xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantRange.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 
41 using namespace llvm;
42 
43 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
44     : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
45       Upper(Lower) {}
46 
47 ConstantRange::ConstantRange(APInt V)
48     : Lower(std::move(V)), Upper(Lower + 1) {}
49 
50 ConstantRange::ConstantRange(APInt L, APInt U)
51     : Lower(std::move(L)), Upper(std::move(U)) {
52   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
53          "ConstantRange with unequal bit widths");
54   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
55          "Lower == Upper, but they aren't min or max value!");
56 }
57 
58 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
59                                            bool IsSigned) {
60   assert(!Known.hasConflict() && "Expected valid KnownBits");
61 
62   if (Known.isUnknown())
63     return getFull(Known.getBitWidth());
64 
65   // For unsigned ranges, or signed ranges with known sign bit, create a simple
66   // range between the smallest and largest possible value.
67   if (!IsSigned || Known.isNegative() || Known.isNonNegative())
68     return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
69 
70   // If we don't know the sign bit, pick the lower bound as a negative number
71   // and the upper bound as a non-negative one.
72   APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
73   Lower.setSignBit();
74   Upper.clearSignBit();
75   return ConstantRange(Lower, Upper + 1);
76 }
77 
78 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
79                                                    const ConstantRange &CR) {
80   if (CR.isEmptySet())
81     return CR;
82 
83   uint32_t W = CR.getBitWidth();
84   switch (Pred) {
85   default:
86     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
87   case CmpInst::ICMP_EQ:
88     return CR;
89   case CmpInst::ICMP_NE:
90     if (CR.isSingleElement())
91       return ConstantRange(CR.getUpper(), CR.getLower());
92     return getFull(W);
93   case CmpInst::ICMP_ULT: {
94     APInt UMax(CR.getUnsignedMax());
95     if (UMax.isMinValue())
96       return getEmpty(W);
97     return ConstantRange(APInt::getMinValue(W), std::move(UMax));
98   }
99   case CmpInst::ICMP_SLT: {
100     APInt SMax(CR.getSignedMax());
101     if (SMax.isMinSignedValue())
102       return getEmpty(W);
103     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
104   }
105   case CmpInst::ICMP_ULE:
106     return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
107   case CmpInst::ICMP_SLE:
108     return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
109   case CmpInst::ICMP_UGT: {
110     APInt UMin(CR.getUnsignedMin());
111     if (UMin.isMaxValue())
112       return getEmpty(W);
113     return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
114   }
115   case CmpInst::ICMP_SGT: {
116     APInt SMin(CR.getSignedMin());
117     if (SMin.isMaxSignedValue())
118       return getEmpty(W);
119     return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
120   }
121   case CmpInst::ICMP_UGE:
122     return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
123   case CmpInst::ICMP_SGE:
124     return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
125   }
126 }
127 
128 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
129                                                       const ConstantRange &CR) {
130   // Follows from De-Morgan's laws:
131   //
132   // ~(~A union ~B) == A intersect B.
133   //
134   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
135       .inverse();
136 }
137 
138 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
139                                                  const APInt &C) {
140   // Computes the exact range that is equal to both the constant ranges returned
141   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
142   // when RHS is a singleton such as an APInt and so the assert is valid.
143   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
144   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
145   //
146   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
147   return makeAllowedICmpRegion(Pred, C);
148 }
149 
150 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
151                                       APInt &RHS) const {
152   bool Success = false;
153 
154   if (isFullSet() || isEmptySet()) {
155     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
156     RHS = APInt(getBitWidth(), 0);
157     Success = true;
158   } else if (auto *OnlyElt = getSingleElement()) {
159     Pred = CmpInst::ICMP_EQ;
160     RHS = *OnlyElt;
161     Success = true;
162   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
163     Pred = CmpInst::ICMP_NE;
164     RHS = *OnlyMissingElt;
165     Success = true;
166   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
167     Pred =
168         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
169     RHS = getUpper();
170     Success = true;
171   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
172     Pred =
173         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
174     RHS = getLower();
175     Success = true;
176   }
177 
178   assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
179          "Bad result!");
180 
181   return Success;
182 }
183 
184 bool ConstantRange::icmp(CmpInst::Predicate Pred,
185                          const ConstantRange &Other) const {
186   return makeSatisfyingICmpRegion(Pred, Other).contains(*this);
187 }
188 
189 /// Exact mul nuw region for single element RHS.
190 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
191   unsigned BitWidth = V.getBitWidth();
192   if (V == 0)
193     return ConstantRange::getFull(V.getBitWidth());
194 
195   return ConstantRange::getNonEmpty(
196       APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
197                              APInt::Rounding::UP),
198       APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
199                              APInt::Rounding::DOWN) + 1);
200 }
201 
202 /// Exact mul nsw region for single element RHS.
203 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
204   // Handle special case for 0, -1 and 1. See the last for reason why we
205   // specialize -1 and 1.
206   unsigned BitWidth = V.getBitWidth();
207   if (V == 0 || V.isOneValue())
208     return ConstantRange::getFull(BitWidth);
209 
210   APInt MinValue = APInt::getSignedMinValue(BitWidth);
211   APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
212   // e.g. Returning [-127, 127], represented as [-127, -128).
213   if (V.isAllOnesValue())
214     return ConstantRange(-MaxValue, MinValue);
215 
216   APInt Lower, Upper;
217   if (V.isNegative()) {
218     Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
219     Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
220   } else {
221     Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
222     Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
223   }
224   // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
225   // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
226   // and 1 are already handled as special cases.
227   return ConstantRange(Lower, Upper + 1);
228 }
229 
230 ConstantRange
231 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
232                                           const ConstantRange &Other,
233                                           unsigned NoWrapKind) {
234   using OBO = OverflowingBinaryOperator;
235 
236   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
237 
238   assert((NoWrapKind == OBO::NoSignedWrap ||
239           NoWrapKind == OBO::NoUnsignedWrap) &&
240          "NoWrapKind invalid!");
241 
242   bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
243   unsigned BitWidth = Other.getBitWidth();
244 
245   switch (BinOp) {
246   default:
247     llvm_unreachable("Unsupported binary op");
248 
249   case Instruction::Add: {
250     if (Unsigned)
251       return getNonEmpty(APInt::getNullValue(BitWidth),
252                          -Other.getUnsignedMax());
253 
254     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
255     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
256     return getNonEmpty(
257         SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
258         SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
259   }
260 
261   case Instruction::Sub: {
262     if (Unsigned)
263       return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
264 
265     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
266     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
267     return getNonEmpty(
268         SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
269         SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
270   }
271 
272   case Instruction::Mul:
273     if (Unsigned)
274       return makeExactMulNUWRegion(Other.getUnsignedMax());
275 
276     return makeExactMulNSWRegion(Other.getSignedMin())
277         .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
278 
279   case Instruction::Shl: {
280     // For given range of shift amounts, if we ignore all illegal shift amounts
281     // (that always produce poison), what shift amount range is left?
