Upper)
448     return isFullSet();
449 
450   if (!isUpperWrapped())
451     return Lower.ule(V) && V.ult(Upper);
452   return Lower.ule(V) || V.ult(Upper);
453 }
454 
455 bool ConstantRange::contains(const ConstantRange &Other) const {
456   if (isFullSet() || Other.isEmptySet()) return true;
457   if (isEmptySet() || Other.isFullSet()) return false;
458 
459   if (!isUpperWrapped()) {
460     if (Other.isUpperWrapped())
461       return false;
462 
463     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
464   }
465 
466   if (!Other.isUpperWrapped())
467     return Other.getUpper().ule(Upper) ||
468            Lower.ule(Other.getLower());
469 
470   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
471 }
472 
473 unsigned ConstantRange::getActiveBits() const {
474   if (isEmptySet())
475     return 0;
476 
477   return getUnsignedMax().getActiveBits();
478 }
479 
480 unsigned ConstantRange::getMinSignedBits() const {
481   if (isEmptySet())
482     return 0;
483 
484   return std::max(getSignedMin().getSignificantBits(),
485                   getSignedMax().getSignificantBits());
486 }
487 
488 ConstantRange ConstantRange::subtract(const APInt &Val) const {
489   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
490   // If the set is empty or full, don't modify the endpoints.
491   if (Lower == Upper)
492     return *this;
493   return ConstantRange(Lower - Val, Upper - Val);
494 }
495 
496 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
497   return intersectWith(CR.inverse());
498 }
499 
500 static ConstantRange getPreferredRange(
501     const ConstantRange &CR1, const ConstantRange &CR2,
502     ConstantRange::PreferredRangeType Type) {
503   if (Type == ConstantRange::Unsigned) {
504     if (!CR1.isWrappedSet() && CR2.isWrappedSet())
505       return CR1;
506     if (CR1.isWrappedSet() && !CR2.isWrappedSet())
507       return CR2;
508   } else if (Type == ConstantRange::Signed) {
509     if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
510       return CR1;
511     if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
512       return CR2;
513   }
514 
515   if (CR1.isSizeStrictlySmallerThan(CR2))
516     return CR1;
517   return CR2;
518 }
519 
520 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
521                                            PreferredRangeType Type) const {
522   assert(getBitWidth() == CR.getBitWidth() &&
523          "ConstantRange types don't agree!");
524 
525   // Handle common cases.
526   if (   isEmptySet() || CR.isFullSet()) return *this;
527   if (CR.isEmptySet() ||    isFullSet()) return CR;
528 
529   if (!isUpperWrapped() && CR.isUpperWrapped())
530     return CR.intersectWith(*this, Type);
531 
532   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
533     if (Lower.ult(CR.Lower)) {
534       // L---U       : this
535       //       L---U : CR
536       if (Upper.ule(CR.Lower))
537         return getEmpty();
538 
539       // L---U       : this
540       //   L---U     : CR
541       if (Upper.ult(CR.Upper))
542         return ConstantRange(CR.Lower, Upper);
543 
544       // L-------U   : this
545       //   L---U     : CR
546       return CR;
547     }
548     //   L---U     : this
549     // L-------U   : CR
550     if (Upper.ult(CR.Upper))
551       return *this;
552 
553     //   L-----U   : this
554     // L-----U     : CR
555     if (Lower.ult(CR.Upper))
556       return ConstantRange(Lower, CR.Upper);
557 
558     //       L---U : this
559     // L---U       : CR
560     return getEmpty();
561   }
562 
563   if (isUpperWrapped() && !CR.isUpperWrapped()) {
564     if (CR.Lower.ult(Upper)) {
565       // ------U   L--- : this
566       //  L--U          : CR
567       if (CR.Upper.ult(Upper))
568         return CR;
569 
570       // ------U   L--- : this
571       //  L------U      : CR
572       if (CR.Upper.ule(Lower))
573         return ConstantRange(CR.Lower, Upper);
574 
575       // ------U   L--- : this
576       //  L----------U  : CR
577       return getPreferredRange(*this, CR, Type);
578     }
579     if (CR.Lower.ult(Lower)) {
580       // --U      L---- : this
581       //     L--U       : CR
582       if (CR.Upper.ule(Lower))
583         return getEmpty();
584 
585       // --U      L---- : this
586       //     L------U   : CR
587       return ConstantRange(Lower, CR.Upper);
588     }
589 
590     // --U  L------ : this
591     //        L--U  : CR
592     return CR;
593   }
594 
595   if (CR.Upper.ult(Upper)) {
596     // ------U L-- : this
597     // --U L------ : CR
598     if (CR.Lower.ult(Upper))
599       return getPreferredRange(*this, CR, Type);
600 
601     // ----U   L-- : this
602     // --U   L---- : CR
603     if (CR.Lower.ult(Lower))
604       return ConstantRange(Lower, CR.Upper);
605 
606     // ----U L---- : this
607     // --U     L-- : CR
608     return CR;
609   }
610   if (CR.Upper.ule(Lower)) {
611     // --U     L-- : this
612     // ----U L---- : CR
613     if (CR.Lower.ult(Lower))
614       return *this;
615 
616     // --U   L---- : this
617     // ----U   L-- : CR
618     return ConstantRange(CR.Lower, Upper);
619   }
620 
621   // --U L------ : this
622   // ------U L-- : CR
623   return getPreferredRange(*this, CR, Type);
624 }
625 
626 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
627                                        PreferredRangeType Type) const {
628   assert(getBitWidth() == CR.getBitWidth() &&
629          "ConstantRange types don't agree!");
630 
631   if (   isFullSet() || CR.isEmptySet()) return *this;
632   if (CR.isFullSet() ||    isEmptySet()) return CR;
633 
634   if (!isUpperWrapped() && CR.isUpperWrapped())
635     return CR.unionWith(*this, Type);
636 
637   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
638     //        L---U  and  L---U        : this
639     //  L---U                   L---U  : CR
640     // result in one of
641     //  L---------U
642     // -----U L-----
643     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
644       return getPreferredRange(
645           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
646 
647     APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
648     APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
649 
650     if (L.isZero() && U.isZero())
651       return getFull();
652 
653     return ConstantRange(std::move(L), std::move(U));
654   }
655 
656   if (!CR.isUpperWrapped()) {
657     // ------U   L-----  and  ------U   L----- : this
658     //   L--U                            L--U  : CR
659     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
660       return *this;
661 
662     // ------U   L----- : this
663     //    L---------U   : CR
664     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
665       return getFull();
666 
667     // ----U       L---- : this
668     //       L---U       : CR
669     // results in one of
670     // ----------U L----
671     // ----U L----------
672     if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
673       return getPreferredRange(
674           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
675 
676     // ----U     L----- : this
677     //        L----U    : CR
678     if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
679       return ConstantRange(CR.Lower, Upper);
680 
681     // ------U    L---- : this
682     //    L-----U       : CR
683     assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
684            "ConstantRange::unionWith missed a case with one range wrapped");
685     return ConstantRange(Lower, CR.Upper);
686   }
687 
688   // ------U    L----  and  ------U    L---- : this
689   // -U  L-----------  and  ------------U  L : CR
690   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
691     return getFull();
692 
693   APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
694   APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
695 
696   return ConstantRange(std::move(L), std::move(U));
697 }
698 
699 std::optional<ConstantRange>
700 ConstantRange::exactIntersectWith(const ConstantRange &CR) const {
701   // TODO: This can be implemented more efficiently.
