1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Represent a range of possible values that may occur when the program is run 10 // for an integral value. This keeps track of a lower and upper bound for the 11 // constant, which MAY wrap around the end of the numeric range. To do this, it 12 // keeps track of a [lower, upper) bound, which specifies an interval just like 13 // STL iterators. When used with boolean values, the following are important 14 // ranges (other integral ranges use min/max values for special range values): 15 // 16 // [F, F) = {} = Empty set 17 // [T, F) = {T} 18 // [F, T) = {F} 19 // [T, T) = {F, T} = Full set 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/Support/Compiler.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cstdint> 39 40 using namespace llvm; 41 42 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) 43 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), 44 Upper(Lower) {} 45 46 ConstantRange::ConstantRange(APInt V) 47 : Lower(std::move(V)), Upper(Lower + 1) {} 48 49 ConstantRange::ConstantRange(APInt L, APInt U) 50 : Lower(std::move(L)), Upper(std::move(U)) { 51 assert(Lower.getBitWidth() == Upper.getBitWidth() && 52 "ConstantRange with unequal bit widths"); 53 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && 54 "Lower == Upper, but they aren't min or max value!"); 55 } 56 57 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known, 58 bool IsSigned) { 59 assert(!Known.hasConflict() && "Expected valid KnownBits"); 60 61 if (Known.isUnknown()) 62 return getFull(Known.getBitWidth()); 63 64 // For unsigned ranges, or signed ranges with known sign bit, create a simple 65 // range between the smallest and largest possible value. 66 if (!IsSigned || Known.isNegative() || Known.isNonNegative()) 67 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1); 68 69 // If we don't know the sign bit, pick the lower bound as a negative number 70 // and the upper bound as a non-negative one. 71 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue(); 72 Lower.setSignBit(); 73 Upper.clearSignBit(); 74 return ConstantRange(Lower, Upper + 1); 75 } 76 77 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, 78 const ConstantRange &CR) { 79 if (CR.isEmptySet()) 80 return CR; 81 82 uint32_t W = CR.getBitWidth(); 83 switch (Pred) { 84 default: 85 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); 86 case CmpInst::ICMP_EQ: 87 return CR; 88 case CmpInst::ICMP_NE: 89 if (CR.isSingleElement()) 90 return ConstantRange(CR.getUpper(), CR.getLower()); 91 return getFull(W); 92 case CmpInst::ICMP_ULT: { 93 APInt UMax(CR.getUnsignedMax()); 94 if (UMax.isMinValue()) 95 return getEmpty(W); 96 return ConstantRange(APInt::getMinValue(W), std::move(UMax)); 97 } 98 case CmpInst::ICMP_SLT: { 99 APInt SMax(CR.getSignedMax()); 100 if (SMax.isMinSignedValue()) 101 return getEmpty(W); 102 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); 103 } 104 case CmpInst::ICMP_ULE: 105 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1); 106 case CmpInst::ICMP_SLE: 107 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1); 108 case CmpInst::ICMP_UGT: { 109 APInt UMin(CR.getUnsignedMin()); 110 if (UMin.isMaxValue()) 111 return getEmpty(W); 112 return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W)); 113 } 114 case CmpInst::ICMP_SGT: { 115 APInt SMin(CR.getSignedMin()); 116 if (SMin.isMaxSignedValue()) 117 return getEmpty(W); 118 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); 119 } 120 case CmpInst::ICMP_UGE: 121 return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W)); 122 case CmpInst::ICMP_SGE: 123 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W)); 124 } 125 } 126 127 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 128 const ConstantRange &CR) { 129 // Follows from De-Morgan's laws: 130 // 131 // ~(~A union ~B) == A intersect B. 132 // 133 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) 134 .inverse(); 135 } 136 137 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, 138 const APInt &C) { 139 // Computes the exact range that is equal to both the constant ranges returned 140 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true 141 // when RHS is a singleton such as an APInt and so the assert is valid. 142 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion 143 // returns [0,4) but makeSatisfyICmpRegion returns [0,2). 144 // 145 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); 146 return makeAllowedICmpRegion(Pred, C); 147 } 148 149 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 150 APInt &RHS) const { 151 bool Success = false; 152 153 if (isFullSet() || isEmptySet()) { 154 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 155 RHS = APInt(getBitWidth(), 0); 156 Success = true; 157 } else if (auto *OnlyElt = getSingleElement()) { 158 Pred = CmpInst::ICMP_EQ; 159 RHS = *OnlyElt; 160 Success = true; 161 } else if (auto *OnlyMissingElt = getSingleMissingElement()) { 162 Pred = CmpInst::ICMP_NE; 163 RHS = *OnlyMissingElt; 164 Success = true; 165 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { 166 Pred = 167 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 168 RHS = getUpper(); 169 Success = true; 170 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { 171 Pred = 172 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; 173 RHS = getLower(); 174 Success = true; 175 } 176 177 assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && 178 "Bad result!"); 179 180 return Success; 181 } 182 183 /// Exact mul nuw region for single element RHS. 184 static ConstantRange makeExactMulNUWRegion(const APInt &V) { 185 unsigned BitWidth = V.getBitWidth(); 186 if (V == 0) 187 return ConstantRange::getFull(V.getBitWidth()); 188 189 return ConstantRange::getNonEmpty( 190 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V, 191 APInt::Rounding::UP), 192 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V, 193 APInt::Rounding::DOWN) + 1); 194 } 195 196 /// Exact mul nsw region for single element RHS. 197 static ConstantRange makeExactMulNSWRegion(const APInt &V) { 198 // Handle special case for 0, -1 and 1. See the last for reason why we 199 // specialize -1 and 1. 200 unsigned BitWidth = V.getBitWidth(); 201 if (V == 0 || V.isOneValue()) 202 return ConstantRange::getFull(BitWidth); 203 204 APInt MinValue = APInt::getSignedMinValue(BitWidth); 205 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 206 // e.g. Returning [-127, 127], represented as [-127, -128). 207 if (V.isAllOnesValue()) 208 return ConstantRange(-MaxValue, MinValue); 209 210 APInt Lower, Upper; 211 if (V.isNegative()) { 212 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); 213 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); 214 } else { 215 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); 216 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); 217 } 218 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1). 