282     ConstantRange ShAmt = Other.intersectWith(
283         ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
284     if (ShAmt.isEmptySet()) {
285       // If the entire range of shift amounts is already poison-producing,
286       // then we can freely add more poison-producing flags ontop of that.
287       return getFull(BitWidth);
288     }
289     // There are some legal shift amounts, we can compute conservatively-correct
290     // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
291     // to be at most bitwidth-1, which results in most conservative range.
292     APInt ShAmtUMax = ShAmt.getUnsignedMax();
293     if (Unsigned)
294       return getNonEmpty(APInt::getNullValue(BitWidth),
295                          APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
296     return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
297                        APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
298   }
299   }
300 }
301 
302 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
303                                                    const APInt &Other,
304                                                    unsigned NoWrapKind) {
305   // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
306   // "for all" and "for any" coincide in this case.
307   return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
308 }
309 
310 bool ConstantRange::isFullSet() const {
311   return Lower == Upper && Lower.isMaxValue();
312 }
313 
314 bool ConstantRange::isEmptySet() const {
315   return Lower == Upper && Lower.isMinValue();
316 }
317 
318 bool ConstantRange::isWrappedSet() const {
319   return Lower.ugt(Upper) && !Upper.isNullValue();
320 }
321 
322 bool ConstantRange::isUpperWrapped() const {
323   return Lower.ugt(Upper);
324 }
325 
326 bool ConstantRange::isSignWrappedSet() const {
327   return Lower.sgt(Upper) && !Upper.isMinSignedValue();
328 }
329 
330 bool ConstantRange::isUpperSignWrapped() const {
331   return Lower.sgt(Upper);
332 }
333 
334 bool
335 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
336   assert(getBitWidth() == Other.getBitWidth());
337   if (isFullSet())
338     return false;
339   if (Other.isFullSet())
340     return true;
341   return (Upper - Lower).ult(Other.Upper - Other.Lower);
342 }
343 
344 bool
345 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
346   assert(MaxSize && "MaxSize can't be 0.");
347   // If this a full set, we need special handling to avoid needing an extra bit
348   // to represent the size.
349   if (isFullSet())
350     return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
351 
352   return (Upper - Lower).ugt(MaxSize);
353 }
354 
355 bool ConstantRange::isAllNegative() const {
356   // Empty set is all negative, full set is not.
357   if (isEmptySet())
358     return true;
359   if (isFullSet())
360     return false;
361 
362   return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
363 }
364 
365 bool ConstantRange::isAllNonNegative() const {
366   // Empty and full set are automatically treated correctly.
367   return !isSignWrappedSet() && Lower.isNonNegative();
368 }
369 
370 APInt ConstantRange::getUnsignedMax() const {
371   if (isFullSet() || isUpperWrapped())
372     return APInt::getMaxValue(getBitWidth());
373   return getUpper() - 1;
374 }
375 
376 APInt ConstantRange::getUnsignedMin() const {
377   if (isFullSet() || isWrappedSet())
378     return APInt::getMinValue(getBitWidth());
379   return getLower();
380 }
381 
382 APInt ConstantRange::getSignedMax() const {
383   if (isFullSet() || isUpperSignWrapped())
384     return APInt::getSignedMaxValue(getBitWidth());
385   return getUpper() - 1;
386 }
387 
388 APInt ConstantRange::getSignedMin() const {
389   if (isFullSet() || isSignWrappedSet())
390     return APInt::getSignedMinValue(getBitWidth());
391   return getLower();
392 }
393 
394 bool ConstantRange::contains(const APInt &V) const {
395   if (Lower == Upper)
396     return isFullSet();
397 
398   if (!isUpperWrapped())
399     return Lower.ule(V) && V.ult(Upper);
400   return Lower.ule(V) || V.ult(Upper);
401 }
402 
403 bool ConstantRange::contains(const ConstantRange &Other) const {
404   if (isFullSet() || Other.isEmptySet()) return true;
405   if (isEmptySet() || Other.isFullSet()) return false;
406 
407   if (!isUpperWrapped()) {
408     if (Other.isUpperWrapped())
409       return false;
410 
411     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
412   }
413 
414   if (!Other.isUpperWrapped())
415     return Other.getUpper().ule(Upper) ||
416            Lower.ule(Other.getLower());
417 
418   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
419 }
420 
421 unsigned ConstantRange::getActiveBits() const {
422   if (isEmptySet())
423     return 0;
424 
425   return getUnsignedMax().getActiveBits();
426 }
427 
428 unsigned ConstantRange::getMinSignedBits() const {
429   if (isEmptySet())
430     return 0;
431 
432   return std::max(getSignedMin().getMinSignedBits(),
433                   getSignedMax().getMinSignedBits());
434 }
435 
436 ConstantRange ConstantRange::subtract(const APInt &Val) const {
437   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
438   // If the set is empty or full, don't modify the endpoints.
439   if (Lower == Upper)
440     return *this;
441   return ConstantRange(Lower - Val, Upper - Val);
442 }
443 
444 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
445   return intersectWith(CR.inverse());
446 }
447 
448 static ConstantRange getPreferredRange(
449     const ConstantRange &CR1, const ConstantRange &CR2,
450     ConstantRange::PreferredRangeType Type) {
451   if (Type == ConstantRange::Unsigned) {
452     if (!CR1.isWrappedSet() && CR2.isWrappedSet())
453       return CR1;
454     if (CR1.isWrappedSet() && !CR2.isWrappedSet())
455       return CR2;
456   } else if (Type == ConstantRange::Signed) {
457     if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
458       return CR1;
459     if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
460       return CR2;
461   }
462 
463   if (CR1.isSizeStrictlySmallerThan(CR2))
464     return CR1;
465   return CR2;
466 }
467 
468 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
469                                            PreferredRangeType Type) const {
470   assert(getBitWidth() == CR.getBitWidth() &&
471          "ConstantRange types don't agree!");
472 
473   // Handle common cases.