702   ConstantRange Result = intersectWith(CR);
703   if (Result == inverse().unionWith(CR.inverse()).inverse())
704     return Result;
705   return std::nullopt;
706 }
707 
708 std::optional<ConstantRange>
709 ConstantRange::exactUnionWith(const ConstantRange &CR) const {
710   // TODO: This can be implemented more efficiently.
711   ConstantRange Result = unionWith(CR);
712   if (Result == inverse().intersectWith(CR.inverse()).inverse())
713     return Result;
714   return std::nullopt;
715 }
716 
717 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
718                                     uint32_t ResultBitWidth) const {
719   switch (CastOp) {
720   default:
721     llvm_unreachable("unsupported cast type");
722   case Instruction::Trunc:
723     return truncate(ResultBitWidth);
724   case Instruction::SExt:
725     return signExtend(ResultBitWidth);
726   case Instruction::ZExt:
727     return zeroExtend(ResultBitWidth);
728   case Instruction::BitCast:
729     return *this;
730   case Instruction::FPToUI:
731   case Instruction::FPToSI:
732     if (getBitWidth() == ResultBitWidth)
733       return *this;
734     else
735       return getFull(ResultBitWidth);
736   case Instruction::UIToFP: {
737     // TODO: use input range if available
738     auto BW = getBitWidth();
739     APInt Min = APInt::getMinValue(BW);
740     APInt Max = APInt::getMaxValue(BW);
741     if (ResultBitWidth > BW) {
742       Min = Min.zext(ResultBitWidth);
743       Max = Max.zext(ResultBitWidth);
744     }
745     return ConstantRange(std::move(Min), std::move(Max));
746   }
747   case Instruction::SIToFP: {
748     // TODO: use input range if available
749     auto BW = getBitWidth();
750     APInt SMin = APInt::getSignedMinValue(BW);
751     APInt SMax = APInt::getSignedMaxValue(BW);
752     if (ResultBitWidth > BW) {
753       SMin = SMin.sext(ResultBitWidth);
754       SMax = SMax.sext(ResultBitWidth);
755     }
756     return ConstantRange(std::move(SMin), std::move(SMax));
757   }
758   case Instruction::FPTrunc:
759   case Instruction::FPExt:
760   case Instruction::IntToPtr:
761   case Instruction::PtrToInt:
762   case Instruction::AddrSpaceCast:
763     // Conservatively return getFull set.
764     return getFull(ResultBitWidth);
765   };
766 }
767 
768 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
769   if (isEmptySet()) return getEmpty(DstTySize);
770 
771   unsigned SrcTySize = getBitWidth();
772   assert(SrcTySize < DstTySize && "Not a value extension");
773   if (isFullSet() || isUpperWrapped()) {
774     // Change into [0, 1 << src bit width)
775     APInt LowerExt(DstTySize, 0);
776     if (!Upper) // special case: [X, 0) -- not really wrapping around
777       LowerExt = Lower.zext(DstTySize);
778     return ConstantRange(std::move(LowerExt),
779                          APInt::getOneBitSet(DstTySize, SrcTySize));
780   }
781 
782   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
783 }
784 
785 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
786   if (isEmptySet()) return getEmpty(DstTySize);
787 
788   unsigned SrcTySize = getBitWidth();
789   assert(SrcTySize < DstTySize && "Not a value extension");
790 
791   // special case: [X, INT_MIN) -- not really wrapping around
792   if (Upper.isMinSignedValue())
793     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
794 
795   if (isFullSet() || isSignWrappedSet()) {
796     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
797                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
798   }
799 
800   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
801 }
802 
803 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
804   assert(getBitWidth() > DstTySize && "Not a value truncation");
805   if (isEmptySet())
806     return getEmpty(DstTySize);
807   if (isFullSet())
808     return getFull(DstTySize);
809 
810   APInt LowerDiv(Lower), UpperDiv(Upper);
811   ConstantRange Union(DstTySize, /*isFullSet=*/false);
812 
813   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
814   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
815   // then we do the union with [MaxValue, Upper)
816   if (isUpperWrapped()) {
817     // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
818     // truncated range.
819     if (Upper.getActiveBits() > DstTySize || Upper.countr_one() == DstTySize)
820       return getFull(DstTySize);
821 
822     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
823     UpperDiv.setAllBits();
824 
825     // Union covers the MaxValue case, so return if the remaining range is just
826     // MaxValue(DstTy).
827     if (LowerDiv == UpperDiv)
828       return Union;
829   }
830 
831   // Chop off the most significant bits that are past the destination bitwidth.