219 // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1, 220 // and 1 are already handled as special cases. 221 return ConstantRange(Lower, Upper + 1); 222 } 223 224 ConstantRange 225 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, 226 const ConstantRange &Other, 227 unsigned NoWrapKind) { 228 using OBO = OverflowingBinaryOperator; 229 230 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 231 232 assert((NoWrapKind == OBO::NoSignedWrap || 233 NoWrapKind == OBO::NoUnsignedWrap) && 234 "NoWrapKind invalid!"); 235 236 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; 237 unsigned BitWidth = Other.getBitWidth(); 238 239 switch (BinOp) { 240 default: 241 llvm_unreachable("Unsupported binary op"); 242 243 case Instruction::Add: { 244 if (Unsigned) 245 return getNonEmpty(APInt::getNullValue(BitWidth), 246 -Other.getUnsignedMax()); 247 248 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 249 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 250 return getNonEmpty( 251 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal, 252 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal); 253 } 254 255 case Instruction::Sub: { 256 if (Unsigned) 257 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth)); 258 259 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 260 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 261 return getNonEmpty( 262 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal, 263 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal); 264 } 265 266 case Instruction::Mul: 267 if (Unsigned) 268 return makeExactMulNUWRegion(Other.getUnsignedMax()); 269 270 return makeExactMulNSWRegion(Other.getSignedMin()) 271 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax())); 272 273 case Instruction::Shl: { 274 // For given range of shift amounts, if we ignore all illegal shift amounts 275 // (that always produce poison), what shift amount range is left? 276 ConstantRange ShAmt = Other.intersectWith( 277 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1))); 278 if (ShAmt.isEmptySet()) { 279 // If the entire range of shift amounts is already poison-producing, 280 // then we can freely add more poison-producing flags ontop of that. 281 return getFull(BitWidth); 282 } 283 // There are some legal shift amounts, we can compute conservatively-correct 284 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax 285 // to be at most bitwidth-1, which results in most conservative range. 286 APInt ShAmtUMax = ShAmt.getUnsignedMax(); 287 if (Unsigned) 288 return getNonEmpty(APInt::getNullValue(BitWidth), 289 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1); 290 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax), 291 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1); 292 } 293 } 294 } 295 296 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp, 297 const APInt &Other, 298 unsigned NoWrapKind) { 299 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as 300 // "for all" and "for any" coincide in this case. 301 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind); 302 } 303 304 bool ConstantRange::isFullSet() const { 305 return Lower == Upper && Lower.isMaxValue(); 306 } 307 308 bool ConstantRange::isEmptySet() const { 309 return Lower == Upper && Lower.isMinValue(); 310 } 311 312 bool ConstantRange::isWrappedSet() const { 313 return Lower.ugt(Upper) && !Upper.isNullValue(); 314 } 315 316 bool ConstantRange::isUpperWrapped() const { 317 return Lower.ugt(Upper); 318 } 319 320 bool ConstantRange::isSignWrappedSet() const { 321 return Lower.sgt(Upper) && !Upper.isMinSignedValue(); 322 } 323 324 bool ConstantRange::isUpperSignWrapped() const { 325 return Lower.sgt(Upper); 326 } 327 328 bool 329 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { 330 assert(getBitWidth() == Other.getBitWidth()); 331 if (isFullSet()) 332 return false; 333 if (Other.isFullSet()) 334 return true; 335 return (Upper - Lower).ult(Other.Upper - Other.Lower); 336 } 337 338 bool 339 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { 340 assert(MaxSize && "MaxSize can't be 0."); 341 // If this a full set, we need special handling to avoid needing an extra bit 342 // to represent the size. 343 if (isFullSet()) 344 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); 345 346 return (Upper - Lower).ugt(MaxSize); 347 } 348 349 bool ConstantRange::isAllNegative() const { 350 // Empty set is all negative, full set is not. 351 if (isEmptySet()) 352 return true; 353 if (isFullSet()) 354 return false; 355 356 return !isUpperSignWrapped() && !Upper.isStrictlyPositive(); 357 } 358 359 bool ConstantRange::isAllNonNegative() const { 360 // Empty and full set are automatically treated correctly. 361 return !isSignWrappedSet() && Lower.isNonNegative(); 362 } 363 364 APInt ConstantRange::getUnsignedMax() const { 365 if (isFullSet() || isUpperWrapped()) 366 return APInt::getMaxValue(getBitWidth()); 367 return getUpper() - 1; 368 } 369 370 APInt ConstantRange::getUnsignedMin() const { 371 if (isFullSet() || isWrappedSet()) 372 return APInt::getMinValue(getBitWidth()); 373 return getLower(); 374 } 375 376 APInt ConstantRange::getSignedMax() const { 377 if (isFullSet() || isUpperSignWrapped()) 378 return APInt::getSignedMaxValue(getBitWidth()); 379 return getUpper() - 1; 380 } 381 382 APInt ConstantRange::getSignedMin() const { 383 if (isFullSet() || isSignWrappedSet()) 384 return APInt::getSignedMinValue(getBitWidth()); 385 return getLower(); 386 } 387 388 bool ConstantRange::contains(const APInt &V) const { 389 if (Lower == Upper) 390 return isFullSet(); 391 392 if (!isUpperWrapped()) 393 return Lower.ule(V) && V.ult(Upper); 394 return Lower.ule(V) || V.ult(Upper); 395 } 396 397 bool ConstantRange::contains(const ConstantRange &Other) const { 398 if (isFullSet() || Other.isEmptySet()) return true; 399 if (isEmptySet() || Other.isFullSet()) return false; 400 401 if (!isUpperWrapped()) { 402 if (Other.isUpperWrapped()) 403 return false; 404 405 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); 406 } 407 408 if (!Other.isUpperWrapped()) 409 return Other.getUpper().ule(Upper) || 410 Lower.ule(Other.getLower()); 411 412 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); 413 } 414 415 ConstantRange ConstantRange::subtract(const APInt &Val) const { 416 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); 417 // If the set is empty or full, don't modify the endpoints. 