xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantRange.cpp (revision c203bd70b5957f85616424b6fa374479372d06e3)
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 
40 using namespace llvm;
41 
42 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
43     : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
44       Upper(Lower) {}
45 
46 ConstantRange::ConstantRange(APInt V)
47     : Lower(std::move(V)), Upper(Lower + 1) {}
48 
49 ConstantRange::ConstantRange(APInt L, APInt U)
50     : Lower(std::move(L)), Upper(std::move(U)) {
51   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
52          "ConstantRange with unequal bit widths");
53   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
54          "Lower == Upper, but they aren't min or max value!");
55 }
56 
57 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
58                                            bool IsSigned) {
59   assert(!Known.hasConflict() && "Expected valid KnownBits");
60 
61   if (Known.isUnknown())
62     return getFull(Known.getBitWidth());
63 
64   // For unsigned ranges, or signed ranges with known sign bit, create a simple
65   // range between the smallest and largest possible value.
66   if (!IsSigned || Known.isNegative() || Known.isNonNegative())
67     return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
68 
69   // If we don't know the sign bit, pick the lower bound as a negative number
70   // and the upper bound as a non-negative one.
71   APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
72   Lower.setSignBit();
73   Upper.clearSignBit();
74   return ConstantRange(Lower, Upper + 1);
75 }
76 
77 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
78                                                    const ConstantRange &CR) {
79   if (CR.isEmptySet())
80     return CR;
81 
82   uint32_t W = CR.getBitWidth();
83   switch (Pred) {
84   default:
85     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
86   case CmpInst::ICMP_EQ:
87     return CR;
88   case CmpInst::ICMP_NE:
89     if (CR.isSingleElement())
90       return ConstantRange(CR.getUpper(), CR.getLower());
91     return getFull(W);
92   case CmpInst::ICMP_ULT: {
93     APInt UMax(CR.getUnsignedMax());
94     if (UMax.isMinValue())
95       return getEmpty(W);
96     return ConstantRange(APInt::getMinValue(W), std::move(UMax));
97   }
98   case CmpInst::ICMP_SLT: {
99     APInt SMax(CR.getSignedMax());
100     if (SMax.isMinSignedValue())
101       return getEmpty(W);
102     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
103   }
104   case CmpInst::ICMP_ULE:
105     return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
106   case CmpInst::ICMP_SLE:
107     return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
108   case CmpInst::ICMP_UGT: {
109     APInt UMin(CR.getUnsignedMin());
110     if (UMin.isMaxValue())
111       return getEmpty(W);
112     return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
113   }
114   case CmpInst::ICMP_SGT: {
115     APInt SMin(CR.getSignedMin());
116     if (SMin.isMaxSignedValue())
117       return getEmpty(W);
118     return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
119   }
120   case CmpInst::ICMP_UGE:
121     return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
122   case CmpInst::ICMP_SGE:
123     return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
124   }
125 }
126 
127 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
128                                                       const ConstantRange &CR) {
129   // Follows from De-Morgan's laws:
130   //
131   // ~(~A union ~B) == A intersect B.
132   //
133   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
134       .inverse();
135 }
136 
137 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
138                                                  const APInt &C) {
139   // Computes the exact range that is equal to both the constant ranges returned
140   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
141   // when RHS is a singleton such as an APInt and so the assert is valid.
142   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
143   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
144   //
145   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
146   return makeAllowedICmpRegion(Pred, C);
147 }
148 
149 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
150                                       APInt &RHS) const {
151   bool Success = false;
152 
153   if (isFullSet() || isEmptySet()) {
154     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
155     RHS = APInt(getBitWidth(), 0);
156     Success = true;
157   } else if (auto *OnlyElt = getSingleElement()) {
158     Pred = CmpInst::ICMP_EQ;
159     RHS = *OnlyElt;
160     Success = true;
161   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
162     Pred = CmpInst::ICMP_NE;
163     RHS = *OnlyMissingElt;
164     Success = true;
165   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
166     Pred =
167         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
168     RHS = getUpper();
169     Success = true;
170   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
171     Pred =
172         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
173     RHS = getLower();
174     Success = true;
175   }
176 
177   assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
178          "Bad result!");
179 
180   return Success;
181 }
182 
183 /// Exact mul nuw region for single element RHS.
184 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
185   unsigned BitWidth = V.getBitWidth();
186   if (V == 0)
187     return ConstantRange::getFull(V.getBitWidth());
188 
189   return ConstantRange::getNonEmpty(
190       APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
191                              APInt::Rounding::UP),
192       APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
193                              APInt::Rounding::DOWN) + 1);
194 }
195 
196 /// Exact mul nsw region for single element RHS.
197 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
198   // Handle special case for 0, -1 and 1. See the last for reason why we
199   // specialize -1 and 1.
200   unsigned BitWidth = V.getBitWidth();
201   if (V == 0 || V.isOneValue())
202     return ConstantRange::getFull(BitWidth);
203 
204   APInt MinValue = APInt::getSignedMinValue(BitWidth);
205   APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
206   // e.g. Returning [-127, 127], represented as [-127, -128).
207   if (V.isAllOnesValue())
208     return ConstantRange(-MaxValue, MinValue);
209 
210   APInt Lower, Upper;
211   if (V.isNegative()) {
212     Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
213     Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
214   } else {
215     Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
216     Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
217   }
218   // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
219   // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
220   // and 1 are already handled as special cases.
221   return ConstantRange(Lower, Upper + 1);
222 }
223 
224 ConstantRange
225 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
226                                           const ConstantRange &Other,
227                                           unsigned NoWrapKind) {
228   using OBO = OverflowingBinaryOperator;
229 
230   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
231 
232   assert((NoWrapKind == OBO::NoSignedWrap ||
233           NoWrapKind == OBO::NoUnsignedWrap) &&
234          "NoWrapKind invalid!");
235 
236   bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
237   unsigned BitWidth = Other.getBitWidth();
238 
239   switch (BinOp) {
240   default:
241     llvm_unreachable("Unsupported binary op");
242 
243   case Instruction::Add: {
244     if (Unsigned)
245       return getNonEmpty(APInt::getNullValue(BitWidth),
246                          -Other.getUnsignedMax());
247 
248     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
249     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
250     return getNonEmpty(
251         SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
252         SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
253   }
254 
255   case Instruction::Sub: {
256     if (Unsigned)
257       return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
258 
259     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
260     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
261     return getNonEmpty(
262         SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
263         SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
264   }
265 
266   case Instruction::Mul:
267     if (Unsigned)
268       return makeExactMulNUWRegion(Other.getUnsignedMax());
269 
270     return makeExactMulNSWRegion(Other.getSignedMin())
271         .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
272 
273   case Instruction::Shl: {
274     // For given range of shift amounts, if we ignore all illegal shift amounts
275     // (that always produce poison), what shift amount range is left?