832   if (LowerDiv.getActiveBits() > DstTySize) {
833     // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
834     APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
835     LowerDiv -= Adjust;
836     UpperDiv -= Adjust;
837   }
838 
839   unsigned UpperDivWidth = UpperDiv.getActiveBits();
840   if (UpperDivWidth <= DstTySize)
841     return ConstantRange(LowerDiv.trunc(DstTySize),
842                          UpperDiv.trunc(DstTySize)).unionWith(Union);
843 
844   // The truncated value wraps around. Check if we can do better than fullset.
845   if (UpperDivWidth == DstTySize + 1) {
846     // Clear the MSB so that UpperDiv wraps around.
847     UpperDiv.clearBit(DstTySize);
848     if (UpperDiv.ult(LowerDiv))
849       return ConstantRange(LowerDiv.trunc(DstTySize),
850                            UpperDiv.trunc(DstTySize)).unionWith(Union);
851   }
852 
853   return getFull(DstTySize);
854 }
855 
856 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
857   unsigned SrcTySize = getBitWidth();
858   if (SrcTySize > DstTySize)
859     return truncate(DstTySize);
860   if (SrcTySize < DstTySize)
861     return zeroExtend(DstTySize);
862   return *this;
863 }
864 
865 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
866   unsigned SrcTySize = getBitWidth();
867   if (SrcTySize > DstTySize)
868     return truncate(DstTySize);
869   if (SrcTySize < DstTySize)
870     return signExtend(DstTySize);
871   return *this;
872 }
873 
874 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
875                                       const ConstantRange &Other) const {
876   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
877 
878   switch (BinOp) {
879   case Instruction::Add:
880     return add(Other);
881   case Instruction::Sub:
882     return sub(Other);
883   case Instruction::Mul:
884     return multiply(Other);
885   case Instruction::UDiv:
886     return udiv(Other);
887   case Instruction::SDiv:
888     return sdiv(Other);
889   case Instruction::URem:
890     return urem(Other);
891   case Instruction::SRem:
892     return srem(Other);
893   case Instruction::Shl:
894     return shl(Other);
895   case Instruction::LShr:
896     return lshr(Other);
897   case Instruction::AShr:
898     return ashr(Other);
899   case Instruction::And:
900     return binaryAnd(Other);
901   case Instruction::Or:
902     return binaryOr(Other);
903   case Instruction::Xor:
904     return binaryXor(Other);
905   // Note: floating point operations applied to abstract ranges are just
906   // ideal integer operations with a lossy representation
907   case Instruction::FAdd:
908     return add(Other);
909   case Instruction::FSub:
910     return sub(Other);
911   case Instruction::FMul:
912     return multiply(Other);
913   default:
914     // Conservatively return getFull set.
915     return getFull();
916   }
917 }
918 
919 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
920                                                  const ConstantRange &Other,
921                                                  unsigned NoWrapKind) const {
922   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
923 
924   switch (BinOp) {
925   case Instruction::Add:
926     return addWithNoWrap(Other, NoWrapKind);
927   case Instruction::Sub:
928     return subWithNoWrap(Other, NoWrapKind);
929   default:
930     // Don't know about this Overflowing Binary Operation.
931     // Conservatively fallback to plain binop handling.
932     return binaryOp(BinOp, Other);
933   }
934 }
935 
936 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
937   switch (IntrinsicID) {
938   case Intrinsic::uadd_sat:
939   case Intrinsic::usub_sat:
940   case Intrinsic::sadd_sat:
941   case Intrinsic::ssub_sat:
942   case Intrinsic::umin:
943   case Intrinsic::umax:
944   case Intrinsic::smin:
945   case Intrinsic::smax:
946   case Intrinsic::abs:
947   case Intrinsic::ctlz:
948     return true;
949   default:
950     return false;
951   }
952 }
953 
954 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
955                                        ArrayRef<ConstantRange> Ops) {
956   switch (IntrinsicID) {
957   case Intrinsic::uadd_sat:
958     return Ops[0].uadd_sat(Ops[1]);
959   case Intrinsic::usub_sat:
960     return Ops[0].usub_sat(Ops[1]);
961   case Intrinsic::sadd_sat:
962     return Ops[0].sadd_sat(Ops[1]);
963   case Intrinsic::ssub_sat:
964     return Ops[0].ssub_sat(Ops[1]);
965   case Intrinsic::umin:
966     return Ops[0].umin(Ops[1]);
967   case Intrinsic::umax:
968     return Ops[0].umax(Ops[1]);
969   case Intrinsic::smin:
970     return Ops[0].smin(Ops[1]);
971   case Intrinsic::smax:
972     return Ops[0].smax(Ops[1]);
973   case Intrinsic::abs: {
974     const APInt *IntMinIsPoison = Ops[1].getSingleElement();
975     assert(IntMinIsPoison && "Must be known (immarg)");
976     assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
977     return Ops[0].abs(IntMinIsPoison->getBoolValue());
978   }
979   case Intrinsic::ctlz: {
980     const APInt *ZeroIsPoison = Ops[1].getSingleElement();
981     assert(ZeroIsPoison && "Must be known (immarg)");
982     assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean");
983     return Ops[0].ctlz(ZeroIsPoison->getBoolValue());
984   }
985   default:
986     assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
987     llvm_unreachable("Unsupported intrinsic");
988   }
989 }
990 
991 ConstantRange
992 ConstantRange::add(const ConstantRange &Other) const {
993   if (isEmptySet() || Other.isEmptySet())
994     return getEmpty();
995   if (isFullSet() || Other.isFullSet())
996     return getFull();
997 
998   APInt NewLower = getLower() + Other.getLower();
999   APInt NewUpper = getUpper() + Other.getUpper() - 1;
1000   if (NewLower == NewUpper)
1001     return getFull();
1002 
1003   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
1004   if (X.isSizeStrictlySmallerThan(*this) ||
1005       X.isSizeStrictlySmallerThan(Other))
1006     // We've wrapped, therefore, full set.