474   if (   isEmptySet() || CR.isFullSet()) return *this;
475   if (CR.isEmptySet() ||    isFullSet()) return CR;
476 
477   if (!isUpperWrapped() && CR.isUpperWrapped())
478     return CR.intersectWith(*this, Type);
479 
480   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
481     if (Lower.ult(CR.Lower)) {
482       // L---U       : this
483       //       L---U : CR
484       if (Upper.ule(CR.Lower))
485         return getEmpty();
486 
487       // L---U       : this
488       //   L---U     : CR
489       if (Upper.ult(CR.Upper))
490         return ConstantRange(CR.Lower, Upper);
491 
492       // L-------U   : this
493       //   L---U     : CR
494       return CR;
495     }
496     //   L---U     : this
497     // L-------U   : CR
498     if (Upper.ult(CR.Upper))
499       return *this;
500 
501     //   L-----U   : this
502     // L-----U     : CR
503     if (Lower.ult(CR.Upper))
504       return ConstantRange(Lower, CR.Upper);
505 
506     //       L---U : this
507     // L---U       : CR
508     return getEmpty();
509   }
510 
511   if (isUpperWrapped() && !CR.isUpperWrapped()) {
512     if (CR.Lower.ult(Upper)) {
513       // ------U   L--- : this
514       //  L--U          : CR
515       if (CR.Upper.ult(Upper))
516         return CR;
517 
518       // ------U   L--- : this
519       //  L------U      : CR
520       if (CR.Upper.ule(Lower))
521         return ConstantRange(CR.Lower, Upper);
522 
523       // ------U   L--- : this
524       //  L----------U  : CR
525       return getPreferredRange(*this, CR, Type);
526     }
527     if (CR.Lower.ult(Lower)) {
528       // --U      L---- : this
529       //     L--U       : CR
530       if (CR.Upper.ule(Lower))
531         return getEmpty();
532 
533       // --U      L---- : this
534       //     L------U   : CR
535       return ConstantRange(Lower, CR.Upper);
536     }
537 
538     // --U  L------ : this
539     //        L--U  : CR
540     return CR;
541   }
542 
543   if (CR.Upper.ult(Upper)) {
544     // ------U L-- : this
545     // --U L------ : CR
546     if (CR.Lower.ult(Upper))
547       return getPreferredRange(*this, CR, Type);
548 
549     // ----U   L-- : this
550     // --U   L---- : CR
551     if (CR.Lower.ult(Lower))
552       return ConstantRange(Lower, CR.Upper);
553 
554     // ----U L---- : this
555     // --U     L-- : CR
556     return CR;
557   }
558   if (CR.Upper.ule(Lower)) {
559     // --U     L-- : this
560     // ----U L---- : CR
561     if (CR.Lower.ult(Lower))
562       return *this;
563 
564     // --U   L---- : this
565     // ----U   L-- : CR
566     return ConstantRange(CR.Lower, Upper);
567   }
568 
569   // --U L------ : this
570   // ------U L-- : CR
571   return getPreferredRange(*this, CR, Type);
572 }
573 
574 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
575                                        PreferredRangeType Type) const {
576   assert(getBitWidth() == CR.getBitWidth() &&
577          "ConstantRange types don't agree!");
578 
579   if (   isFullSet() || CR.isEmptySet()) return *this;
580   if (CR.isFullSet() ||    isEmptySet()) return CR;
581 
582   if (!isUpperWrapped() && CR.isUpperWrapped())
583     return CR.unionWith(*this, Type);
584 
585   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
586     //        L---U  and  L---U        : this
587     //  L---U                   L---U  : CR
588     // result in one of
589     //  L---------U
590     // -----U L-----
591     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
592       return getPreferredRange(
593           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
594 
595     APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
596     APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
597 
598     if (L.isNullValue() && U.isNullValue())
599       return getFull();
600 
601     return ConstantRange(std::move(L), std::move(U));
602   }
603 
604   if (!CR.isUpperWrapped()) {
605     // ------U   L-----  and  ------U   L----- : this
606     //   L--U                            L--U  : CR
607     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
608       return *this;
609 
610     // ------U   L----- : this
611     //    L---------U   : CR
612     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
613       return getFull();
614 
615     // ----U       L---- : this
616     //       L---U       : CR
617     // results in one of
618     // ----------U L----
619     // ----U L----------
620     if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
621       return getPreferredRange(
622           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
623 
624     // ----U     L----- : this
625     //        L----U    : CR
626     if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
627       return ConstantRange(CR.Lower, Upper);
628 
629     // ------U    L---- : this
630     //    L-----U       : CR
631     assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
632            "ConstantRange::unionWith missed a case with one range wrapped");
633     return ConstantRange(Lower, CR.Upper);
634   }
635 
636   // ------U    L----  and  ------U    L---- : this
637   // -U  L-----------  and  ------------U  L : CR
638   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
639     return getFull();
640 
641   APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
642   APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
643 
644   return ConstantRange(std::move(L), std::move(U));
645 }
646 
647 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
648                                     uint32_t ResultBitWidth) const {
649   switch (CastOp) {
650   default:
651     llvm_unreachable("unsupported cast type");
652   case Instruction::Trunc:
653     return truncate(ResultBitWidth);
654   case Instruction::SExt:
655     return signExtend(ResultBitWidth);
656   case Instruction::ZExt:
657     return zeroExtend(ResultBitWidth);
658   case Instruction::BitCast:
659     return *this;
660   case Instruction::FPToUI:
661   case Instruction::FPToSI:
662     if (getBitWidth() == ResultBitWidth)
663       return *this;
664     else
665       return getFull(ResultBitWidth);
666   case Instruction::UIToFP: {
667     // TODO: use input range if available
668     auto BW = getBitWidth();
669     APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
670     APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
671     return ConstantRange(std::move(Min), std::move(Max));
672   }
673   case Instruction::SIToFP: {
674     // TODO: use input range if available
675     auto BW = getBitWidth();
676     APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
677     APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
678     return ConstantRange(std::move(SMin), std::move(SMax));
679   }
680   case Instruction::FPTrunc:
681   case Instruction::FPExt:
682   case Instruction::IntToPtr:
683   case Instruction::PtrToInt:
684   case Instruction::AddrSpaceCast:
685     // Conservatively return getFull set.
686     return getFull(ResultBitWidth);
687   };
688 }
689 
690 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
691   if (isEmptySet()) return getEmpty(DstTySize);
692 
693   unsigned SrcTySize = getBitWidth();
694   assert(SrcTySize < DstTySize && "Not a value extension");
695   if (isFullSet() || isUpperWrapped()) {
696     // Change into [0, 1 << src bit width)
697     APInt LowerExt(DstTySize, 0);
698     if (!Upper) // special case: [X, 0) -- not really wrapping around
699       LowerExt = Lower.zext(DstTySize);
700     return ConstantRange(std::move(LowerExt),
701                          APInt::getOneBitSet(DstTySize, SrcTySize));
702   }
703 
704   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
705 }
706 
707 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
708   if (isEmptySet()) return getEmpty(DstTySize);
709 
710   unsigned SrcTySize = getBitWidth();
711   assert(SrcTySize < DstTySize && "Not a value extension");
712 
713   // special case: [X, INT_MIN) -- not really wrapping around
714   if (Upper.isMinSignedValue())
715     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
716 
717   if (isFullSet() || isSignWrappedSet()) {
718     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
719                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
720   }
721 
722   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
723 }
724 
725 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
726   assert(getBitWidth() > DstTySize && "Not a value truncation");
727   if (isEmptySet())
728     return getEmpty(DstTySize);
729   if (isFullSet())
730     return getFull(DstTySize);
731 
732   APInt LowerDiv(Lower), UpperDiv(Upper);
733   ConstantRange Union(DstTySize, /*isFullSet=*/false);
734 
735   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
736   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
737   // then we do the union with [MaxValue, Upper)
738   if (isUpperWrapped()) {
739     // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
740     // truncated range.