418 if (Lower == Upper) 419 return *this; 420 return ConstantRange(Lower - Val, Upper - Val); 421 } 422 423 ConstantRange ConstantRange::difference(const ConstantRange &CR) const { 424 return intersectWith(CR.inverse()); 425 } 426 427 static ConstantRange getPreferredRange( 428 const ConstantRange &CR1, const ConstantRange &CR2, 429 ConstantRange::PreferredRangeType Type) { 430 if (Type == ConstantRange::Unsigned) { 431 if (!CR1.isWrappedSet() && CR2.isWrappedSet()) 432 return CR1; 433 if (CR1.isWrappedSet() && !CR2.isWrappedSet()) 434 return CR2; 435 } else if (Type == ConstantRange::Signed) { 436 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet()) 437 return CR1; 438 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet()) 439 return CR2; 440 } 441 442 if (CR1.isSizeStrictlySmallerThan(CR2)) 443 return CR1; 444 return CR2; 445 } 446 447 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, 448 PreferredRangeType Type) const { 449 assert(getBitWidth() == CR.getBitWidth() && 450 "ConstantRange types don't agree!"); 451 452 // Handle common cases. 453 if ( isEmptySet() || CR.isFullSet()) return *this; 454 if (CR.isEmptySet() || isFullSet()) return CR; 455 456 if (!isUpperWrapped() && CR.isUpperWrapped()) 457 return CR.intersectWith(*this, Type); 458 459 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 460 if (Lower.ult(CR.Lower)) { 461 // L---U : this 462 // L---U : CR 463 if (Upper.ule(CR.Lower)) 464 return getEmpty(); 465 466 // L---U : this 467 // L---U : CR 468 if (Upper.ult(CR.Upper)) 469 return ConstantRange(CR.Lower, Upper); 470 471 // L-------U : this 472 // L---U : CR 473 return CR; 474 } 475 // L---U : this 476 // L-------U : CR 477 if (Upper.ult(CR.Upper)) 478 return *this; 479 480 // L-----U : this 481 // L-----U : CR 482 if (Lower.ult(CR.Upper)) 483 return ConstantRange(Lower, CR.Upper); 484 485 // L---U : this 486 // L---U : CR 487 return getEmpty(); 488 } 489 490 if (isUpperWrapped() && !CR.isUpperWrapped()) { 491 if (CR.Lower.ult(Upper)) { 492 // ------U L--- : this 493 // L--U : CR 494 if (CR.Upper.ult(Upper)) 495 return CR; 496 497 // ------U L--- : this 498 // L------U : CR 499 if (CR.Upper.ule(Lower)) 500 return ConstantRange(CR.Lower, Upper); 501 502 // ------U L--- : this 503 // L----------U : CR 504 return getPreferredRange(*this, CR, Type); 505 } 506 if (CR.Lower.ult(Lower)) { 507 // --U L---- : this 508 // L--U : CR 509 if (CR.Upper.ule(Lower)) 510 return getEmpty(); 511 512 // --U L---- : this 513 // L------U : CR 514 return ConstantRange(Lower, CR.Upper); 515 } 516 517 // --U L------ : this 518 // L--U : CR 519 return CR; 520 } 521 522 if (CR.Upper.ult(Upper)) { 523 // ------U L-- : this 524 // --U L------ : CR 525 if (CR.Lower.ult(Upper)) 526 return getPreferredRange(*this, CR, Type); 527 528 // ----U L-- : this 529 // --U L---- : CR 530 if (CR.Lower.ult(Lower)) 531 return ConstantRange(Lower, CR.Upper); 532 533 // ----U L---- : this 534 // --U L-- : CR 535 return CR; 536 } 537 if (CR.Upper.ule(Lower)) { 538 // --U L-- : this 539 // ----U L---- : CR 540 if (CR.Lower.ult(Lower)) 541 return *this; 542 543 // --U L---- : this 544 // ----U L-- : CR 545 return ConstantRange(CR.Lower, Upper); 546 } 547 548 // --U L------ : this 549 // ------U L-- : CR 550 return getPreferredRange(*this, CR, Type); 551 } 552 553 ConstantRange ConstantRange::unionWith(const ConstantRange &CR, 554 PreferredRangeType Type) const { 555 assert(getBitWidth() == CR.getBitWidth() && 556 "ConstantRange types don't agree!"); 557 558 if ( isFullSet() || CR.isEmptySet()) return *this; 559 if (CR.isFullSet() || isEmptySet()) return CR; 560 561 if (!isUpperWrapped() && CR.isUpperWrapped()) 562 return CR.unionWith(*this, Type); 563 564 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 565 // L---U and L---U : this 566 // L---U L---U : CR 567 // result in one of 568 // L---------U 569 // -----U L----- 570 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) 571 return getPreferredRange( 572 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 573 574 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 575 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; 576 577 if (L.isNullValue() && U.isNullValue()) 578 return getFull(); 579 580 return ConstantRange(std::move(L), std::move(U)); 581 } 582 583 if (!CR.isUpperWrapped()) { 584 // ------U L----- and ------U L----- : this 585 // L--U L--U : CR 586 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) 587 return *this; 588 589 // ------U L----- : this 590 // L---------U : CR 591 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) 592 return getFull(); 593 594 // ----U L---- : this 595 // L---U : CR 596 // results in one of 597 // ----------U L---- 598 // ----U L---------- 599 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) 600 return getPreferredRange( 601 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 602 603 // ----U L----- : this 604 // L----U : CR 605 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper)) 606 return ConstantRange(CR.Lower, Upper); 607 608 // ------U L---- : this 609 // L-----U : CR 610 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) && 611 "ConstantRange::unionWith missed a case with one range wrapped"); 612 return ConstantRange(Lower, CR.Upper); 613 } 614 615 // ------U L---- and ------U L---- : this 616 // -U L----------- and ------------U L : CR 617 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) 618 return getFull(); 619 620 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 621 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; 622 623 return ConstantRange(std::move(L), std::move(U)); 624 } 625 626 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, 627 uint32_t ResultBitWidth) const { 628 switch (CastOp) { 629 default: 630 llvm_unreachable("unsupported cast type"); 631 case Instruction::Trunc: 632 return truncate(ResultBitWidth); 633 case Instruction::SExt: 634 return signExtend(ResultBitWidth); 635 case Instruction::ZExt: 636 return zeroExtend(ResultBitWidth); 637 case Instruction::BitCast: 638 return *this; 639 case Instruction::FPToUI: 640 case Instruction::FPToSI: 641 if (getBitWidth() == ResultBitWidth) 642 return *this; 643 else 644 return getFull(ResultBitWidth); 645 case Instruction::UIToFP: { 646 // TODO: use input range if available 647 auto BW = getBitWidth(); 648 APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth); 649 APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth); 650 return ConstantRange(std::move(Min), std::move(Max)); 651 } 652 case Instruction::SIToFP: { 653 // TODO: use input range if available 654 auto BW = getBitWidth(); 655 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth); 656 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth); 657 return ConstantRange(std::move(SMin), std::move(SMax)); 658 } 659 case Instruction::FPTrunc: 660 case Instruction::FPExt: 661 case Instruction::IntToPtr: 662 case Instruction::PtrToInt: 663 case