276     ConstantRange ShAmt = Other.intersectWith(
277         ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
278     if (ShAmt.isEmptySet()) {
279       // If the entire range of shift amounts is already poison-producing,
280       // then we can freely add more poison-producing flags ontop of that.
281       return getFull(BitWidth);
282     }
283     // There are some legal shift amounts, we can compute conservatively-correct
284     // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
285     // to be at most bitwidth-1, which results in most conservative range.
286     APInt ShAmtUMax = ShAmt.getUnsignedMax();
287     if (Unsigned)
288       return getNonEmpty(APInt::getNullValue(BitWidth),
289                          APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
290     return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
291                        APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
292   }
293   }
294 }
295 
296 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
297                                                    const APInt &Other,
298                                                    unsigned NoWrapKind) {
299   // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
300   // "for all" and "for any" coincide in this case.
301   return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
302 }
303 
304 bool ConstantRange::isFullSet() const {
305   return Lower == Upper && Lower.isMaxValue();
306 }
307 
308 bool ConstantRange::isEmptySet() const {
309   return Lower == Upper && Lower.isMinValue();
310 }
311 
312 bool ConstantRange::isWrappedSet() const {
313   return Lower.ugt(Upper) && !Upper.isNullValue();
314 }
315 
316 bool ConstantRange::isUpperWrapped() const {
317   return Lower.ugt(Upper);
318 }
319 
320 bool ConstantRange::isSignWrappedSet() const {
321   return Lower.sgt(Upper) && !Upper.isMinSignedValue();
322 }
323 
324 bool ConstantRange::isUpperSignWrapped() const {
325   return Lower.sgt(Upper);
326 }
327 
328 bool
329 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
330   assert(getBitWidth() == Other.getBitWidth());
331   if (isFullSet())
332     return false;
333   if (Other.isFullSet())
334     return true;
335   return (Upper - Lower).ult(Other.Upper - Other.Lower);
336 }
337 
338 bool
339 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
340   assert(MaxSize && "MaxSize can't be 0.");
341   // If this a full set, we need special handling to avoid needing an extra bit
342   // to represent the size.
343   if (isFullSet())
344     return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
345 
346   return (Upper - Lower).ugt(MaxSize);
347 }
348 
349 bool ConstantRange::isAllNegative() const {
350   // Empty set is all negative, full set is not.
351   if (isEmptySet())
352     return true;
353   if (isFullSet())
354     return false;
355 
356   return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
357 }
358 
359 bool ConstantRange::isAllNonNegative() const {
360   // Empty and full set are automatically treated correctly.
361   return !isSignWrappedSet() && Lower.isNonNegative();
362 }
363 
364 APInt ConstantRange::getUnsignedMax() const {
365   if (isFullSet() || isUpperWrapped())
366     return APInt::getMaxValue(getBitWidth());
367   return getUpper() - 1;
368 }
369 
370 APInt ConstantRange::getUnsignedMin() const {
371   if (isFullSet() || isWrappedSet())
372     return APInt::getMinValue(getBitWidth());
373   return getLower();
374 }
375 
376 APInt ConstantRange::getSignedMax() const {
377   if (isFullSet() || isUpperSignWrapped())
378     return APInt::getSignedMaxValue(getBitWidth());
379   return getUpper() - 1;
380 }
381 
382 APInt ConstantRange::getSignedMin() const {
383   if (isFullSet() || isSignWrappedSet())
384     return APInt::getSignedMinValue(getBitWidth());
385   return getLower();
386 }
387 
388 bool ConstantRange::contains(const APInt &V) const {
389   if (Lower == Upper)
390     return isFullSet();
391 
392   if (!isUpperWrapped())
393     return Lower.ule(V) && V.ult(Upper);
394   return Lower.ule(V) || V.ult(Upper);
395 }
396 
397 bool ConstantRange::contains(const ConstantRange &Other) const {
398   if (isFullSet() || Other.isEmptySet()) return true;
399   if (isEmptySet() || Other.isFullSet()) return false;
400 
401   if (!isUpperWrapped()) {
402     if (Other.isUpperWrapped())
403       return false;
404 
405     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
406   }
407 
408   if (!Other.isUpperWrapped())
409     return Other.getUpper().ule(Upper) ||
410            Lower.ule(Other.getLower());
411 
412   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
413 }
414 
415 ConstantRange ConstantRange::subtract(const APInt &Val) const {
416   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
417   // If the set is empty or full, don't modify the endpoints.
418   if (Lower == Upper)
419     return *this;
420   return ConstantRange(Lower - Val, Upper - Val);
421 }
422 
423 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
424   return intersectWith(CR.inverse());
425 }
426 
427 static ConstantRange getPreferredRange(
428     const ConstantRange &CR1, const ConstantRange &CR2,
429     ConstantRange::PreferredRangeType Type) {
430   if (Type == ConstantRange::Unsigned) {
431     if (!CR1.isWrappedSet() && CR2.isWrappedSet())
432       return CR1;
433     if (CR1.isWrappedSet() && !CR2.isWrappedSet())
434       return CR2;
435   } else if (Type == ConstantRange::Signed) {
436     if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
437       return CR1;
438     if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
439       return CR2;
440   }
441 
442   if (CR1.isSizeStrictlySmallerThan(CR2))
443     return CR1;
444   return CR2;
445 }
446 
447 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
448                                            PreferredRangeType Type) const {
449   assert(getBitWidth() == CR.getBitWidth() &&
450          "ConstantRange types don't agree!");
451 
452   // Handle common cases.