741     if (Upper.getActiveBits() > DstTySize ||
742         Upper.countTrailingOnes() == DstTySize)
743       return getFull(DstTySize);
744 
745     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
746     UpperDiv.setAllBits();
747 
748     // Union covers the MaxValue case, so return if the remaining range is just
749     // MaxValue(DstTy).
750     if (LowerDiv == UpperDiv)
751       return Union;
752   }
753 
754   // Chop off the most significant bits that are past the destination bitwidth.
755   if (LowerDiv.getActiveBits() > DstTySize) {
756     // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
757     APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
758     LowerDiv -= Adjust;
759     UpperDiv -= Adjust;
760   }
761 
762   unsigned UpperDivWidth = UpperDiv.getActiveBits();
763   if (UpperDivWidth <= DstTySize)
764     return ConstantRange(LowerDiv.trunc(DstTySize),
765                          UpperDiv.trunc(DstTySize)).unionWith(Union);
766 
767   // The truncated value wraps around. Check if we can do better than fullset.
768   if (UpperDivWidth == DstTySize + 1) {
769     // Clear the MSB so that UpperDiv wraps around.
770     UpperDiv.clearBit(DstTySize);
771     if (UpperDiv.ult(LowerDiv))
772       return ConstantRange(LowerDiv.trunc(DstTySize),
773                            UpperDiv.trunc(DstTySize)).unionWith(Union);
774   }
775 
776   return getFull(DstTySize);
777 }
778 
779 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
780   unsigned SrcTySize = getBitWidth();
781   if (SrcTySize > DstTySize)
782     return truncate(DstTySize);
783   if (SrcTySize < DstTySize)
784     return zeroExtend(DstTySize);
785   return *this;
786 }
787 
788 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
789   unsigned SrcTySize = getBitWidth();
790   if (SrcTySize > DstTySize)
791     return truncate(DstTySize);
792   if (SrcTySize < DstTySize)
793     return signExtend(DstTySize);
794   return *this;
795 }
796 
797 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
798                                       const ConstantRange &Other) const {
799   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
800 
801   switch (BinOp) {
802   case Instruction::Add:
803     return add(Other);
804   case Instruction::Sub:
805     return sub(Other);
806   case Instruction::Mul:
807     return multiply(Other);
808   case Instruction::UDiv:
809     return udiv(Other);
810   case Instruction::SDiv:
811     return sdiv(Other);
812   case Instruction::URem:
813     return urem(Other);
814   case Instruction::SRem:
815     return srem(Other);
816   case Instruction::Shl:
817     return shl(Other);
818   case Instruction::LShr:
819     return lshr(Other);
820   case Instruction::AShr:
821     return ashr(Other);
822   case Instruction::And:
823     return binaryAnd(Other);
824   case Instruction::Or:
825     return binaryOr(Other);
826   case Instruction::Xor:
827     return binaryXor(Other);
828   // Note: floating point operations applied to abstract ranges are just
829   // ideal integer operations with a lossy representation
830   case Instruction::FAdd:
831     return add(Other);
832   case Instruction::FSub:
833     return sub(Other);
834   case Instruction::FMul:
835     return multiply(Other);
836   default:
837     // Conservatively return getFull set.
838     return getFull();
839   }
840 }
841 
842 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
843                                                  const ConstantRange &Other,
844                                                  unsigned NoWrapKind) const {
845   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
846 
847   switch (BinOp) {
848   case Instruction::Add:
849     return addWithNoWrap(Other, NoWrapKind);
850   case Instruction::Sub:
851     return subWithNoWrap(Other, NoWrapKind);
852   default:
853     // Don't know about this Overflowing Binary Operation.
854     // Conservatively fallback to plain binop handling.
855     return binaryOp(BinOp, Other);
856   }
857 }
858 
859 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
860   switch (IntrinsicID) {
861   case Intrinsic::uadd_sat:
862   case Intrinsic::usub_sat:
863   case Intrinsic::sadd_sat:
864   case Intrinsic::ssub_sat:
865   case Intrinsic::umin:
866   case Intrinsic::umax:
867   case Intrinsic::smin:
868   case Intrinsic::smax:
869   case Intrinsic::abs:
870     return true;
871   default:
872     return false;
873   }
874 }
875 
876 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
877                                        ArrayRef<ConstantRange> Ops) {
878   switch (IntrinsicID) {
879   case Intrinsic::uadd_sat:
880     return Ops[0].uadd_sat(Ops[1]);
881   case Intrinsic::usub_sat:
882     return Ops[0].usub_sat(Ops[1]);
883   case Intrinsic::sadd_sat:
884     return Ops[0].sadd_sat(Ops[1]);
885   case Intrinsic::ssub_sat:
886     return Ops[0].ssub_sat(Ops[1]);
887   case Intrinsic::umin:
888     return Ops[0].umin(Ops[1]);
889   case Intrinsic::umax:
890     return Ops[0].umax(Ops[1]);
891   case Intrinsic::smin:
892     return Ops[0].smin(Ops[1]);
893   case Intrinsic::smax:
894     return Ops[0].smax(Ops[1]);
895   case Intrinsic::abs: {
896     const APInt *IntMinIsPoison = Ops[1].getSingleElement();
897     assert(IntMinIsPoison && "Must be known (immarg)");
898     assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
899     return Ops[0].abs(IntMinIsPoison->getBoolValue());
900   }
901   default:
902     assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
903     llvm_unreachable("Unsupported intrinsic");
904   }
905 }
906 
907 ConstantRange
908 ConstantRange::add(const ConstantRange &Other) const {
909   if (isEmptySet() || Other.isEmptySet())
910     return getEmpty();
911   if (isFullSet() || Other.isFullSet())
912     return getFull();
913 
914   APInt NewLower = getLower() + Other.getLower();
915   APInt NewUpper = getUpper() + Other.getUpper() - 1;
916   if (NewLower == NewUpper)
917     return getFull();
918 
919   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
920   if (X.isSizeStrictlySmallerThan(*this) ||
921       X.isSizeStrictlySmallerThan(Other))
922     // We've wrapped, therefore, full set.