Instruction::AddrSpaceCast: 664 // Conservatively return getFull set. 665 return getFull(ResultBitWidth); 666 }; 667 } 668 669 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { 670 if (isEmptySet()) return getEmpty(DstTySize); 671 672 unsigned SrcTySize = getBitWidth(); 673 assert(SrcTySize < DstTySize && "Not a value extension"); 674 if (isFullSet() || isUpperWrapped()) { 675 // Change into [0, 1 << src bit width) 676 APInt LowerExt(DstTySize, 0); 677 if (!Upper) // special case: [X, 0) -- not really wrapping around 678 LowerExt = Lower.zext(DstTySize); 679 return ConstantRange(std::move(LowerExt), 680 APInt::getOneBitSet(DstTySize, SrcTySize)); 681 } 682 683 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); 684 } 685 686 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { 687 if (isEmptySet()) return getEmpty(DstTySize); 688 689 unsigned SrcTySize = getBitWidth(); 690 assert(SrcTySize < DstTySize && "Not a value extension"); 691 692 // special case: [X, INT_MIN) -- not really wrapping around 693 if (Upper.isMinSignedValue()) 694 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); 695 696 if (isFullSet() || isSignWrappedSet()) { 697 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), 698 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); 699 } 700 701 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); 702 } 703 704 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { 705 assert(getBitWidth() > DstTySize && "Not a value truncation"); 706 if (isEmptySet()) 707 return getEmpty(DstTySize); 708 if (isFullSet()) 709 return getFull(DstTySize); 710 711 APInt LowerDiv(Lower), UpperDiv(Upper); 712 ConstantRange Union(DstTySize, /*isFullSet=*/false); 713 714 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] 715 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and 716 // then we do the union with [MaxValue, Upper) 717 if (isUpperWrapped()) { 718 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole 719 // truncated range. 720 if (Upper.getActiveBits() > DstTySize || 721 Upper.countTrailingOnes() == DstTySize) 722 return getFull(DstTySize); 723 724 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); 725 UpperDiv.setAllBits(); 726 727 // Union covers the MaxValue case, so return if the remaining range is just 728 // MaxValue(DstTy). 729 if (LowerDiv == UpperDiv) 730 return Union; 731 } 732 733 // Chop off the most significant bits that are past the destination bitwidth. 734 if (LowerDiv.getActiveBits() > DstTySize) { 735 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. 736 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); 737 LowerDiv -= Adjust; 738 UpperDiv -= Adjust; 739 } 740 741 unsigned UpperDivWidth = UpperDiv.getActiveBits(); 742 if (UpperDivWidth <= DstTySize) 743 return ConstantRange(LowerDiv.trunc(DstTySize), 744 UpperDiv.trunc(DstTySize)).unionWith(Union); 745 746 // The truncated value wraps around. Check if we can do better than fullset. 747 if (UpperDivWidth == DstTySize + 1) { 748 // Clear the MSB so that UpperDiv wraps around. 749 UpperDiv.clearBit(DstTySize); 750 if (UpperDiv.ult(LowerDiv)) 751 return ConstantRange(LowerDiv.trunc(DstTySize), 752 UpperDiv.trunc(DstTySize)).unionWith(Union); 753 } 754 755 return getFull(DstTySize); 756 } 757 758 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { 759 unsigned SrcTySize = getBitWidth(); 760 if (SrcTySize > DstTySize) 761 return truncate(DstTySize); 762 if (SrcTySize < DstTySize) 763 return zeroExtend(DstTySize); 764 return *this; 765 } 766 767 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { 768 unsigned SrcTySize = getBitWidth(); 769 if (SrcTySize > DstTySize) 770 return truncate(DstTySize); 771 if (SrcTySize < DstTySize) 772 return signExtend(DstTySize); 773 return *this; 774 } 775 776 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, 777 const ConstantRange &Other) const { 778 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 779 780 switch (BinOp) { 781 case Instruction::Add: 782 return add(Other); 783 case Instruction::Sub: 784 return sub(Other); 785 case Instruction::Mul: 786 return multiply(Other); 787 case Instruction::UDiv: 788 return udiv(Other); 789 case Instruction::SDiv: 790 return sdiv(Other); 791 case Instruction::URem: 792 return urem(Other); 793 case Instruction::SRem: 794 return srem(Other); 795 case Instruction::Shl: 796 return shl(Other); 797 case Instruction::LShr: 798 return lshr(Other); 799 case Instruction::AShr: 800 return ashr(Other); 801 case Instruction::And: 802 return binaryAnd(Other); 803 case Instruction::Or: 804 return binaryOr(Other); 805 case Instruction::Xor: 806 return binaryXor(Other); 807 // Note: floating point operations applied to abstract ranges are just 808 // ideal integer operations with a lossy representation 809 case Instruction::FAdd: 810 return add(Other); 811 case Instruction::FSub: 812 return sub(Other); 813 case Instruction::FMul: 814 return multiply(Other); 815 default: 816 // Conservatively return getFull set. 817 return getFull(); 818 } 819 } 820 821 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp, 822 const ConstantRange &Other, 823 unsigned NoWrapKind) const { 824 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 825 826 switch (BinOp) { 827 case Instruction::Add: 828 return addWithNoWrap(Other, NoWrapKind); 829 case Instruction::Sub: 830 return subWithNoWrap(Other, NoWrapKind); 831 default: 832 // Don't know about this Overflowing Binary Operation. 833 // Conservatively fallback to plain binop handling. 834 return binaryOp(BinOp, Other); 835 } 836 } 837 838 ConstantRange 839 ConstantRange::add(const ConstantRange &Other) const { 840 if (isEmptySet() || Other.isEmptySet()) 841 return getEmpty(); 842 if (isFullSet() || Other.isFullSet()) 843 return getFull(); 844 845 APInt NewLower = getLower() + Other.getLower(); 846 APInt NewUpper = getUpper() + Other.getUpper() - 1; 847 if (NewLower == NewUpper) 848 return getFull(); 849 850 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 851 if (X.isSizeStrictlySmallerThan(*this) || 852 X.isSizeStrictlySmallerThan(Other)) 853 // We've wrapped, therefore, full set. 854 return getFull(); 855 return X; 856 } 857 858 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other, 859 unsigned NoWrapKind, 860 PreferredRangeType RangeType) const { 861 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow). 