1007     return getFull();
1008   return X;
1009 }
1010 
1011 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
1012                                            unsigned NoWrapKind,
1013                                            PreferredRangeType RangeType) const {
1014   // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
1015   // (X is from this, and Y is from Other)
1016   if (isEmptySet() || Other.isEmptySet())
1017     return getEmpty();
1018   if (isFullSet() && Other.isFullSet())
1019     return getFull();
1020 
1021   using OBO = OverflowingBinaryOperator;
1022   ConstantRange Result = add(Other);
1023 
1024   // If an overflow happens for every value pair in these two constant ranges,
1025   // we must return Empty set. In this case, we get that for free, because we
1026   // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
1027   // in an empty set.
1028 
1029   if (NoWrapKind & OBO::NoSignedWrap)
1030     Result = Result.intersectWith(sadd_sat(Other), RangeType);
1031 
1032   if (NoWrapKind & OBO::NoUnsignedWrap)
1033     Result = Result.intersectWith(uadd_sat(Other), RangeType);
1034 
1035   return Result;
1036 }
1037 
1038 ConstantRange
1039 ConstantRange::sub(const ConstantRange &Other) const {
1040   if (isEmptySet() || Other.isEmptySet())
1041     return getEmpty();
1042   if (isFullSet() || Other.isFullSet())
1043     return getFull();
1044 
1045   APInt NewLower = getLower() - Other.getUpper() + 1;
1046   APInt NewUpper = getUpper() - Other.getLower();
1047   if (NewLower == NewUpper)
1048     return getFull();
1049 
1050   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
1051   if (X.isSizeStrictlySmallerThan(*this) ||
1052       X.isSizeStrictlySmallerThan(Other))
1053     // We've wrapped, therefore, full set.
1054     return getFull();
1055   return X;
1056 }
1057 
1058 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
1059                                            unsigned NoWrapKind,
1060                                            PreferredRangeType RangeType) const {
1061   // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
1062   // (X is from this, and Y is from Other)
1063   if (isEmptySet() || Other.isEmptySet())
1064     return getEmpty();
1065   if (isFullSet() && Other.isFullSet())
1066     return getFull();
1067 
1068   using OBO = OverflowingBinaryOperator;
1069   ConstantRange Result = sub(Other);
1070 
1071   // If an overflow happens for every value pair in these two constant ranges,
1072   // we must return Empty set. In signed case, we get that for free, because we
1073   // get lucky that intersection of sub() with ssub_sat() results in an
1074   // empty set. But for unsigned we must perform the overflow check manually.
1075 
1076   if (NoWrapKind & OBO::NoSignedWrap)
1077     Result = Result.intersectWith(ssub_sat(Other), RangeType);
1078 
1079   if (NoWrapKind & OBO::NoUnsignedWrap) {
1080     if (getUnsignedMax().ult(Other.getUnsignedMin()))
1081       return getEmpty(); // Always overflows.
1082     Result = Result.intersectWith(usub_sat(Other), RangeType);
1083   }
1084 
1085   return Result;
1086 }
1087 
1088 ConstantRange
1089 ConstantRange::multiply(const ConstantRange &Other) const {
1090   // TODO: If either operand is a single element and the multiply is known to
1091   // be non-wrapping, round the result min and max value to the appropriate
1092   // multiple of that element. If wrapping is possible, at least adjust the
1093   // range according to the greatest power-of-two factor of the single element.
1094 
1095   if (isEmptySet() || Other.isEmptySet())
1096     return getEmpty();
1097 
1098   if (const APInt *C = getSingleElement()) {
1099     if (C->isOne())
1100       return Other;
1101     if (C->isAllOnes())
1102       return ConstantRange(APInt::getZero(getBitWidth())).sub(Other);
1103   }
1104 
1105   if (const APInt *C = Other.getSingleElement()) {
1106     if (C->isOne())
1107       return *this;
1108     if (C->isAllOnes())
1109       return ConstantRange(APInt::getZero(getBitWidth())).sub(*this);
1110   }
1111 
1112   // Multiplication is signedness-independent. However different ranges can be
1113   // obtained depending on how the input ranges are treated. These different
1114   // ranges are all conservatively correct, but one might be better than the
1115   // other. We calculate two ranges; one treating the inputs as unsigned
1116   // and the other signed, then return the smallest of these ranges.
1117 
1118   // Unsigned range first.
1119   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
1120   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
1121   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
1122   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
1123 
1124   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
1125                                             this_max * Other_max + 1);
1126   ConstantRange UR = Result_zext.truncate(getBitWidth());
1127 
1128   // If the unsigned range doesn't wrap, and isn't negative then it's a range
1129   // from one positive number to another which is as good as we can generate.
1130   // In this case, skip the extra work of generating signed ranges which aren't
1131   // going to be better than this range.
1132   if (!UR.isUpperWrapped() &&
1133       (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
1134     return UR;
1135 
1136   // Now the signed range. Because we could be dealing with negative numbers
1137   // here, the lower bound is the smallest of the cartesian product of the
1138   // lower and upper ranges; for example:
1139   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1140   // Similarly for the upper bound, swapping min for max.