453   if (   isEmptySet() || CR.isFullSet()) return *this;
454   if (CR.isEmptySet() ||    isFullSet()) return CR;
455 
456   if (!isUpperWrapped() && CR.isUpperWrapped())
457     return CR.intersectWith(*this, Type);
458 
459   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
460     if (Lower.ult(CR.Lower)) {
461       // L---U       : this
462       //       L---U : CR
463       if (Upper.ule(CR.Lower))
464         return getEmpty();
465 
466       // L---U       : this
467       //   L---U     : CR
468       if (Upper.ult(CR.Upper))
469         return ConstantRange(CR.Lower, Upper);
470 
471       // L-------U   : this
472       //   L---U     : CR
473       return CR;
474     }
475     //   L---U     : this
476     // L-------U   : CR
477     if (Upper.ult(CR.Upper))
478       return *this;
479 
480     //   L-----U   : this
481     // L-----U     : CR
482     if (Lower.ult(CR.Upper))
483       return ConstantRange(Lower, CR.Upper);
484 
485     //       L---U : this
486     // L---U       : CR
487     return getEmpty();
488   }
489 
490   if (isUpperWrapped() && !CR.isUpperWrapped()) {
491     if (CR.Lower.ult(Upper)) {
492       // ------U   L--- : this
493       //  L--U          : CR
494       if (CR.Upper.ult(Upper))
495         return CR;
496 
497       // ------U   L--- : this
498       //  L------U      : CR
499       if (CR.Upper.ule(Lower))
500         return ConstantRange(CR.Lower, Upper);
501 
502       // ------U   L--- : this
503       //  L----------U  : CR
504       return getPreferredRange(*this, CR, Type);
505     }
506     if (CR.Lower.ult(Lower)) {
507       // --U      L---- : this
508       //     L--U       : CR
509       if (CR.Upper.ule(Lower))
510         return getEmpty();
511 
512       // --U      L---- : this
513       //     L------U   : CR
514       return ConstantRange(Lower, CR.Upper);
515     }
516 
517     // --U  L------ : this
518     //        L--U  : CR
519     return CR;
520   }
521 
522   if (CR.Upper.ult(Upper)) {
523     // ------U L-- : this
524     // --U L------ : CR
525     if (CR.Lower.ult(Upper))
526       return getPreferredRange(*this, CR, Type);
527 
528     // ----U   L-- : this
529     // --U   L---- : CR
530     if (CR.Lower.ult(Lower))
531       return ConstantRange(Lower, CR.Upper);
532 
533     // ----U L---- : this
534     // --U     L-- : CR
535     return CR;
536   }
537   if (CR.Upper.ule(Lower)) {
538     // --U     L-- : this
539     // ----U L---- : CR
540     if (CR.Lower.ult(Lower))
541       return *this;
542 
543     // --U   L---- : this
544     // ----U   L-- : CR
545     return ConstantRange(CR.Lower, Upper);
546   }
547 
548   // --U L------ : this
549   // ------U L-- : CR
550   return getPreferredRange(*this, CR, Type);
551 }
552 
553 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
554                                        PreferredRangeType Type) const {
555   assert(getBitWidth() == CR.getBitWidth() &&
556          "ConstantRange types don't agree!");
557 
558   if (   isFullSet() || CR.isEmptySet()) return *this;
559   if (CR.isFullSet() ||    isEmptySet()) return CR;
560 
561   if (!isUpperWrapped() && CR.isUpperWrapped())
562     return CR.unionWith(*this, Type);
563 
564   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
565     //        L---U  and  L---U        : this
566     //  L---U                   L---U  : CR
567     // result in one of
568     //  L---------U
569     // -----U L-----
570     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
571       return getPreferredRange(
572           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
573 
574     APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
575     APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
576 
577     if (L.isNullValue() && U.isNullValue())
578       return getFull();
579 
580     return ConstantRange(std::move(L), std::move(U));
581   }
582 
583   if (!CR.isUpperWrapped()) {
584     // ------U   L-----  and  ------U   L----- : this
585     //   L--U                            L--U  : CR
586     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
587       return *this;
588 
589     // ------U   L----- : this
590     //    L---------U   : CR
591     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
592       return getFull();
593 
594     // ----U       L---- : this
595     //       L---U       : CR
596     // results in one of
597     // ----------U L----
598     // ----U L----------
599     if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
600       return getPreferredRange(
601           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
602 
603     // ----U     L----- : this
604     //        L----U    : CR
605     if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
606       return ConstantRange(CR.Lower, Upper);
607 
608     // ------U    L---- : this
609     //    L-----U       : CR
610     assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
611            "ConstantRange::unionWith missed a case with one range wrapped");
612     return ConstantRange(Lower, CR.Upper);
613   }
614 
615   // ------U    L----  and  ------U    L---- : this
616   // -U  L-----------  and  ------------U  L : CR
617   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
618     return getFull();
619 
620   APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
621   APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
622 
623   return ConstantRange(std::move(L), std::move(U));
624 }
625 
626 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
627                                     uint32_t ResultBitWidth) const {
628   switch (CastOp) {
629   default:
630     llvm_unreachable("unsupported cast type");
631   case Instruction::Trunc:
632     return truncate(ResultBitWidth);
633   case Instruction::SExt:
634     return signExtend(ResultBitWidth);
635   case Instruction::ZExt:
636     return zeroExtend(ResultBitWidth);
637   case Instruction::BitCast:
638     return *this;
639   case Instruction::FPToUI:
640   case Instruction::FPToSI:
641     if (getBitWidth() == ResultBitWidth)
642       return *this;
643     else
644       return getFull(ResultBitWidth);
645   case Instruction::UIToFP: {
646     // TODO: use input range if available
647     auto BW = getBitWidth();
648     APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
649     APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
650     return ConstantRange(std::move(Min), std::move(Max));
651   }
652   case Instruction::SIToFP: {
653     // TODO: use input range if available
654     auto BW = getBitWidth();
655     APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
656     APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
657     return ConstantRange(std::move(SMin), std::move(SMax));
658   }
659   case Instruction::FPTrunc:
660   case Instruction::FPExt:
661   case Instruction::IntToPtr:
662   case Instruction::PtrToInt:
663   case Instruction::AddrSpaceCast:
664     // Conservatively return getFull set.