862 // (X is from this, and Y is from Other) 863 if (isEmptySet() || Other.isEmptySet()) 864 return getEmpty(); 865 if (isFullSet() && Other.isFullSet()) 866 return getFull(); 867 868 using OBO = OverflowingBinaryOperator; 869 ConstantRange Result = add(Other); 870 871 // If an overflow happens for every value pair in these two constant ranges, 872 // we must return Empty set. In this case, we get that for free, because we 873 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results 874 // in an empty set. 875 876 if (NoWrapKind & OBO::NoSignedWrap) 877 Result = Result.intersectWith(sadd_sat(Other), RangeType); 878 879 if (NoWrapKind & OBO::NoUnsignedWrap) 880 Result = Result.intersectWith(uadd_sat(Other), RangeType); 881 882 return Result; 883 } 884 885 ConstantRange 886 ConstantRange::sub(const ConstantRange &Other) const { 887 if (isEmptySet() || Other.isEmptySet()) 888 return getEmpty(); 889 if (isFullSet() || Other.isFullSet()) 890 return getFull(); 891 892 APInt NewLower = getLower() - Other.getUpper() + 1; 893 APInt NewUpper = getUpper() - Other.getLower(); 894 if (NewLower == NewUpper) 895 return getFull(); 896 897 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 898 if (X.isSizeStrictlySmallerThan(*this) || 899 X.isSizeStrictlySmallerThan(Other)) 900 // We've wrapped, therefore, full set. 901 return getFull(); 902 return X; 903 } 904 905 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other, 906 unsigned NoWrapKind, 907 PreferredRangeType RangeType) const { 908 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow). 909 // (X is from this, and Y is from Other) 910 if (isEmptySet() || Other.isEmptySet()) 911 return getEmpty(); 912 if (isFullSet() && Other.isFullSet()) 913 return getFull(); 914 915 using OBO = OverflowingBinaryOperator; 916 ConstantRange Result = sub(Other); 917 918 // If an overflow happens for every value pair in these two constant ranges, 919 // we must return Empty set. In signed case, we get that for free, because we 920 // get lucky that intersection of sub() with ssub_sat() results in an 921 // empty set. But for unsigned we must perform the overflow check manually. 922 923 if (NoWrapKind & OBO::NoSignedWrap) 924 Result = Result.intersectWith(ssub_sat(Other), RangeType); 925 926 if (NoWrapKind & OBO::NoUnsignedWrap) { 927 if (getUnsignedMax().ult(Other.getUnsignedMin())) 928 return getEmpty(); // Always overflows. 929 Result = Result.intersectWith(usub_sat(Other), RangeType); 930 } 931 932 return Result; 933 } 934 935 ConstantRange 936 ConstantRange::multiply(const ConstantRange &Other) const { 937 // TODO: If either operand is a single element and the multiply is known to 938 // be non-wrapping, round the result min and max value to the appropriate 939 // multiple of that element. If wrapping is possible, at least adjust the 940 // range according to the greatest power-of-two factor of the single element. 941 942 if (isEmptySet() || Other.isEmptySet()) 943 return getEmpty(); 944 945 // Multiplication is signedness-independent. However different ranges can be 946 // obtained depending on how the input ranges are treated. These different 947 // ranges are all conservatively correct, but one might be better than the 948 // other. We calculate two ranges; one treating the inputs as unsigned 949 // and the other signed, then return the smallest of these ranges. 950 951 // Unsigned range first. 952 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); 953 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); 954 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); 955 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); 956 957 ConstantRange Result_zext = ConstantRange(this_min * Other_min, 958 this_max * Other_max + 1); 959 ConstantRange UR = Result_zext.truncate(getBitWidth()); 960 961 // If the unsigned range doesn't wrap, and isn't negative then it's a range 962 // from one positive number to another which is as good as we can generate. 963 // In this case, skip the extra work of generating signed ranges which aren't 964 // going to be better than this range. 965 if (!UR.isUpperWrapped() && 966 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) 967 return UR; 968 969 // Now the signed range. Because we could be dealing with negative numbers 970 // here, the lower bound is the smallest of the cartesian product of the 971 // lower and upper ranges; for example: 972 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 973 // Similarly for the upper bound, swapping min for max. 974 975 this_min = getSignedMin().sext(getBitWidth() * 2); 976 this_max = getSignedMax().sext(getBitWidth() * 2); 977 Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 978 Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 979 980 auto L = {this_min * Other_min, this_min * Other_max, 981 this_max * Other_min, this_max * Other_max}; 982 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 983 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); 984 ConstantRange SR = Result_sext.truncate(getBitWidth()); 985 986 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; 987 } 988 989 ConstantRange 990 ConstantRange::smax(const ConstantRange &Other) const { 991 // X smax Y is: range(smax(X_smin, Y_smin), 992 // smax(X_smax, Y_smax)) 993 if (isEmptySet() || Other.isEmptySet()) 994 return getEmpty(); 995 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); 996 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; 997 return getNonEmpty(std::move(NewL), std::move(NewU)); 998 } 999 1000 ConstantRange 1001 ConstantRange::umax(const ConstantRange &Other) const { 1002 // X umax Y is: range(umax(X_umin, Y_umin), 1003 // umax(X_umax, Y_umax)) 1004 if (isEmptySet() || Other.isEmptySet()) 1005 return getEmpty(); 1006 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1007 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1008 return getNonEmpty(std::move(NewL), std::move(NewU)); 1009 } 1010 1011 ConstantRange 1012 ConstantRange::smin(const ConstantRange &Other) const { 1013 // X smin Y is: range(smin(X_smin, Y_smin), 1014 // smin(X_smax, Y_smax)) 1015 if (isEmptySet() || Other.isEmptySet()) 1016 return getEmpty(); 1017 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); 1018 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; 1019 return getNonEmpty(std::move(NewL), std::move(NewU)); 1020 } 1021 1022 ConstantRange 1023 ConstantRange::umin(const ConstantRange &Other) const { 1024 // X umin Y is: range(umin(X_umin, Y_umin), 1025 // umin(X_umax, Y_umax)) 1026 if (isEmptySet() || Other.isEmptySet()) 1027 return getEmpty(); 1028 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); 1029 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1030 return getNonEmpty(std::move(NewL), std::move(NewU)); 1031 } 1032 1033 ConstantRange 1034 ConstantRange::udiv(const ConstantRange &RHS) const { 1035 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) 1036 return getEmpty(); 1037 1038 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); 1039 1040 APInt RHS_umin = RHS.getUnsignedMin(); 1041 if (RHS_umin.isNullValue()) { 1042 // We want the lowest value in RHS excluding zero. Usually that would be 1 1043 // except for a range in the form of [X, 1) in which case it would be X. 1044 if (RHS.getUpper() == 1) 1045 RHS_umin = RHS.getLower(); 1046 else 1047 RHS_umin = 1; 1048 } 1049 1050 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; 1051 return getNonEmpty(std::move(Lower), std::move(Upper)); 1052 } 1053 1054 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const { 1055 // We split up the LHS and RHS into positive and negative components 1056 // and then also compute the positive and negative components of the result 1057 // separately by combining division results with the appropriate signs. 