1141 
1142   this_min = getSignedMin().sext(getBitWidth() * 2);
1143   this_max = getSignedMax().sext(getBitWidth() * 2);
1144   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1145   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1146 
1147   auto L = {this_min * Other_min, this_min * Other_max,
1148             this_max * Other_min, this_max * Other_max};
1149   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1150   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
1151   ConstantRange SR = Result_sext.truncate(getBitWidth());
1152 
1153   return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
1154 }
1155 
1156 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const {
1157   if (isEmptySet() || Other.isEmptySet())
1158     return getEmpty();
1159 
1160   APInt Min = getSignedMin();
1161   APInt Max = getSignedMax();
1162   APInt OtherMin = Other.getSignedMin();
1163   APInt OtherMax = Other.getSignedMax();
1164 
1165   bool O1, O2, O3, O4;
1166   auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2),
1167                Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)};
1168   if (O1 || O2 || O3 || O4)
1169     return getFull();
1170 
1171   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1172   return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1);
1173 }
1174 
1175 ConstantRange
1176 ConstantRange::smax(const ConstantRange &Other) const {
1177   // X smax Y is: range(smax(X_smin, Y_smin),
1178   //                    smax(X_smax, Y_smax))
1179   if (isEmptySet() || Other.isEmptySet())
1180     return getEmpty();
1181   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
1182   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
1183   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1184   if (isSignWrappedSet() || Other.isSignWrappedSet())
1185     return Res.intersectWith(unionWith(Other, Signed), Signed);
1186   return Res;
1187 }
1188 
1189 ConstantRange
1190 ConstantRange::umax(const ConstantRange &Other) const {
1191   // X umax Y is: range(umax(X_umin, Y_umin),
1192   //                    umax(X_umax, Y_umax))
1193   if (isEmptySet() || Other.isEmptySet())
1194     return getEmpty();
1195   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1196   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1197   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1198   if (isWrappedSet() || Other.isWrappedSet())
1199     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1200   return Res;
1201 }
1202 
1203 ConstantRange
1204 ConstantRange::smin(const ConstantRange &Other) const {
1205   // X smin Y is: range(smin(X_smin, Y_smin),
1206   //                    smin(X_smax, Y_smax))
1207   if (isEmptySet() || Other.isEmptySet())
1208     return getEmpty();
1209   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1210   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1211   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1212   if (isSignWrappedSet() || Other.isSignWrappedSet())
1213     return Res.intersectWith(unionWith(Other, Signed), Signed);
1214   return Res;
1215 }
1216 
1217 ConstantRange
1218 ConstantRange::umin(const ConstantRange &Other) const {
1219   // X umin Y is: range(umin(X_umin, Y_umin),
1220   //                    umin(X_umax, Y_umax))
1221   if (isEmptySet() || Other.isEmptySet())
1222     return getEmpty();
1223   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1224   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1225   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1226   if (isWrappedSet() || Other.isWrappedSet())
1227     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1228   return Res;
1229 }
1230 
1231 ConstantRange
1232 ConstantRange::udiv(const ConstantRange &RHS) const {
1233   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1234     return getEmpty();
1235 
1236   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1237 
1238   APInt RHS_umin = RHS.getUnsignedMin();
1239   if (RHS_umin.isZero()) {
1240     // We want the lowest value in RHS excluding zero. Usually that would be 1
1241     // except for a range in the form of [X, 1) in which case it would be X.
1242     if (RHS.getUpper() == 1)
1243       RHS_umin = RHS.getLower();
1244     else
1245       RHS_umin = 1;
1246   }
1247 
1248   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1249   return getNonEmpty(std::move(Lower), std::move(Upper));
1250 }
1251 
1252 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1253   // We split up the LHS and RHS into positive and negative components
1254   // and then also compute the positive and negative components of the result
1255   // separately by combining division results with the appropriate signs.
1256   APInt Zero = APInt::getZero(getBitWidth());
1257   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1258   // There are no positive 1-bit values. The 1 would get interpreted as -1.
1259   ConstantRange PosFilter =
1260       getBitWidth() == 1 ? getEmpty()
1261                          : ConstantRange(APInt(getBitWidth(), 1), SignedMin);
1262   ConstantRange NegFilter(SignedMin, Zero);
1263   ConstantRange PosL = intersectWith(PosFilter);
1264   ConstantRange NegL = intersectWith(NegFilter);
1265   ConstantRange PosR = RHS.intersectWith(PosFilter);
1266   ConstantRange NegR = RHS.intersectWith(NegFilter);
1267 
1268   ConstantRange PosRes = getEmpty();
1269   if (!PosL.isEmptySet() && !PosR.isEmptySet())
1270     // pos / pos = pos.
1271     PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1272                            (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1273 
1274   if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1275     // neg / neg = pos.
1276     //
1277     // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1278     // IR level, so we'll want to exclude this case when calculating bounds.
1279     // (For APInts the operation is well-defined and yields SignedMin.) We
1280     // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1281     APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1282     if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) {
1283       // Remove -1 from the LHS. Skip if it's the only element, as this would
1284       // leave us with an empty set.
1285       if (!NegR.Lower.isAllOnes()) {
1286         APInt AdjNegRUpper;
1287         if (RHS.Lower.isAllOnes())
1288           // Negative part of [-1, X] without -1 is [SignedMin, X].
1289           AdjNegRUpper = RHS.Upper;
1290         else
1291           // [X, -1] without -1 is [X, -2].
1292           AdjNegRUpper = NegR.Upper - 1;
1293 
1294         PosRes = PosRes.unionWith(
1295             ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1296       }
1297 
1298       // Remove SignedMin from the RHS. Skip if it's the only element, as this
1299       // would leave us with an empty set.
1300       if (NegL.Upper != SignedMin + 1) {
1301         APInt AdjNegLLower;
1302         if (Upper == SignedMin + 1)
1303           // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1304           AdjNegLLower = Lower;
1305         else
1306           // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1307           AdjNegLLower = NegL.Lower + 1;
1308 
1309         PosRes = PosRes.unionWith(
1310             ConstantRange(std::move(Lo),
1311                           AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1312       }
1313     } else {
1314       PosRes = PosRes.unionWith(
1315           ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1316     }
1317   }
1318 
1319   ConstantRange NegRes = getEmpty();
1320   if (!PosL.isEmptySet() && !NegR.isEmptySet())
1321     // pos / neg = neg.
1322     NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1323                            PosL.Lower.sdiv(NegR.Lower) + 1);
1324 
1325   if (!NegL.isEmptySet() && !PosR.isEmptySet())
1326     // neg / pos = neg.
1327     NegRes = NegRes.unionWith(
1328         ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1329                       (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1330 
1331   // Prefer a non-wrapping signed range here.
1332   ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1333 
1334   // Preserve the zero that we dropped when splitting the LHS by sign.