923     return getFull();
924   return X;
925 }
926 
927 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
928                                            unsigned NoWrapKind,
929                                            PreferredRangeType RangeType) const {
930   // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
931   // (X is from this, and Y is from Other)
932   if (isEmptySet() || Other.isEmptySet())
933     return getEmpty();
934   if (isFullSet() && Other.isFullSet())
935     return getFull();
936 
937   using OBO = OverflowingBinaryOperator;
938   ConstantRange Result = add(Other);
939 
940   // If an overflow happens for every value pair in these two constant ranges,
941   // we must return Empty set. In this case, we get that for free, because we
942   // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
943   // in an empty set.
944 
945   if (NoWrapKind & OBO::NoSignedWrap)
946     Result = Result.intersectWith(sadd_sat(Other), RangeType);
947 
948   if (NoWrapKind & OBO::NoUnsignedWrap)
949     Result = Result.intersectWith(uadd_sat(Other), RangeType);
950 
951   return Result;
952 }
953 
954 ConstantRange
955 ConstantRange::sub(const ConstantRange &Other) const {
956   if (isEmptySet() || Other.isEmptySet())
957     return getEmpty();
958   if (isFullSet() || Other.isFullSet())
959     return getFull();
960 
961   APInt NewLower = getLower() - Other.getUpper() + 1;
962   APInt NewUpper = getUpper() - Other.getLower();
963   if (NewLower == NewUpper)
964     return getFull();
965 
966   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
967   if (X.isSizeStrictlySmallerThan(*this) ||
968       X.isSizeStrictlySmallerThan(Other))
969     // We've wrapped, therefore, full set.
970     return getFull();
971   return X;
972 }
973 
974 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
975                                            unsigned NoWrapKind,
976                                            PreferredRangeType RangeType) const {
977   // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
978   // (X is from this, and Y is from Other)
979   if (isEmptySet() || Other.isEmptySet())
980     return getEmpty();
981   if (isFullSet() && Other.isFullSet())
982     return getFull();
983 
984   using OBO = OverflowingBinaryOperator;
985   ConstantRange Result = sub(Other);
986 
987   // If an overflow happens for every value pair in these two constant ranges,
988   // we must return Empty set. In signed case, we get that for free, because we
989   // get lucky that intersection of sub() with ssub_sat() results in an
990   // empty set. But for unsigned we must perform the overflow check manually.
991 
992   if (NoWrapKind & OBO::NoSignedWrap)
993     Result = Result.intersectWith(ssub_sat(Other), RangeType);
994 
995   if (NoWrapKind & OBO::NoUnsignedWrap) {
996     if (getUnsignedMax().ult(Other.getUnsignedMin()))
997       return getEmpty(); // Always overflows.
998     Result = Result.intersectWith(usub_sat(Other), RangeType);
999   }
1000 
1001   return Result;
1002 }
1003 
1004 ConstantRange
1005 ConstantRange::multiply(const ConstantRange &Other) const {
1006   // TODO: If either operand is a single element and the multiply is known to
1007   // be non-wrapping, round the result min and max value to the appropriate
1008   // multiple of that element. If wrapping is possible, at least adjust the
1009   // range according to the greatest power-of-two factor of the single element.
1010 
1011   if (isEmptySet() || Other.isEmptySet())
1012     return getEmpty();
1013 
1014   // Multiplication is signedness-independent. However different ranges can be
1015   // obtained depending on how the input ranges are treated. These different
1016   // ranges are all conservatively correct, but one might be better than the
1017   // other. We calculate two ranges; one treating the inputs as unsigned
1018   // and the other signed, then return the smallest of these ranges.
1019 
1020   // Unsigned range first.
1021   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
1022   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
1023   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
1024   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
1025 
1026   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
1027                                             this_max * Other_max + 1);
1028   ConstantRange UR = Result_zext.truncate(getBitWidth());
1029 
1030   // If the unsigned range doesn't wrap, and isn't negative then it's a range
1031   // from one positive number to another which is as good as we can generate.
1032   // In this case, skip the extra work of generating signed ranges which aren't
1033   // going to be better than this range.
1034   if (!UR.isUpperWrapped() &&
1035       (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
1036     return UR;
1037 
1038   // Now the signed range. Because we could be dealing with negative numbers
1039   // here, the lower bound is the smallest of the cartesian product of the
1040   // lower and upper ranges; for example:
1041   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1042   // Similarly for the upper bound, swapping min for max.
1043 
1044   this_min = getSignedMin().sext(getBitWidth() * 2);
1045   this_max = getSignedMax().sext(getBitWidth() * 2);
1046   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1047   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1048 
1049   auto L = {this_min * Other_min, this_min * Other_max,
1050             this_max * Other_min, this_max * Other_max};
1051   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1052   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
1053   ConstantRange SR = Result_sext.truncate(getBitWidth());
1054 
1055   return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
1056 }
1057 
1058 ConstantRange
1059 ConstantRange::smax(const ConstantRange &Other) const {
1060   // X smax Y is: range(smax(X_smin, Y_smin),
1061   //                    smax(X_smax, Y_smax))
1062   if (isEmptySet() || Other.isEmptySet())
1063     return getEmpty();
1064   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
1065   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
1066   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1067   if (isSignWrappedSet() || Other.isSignWrappedSet())
1068     return Res.intersectWith(unionWith(Other, Signed), Signed);
1069   return Res;
1070 }
1071 
1072 ConstantRange
1073 ConstantRange::umax(const ConstantRange &Other) const {
1074   // X umax Y is: range(umax(X_umin, Y_umin),
1075   //                    umax(X_umax, Y_umax))
1076   if (isEmptySet() || Other.isEmptySet())
1077     return getEmpty();
1078   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1079   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1080   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1081   if (isWrappedSet() || Other.isWrappedSet())
1082     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1083   return Res;
1084 }
1085 
1086 ConstantRange
1087 ConstantRange::smin(const ConstantRange &Other) const {
1088   // X smin Y is: range(smin(X_smin, Y_smin),
1089   //                    smin(X_smax, Y_smax))
1090   if (isEmptySet() || Other.isEmptySet())
1091     return getEmpty();
1092   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1093   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1094   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1095   if (isSignWrappedSet() || Other.isSignWrappedSet())
1096     return Res.intersectWith(unionWith(Other, Signed), Signed);
1097   return Res;
1098 }
1099 
1100 ConstantRange
1101 ConstantRange::umin(const ConstantRange &Other) const {
1102   // X umin Y is: range(umin(X_umin, Y_umin),
1103   //                    umin(X_umax, Y_umax))
1104   if (isEmptySet() || Other.isEmptySet())
1105     return getEmpty();
1106   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1107   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1108   ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1109   if (isWrappedSet() || Other.isWrappedSet())
1110     return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1111   return Res;
1112 }
1113 
1114 ConstantRange
1115 ConstantRange::udiv(const ConstantRange &RHS) const {
1116   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1117     return getEmpty();
1118 
1119   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1120 
1121   APInt RHS_umin = RHS.getUnsignedMin();
1122   if (RHS_umin.isNullValue()) {
1123     // We want the lowest value in RHS excluding zero. Usually that would be 1
1124     // except for a range in the form of [X, 1) in which case it would be X.