1058 APInt Zero = APInt::getNullValue(getBitWidth()); 1059 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1060 ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin); 1061 ConstantRange NegFilter(SignedMin, Zero); 1062 ConstantRange PosL = intersectWith(PosFilter); 1063 ConstantRange NegL = intersectWith(NegFilter); 1064 ConstantRange PosR = RHS.intersectWith(PosFilter); 1065 ConstantRange NegR = RHS.intersectWith(NegFilter); 1066 1067 ConstantRange PosRes = getEmpty(); 1068 if (!PosL.isEmptySet() && !PosR.isEmptySet()) 1069 // pos / pos = pos. 1070 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1), 1071 (PosL.Upper - 1).sdiv(PosR.Lower) + 1); 1072 1073 if (!NegL.isEmptySet() && !NegR.isEmptySet()) { 1074 // neg / neg = pos. 1075 // 1076 // We need to deal with one tricky case here: SignedMin / -1 is UB on the 1077 // IR level, so we'll want to exclude this case when calculating bounds. 1078 // (For APInts the operation is well-defined and yields SignedMin.) We 1079 // handle this by dropping either SignedMin from the LHS or -1 from the RHS. 1080 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower); 1081 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) { 1082 // Remove -1 from the LHS. Skip if it's the only element, as this would 1083 // leave us with an empty set. 1084 if (!NegR.Lower.isAllOnesValue()) { 1085 APInt AdjNegRUpper; 1086 if (RHS.Lower.isAllOnesValue()) 1087 // Negative part of [-1, X] without -1 is [SignedMin, X]. 1088 AdjNegRUpper = RHS.Upper; 1089 else 1090 // [X, -1] without -1 is [X, -2]. 1091 AdjNegRUpper = NegR.Upper - 1; 1092 1093 PosRes = PosRes.unionWith( 1094 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1)); 1095 } 1096 1097 // Remove SignedMin from the RHS. Skip if it's the only element, as this 1098 // would leave us with an empty set. 1099 if (NegL.Upper != SignedMin + 1) { 1100 APInt AdjNegLLower; 1101 if (Upper == SignedMin + 1) 1102 // Negative part of [X, SignedMin] without SignedMin is [X, -1]. 1103 AdjNegLLower = Lower; 1104 else 1105 // [SignedMin, X] without SignedMin is [SignedMin + 1, X]. 1106 AdjNegLLower = NegL.Lower + 1; 1107 1108 PosRes = PosRes.unionWith( 1109 ConstantRange(std::move(Lo), 1110 AdjNegLLower.sdiv(NegR.Upper - 1) + 1)); 1111 } 1112 } else { 1113 PosRes = PosRes.unionWith( 1114 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1)); 1115 } 1116 } 1117 1118 ConstantRange NegRes = getEmpty(); 1119 if (!PosL.isEmptySet() && !NegR.isEmptySet()) 1120 // pos / neg = neg. 1121 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1), 1122 PosL.Lower.sdiv(NegR.Lower) + 1); 1123 1124 if (!NegL.isEmptySet() && !PosR.isEmptySet()) 1125 // neg / pos = neg. 1126 NegRes = NegRes.unionWith( 1127 ConstantRange(NegL.Lower.sdiv(PosR.Lower), 1128 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1)); 1129 1130 // Prefer a non-wrapping signed range here. 1131 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed); 1132 1133 // Preserve the zero that we dropped when splitting the LHS by sign. 1134 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet())) 1135 Res = Res.unionWith(ConstantRange(Zero)); 1136 return Res; 1137 } 1138 1139 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const { 1140 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) 1141 return getEmpty(); 1142 1143 // L % R for L < R is L. 1144 if (getUnsignedMax().ult(RHS.getUnsignedMin())) 1145 return *this; 1146 1147 // L % R is <= L and < R. 1148 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1; 1149 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper)); 1150 } 1151 1152 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const { 1153 if (isEmptySet() || RHS.isEmptySet()) 1154 return getEmpty(); 1155 1156 ConstantRange AbsRHS = RHS.abs(); 1157 APInt MinAbsRHS = AbsRHS.getUnsignedMin(); 1158 APInt MaxAbsRHS = AbsRHS.getUnsignedMax(); 1159 1160 // Modulus by zero is UB. 1161 if (MaxAbsRHS.isNullValue()) 1162 return getEmpty(); 1163 1164 if (MinAbsRHS.isNullValue()) 1165 ++MinAbsRHS; 1166 1167 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax(); 1168 1169 if (MinLHS.isNonNegative()) { 1170 // L % R for L < R is L. 1171 if (MaxLHS.ult(MinAbsRHS)) 1172 return *this; 1173 1174 // L % R is <= L and < R. 1175 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1176 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper)); 1177 } 1178 1179 // Same basic logic as above, but the result is negative. 1180 if (MaxLHS.isNegative()) { 1181 if (MinLHS.ugt(-MinAbsRHS)) 1182 return *this; 1183 1184 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1185 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1)); 1186 } 1187 1188 // LHS range crosses zero. 1189 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1190 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1191 return ConstantRange(std::move(Lower), std::move(Upper)); 1192 } 1193 1194 ConstantRange 1195 ConstantRange::binaryAnd(const ConstantRange &Other) const { 1196 if (isEmptySet() || Other.isEmptySet()) 1197 return getEmpty(); 1198 1199 // Use APInt's implementation of AND for single element ranges. 1200 if (isSingleElement() && Other.isSingleElement()) 1201 return {*getSingleElement() & *Other.getSingleElement()}; 1202 1203 // TODO: replace this with something less conservative 1204 1205 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); 1206 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1); 1207 } 1208 1209 ConstantRange 1210 ConstantRange::binaryOr(const ConstantRange &Other) const { 1211 if (isEmptySet() || Other.isEmptySet()) 1212 return getEmpty(); 1213 1214 // Use APInt's implementation of OR for single element ranges. 1215 if (isSingleElement() && Other.isSingleElement()) 1216 return {*getSingleElement() | *Other.getSingleElement()}; 1217 1218 // TODO: replace this with something less conservative 1219 1220 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1221 return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth())); 1222 } 1223 1224 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const { 1225 if (isEmptySet() || Other.isEmptySet()) 1226 return getEmpty(); 1227 1228 // Use APInt's implementation of XOR for single element ranges. 