665     return getFull(ResultBitWidth);
666   };
667 }
668 
669 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
670   if (isEmptySet()) return getEmpty(DstTySize);
671 
672   unsigned SrcTySize = getBitWidth();
673   assert(SrcTySize < DstTySize && "Not a value extension");
674   if (isFullSet() || isUpperWrapped()) {
675     // Change into [0, 1 << src bit width)
676     APInt LowerExt(DstTySize, 0);
677     if (!Upper) // special case: [X, 0) -- not really wrapping around
678       LowerExt = Lower.zext(DstTySize);
679     return ConstantRange(std::move(LowerExt),
680                          APInt::getOneBitSet(DstTySize, SrcTySize));
681   }
682 
683   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
684 }
685 
686 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
687   if (isEmptySet()) return getEmpty(DstTySize);
688 
689   unsigned SrcTySize = getBitWidth();
690   assert(SrcTySize < DstTySize && "Not a value extension");
691 
692   // special case: [X, INT_MIN) -- not really wrapping around
693   if (Upper.isMinSignedValue())
694     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
695 
696   if (isFullSet() || isSignWrappedSet()) {
697     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
698                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
699   }
700 
701   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
702 }
703 
704 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
705   assert(getBitWidth() > DstTySize && "Not a value truncation");
706   if (isEmptySet())
707     return getEmpty(DstTySize);
708   if (isFullSet())
709     return getFull(DstTySize);
710 
711   APInt LowerDiv(Lower), UpperDiv(Upper);
712   ConstantRange Union(DstTySize, /*isFullSet=*/false);
713 
714   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
715   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
716   // then we do the union with [MaxValue, Upper)
717   if (isUpperWrapped()) {
718     // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
719     // truncated range.
720     if (Upper.getActiveBits() > DstTySize ||
721         Upper.countTrailingOnes() == DstTySize)
722       return getFull(DstTySize);
723 
724     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
725     UpperDiv.setAllBits();
726 
727     // Union covers the MaxValue case, so return if the remaining range is just
728     // MaxValue(DstTy).
729     if (LowerDiv == UpperDiv)
730       return Union;
731   }
732 
733   // Chop off the most significant bits that are past the destination bitwidth.
734   if (LowerDiv.getActiveBits() > DstTySize) {
735     // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
736     APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
737     LowerDiv -= Adjust;
738     UpperDiv -= Adjust;
739   }
740 
741   unsigned UpperDivWidth = UpperDiv.getActiveBits();
742   if (UpperDivWidth <= DstTySize)
743     return ConstantRange(LowerDiv.trunc(DstTySize),
744                          UpperDiv.trunc(DstTySize)).unionWith(Union);
745 
746   // The truncated value wraps around. Check if we can do better than fullset.
747   if (UpperDivWidth == DstTySize + 1) {
748     // Clear the MSB so that UpperDiv wraps around.
749     UpperDiv.clearBit(DstTySize);
750     if (UpperDiv.ult(LowerDiv))
751       return ConstantRange(LowerDiv.trunc(DstTySize),
752                            UpperDiv.trunc(DstTySize)).unionWith(Union);
753   }
754 
755   return getFull(DstTySize);
756 }
757 
758 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
759   unsigned SrcTySize = getBitWidth();
760   if (SrcTySize > DstTySize)
761     return truncate(DstTySize);
762   if (SrcTySize < DstTySize)
763     return zeroExtend(DstTySize);
764   return *this;
765 }
766 
767 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
768   unsigned SrcTySize = getBitWidth();
769   if (SrcTySize > DstTySize)
770     return truncate(DstTySize);
771   if (SrcTySize < DstTySize)
772     return signExtend(DstTySize);
773   return *this;
774 }
775 
776 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
777                                       const ConstantRange &Other) const {
778   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
779 
780   switch (BinOp) {
781   case Instruction::Add:
782     return add(Other);
783   case Instruction::Sub:
784     return sub(Other);
785   case Instruction::Mul:
786     return multiply(Other);
787   case Instruction::UDiv:
788     return udiv(Other);
789   case Instruction::SDiv:
790     return sdiv(Other);
791   case Instruction::URem:
792     return urem(Other);
793   case Instruction::SRem:
794     return srem(Other);
795   case Instruction::Shl:
796     return shl(Other);
797   case Instruction::LShr:
798     return lshr(Other);
799   case Instruction::AShr:
800     return ashr(Other);
801   case Instruction::And:
802     return binaryAnd(Other);
803   case Instruction::Or:
804     return binaryOr(Other);
805   case Instruction::Xor:
806     return binaryXor(Other);
807   // Note: floating point operations applied to abstract ranges are just
808   // ideal integer operations with a lossy representation
809   case Instruction::FAdd:
810     return add(Other);
811   case Instruction::FSub:
812     return sub(Other);
813   case Instruction::FMul:
814     return multiply(Other);
815   default:
816     // Conservatively return getFull set.
817     return getFull();
818   }
819 }
820 
821 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
822                                                  const ConstantRange &Other,
823                                                  unsigned NoWrapKind) const {
824   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
825 
826   switch (BinOp) {
827   case Instruction::Add:
828     return addWithNoWrap(Other, NoWrapKind);
829   case Instruction::Sub:
830     return subWithNoWrap(Other, NoWrapKind);
831   default:
832     // Don't know about this Overflowing Binary Operation.
833     // Conservatively fallback to plain binop handling.
834     return binaryOp(BinOp, Other);
835   }
836 }
837 
838 ConstantRange
839 ConstantRange::add(const ConstantRange &Other) const {
840   if (isEmptySet() || Other.isEmptySet())
841     return getEmpty();
842   if (isFullSet() || Other.isFullSet())
843     return getFull();
844 
845   APInt NewLower = getLower() + Other.getLower();
846   APInt NewUpper = getUpper() + Other.getUpper() - 1;
847   if (NewLower == NewUpper)
848     return getFull();
849 
850   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
851   if (X.isSizeStrictlySmallerThan(*this) ||
852       X.isSizeStrictlySmallerThan(Other))
853     // We've wrapped, therefore, full set.