1335   if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1336     Res = Res.unionWith(ConstantRange(Zero));
1337   return Res;
1338 }
1339 
1340 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1341   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1342     return getEmpty();
1343 
1344   if (const APInt *RHSInt = RHS.getSingleElement()) {
1345     // UREM by null is UB.
1346     if (RHSInt->isZero())
1347       return getEmpty();
1348     // Use APInt's implementation of UREM for single element ranges.
1349     if (const APInt *LHSInt = getSingleElement())
1350       return {LHSInt->urem(*RHSInt)};
1351   }
1352 
1353   // L % R for L < R is L.
1354   if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1355     return *this;
1356 
1357   // L % R is <= L and < R.
1358   APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1359   return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper));
1360 }
1361 
1362 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1363   if (isEmptySet() || RHS.isEmptySet())
1364     return getEmpty();
1365 
1366   if (const APInt *RHSInt = RHS.getSingleElement()) {
1367     // SREM by null is UB.
1368     if (RHSInt->isZero())
1369       return getEmpty();
1370     // Use APInt's implementation of SREM for single element ranges.
1371     if (const APInt *LHSInt = getSingleElement())
1372       return {LHSInt->srem(*RHSInt)};
1373   }
1374 
1375   ConstantRange AbsRHS = RHS.abs();
1376   APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1377   APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1378 
1379   // Modulus by zero is UB.
1380   if (MaxAbsRHS.isZero())
1381     return getEmpty();
1382 
1383   if (MinAbsRHS.isZero())
1384     ++MinAbsRHS;
1385 
1386   APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1387 
1388   if (MinLHS.isNonNegative()) {
1389     // L % R for L < R is L.
1390     if (MaxLHS.ult(MinAbsRHS))
1391       return *this;
1392 
1393     // L % R is <= L and < R.
1394     APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1395     return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper));
1396   }
1397 
1398   // Same basic logic as above, but the result is negative.
1399   if (MaxLHS.isNegative()) {
1400     if (MinLHS.ugt(-MinAbsRHS))
1401       return *this;
1402 
1403     APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1404     return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1405   }
1406 
1407   // LHS range crosses zero.
1408   APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1409   APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1410   return ConstantRange(std::move(Lower), std::move(Upper));
1411 }
1412 
1413 ConstantRange ConstantRange::binaryNot() const {
1414   return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this);
1415 }
1416 
1417 ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const {
1418   if (isEmptySet() || Other.isEmptySet())
1419     return getEmpty();
1420 
1421   ConstantRange KnownBitsRange =
1422       fromKnownBits(toKnownBits() & Other.toKnownBits(), false);
1423   ConstantRange UMinUMaxRange =
1424       getNonEmpty(APInt::getZero(getBitWidth()),
1425                   APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()) + 1);
1426   return KnownBitsRange.intersectWith(UMinUMaxRange);
1427 }
1428 
1429 ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const {
1430   if (isEmptySet() || Other.isEmptySet())
1431     return getEmpty();
1432 
1433   ConstantRange KnownBitsRange =
1434       fromKnownBits(toKnownBits() | Other.toKnownBits(), false);
1435   // Upper wrapped range.
1436   ConstantRange UMaxUMinRange =
1437       getNonEmpty(APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()),
1438                   APInt::getZero(getBitWidth()));
1439   return KnownBitsRange.intersectWith(UMaxUMinRange);
1440 }
1441 
1442 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
1443   if (isEmptySet() || Other.isEmptySet())
1444     return getEmpty();
1445 
1446   // Use APInt's implementation of XOR for single element ranges.
1447   if (isSingleElement() && Other.isSingleElement())
1448     return {*getSingleElement() ^ *Other.getSingleElement()};
1449 
1450   // Special-case binary complement, since we can give a precise answer.
1451   if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes())
1452     return binaryNot();
1453   if (isSingleElement() && getSingleElement()->isAllOnes())
1454     return Other.binaryNot();
1455 
1456   return fromKnownBits(toKnownBits() ^ Other.toKnownBits(), /*IsSigned*/false);
1457 }
1458 
1459 ConstantRange
1460 ConstantRange::shl(const ConstantRange &Other) const {
1461   if (isEmptySet() || Other.isEmptySet())
1462     return getEmpty();
1463 
1464   APInt Min = getUnsignedMin();
1465   APInt Max = getUnsignedMax();
1466   if (const APInt *RHS = Other.getSingleElement()) {
1467     unsigned BW = getBitWidth();
1468     if (RHS->uge(BW))
1469       return getEmpty();
1470 
1471     unsigned EqualLeadingBits = (Min ^ Max).countl_zero();
1472     if (RHS->ule(EqualLeadingBits))
1473       return getNonEmpty(Min << *RHS, (Max << *RHS) + 1);
1474 
1475     return getNonEmpty(APInt::getZero(BW),
1476                        APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1);
1477   }
1478 
1479   APInt OtherMax = Other.getUnsignedMax();
1480 
1481   // There's overflow!
1482   if (OtherMax.ugt(Max.countl_zero()))
1483     return getFull();
1484 
1485   // FIXME: implement the other tricky cases
1486 
1487   Min <<= Other.getUnsignedMin();
1488   Max <<= OtherMax;
1489 
1490   return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
1491 }
1492 
1493 ConstantRange
1494 ConstantRange::lshr(const ConstantRange &Other) const {
1495   if (isEmptySet() || Other.isEmptySet())
1496     return getEmpty();
1497 
1498   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1499   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1500   return getNonEmpty(std::move(min), std::move(max));
1501 }
1502 
1503 ConstantRange
1504 ConstantRange::ashr(const ConstantRange &Other) const {
1505   if (isEmptySet() || Other.isEmptySet())
1506     return getEmpty();
1507 
1508   // May straddle zero, so handle both positive and negative cases.
1509   // 'PosMax' is the upper bound of the result of the ashr
1510   // operation, when Upper of the LHS of ashr is a non-negative.
1511   // number. Since ashr of a non-negative number will result in a
1512   // smaller number, the Upper value of LHS is shifted right with
1513   // the minimum value of 'Other' instead of the maximum value.