1229 if (isSingleElement() && Other.isSingleElement()) 1230 return {*getSingleElement() ^ *Other.getSingleElement()}; 1231 1232 // TODO: replace this with something less conservative 1233 return getFull(); 1234 } 1235 1236 ConstantRange 1237 ConstantRange::shl(const ConstantRange &Other) const { 1238 if (isEmptySet() || Other.isEmptySet()) 1239 return getEmpty(); 1240 1241 APInt max = getUnsignedMax(); 1242 APInt Other_umax = Other.getUnsignedMax(); 1243 1244 // If we are shifting by maximum amount of 1245 // zero return return the original range. 1246 if (Other_umax.isNullValue()) 1247 return *this; 1248 // there's overflow! 1249 if (Other_umax.ugt(max.countLeadingZeros())) 1250 return getFull(); 1251 1252 // FIXME: implement the other tricky cases 1253 1254 APInt min = getUnsignedMin(); 1255 min <<= Other.getUnsignedMin(); 1256 max <<= Other_umax; 1257 1258 return ConstantRange(std::move(min), std::move(max) + 1); 1259 } 1260 1261 ConstantRange 1262 ConstantRange::lshr(const ConstantRange &Other) const { 1263 if (isEmptySet() || Other.isEmptySet()) 1264 return getEmpty(); 1265 1266 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; 1267 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); 1268 return getNonEmpty(std::move(min), std::move(max)); 1269 } 1270 1271 ConstantRange 1272 ConstantRange::ashr(const ConstantRange &Other) const { 1273 if (isEmptySet() || Other.isEmptySet()) 1274 return getEmpty(); 1275 1276 // May straddle zero, so handle both positive and negative cases. 1277 // 'PosMax' is the upper bound of the result of the ashr 1278 // operation, when Upper of the LHS of ashr is a non-negative. 1279 // number. Since ashr of a non-negative number will result in a 1280 // smaller number, the Upper value of LHS is shifted right with 1281 // the minimum value of 'Other' instead of the maximum value. 1282 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; 1283 1284 // 'PosMin' is the lower bound of the result of the ashr 1285 // operation, when Lower of the LHS is a non-negative number. 1286 // Since ashr of a non-negative number will result in a smaller 1287 // number, the Lower value of LHS is shifted right with the 1288 // maximum value of 'Other'. 1289 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); 1290 1291 // 'NegMax' is the upper bound of the result of the ashr 1292 // operation, when Upper of the LHS of ashr is a negative number. 1293 // Since 'ashr' of a negative number will result in a bigger 1294 // number, the Upper value of LHS is shifted right with the 1295 // maximum value of 'Other'. 1296 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; 1297 1298 // 'NegMin' is the lower bound of the result of the ashr 1299 // operation, when Lower of the LHS of ashr is a negative number. 1300 // Since 'ashr' of a negative number will result in a bigger 1301 // number, the Lower value of LHS is shifted right with the 1302 // minimum value of 'Other'. 1303 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); 1304 1305 APInt max, min; 1306 if (getSignedMin().isNonNegative()) { 1307 // Upper and Lower of LHS are non-negative. 1308 min = PosMin; 1309 max = PosMax; 1310 } else if (getSignedMax().isNegative()) { 1311 // Upper and Lower of LHS are negative. 1312 min = NegMin; 1313 max = NegMax; 1314 } else { 1315 // Upper is non-negative and Lower is negative. 1316 min = NegMin; 1317 max = PosMax; 1318 } 1319 return getNonEmpty(std::move(min), std::move(max)); 1320 } 1321 1322 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const { 1323 if (isEmptySet() || Other.isEmptySet()) 1324 return getEmpty(); 1325 1326 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin()); 1327 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1; 1328 return getNonEmpty(std::move(NewL), std::move(NewU)); 1329 } 1330 1331 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const { 1332 if (isEmptySet() || Other.isEmptySet()) 1333 return getEmpty(); 1334 1335 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin()); 1336 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1; 1337 return getNonEmpty(std::move(NewL), std::move(NewU)); 1338 } 1339 1340 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const { 1341 if (isEmptySet() || Other.isEmptySet()) 1342 return getEmpty(); 1343 1344 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax()); 1345 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1; 1346 return getNonEmpty(std::move(NewL), std::move(NewU)); 1347 } 1348 1349 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const { 1350 if (isEmptySet() || Other.isEmptySet()) 1351 return getEmpty(); 1352 1353 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax()); 1354 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1; 1355 return getNonEmpty(std::move(NewL), std::move(NewU)); 1356 } 1357 1358 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const { 1359 if (isEmptySet() || Other.isEmptySet()) 1360 return getEmpty(); 1361 1362 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin()); 1363 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1; 1364 return getNonEmpty(std::move(NewL), std::move(NewU)); 1365 } 1366 1367 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const { 1368 if (isEmptySet() || Other.isEmptySet()) 1369 return getEmpty(); 1370 1371 // Because we could be dealing with negative numbers here, the lower bound is 1372 // the smallest of the cartesian product of the lower and upper ranges; 1373 // for example: 1374 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1375 // Similarly for the upper bound, swapping min for max. 1376 1377 APInt this_min = getSignedMin().sext(getBitWidth() * 2); 1378 APInt this_max = getSignedMax().sext(getBitWidth() * 2); 1379 APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1380 APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1381 1382 auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min, 1383 this_max * Other_max}; 1384 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1385 1386 // Note that we wanted to perform signed saturating multiplication, 1387 // so since we performed plain multiplication in twice the bitwidth, 1388 // we need to perform signed saturating truncation. 