854     return getFull();
855   return X;
856 }
857 
858 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
859                                            unsigned NoWrapKind,
860                                            PreferredRangeType RangeType) const {
861   // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
862   // (X is from this, and Y is from Other)
863   if (isEmptySet() || Other.isEmptySet())
864     return getEmpty();
865   if (isFullSet() && Other.isFullSet())
866     return getFull();
867 
868   using OBO = OverflowingBinaryOperator;
869   ConstantRange Result = add(Other);
870 
871   // If an overflow happens for every value pair in these two constant ranges,
872   // we must return Empty set. In this case, we get that for free, because we
873   // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
874   // in an empty set.
875 
876   if (NoWrapKind & OBO::NoSignedWrap)
877     Result = Result.intersectWith(sadd_sat(Other), RangeType);
878 
879   if (NoWrapKind & OBO::NoUnsignedWrap)
880     Result = Result.intersectWith(uadd_sat(Other), RangeType);
881 
882   return Result;
883 }
884 
885 ConstantRange
886 ConstantRange::sub(const ConstantRange &Other) const {
887   if (isEmptySet() || Other.isEmptySet())
888     return getEmpty();
889   if (isFullSet() || Other.isFullSet())
890     return getFull();
891 
892   APInt NewLower = getLower() - Other.getUpper() + 1;
893   APInt NewUpper = getUpper() - Other.getLower();
894   if (NewLower == NewUpper)
895     return getFull();
896 
897   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
898   if (X.isSizeStrictlySmallerThan(*this) ||
899       X.isSizeStrictlySmallerThan(Other))
900     // We've wrapped, therefore, full set.
901     return getFull();
902   return X;
903 }
904 
905 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
906                                            unsigned NoWrapKind,
907                                            PreferredRangeType RangeType) const {
908   // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
909   // (X is from this, and Y is from Other)
910   if (isEmptySet() || Other.isEmptySet())
911     return getEmpty();
912   if (isFullSet() && Other.isFullSet())
913     return getFull();
914 
915   using OBO = OverflowingBinaryOperator;
916   ConstantRange Result = sub(Other);
917 
918   // If an overflow happens for every value pair in these two constant ranges,
919   // we must return Empty set. In signed case, we get that for free, because we
920   // get lucky that intersection of sub() with ssub_sat() results in an
921   // empty set. But for unsigned we must perform the overflow check manually.
922 
923   if (NoWrapKind & OBO::NoSignedWrap)
924     Result = Result.intersectWith(ssub_sat(Other), RangeType);
925 
926   if (NoWrapKind & OBO::NoUnsignedWrap) {
927     if (getUnsignedMax().ult(Other.getUnsignedMin()))
928       return getEmpty(); // Always overflows.
929     Result = Result.intersectWith(usub_sat(Other), RangeType);
930   }
931 
932   return Result;
933 }
934 
935 ConstantRange
936 ConstantRange::multiply(const ConstantRange &Other) const {
937   // TODO: If either operand is a single element and the multiply is known to
938   // be non-wrapping, round the result min and max value to the appropriate
939   // multiple of that element. If wrapping is possible, at least adjust the
940   // range according to the greatest power-of-two factor of the single element.
941 
942   if (isEmptySet() || Other.isEmptySet())
943     return getEmpty();
944 
945   // Multiplication is signedness-independent. However different ranges can be
946   // obtained depending on how the input ranges are treated. These different
947   // ranges are all conservatively correct, but one might be better than the
948   // other. We calculate two ranges; one treating the inputs as unsigned
949   // and the other signed, then return the smallest of these ranges.
950 
951   // Unsigned range first.
952   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
953   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
954   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
955   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
956 
957   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
958                                             this_max * Other_max + 1);
959   ConstantRange UR = Result_zext.truncate(getBitWidth());
960 
961   // If the unsigned range doesn't wrap, and isn't negative then it's a range
962   // from one positive number to another which is as good as we can generate.
963   // In this case, skip the extra work of generating signed ranges which aren't
964   // going to be better than this range.
965   if (!UR.isUpperWrapped() &&
966       (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
967     return UR;
968 
969   // Now the signed range. Because we could be dealing with negative numbers
970   // here, the lower bound is the smallest of the cartesian product of the
971   // lower and upper ranges; for example:
972   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
973   // Similarly for the upper bound, swapping min for max.
974 
975   this_min = getSignedMin().sext(getBitWidth() * 2);
976   this_max = getSignedMax().sext(getBitWidth() * 2);
977   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
978   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
979 
980   auto L = {this_min * Other_min, this_min * Other_max,
981             this_max * Other_min, this_max * Other_max};
982   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
983   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
984   ConstantRange SR = Result_sext.truncate(getBitWidth());
985 
986   return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
987 }
988 
989 ConstantRange
990 ConstantRange::smax(const ConstantRange &Other) const {
991   // X smax Y is: range(smax(X_smin, Y_smin),
992   //                    smax(X_smax, Y_smax))
993   if (isEmptySet() || Other.isEmptySet())
994     return getEmpty();
995   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
996   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
997   return getNonEmpty(std::move(NewL), std::move(NewU));
998 }
999 
1000 ConstantRange
1001 ConstantRange::umax(const ConstantRange &Other) const {
1002   // X umax Y is: range(umax(X_umin, Y_umin),
1003   //                    umax(X_umax, Y_umax))
1004   if (isEmptySet() || Other.isEmptySet())
1005     return getEmpty();
1006   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1007   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1008   return getNonEmpty(std::move(NewL), std::move(NewU));
1009 }
1010 
1011 ConstantRange
1012 ConstantRange::smin(const ConstantRange &Other) const {
1013   // X smin Y is: range(smin(X_smin, Y_smin),
1014   //                    smin(X_smax, Y_smax))
1015   if (isEmptySet() || Other.isEmptySet())
1016     return getEmpty();
1017   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1018   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1019   return getNonEmpty(std::move(NewL), std::move(NewU));
1020 }
1021 
1022 ConstantRange
1023 ConstantRange::umin(const ConstantRange &Other) const {
1024   // X umin Y is: range(umin(X_umin, Y_umin),
1025   //                    umin(X_umax, Y_umax))
1026   if (isEmptySet() || Other.isEmptySet())
1027     return getEmpty();
1028   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1029   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1030   return getNonEmpty(std::move(NewL), std::move(NewU));
1031 }
1032 
1033 ConstantRange
1034 ConstantRange::udiv(const ConstantRange &RHS) const {
1035   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1036     return getEmpty();
1037 
1038   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1039 
1040   APInt RHS_umin = RHS.getUnsignedMin();
1041   if (RHS_umin.isNullValue()) {
1042     // We want the lowest value in RHS excluding zero. Usually that would be 1
1043     // except for a range in the form of [X, 1) in which case it would be X.