1125     if (RHS.getUpper() == 1)
1126       RHS_umin = RHS.getLower();
1127     else
1128       RHS_umin = 1;
1129   }
1130 
1131   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1132   return getNonEmpty(std::move(Lower), std::move(Upper));
1133 }
1134 
1135 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1136   // We split up the LHS and RHS into positive and negative components
1137   // and then also compute the positive and negative components of the result
1138   // separately by combining division results with the appropriate signs.
1139   APInt Zero = APInt::getNullValue(getBitWidth());
1140   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1141   ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1142   ConstantRange NegFilter(SignedMin, Zero);
1143   ConstantRange PosL = intersectWith(PosFilter);
1144   ConstantRange NegL = intersectWith(NegFilter);
1145   ConstantRange PosR = RHS.intersectWith(PosFilter);
1146   ConstantRange NegR = RHS.intersectWith(NegFilter);
1147 
1148   ConstantRange PosRes = getEmpty();
1149   if (!PosL.isEmptySet() && !PosR.isEmptySet())
1150     // pos / pos = pos.
1151     PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1152                            (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1153 
1154   if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1155     // neg / neg = pos.
1156     //
1157     // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1158     // IR level, so we'll want to exclude this case when calculating bounds.
1159     // (For APInts the operation is well-defined and yields SignedMin.) We
1160     // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1161     APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1162     if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
1163       // Remove -1 from the LHS. Skip if it's the only element, as this would
1164       // leave us with an empty set.
1165       if (!NegR.Lower.isAllOnesValue()) {
1166         APInt AdjNegRUpper;
1167         if (RHS.Lower.isAllOnesValue())
1168           // Negative part of [-1, X] without -1 is [SignedMin, X].
1169           AdjNegRUpper = RHS.Upper;
1170         else
1171           // [X, -1] without -1 is [X, -2].
1172           AdjNegRUpper = NegR.Upper - 1;
1173 
1174         PosRes = PosRes.unionWith(
1175             ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1176       }
1177 
1178       // Remove SignedMin from the RHS. Skip if it's the only element, as this
1179       // would leave us with an empty set.
1180       if (NegL.Upper != SignedMin + 1) {
1181         APInt AdjNegLLower;
1182         if (Upper == SignedMin + 1)
1183           // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1184           AdjNegLLower = Lower;
1185         else
1186           // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1187           AdjNegLLower = NegL.Lower + 1;
1188 
1189         PosRes = PosRes.unionWith(
1190             ConstantRange(std::move(Lo),
1191                           AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1192       }
1193     } else {
1194       PosRes = PosRes.unionWith(
1195           ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1196     }
1197   }
1198 
1199   ConstantRange NegRes = getEmpty();
1200   if (!PosL.isEmptySet() && !NegR.isEmptySet())
1201     // pos / neg = neg.
1202     NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1203                            PosL.Lower.sdiv(NegR.Lower) + 1);
1204 
1205   if (!NegL.isEmptySet() && !PosR.isEmptySet())
1206     // neg / pos = neg.
1207     NegRes = NegRes.unionWith(
1208         ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1209                       (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1210 
1211   // Prefer a non-wrapping signed range here.
1212   ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1213 
1214   // Preserve the zero that we dropped when splitting the LHS by sign.
1215   if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1216     Res = Res.unionWith(ConstantRange(Zero));
1217   return Res;
1218 }
1219 
1220 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1221   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1222     return getEmpty();
1223 
1224   if (const APInt *RHSInt = RHS.getSingleElement()) {
1225     // UREM by null is UB.
1226     if (RHSInt->isNullValue())
1227       return getEmpty();
1228     // Use APInt's implementation of UREM for single element ranges.
1229     if (const APInt *LHSInt = getSingleElement())
1230       return {LHSInt->urem(*RHSInt)};
1231   }
1232 
1233   // L % R for L < R is L.
1234   if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1235     return *this;
1236 
1237   // L % R is <= L and < R.
1238   APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1239   return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
1240 }
1241 
1242 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1243   if (isEmptySet() || RHS.isEmptySet())
1244     return getEmpty();
1245 
1246   if (const APInt *RHSInt = RHS.getSingleElement()) {
1247     // SREM by null is UB.
1248     if (RHSInt->isNullValue())
1249       return getEmpty();
1250     // Use APInt's implementation of SREM for single element ranges.
1251     if (const APInt *LHSInt = getSingleElement())
1252       return {LHSInt->srem(*RHSInt)};
1253   }
1254 
1255   ConstantRange AbsRHS = RHS.abs();
1256   APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1257   APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1258 
1259   // Modulus by zero is UB.
1260   if (MaxAbsRHS.isNullValue())
1261     return getEmpty();
1262 
1263   if (MinAbsRHS.isNullValue())
1264     ++MinAbsRHS;
1265 
1266   APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1267 
1268   if (MinLHS.isNonNegative()) {
1269     // L % R for L < R is L.
1270     if (MaxLHS.ult(MinAbsRHS))
1271       return *this;
1272 
1273     // L % R is <= L and < R.
1274     APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1275     return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
1276   }
1277 
1278   // Same basic logic as above, but the result is negative.
1279   if (MaxLHS.isNegative()) {
1280     if (MinLHS.ugt(-MinAbsRHS))
1281       return *this;
1282 
1283     APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1284     return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1285   }
1286 
1287   // LHS range crosses zero.
1288   APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1289   APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1290   return ConstantRange(std::move(Lower), std::move(Upper));
1291 }
1292 
1293 ConstantRange ConstantRange::binaryNot() const {
1294   return ConstantRange(APInt::getAllOnesValue(getBitWidth())).sub(*this);
1295 }
1296 
1297 ConstantRange
1298 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1299   if (isEmptySet() || Other.isEmptySet())
1300     return getEmpty();
1301 
1302   // Use APInt's implementation of AND for single element ranges.