1514   APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1515 
1516   // 'PosMin' is the lower bound of the result of the ashr
1517   // operation, when Lower of the LHS is a non-negative number.
1518   // Since ashr of a non-negative number will result in a smaller
1519   // number, the Lower value of LHS is shifted right with the
1520   // maximum value of 'Other'.
1521   APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1522 
1523   // 'NegMax' is the upper bound of the result of the ashr
1524   // operation, when Upper of the LHS of ashr is a negative number.
1525   // Since 'ashr' of a negative number will result in a bigger
1526   // number, the Upper value of LHS is shifted right with the
1527   // maximum value of 'Other'.
1528   APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1529 
1530   // 'NegMin' is the lower bound of the result of the ashr
1531   // operation, when Lower of the LHS of ashr is a negative number.
1532   // Since 'ashr' of a negative number will result in a bigger
1533   // number, the Lower value of LHS is shifted right with the
1534   // minimum value of 'Other'.
1535   APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1536 
1537   APInt max, min;
1538   if (getSignedMin().isNonNegative()) {
1539     // Upper and Lower of LHS are non-negative.
1540     min = PosMin;
1541     max = PosMax;
1542   } else if (getSignedMax().isNegative()) {
1543     // Upper and Lower of LHS are negative.
1544     min = NegMin;
1545     max = NegMax;
1546   } else {
1547     // Upper is non-negative and Lower is negative.
1548     min = NegMin;
1549     max = PosMax;
1550   }
1551   return getNonEmpty(std::move(min), std::move(max));
1552 }
1553 
1554 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1555   if (isEmptySet() || Other.isEmptySet())
1556     return getEmpty();
1557 
1558   APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1559   APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1560   return getNonEmpty(std::move(NewL), std::move(NewU));
1561 }
1562 
1563 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1564   if (isEmptySet() || Other.isEmptySet())
1565     return getEmpty();
1566 
1567   APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1568   APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1569   return getNonEmpty(std::move(NewL), std::move(NewU));
1570 }
1571 
1572 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1573   if (isEmptySet() || Other.isEmptySet())
1574     return getEmpty();
1575 
1576   APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1577   APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1578   return getNonEmpty(std::move(NewL), std::move(NewU));
1579 }
1580 
1581 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1582   if (isEmptySet() || Other.isEmptySet())
1583     return getEmpty();
1584 
1585   APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1586   APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1587   return getNonEmpty(std::move(NewL), std::move(NewU));
1588 }
1589 
1590 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1591   if (isEmptySet() || Other.isEmptySet())
1592     return getEmpty();
1593 
1594   APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1595   APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1596   return getNonEmpty(std::move(NewL), std::move(NewU));
1597 }
1598 
1599 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1600   if (isEmptySet() || Other.isEmptySet())
1601     return getEmpty();
1602 
1603   // Because we could be dealing with negative numbers here, the lower bound is
1604   // the smallest of the cartesian product of the lower and upper ranges;
1605   // for example:
1606   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1607   // Similarly for the upper bound, swapping min for max.
1608 
1609   APInt Min = getSignedMin();
1610   APInt Max = getSignedMax();
1611   APInt OtherMin = Other.getSignedMin();
1612   APInt OtherMax = Other.getSignedMax();
1613 
1614   auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax),
1615             Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)};
1616   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1617   return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1);
1618 }
1619 
1620 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1621   if (isEmptySet() || Other.isEmptySet())
1622     return getEmpty();
1623 
1624   APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1625   APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1626   return getNonEmpty(std::move(NewL), std::move(NewU));
1627 }
1628 
1629 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1630   if (isEmptySet() || Other.isEmptySet())
1631     return getEmpty();
1632 
1633   APInt Min = getSignedMin(), Max = getSignedMax();
1634   APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1635   APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1636   APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1637   return getNonEmpty(std::move(NewL), std::move(NewU));
1638 }
1639 
1640 ConstantRange ConstantRange::inverse() const {
1641   if (isFullSet())
1642     return getEmpty();
1643   if (isEmptySet())
1644     return getFull();
1645   return ConstantRange(Upper, Lower);
1646 }
1647 
1648 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
1649   if (isEmptySet())
1650     return getEmpty();
1651 
1652   if (isSignWrappedSet()) {
1653     APInt Lo;
1654     // Check whether the range crosses zero.
1655     if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1656       Lo = APInt::getZero(getBitWidth());
1657     else
1658       Lo = APIntOps::umin(Lower, -Upper + 1);
1659 
1660     // If SignedMin is not poison, then it is included in the result range.
1661     if (IntMinIsPoison)
1662       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
1663     else
1664       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1665   }
1666 
1667   APInt SMin = getSignedMin(), SMax = getSignedMax();
1668 
1669   // Skip SignedMin if it is poison.
1670   if (IntMinIsPoison && SMin.isMinSignedValue()) {
1671     // The range may become empty if it *only* contains SignedMin.
1672     if (SMax.isMinSignedValue())
1673       return getEmpty();
1674     ++SMin;
1675   }
1676 
1677   // All non-negative.
1678   if (SMin.isNonNegative())
1679     return ConstantRange(SMin, SMax + 1);
1680 
1681   // All negative.
1682   if (SMax.isNegative())
1683     return ConstantRange(-SMax, -SMin + 1);
1684 
1685   // Range crosses zero.
1686   return ConstantRange::getNonEmpty(APInt::getZero(getBitWidth()),
1687                                     APIntOps::umax(-SMin, SMax) + 1);
1688 }
1689 
1690 ConstantRange ConstantRange::ctlz(bool ZeroIsPoison) const {
1691   if (isEmptySet())
1692     return getEmpty();
1693 
1694   APInt Zero = APInt::getZero(getBitWidth());
1695   if (ZeroIsPoison && contains(Zero)) {
1696     // ZeroIsPoison is set, and zero is contained. We discern three cases, in
1697     // which a zero can appear:
1698     // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc.