1044     if (RHS.getUpper() == 1)
1045       RHS_umin = RHS.getLower();
1046     else
1047       RHS_umin = 1;
1048   }
1049 
1050   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1051   return getNonEmpty(std::move(Lower), std::move(Upper));
1052 }
1053 
1054 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1055   // We split up the LHS and RHS into positive and negative components
1056   // and then also compute the positive and negative components of the result
1057   // separately by combining division results with the appropriate signs.
1058   APInt Zero = APInt::getNullValue(getBitWidth());
1059   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1060   ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1061   ConstantRange NegFilter(SignedMin, Zero);
1062   ConstantRange PosL = intersectWith(PosFilter);
1063   ConstantRange NegL = intersectWith(NegFilter);
1064   ConstantRange PosR = RHS.intersectWith(PosFilter);
1065   ConstantRange NegR = RHS.intersectWith(NegFilter);
1066 
1067   ConstantRange PosRes = getEmpty();
1068   if (!PosL.isEmptySet() && !PosR.isEmptySet())
1069     // pos / pos = pos.
1070     PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1071                            (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1072 
1073   if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1074     // neg / neg = pos.
1075     //
1076     // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1077     // IR level, so we'll want to exclude this case when calculating bounds.
1078     // (For APInts the operation is well-defined and yields SignedMin.) We
1079     // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1080     APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1081     if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
1082       // Remove -1 from the LHS. Skip if it's the only element, as this would
1083       // leave us with an empty set.
1084       if (!NegR.Lower.isAllOnesValue()) {
1085         APInt AdjNegRUpper;
1086         if (RHS.Lower.isAllOnesValue())
1087           // Negative part of [-1, X] without -1 is [SignedMin, X].
1088           AdjNegRUpper = RHS.Upper;
1089         else
1090           // [X, -1] without -1 is [X, -2].
1091           AdjNegRUpper = NegR.Upper - 1;
1092 
1093         PosRes = PosRes.unionWith(
1094             ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1095       }
1096 
1097       // Remove SignedMin from the RHS. Skip if it's the only element, as this
1098       // would leave us with an empty set.
1099       if (NegL.Upper != SignedMin + 1) {
1100         APInt AdjNegLLower;
1101         if (Upper == SignedMin + 1)
1102           // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1103           AdjNegLLower = Lower;
1104         else
1105           // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1106           AdjNegLLower = NegL.Lower + 1;
1107 
1108         PosRes = PosRes.unionWith(
1109             ConstantRange(std::move(Lo),
1110                           AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1111       }
1112     } else {
1113       PosRes = PosRes.unionWith(
1114           ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1115     }
1116   }
1117 
1118   ConstantRange NegRes = getEmpty();
1119   if (!PosL.isEmptySet() && !NegR.isEmptySet())
1120     // pos / neg = neg.
1121     NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1122                            PosL.Lower.sdiv(NegR.Lower) + 1);
1123 
1124   if (!NegL.isEmptySet() && !PosR.isEmptySet())
1125     // neg / pos = neg.
1126     NegRes = NegRes.unionWith(
1127         ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1128                       (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1129 
1130   // Prefer a non-wrapping signed range here.
1131   ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1132 
1133   // Preserve the zero that we dropped when splitting the LHS by sign.
1134   if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1135     Res = Res.unionWith(ConstantRange(Zero));
1136   return Res;
1137 }
1138 
1139 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1140   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1141     return getEmpty();
1142 
1143   // L % R for L < R is L.
1144   if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1145     return *this;
1146 
1147   // L % R is <= L and < R.
1148   APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1149   return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
1150 }
1151 
1152 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1153   if (isEmptySet() || RHS.isEmptySet())
1154     return getEmpty();
1155 
1156   ConstantRange AbsRHS = RHS.abs();
1157   APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1158   APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1159 
1160   // Modulus by zero is UB.
1161   if (MaxAbsRHS.isNullValue())
1162     return getEmpty();
1163 
1164   if (MinAbsRHS.isNullValue())
1165     ++MinAbsRHS;
1166 
1167   APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1168 
1169   if (MinLHS.isNonNegative()) {
1170     // L % R for L < R is L.
1171     if (MaxLHS.ult(MinAbsRHS))
1172       return *this;
1173 
1174     // L % R is <= L and < R.
1175     APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1176     return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
1177   }
1178 
1179   // Same basic logic as above, but the result is negative.
1180   if (MaxLHS.isNegative()) {
1181     if (MinLHS.ugt(-MinAbsRHS))
1182       return *this;
1183 
1184     APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1185     return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1186   }
1187 
1188   // LHS range crosses zero.
1189   APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1190   APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1191   return ConstantRange(std::move(Lower), std::move(Upper));
1192 }
1193 
1194 ConstantRange
1195 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1196   if (isEmptySet() || Other.isEmptySet())
1197     return getEmpty();
1198 
1199   // Use APInt's implementation of AND for single element ranges.
1200   if (isSingleElement() && Other.isSingleElement())
1201     return {*getSingleElement() & *Other.getSingleElement()};
1202 
1203   // TODO: replace this with something less conservative
1204 
1205   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1206   return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
1207 }
1208 
1209 ConstantRange
1210 ConstantRange::binaryOr(const ConstantRange &Other) const {
1211   if (isEmptySet() || Other.isEmptySet())
1212     return getEmpty();
1213 
1214   // Use APInt's implementation of OR for single element ranges.