1389 return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()), 1390 std::max(L, Compare).truncSSat(getBitWidth()) + 1); 1391 } 1392 1393 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const { 1394 if (isEmptySet() || Other.isEmptySet()) 1395 return getEmpty(); 1396 1397 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin()); 1398 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1; 1399 return getNonEmpty(std::move(NewL), std::move(NewU)); 1400 } 1401 1402 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const { 1403 if (isEmptySet() || Other.isEmptySet()) 1404 return getEmpty(); 1405 1406 APInt Min = getSignedMin(), Max = getSignedMax(); 1407 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax(); 1408 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax); 1409 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1; 1410 return getNonEmpty(std::move(NewL), std::move(NewU)); 1411 } 1412 1413 ConstantRange ConstantRange::inverse() const { 1414 if (isFullSet()) 1415 return getEmpty(); 1416 if (isEmptySet()) 1417 return getFull(); 1418 return ConstantRange(Upper, Lower); 1419 } 1420 1421 ConstantRange ConstantRange::abs() const { 1422 if (isEmptySet()) 1423 return getEmpty(); 1424 1425 if (isSignWrappedSet()) { 1426 APInt Lo; 1427 // Check whether the range crosses zero. 1428 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive()) 1429 Lo = APInt::getNullValue(getBitWidth()); 1430 else 1431 Lo = APIntOps::umin(Lower, -Upper + 1); 1432 1433 // SignedMin is included in the result range. 1434 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1); 1435 } 1436 1437 APInt SMin = getSignedMin(), SMax = getSignedMax(); 1438 1439 // All non-negative. 1440 if (SMin.isNonNegative()) 1441 return *this; 1442 1443 // All negative. 1444 if (SMax.isNegative()) 1445 return ConstantRange(-SMax, -SMin + 1); 1446 1447 // Range crosses zero. 1448 return ConstantRange(APInt::getNullValue(getBitWidth()), 1449 APIntOps::umax(-SMin, SMax) + 1); 1450 } 1451 1452 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow( 1453 const ConstantRange &Other) const { 1454 if (isEmptySet() || Other.isEmptySet()) 1455 return OverflowResult::MayOverflow; 1456 1457 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1458 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1459 1460 // a u+ b overflows high iff a u> ~b. 1461 if (Min.ugt(~OtherMin)) 1462 return OverflowResult::AlwaysOverflowsHigh; 1463 if (Max.ugt(~OtherMax)) 1464 return OverflowResult::MayOverflow; 1465 return OverflowResult::NeverOverflows; 1466 } 1467 1468 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow( 1469 const ConstantRange &Other) const { 1470 if (isEmptySet() || Other.isEmptySet()) 1471 return OverflowResult::MayOverflow; 1472 1473 APInt Min = getSignedMin(), Max = getSignedMax(); 1474 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1475 1476 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1477 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1478 1479 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b. 1480 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b. 1481 if (Min.isNonNegative() && OtherMin.isNonNegative() && 1482 Min.sgt(SignedMax - OtherMin)) 1483 return OverflowResult::AlwaysOverflowsHigh; 1484 if (Max.isNegative() && OtherMax.isNegative() && 1485 Max.slt(SignedMin - OtherMax)) 1486 return OverflowResult::AlwaysOverflowsLow; 1487 1488 if (Max.isNonNegative() && OtherMax.isNonNegative() && 1489 Max.sgt(SignedMax - OtherMax)) 1490 return OverflowResult::MayOverflow; 1491 if (Min.isNegative() && OtherMin.isNegative() && 1492 Min.slt(SignedMin - OtherMin)) 1493 return OverflowResult::MayOverflow; 1494 1495 return OverflowResult::NeverOverflows; 1496 } 1497 1498 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow( 1499 const ConstantRange &Other) const { 1500 if (isEmptySet() || Other.isEmptySet()) 1501 return OverflowResult::MayOverflow; 1502 1503 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1504 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1505 1506 // a u- b overflows low iff a u< b. 1507 if (Max.ult(OtherMin)) 1508 return OverflowResult::AlwaysOverflowsLow; 1509 if (Min.ult(OtherMax)) 1510 return OverflowResult::MayOverflow; 1511 return OverflowResult::NeverOverflows; 1512 } 1513 1514 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow( 1515 const ConstantRange &Other) const { 1516 if (isEmptySet() || Other.isEmptySet()) 1517 return OverflowResult::MayOverflow; 1518 1519 APInt Min = getSignedMin(), Max = getSignedMax(); 1520 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1521 1522 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1523 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1524 1525 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b. 1526 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b. 1527 if (Min.isNonNegative() && OtherMax.isNegative() && 1528 Min.sgt(SignedMax + OtherMax)) 1529 return OverflowResult::AlwaysOverflowsHigh; 1530 if (Max.isNegative() && OtherMin.isNonNegative() && 1531 Max.slt(SignedMin + OtherMin)) 1532 return OverflowResult::AlwaysOverflowsLow; 1533 1534 if (Max.isNonNegative() && OtherMin.isNegative() && 1535 Max.sgt(SignedMax + OtherMin)) 1536 return OverflowResult::MayOverflow; 1537 if (Min.isNegative() && OtherMax.isNonNegative() && 1538 Min.slt(SignedMin + OtherMax)) 1539 return OverflowResult::MayOverflow; 1540 1541 return OverflowResult::NeverOverflows; 1542 } 1543 1544 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow( 1545 const ConstantRange &Other) const { 1546 if (isEmptySet() || Other.isEmptySet()) 1547 return OverflowResult::MayOverflow; 1548 1549 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1550 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1551 bool Overflow; 1552 1553 (void) Min.umul_ov(OtherMin, Overflow); 1554 if (Overflow) 1555 return OverflowResult::AlwaysOverflowsHigh; 1556 1557 (void) Max.umul_ov(OtherMax, Overflow); 1558 if (Overflow) 1559 return OverflowResult::MayOverflow; 1560 1561 return OverflowResult::NeverOverflows; 1562 } 1563 1564 void ConstantRange::print(raw_ostream &OS) const { 1565 if (isFullSet()) 1566 OS << "full-set"; 1567 else if (isEmptySet()) 1568 OS << "empty-set"; 1569 else 1570 OS << "[" << Lower << "," << Upper << ")"; 1571 } 1572 1573 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1574 LLVM_DUMP_METHOD void ConstantRange::dump() const { 1575 print(dbgs()); 1576 } 1577 #endif 1578 1579 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 1580 const unsigned NumRanges = Ranges.getNumOperands() / 2; 1581 assert(NumRanges >= 1 && "Must have at least one range!"); 1582 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 1583 1584 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 1585 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 1586 1587 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 1588 1589 for (unsigned i = 1; i < NumRanges; ++i) { 1590 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 1591 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 1592 1593 // Note: unionWith will potentially create a range that contains values not 1594 // contained in any of the original N ranges. 1595 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 1596 } 1597 1598 return CR; 1599 } 1600