1303   if (isSingleElement() && Other.isSingleElement())
1304     return {*getSingleElement() & *Other.getSingleElement()};
1305 
1306   // TODO: replace this with something less conservative
1307 
1308   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1309   return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
1310 }
1311 
1312 ConstantRange
1313 ConstantRange::binaryOr(const ConstantRange &Other) const {
1314   if (isEmptySet() || Other.isEmptySet())
1315     return getEmpty();
1316 
1317   // Use APInt's implementation of OR for single element ranges.
1318   if (isSingleElement() && Other.isSingleElement())
1319     return {*getSingleElement() | *Other.getSingleElement()};
1320 
1321   // TODO: replace this with something less conservative
1322 
1323   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1324   return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
1325 }
1326 
1327 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
1328   if (isEmptySet() || Other.isEmptySet())
1329     return getEmpty();
1330 
1331   // Use APInt's implementation of XOR for single element ranges.
1332   if (isSingleElement() && Other.isSingleElement())
1333     return {*getSingleElement() ^ *Other.getSingleElement()};
1334 
1335   // Special-case binary complement, since we can give a precise answer.
1336   if (Other.isSingleElement() && Other.getSingleElement()->isAllOnesValue())
1337     return binaryNot();
1338   if (isSingleElement() && getSingleElement()->isAllOnesValue())
1339     return Other.binaryNot();
1340 
1341   // TODO: replace this with something less conservative
1342   return getFull();
1343 }
1344 
1345 ConstantRange
1346 ConstantRange::shl(const ConstantRange &Other) const {
1347   if (isEmptySet() || Other.isEmptySet())
1348     return getEmpty();
1349 
1350   APInt max = getUnsignedMax();
1351   APInt Other_umax = Other.getUnsignedMax();
1352 
1353   // If we are shifting by maximum amount of
1354   // zero return return the original range.
1355   if (Other_umax.isNullValue())
1356     return *this;
1357   // there's overflow!
1358   if (Other_umax.ugt(max.countLeadingZeros()))
1359     return getFull();
1360 
1361   // FIXME: implement the other tricky cases
1362 
1363   APInt min = getUnsignedMin();
1364   min <<= Other.getUnsignedMin();
1365   max <<= Other_umax;
1366 
1367   return ConstantRange(std::move(min), std::move(max) + 1);
1368 }
1369 
1370 ConstantRange
1371 ConstantRange::lshr(const ConstantRange &Other) const {
1372   if (isEmptySet() || Other.isEmptySet())
1373     return getEmpty();
1374 
1375   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1376   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1377   return getNonEmpty(std::move(min), std::move(max));
1378 }
1379 
1380 ConstantRange
1381 ConstantRange::ashr(const ConstantRange &Other) const {
1382   if (isEmptySet() || Other.isEmptySet())
1383     return getEmpty();
1384 
1385   // May straddle zero, so handle both positive and negative cases.
1386   // 'PosMax' is the upper bound of the result of the ashr
1387   // operation, when Upper of the LHS of ashr is a non-negative.
1388   // number. Since ashr of a non-negative number will result in a
1389   // smaller number, the Upper value of LHS is shifted right with
1390   // the minimum value of 'Other' instead of the maximum value.
1391   APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1392 
1393   // 'PosMin' is the lower bound of the result of the ashr
1394   // operation, when Lower of the LHS is a non-negative number.
1395   // Since ashr of a non-negative number will result in a smaller
1396   // number, the Lower value of LHS is shifted right with the
1397   // maximum value of 'Other'.
1398   APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1399 
1400   // 'NegMax' is the upper bound of the result of the ashr
1401   // operation, when Upper of the LHS of ashr is a negative number.
1402   // Since 'ashr' of a negative number will result in a bigger
1403   // number, the Upper value of LHS is shifted right with the
1404   // maximum value of 'Other'.
1405   APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1406 
1407   // 'NegMin' is the lower bound of the result of the ashr
1408   // operation, when Lower of the LHS of ashr is a negative number.
1409   // Since 'ashr' of a negative number will result in a bigger
1410   // number, the Lower value of LHS is shifted right with the
1411   // minimum value of 'Other'.
1412   APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1413 
1414   APInt max, min;
1415   if (getSignedMin().isNonNegative()) {
1416     // Upper and Lower of LHS are non-negative.
1417     min = PosMin;
1418     max = PosMax;
1419   } else if (getSignedMax().isNegative()) {
1420     // Upper and Lower of LHS are negative.
1421     min = NegMin;
1422     max = NegMax;
1423   } else {
1424     // Upper is non-negative and Lower is negative.
1425     min = NegMin;
1426     max = PosMax;
1427   }
1428   return getNonEmpty(std::move(min), std::move(max));
1429 }
1430 
1431 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1432   if (isEmptySet() || Other.isEmptySet())
1433     return getEmpty();
1434 
1435   APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1436   APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1437   return getNonEmpty(std::move(NewL), std::move(NewU));
1438 }
1439 
1440 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1441   if (isEmptySet() || Other.isEmptySet())
1442     return getEmpty();
1443 
1444   APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1445   APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1446   return getNonEmpty(std::move(NewL), std::move(NewU));
1447 }
1448 
1449 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1450   if (isEmptySet() || Other.isEmptySet())
1451     return getEmpty();
1452 
1453   APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1454   APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1455   return getNonEmpty(std::move(NewL), std::move(NewU));
1456 }
1457 
1458 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1459   if (isEmptySet() || Other.isEmptySet())
1460     return getEmpty();
1461 
1462   APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1463   APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1464   return getNonEmpty(std::move(NewL), std::move(NewU));
1465 }
1466 
1467 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1468   if (isEmptySet() || Other.isEmptySet())
1469     return getEmpty();
1470 
1471   APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1472   APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1473   return getNonEmpty(std::move(NewL), std::move(NewU));
1474 }
1475 
1476 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1477   if (isEmptySet() || Other.isEmptySet())
1478     return getEmpty();
1479 
1480   // Because we could be dealing with negative numbers here, the lower bound is
1481   // the smallest of the cartesian product of the lower and upper ranges;
1482   // for example:
1483   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1484   // Similarly for the upper bound, swapping min for max.
1485 
1486   APInt this_min = getSignedMin().sext(getBitWidth() * 2);
1487   APInt this_max = getSignedMax().sext(getBitWidth() * 2);
1488   APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1489   APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1490 
1491   auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
1492             this_max * Other_max};
1493   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1494 
1495   // Note that we wanted to perform signed saturating multiplication,
1496   // so since we performed plain multiplication in twice the bitwidth,
1497   // we need to perform signed saturating truncation.