1215   if (isSingleElement() && Other.isSingleElement())
1216     return {*getSingleElement() | *Other.getSingleElement()};
1217 
1218   // TODO: replace this with something less conservative
1219 
1220   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1221   return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
1222 }
1223 
1224 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
1225   if (isEmptySet() || Other.isEmptySet())
1226     return getEmpty();
1227 
1228   // Use APInt's implementation of XOR for single element ranges.
1229   if (isSingleElement() && Other.isSingleElement())
1230     return {*getSingleElement() ^ *Other.getSingleElement()};
1231 
1232   // TODO: replace this with something less conservative
1233   return getFull();
1234 }
1235 
1236 ConstantRange
1237 ConstantRange::shl(const ConstantRange &Other) const {
1238   if (isEmptySet() || Other.isEmptySet())
1239     return getEmpty();
1240 
1241   APInt max = getUnsignedMax();
1242   APInt Other_umax = Other.getUnsignedMax();
1243 
1244   // If we are shifting by maximum amount of
1245   // zero return return the original range.
1246   if (Other_umax.isNullValue())
1247     return *this;
1248   // there's overflow!
1249   if (Other_umax.ugt(max.countLeadingZeros()))
1250     return getFull();
1251 
1252   // FIXME: implement the other tricky cases
1253 
1254   APInt min = getUnsignedMin();
1255   min <<= Other.getUnsignedMin();
1256   max <<= Other_umax;
1257 
1258   return ConstantRange(std::move(min), std::move(max) + 1);
1259 }
1260 
1261 ConstantRange
1262 ConstantRange::lshr(const ConstantRange &Other) const {
1263   if (isEmptySet() || Other.isEmptySet())
1264     return getEmpty();
1265 
1266   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1267   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1268   return getNonEmpty(std::move(min), std::move(max));
1269 }
1270 
1271 ConstantRange
1272 ConstantRange::ashr(const ConstantRange &Other) const {
1273   if (isEmptySet() || Other.isEmptySet())
1274     return getEmpty();
1275 
1276   // May straddle zero, so handle both positive and negative cases.
1277   // 'PosMax' is the upper bound of the result of the ashr
1278   // operation, when Upper of the LHS of ashr is a non-negative.
1279   // number. Since ashr of a non-negative number will result in a
1280   // smaller number, the Upper value of LHS is shifted right with
1281   // the minimum value of 'Other' instead of the maximum value.
1282   APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1283 
1284   // 'PosMin' is the lower bound of the result of the ashr
1285   // operation, when Lower of the LHS is a non-negative number.
1286   // Since ashr of a non-negative number will result in a smaller
1287   // number, the Lower value of LHS is shifted right with the
1288   // maximum value of 'Other'.
1289   APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1290 
1291   // 'NegMax' is the upper bound of the result of the ashr
1292   // operation, when Upper of the LHS of ashr is a negative number.
1293   // Since 'ashr' of a negative number will result in a bigger
1294   // number, the Upper value of LHS is shifted right with the
1295   // maximum value of 'Other'.
1296   APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1297 
1298   // 'NegMin' is the lower bound of the result of the ashr
1299   // operation, when Lower of the LHS of ashr is a negative number.
1300   // Since 'ashr' of a negative number will result in a bigger
1301   // number, the Lower value of LHS is shifted right with the
1302   // minimum value of 'Other'.
1303   APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1304 
1305   APInt max, min;
1306   if (getSignedMin().isNonNegative()) {
1307     // Upper and Lower of LHS are non-negative.
1308     min = PosMin;
1309     max = PosMax;
1310   } else if (getSignedMax().isNegative()) {
1311     // Upper and Lower of LHS are negative.
1312     min = NegMin;
1313     max = NegMax;
1314   } else {
1315     // Upper is non-negative and Lower is negative.
1316     min = NegMin;
1317     max = PosMax;
1318   }
1319   return getNonEmpty(std::move(min), std::move(max));
1320 }
1321 
1322 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1323   if (isEmptySet() || Other.isEmptySet())
1324     return getEmpty();
1325 
1326   APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1327   APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1328   return getNonEmpty(std::move(NewL), std::move(NewU));
1329 }
1330 
1331 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1332   if (isEmptySet() || Other.isEmptySet())
1333     return getEmpty();
1334 
1335   APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1336   APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1337   return getNonEmpty(std::move(NewL), std::move(NewU));
1338 }
1339 
1340 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1341   if (isEmptySet() || Other.isEmptySet())
1342     return getEmpty();
1343 
1344   APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1345   APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1346   return getNonEmpty(std::move(NewL), std::move(NewU));
1347 }
1348 
1349 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1350   if (isEmptySet() || Other.isEmptySet())
1351     return getEmpty();
1352 
1353   APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1354   APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1355   return getNonEmpty(std::move(NewL), std::move(NewU));
1356 }
1357 
1358 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1359   if (isEmptySet() || Other.isEmptySet())
1360     return getEmpty();
1361 
1362   APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1363   APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1364   return getNonEmpty(std::move(NewL), std::move(NewU));
1365 }
1366 
1367 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1368   if (isEmptySet() || Other.isEmptySet())
1369     return getEmpty();
1370 
1371   // Because we could be dealing with negative numbers here, the lower bound is
1372   // the smallest of the cartesian product of the lower and upper ranges;
1373   // for example:
1374   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1375   // Similarly for the upper bound, swapping min for max.
1376 
1377   APInt this_min = getSignedMin().sext(getBitWidth() * 2);
1378   APInt this_max = getSignedMax().sext(getBitWidth() * 2);
1379   APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1380   APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1381 
1382   auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
1383             this_max * Other_max};
1384   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1385 
1386   // Note that we wanted to perform signed saturating multiplication,
1387   // so since we performed plain multiplication in twice the bitwidth,
1388   // we need to perform signed saturating truncation.