1699     // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc.
1700     // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc.
1701 
1702     if (getLower().isZero()) {
1703       if ((getUpper() - 1).isZero()) {
1704         // We have in input interval of kind [0, 1). In this case we cannot
1705         // really help but return empty-set.
1706         return getEmpty();
1707       }
1708 
1709       // Compute the resulting range by excluding zero from Lower.
1710       return ConstantRange(
1711           APInt(getBitWidth(), (getUpper() - 1).countl_zero()),
1712           APInt(getBitWidth(), (getLower() + 1).countl_zero() + 1));
1713     } else if ((getUpper() - 1).isZero()) {
1714       // Compute the resulting range by excluding zero from Upper.
1715       return ConstantRange(Zero,
1716                            APInt(getBitWidth(), getLower().countl_zero() + 1));
1717     } else {
1718       return ConstantRange(Zero, APInt(getBitWidth(), getBitWidth()));
1719     }
1720   }
1721 
1722   // Zero is either safe or not in the range. The output range is composed by
1723   // the result of countLeadingZero of the two extremes.
1724   return getNonEmpty(APInt(getBitWidth(), getUnsignedMax().countl_zero()),
1725                      APInt(getBitWidth(), getUnsignedMin().countl_zero() + 1));
1726 }
1727 
1728 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1729     const ConstantRange &Other) const {
1730   if (isEmptySet() || Other.isEmptySet())
1731     return OverflowResult::MayOverflow;
1732 
1733   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1734   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1735 
1736   // a u+ b overflows high iff a u> ~b.
1737   if (Min.ugt(~OtherMin))
1738     return OverflowResult::AlwaysOverflowsHigh;
1739   if (Max.ugt(~OtherMax))
1740     return OverflowResult::MayOverflow;
1741   return OverflowResult::NeverOverflows;
1742 }
1743 
1744 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1745     const ConstantRange &Other) const {
1746   if (isEmptySet() || Other.isEmptySet())
1747     return OverflowResult::MayOverflow;
1748 
1749   APInt Min = getSignedMin(), Max = getSignedMax();
1750   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1751 
1752   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1753   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1754 
1755   // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1756   // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1757   if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1758       Min.sgt(SignedMax - OtherMin))
1759     return OverflowResult::AlwaysOverflowsHigh;
1760   if (Max.isNegative() && OtherMax.isNegative() &&
1761       Max.slt(SignedMin - OtherMax))
1762     return OverflowResult::AlwaysOverflowsLow;
1763 
1764   if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1765       Max.sgt(SignedMax - OtherMax))
1766     return OverflowResult::MayOverflow;
1767   if (Min.isNegative() && OtherMin.isNegative() &&
1768       Min.slt(SignedMin - OtherMin))
1769     return OverflowResult::MayOverflow;
1770 
1771   return OverflowResult::NeverOverflows;
1772 }
1773 
1774 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1775     const ConstantRange &Other) const {
1776   if (isEmptySet() || Other.isEmptySet())
1777     return OverflowResult::MayOverflow;
1778 
1779   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1780   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1781 
1782   // a u- b overflows low iff a u< b.
1783   if (Max.ult(OtherMin))
1784     return OverflowResult::AlwaysOverflowsLow;
1785   if (Min.ult(OtherMax))
1786     return OverflowResult::MayOverflow;
1787   return OverflowResult::NeverOverflows;
1788 }
1789 
1790 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1791     const ConstantRange &Other) const {
1792   if (isEmptySet() || Other.isEmptySet())
1793     return OverflowResult::MayOverflow;
1794 
1795   APInt Min = getSignedMin(), Max = getSignedMax();
1796   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1797 
1798   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1799   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1800 
1801   // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1802   // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1803   if (Min.isNonNegative() && OtherMax.isNegative() &&
1804       Min.sgt(SignedMax + OtherMax))
1805     return OverflowResult::AlwaysOverflowsHigh;
1806   if (Max.isNegative() && OtherMin.isNonNegative() &&
1807       Max.slt(SignedMin + OtherMin))
1808     return OverflowResult::AlwaysOverflowsLow;
1809 
1810   if (Max.isNonNegative() && OtherMin.isNegative() &&
1811       Max.sgt(SignedMax + OtherMin))
1812     return OverflowResult::MayOverflow;
1813   if (Min.isNegative() && OtherMax.isNonNegative() &&
1814       Min.slt(SignedMin + OtherMax))
1815     return OverflowResult::MayOverflow;
1816 
1817   return OverflowResult::NeverOverflows;
1818 }
1819 
1820 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1821     const ConstantRange &Other) const {
1822   if (isEmptySet() || Other.isEmptySet())
1823     return OverflowResult::MayOverflow;
1824 
1825   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1826   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1827   bool Overflow;
1828 
1829   (void) Min.umul_ov(OtherMin, Overflow);
1830   if (Overflow)
1831     return OverflowResult::AlwaysOverflowsHigh;
1832 
1833   (void) Max.umul_ov(OtherMax, Overflow);
1834   if (Overflow)
1835     return OverflowResult::MayOverflow;
1836 
1837   return OverflowResult::NeverOverflows;
1838 }
1839 
1840 void ConstantRange::print(raw_ostream &OS) const {
1841   if (isFullSet())
1842     OS << "full-set";
1843   else if (isEmptySet())
1844     OS << "empty-set";
1845   else
1846     OS << "[" << Lower << "," << Upper << ")";
1847 }
1848 
1849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1850 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1851   print(dbgs());
1852 }
1853 #endif
1854 
1855 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1856   const unsigned NumRanges = Ranges.getNumOperands() / 2;
1857   assert(NumRanges >= 1 && "Must have at least one range!");
1858   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1859 
1860   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1861   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1862 
1863   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1864 
1865   for (unsigned i = 1; i < NumRanges; ++i) {
1866     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1867     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1868 
1869     // Note: unionWith will potentially create a range that contains values not
1870     // contained in any of the original N ranges.
1871     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1872   }
1873 
1874   return CR;
1875 }
1876