1498   return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
1499                      std::max(L, Compare).truncSSat(getBitWidth()) + 1);
1500 }
1501 
1502 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1503   if (isEmptySet() || Other.isEmptySet())
1504     return getEmpty();
1505 
1506   APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1507   APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1508   return getNonEmpty(std::move(NewL), std::move(NewU));
1509 }
1510 
1511 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1512   if (isEmptySet() || Other.isEmptySet())
1513     return getEmpty();
1514 
1515   APInt Min = getSignedMin(), Max = getSignedMax();
1516   APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1517   APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1518   APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1519   return getNonEmpty(std::move(NewL), std::move(NewU));
1520 }
1521 
1522 ConstantRange ConstantRange::inverse() const {
1523   if (isFullSet())
1524     return getEmpty();
1525   if (isEmptySet())
1526     return getFull();
1527   return ConstantRange(Upper, Lower);
1528 }
1529 
1530 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
1531   if (isEmptySet())
1532     return getEmpty();
1533 
1534   if (isSignWrappedSet()) {
1535     APInt Lo;
1536     // Check whether the range crosses zero.
1537     if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1538       Lo = APInt::getNullValue(getBitWidth());
1539     else
1540       Lo = APIntOps::umin(Lower, -Upper + 1);
1541 
1542     // If SignedMin is not poison, then it is included in the result range.
1543     if (IntMinIsPoison)
1544       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
1545     else
1546       return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1547   }
1548 
1549   APInt SMin = getSignedMin(), SMax = getSignedMax();
1550 
1551   // Skip SignedMin if it is poison.
1552   if (IntMinIsPoison && SMin.isMinSignedValue()) {
1553     // The range may become empty if it *only* contains SignedMin.
1554     if (SMax.isMinSignedValue())
1555       return getEmpty();
1556     ++SMin;
1557   }
1558 
1559   // All non-negative.
1560   if (SMin.isNonNegative())
1561     return *this;
1562 
1563   // All negative.
1564   if (SMax.isNegative())
1565     return ConstantRange(-SMax, -SMin + 1);
1566 
1567   // Range crosses zero.
1568   return ConstantRange(APInt::getNullValue(getBitWidth()),
1569                        APIntOps::umax(-SMin, SMax) + 1);
1570 }
1571 
1572 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1573     const ConstantRange &Other) const {
1574   if (isEmptySet() || Other.isEmptySet())
1575     return OverflowResult::MayOverflow;
1576 
1577   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1578   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1579 
1580   // a u+ b overflows high iff a u> ~b.
1581   if (Min.ugt(~OtherMin))
1582     return OverflowResult::AlwaysOverflowsHigh;
1583   if (Max.ugt(~OtherMax))
1584     return OverflowResult::MayOverflow;
1585   return OverflowResult::NeverOverflows;
1586 }
1587 
1588 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1589     const ConstantRange &Other) const {
1590   if (isEmptySet() || Other.isEmptySet())
1591     return OverflowResult::MayOverflow;
1592 
1593   APInt Min = getSignedMin(), Max = getSignedMax();
1594   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1595 
1596   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1597   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1598 
1599   // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1600   // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1601   if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1602       Min.sgt(SignedMax - OtherMin))
1603     return OverflowResult::AlwaysOverflowsHigh;
1604   if (Max.isNegative() && OtherMax.isNegative() &&
1605       Max.slt(SignedMin - OtherMax))
1606     return OverflowResult::AlwaysOverflowsLow;
1607 
1608   if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1609       Max.sgt(SignedMax - OtherMax))
1610     return OverflowResult::MayOverflow;
1611   if (Min.isNegative() && OtherMin.isNegative() &&
1612       Min.slt(SignedMin - OtherMin))
1613     return OverflowResult::MayOverflow;
1614 
1615   return OverflowResult::NeverOverflows;
1616 }
1617 
1618 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1619     const ConstantRange &Other) const {
1620   if (isEmptySet() || Other.isEmptySet())
1621     return OverflowResult::MayOverflow;
1622 
1623   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1624   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1625 
1626   // a u- b overflows low iff a u< b.
1627   if (Max.ult(OtherMin))
1628     return OverflowResult::AlwaysOverflowsLow;
1629   if (Min.ult(OtherMax))
1630     return OverflowResult::MayOverflow;
1631   return OverflowResult::NeverOverflows;
1632 }
1633 
1634 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1635     const ConstantRange &Other) const {
1636   if (isEmptySet() || Other.isEmptySet())
1637     return OverflowResult::MayOverflow;
1638 
1639   APInt Min = getSignedMin(), Max = getSignedMax();
1640   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1641 
1642   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1643   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1644 
1645   // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1646   // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1647   if (Min.isNonNegative() && OtherMax.isNegative() &&
1648       Min.sgt(SignedMax + OtherMax))
1649     return OverflowResult::AlwaysOverflowsHigh;
1650   if (Max.isNegative() && OtherMin.isNonNegative() &&
1651       Max.slt(SignedMin + OtherMin))
1652     return OverflowResult::AlwaysOverflowsLow;
1653 
1654   if (Max.isNonNegative() && OtherMin.isNegative() &&
1655       Max.sgt(SignedMax + OtherMin))
1656     return OverflowResult::MayOverflow;
1657   if (Min.isNegative() && OtherMax.isNonNegative() &&
1658       Min.slt(SignedMin + OtherMax))
1659     return OverflowResult::MayOverflow;
1660 
1661   return OverflowResult::NeverOverflows;
1662 }
1663 
1664 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1665     const ConstantRange &Other) const {
1666   if (isEmptySet() || Other.isEmptySet())
1667     return OverflowResult::MayOverflow;
1668 
1669   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1670   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1671   bool Overflow;
1672 
1673   (void) Min.umul_ov(OtherMin, Overflow);
1674   if (Overflow)
1675     return OverflowResult::AlwaysOverflowsHigh;
1676 
1677   (void) Max.umul_ov(OtherMax, Overflow);
1678   if (Overflow)
1679     return OverflowResult::MayOverflow;
1680 
1681   return OverflowResult::NeverOverflows;
1682 }
1683 
1684 void ConstantRange::print(raw_ostream &OS) const {
1685   if (isFullSet())
1686     OS << "full-set";
1687   else if (isEmptySet())
1688     OS << "empty-set";
1689   else
1690     OS << "[" << Lower << "," << Upper << ")";
1691 }
1692 
1693 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1694 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1695   print(dbgs());
1696 }
1697 #endif
1698 
1699 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1700   const unsigned NumRanges = Ranges.getNumOperands() / 2;
1701   assert(NumRanges >= 1 && "Must have at least one range!");
1702   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1703 
1704   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1705   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1706 
1707   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1708 
1709   for (unsigned i = 1; i < NumRanges; ++i) {
1710     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1711     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1712 
1713     // Note: unionWith will potentially create a range that contains values not
1714     // contained in any of the original N ranges.
1715     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1716   }
1717 
1718   return CR;
1719 }
1720