1389   return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
1390                      std::max(L, Compare).truncSSat(getBitWidth()) + 1);
1391 }
1392 
1393 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1394   if (isEmptySet() || Other.isEmptySet())
1395     return getEmpty();
1396 
1397   APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1398   APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1399   return getNonEmpty(std::move(NewL), std::move(NewU));
1400 }
1401 
1402 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1403   if (isEmptySet() || Other.isEmptySet())
1404     return getEmpty();
1405 
1406   APInt Min = getSignedMin(), Max = getSignedMax();
1407   APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1408   APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1409   APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1410   return getNonEmpty(std::move(NewL), std::move(NewU));
1411 }
1412 
1413 ConstantRange ConstantRange::inverse() const {
1414   if (isFullSet())
1415     return getEmpty();
1416   if (isEmptySet())
1417     return getFull();
1418   return ConstantRange(Upper, Lower);
1419 }
1420 
1421 ConstantRange ConstantRange::abs() const {
1422   if (isEmptySet())
1423     return getEmpty();
1424 
1425   if (isSignWrappedSet()) {
1426     APInt Lo;
1427     // Check whether the range crosses zero.
1428     if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1429       Lo = APInt::getNullValue(getBitWidth());
1430     else
1431       Lo = APIntOps::umin(Lower, -Upper + 1);
1432 
1433     // SignedMin is included in the result range.
1434     return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1435   }
1436 
1437   APInt SMin = getSignedMin(), SMax = getSignedMax();
1438 
1439   // All non-negative.
1440   if (SMin.isNonNegative())
1441     return *this;
1442 
1443   // All negative.
1444   if (SMax.isNegative())
1445     return ConstantRange(-SMax, -SMin + 1);
1446 
1447   // Range crosses zero.
1448   return ConstantRange(APInt::getNullValue(getBitWidth()),
1449                        APIntOps::umax(-SMin, SMax) + 1);
1450 }
1451 
1452 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1453     const ConstantRange &Other) const {
1454   if (isEmptySet() || Other.isEmptySet())
1455     return OverflowResult::MayOverflow;
1456 
1457   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1458   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1459 
1460   // a u+ b overflows high iff a u> ~b.
1461   if (Min.ugt(~OtherMin))
1462     return OverflowResult::AlwaysOverflowsHigh;
1463   if (Max.ugt(~OtherMax))
1464     return OverflowResult::MayOverflow;
1465   return OverflowResult::NeverOverflows;
1466 }
1467 
1468 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1469     const ConstantRange &Other) const {
1470   if (isEmptySet() || Other.isEmptySet())
1471     return OverflowResult::MayOverflow;
1472 
1473   APInt Min = getSignedMin(), Max = getSignedMax();
1474   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1475 
1476   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1477   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1478 
1479   // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1480   // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1481   if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1482       Min.sgt(SignedMax - OtherMin))
1483     return OverflowResult::AlwaysOverflowsHigh;
1484   if (Max.isNegative() && OtherMax.isNegative() &&
1485       Max.slt(SignedMin - OtherMax))
1486     return OverflowResult::AlwaysOverflowsLow;
1487 
1488   if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1489       Max.sgt(SignedMax - OtherMax))
1490     return OverflowResult::MayOverflow;
1491   if (Min.isNegative() && OtherMin.isNegative() &&
1492       Min.slt(SignedMin - OtherMin))
1493     return OverflowResult::MayOverflow;
1494 
1495   return OverflowResult::NeverOverflows;
1496 }
1497 
1498 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1499     const ConstantRange &Other) const {
1500   if (isEmptySet() || Other.isEmptySet())
1501     return OverflowResult::MayOverflow;
1502 
1503   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1504   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1505 
1506   // a u- b overflows low iff a u< b.
1507   if (Max.ult(OtherMin))
1508     return OverflowResult::AlwaysOverflowsLow;
1509   if (Min.ult(OtherMax))
1510     return OverflowResult::MayOverflow;
1511   return OverflowResult::NeverOverflows;
1512 }
1513 
1514 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1515     const ConstantRange &Other) const {
1516   if (isEmptySet() || Other.isEmptySet())
1517     return OverflowResult::MayOverflow;
1518 
1519   APInt Min = getSignedMin(), Max = getSignedMax();
1520   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1521 
1522   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1523   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1524 
1525   // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1526   // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1527   if (Min.isNonNegative() && OtherMax.isNegative() &&
1528       Min.sgt(SignedMax + OtherMax))
1529     return OverflowResult::AlwaysOverflowsHigh;
1530   if (Max.isNegative() && OtherMin.isNonNegative() &&
1531       Max.slt(SignedMin + OtherMin))
1532     return OverflowResult::AlwaysOverflowsLow;
1533 
1534   if (Max.isNonNegative() && OtherMin.isNegative() &&
1535       Max.sgt(SignedMax + OtherMin))
1536     return OverflowResult::MayOverflow;
1537   if (Min.isNegative() && OtherMax.isNonNegative() &&
1538       Min.slt(SignedMin + OtherMax))
1539     return OverflowResult::MayOverflow;
1540 
1541   return OverflowResult::NeverOverflows;
1542 }
1543 
1544 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1545     const ConstantRange &Other) const {
1546   if (isEmptySet() || Other.isEmptySet())
1547     return OverflowResult::MayOverflow;
1548 
1549   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1550   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1551   bool Overflow;
1552 
1553   (void) Min.umul_ov(OtherMin, Overflow);
1554   if (Overflow)
1555     return OverflowResult::AlwaysOverflowsHigh;
1556 
1557   (void) Max.umul_ov(OtherMax, Overflow);
1558   if (Overflow)
1559     return OverflowResult::MayOverflow;
1560 
1561   return OverflowResult::NeverOverflows;
1562 }
1563 
1564 void ConstantRange::print(raw_ostream &OS) const {
1565   if (isFullSet())
1566     OS << "full-set";
1567   else if (isEmptySet())
1568     OS << "empty-set";
1569   else
1570     OS << "[" << Lower << "," << Upper << ")";
1571 }
1572 
1573 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1574 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1575   print(dbgs());
1576 }
1577 #endif
1578 
1579 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1580   const unsigned NumRanges = Ranges.getNumOperands() / 2;
1581   assert(NumRanges >= 1 && "Must have at least one range!");
1582   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1583 
1584   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1585   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1586 
1587   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1588 
1589   for (unsigned i = 1; i < NumRanges; ++i) {
1590     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1591     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1592 
1593     // Note: unionWith will potentially create a range that contains values not
1594     // contained in any of the original N ranges.
1595     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1596   }
1597 
1598   return CR;
1599 }
1600