1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Represent a range of possible values that may occur when the program is run 10 // for an integral value. This keeps track of a lower and upper bound for the 11 // constant, which MAY wrap around the end of the numeric range. To do this, it 12 // keeps track of a [lower, upper) bound, which specifies an interval just like 13 // STL iterators. When used with boolean values, the following are important 14 // ranges (other integral ranges use min/max values for special range values): 15 // 16 // [F, F) = {} = Empty set 17 // [T, F) = {T} 18 // [F, T) = {F} 19 // [T, T) = {F, T} = Full set 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <optional> 41 42 using namespace llvm; 43 44 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) 45 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), 46 Upper(Lower) {} 47 48 ConstantRange::ConstantRange(APInt V) 49 : Lower(std::move(V)), Upper(Lower + 1) {} 50 51 ConstantRange::ConstantRange(APInt L, APInt U) 52 : Lower(std::move(L)), Upper(std::move(U)) { 53 assert(Lower.getBitWidth() == Upper.getBitWidth() && 54 "ConstantRange with unequal bit widths"); 55 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && 56 "Lower == Upper, but they aren't min or max value!"); 57 } 58 59 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known, 60 bool IsSigned) { 61 if (Known.hasConflict()) 62 return getEmpty(Known.getBitWidth()); 63 if (Known.isUnknown()) 64 return getFull(Known.getBitWidth()); 65 66 // For unsigned ranges, or signed ranges with known sign bit, create a simple 67 // range between the smallest and largest possible value. 68 if (!IsSigned || Known.isNegative() || Known.isNonNegative()) 69 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1); 70 71 // If we don't know the sign bit, pick the lower bound as a negative number 72 // and the upper bound as a non-negative one. 73 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue(); 74 Lower.setSignBit(); 75 Upper.clearSignBit(); 76 return ConstantRange(Lower, Upper + 1); 77 } 78 79 KnownBits ConstantRange::toKnownBits() const { 80 // TODO: We could return conflicting known bits here, but consumers are 81 // likely not prepared for that. 82 if (isEmptySet()) 83 return KnownBits(getBitWidth()); 84 85 // We can only retain the top bits that are the same between min and max. 86 APInt Min = getUnsignedMin(); 87 APInt Max = getUnsignedMax(); 88 KnownBits Known = KnownBits::makeConstant(Min); 89 if (std::optional<unsigned> DifferentBit = 90 APIntOps::GetMostSignificantDifferentBit(Min, Max)) { 91 Known.Zero.clearLowBits(*DifferentBit + 1); 92 Known.One.clearLowBits(*DifferentBit + 1); 93 } 94 return Known; 95 } 96 97 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, 98 const ConstantRange &CR) { 99 if (CR.isEmptySet()) 100 return CR; 101 102 uint32_t W = CR.getBitWidth(); 103 switch (Pred) { 104 default: 105 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); 106 case CmpInst::ICMP_EQ: 107 return CR; 108 case CmpInst::ICMP_NE: 109 if (CR.isSingleElement()) 110 return ConstantRange(CR.getUpper(), CR.getLower()); 111 return getFull(W); 112 case CmpInst::ICMP_ULT: { 113 APInt UMax(CR.getUnsignedMax()); 114 if (UMax.isMinValue()) 115 return getEmpty(W); 116 return ConstantRange(APInt::getMinValue(W), std::move(UMax)); 117 } 118 case CmpInst::ICMP_SLT: { 119 APInt SMax(CR.getSignedMax()); 120 if (SMax.isMinSignedValue()) 121 return getEmpty(W); 122 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); 123 } 124 case CmpInst::ICMP_ULE: 125 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1); 126 case CmpInst::ICMP_SLE: 127 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1); 128 case CmpInst::ICMP_UGT: { 129 APInt UMin(CR.getUnsignedMin()); 130 if (UMin.isMaxValue()) 131 return getEmpty(W); 132 return ConstantRange(std::move(UMin) + 1, APInt::getZero(W)); 133 } 134 case CmpInst::ICMP_SGT: { 135 APInt SMin(CR.getSignedMin()); 136 if (SMin.isMaxSignedValue()) 137 return getEmpty(W); 138 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); 139 } 140 case CmpInst::ICMP_UGE: 141 return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W)); 142 case CmpInst::ICMP_SGE: 143 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W)); 144 } 145 } 146 147 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 148 const ConstantRange &CR) { 149 // Follows from De-Morgan's laws: 150 // 151 // ~(~A union ~B) == A intersect B. 152 // 153 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) 154 .inverse(); 155 } 156 157 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, 158 const APInt &C) { 159 // Computes the exact range that is equal to both the constant ranges returned 160 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true 161 // when RHS is a singleton such as an APInt and so the assert is valid. 162 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion 163 // returns [0,4) but makeSatisfyICmpRegion returns [0,2). 164 // 165 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); 166 return makeAllowedICmpRegion(Pred, C); 167 } 168 169 bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate( 170 const ConstantRange &CR1, const ConstantRange &CR2) { 171 if (CR1.isEmptySet() || CR2.isEmptySet()) 172 return true; 173 174 return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) || 175 (CR1.isAllNegative() && CR2.isAllNegative()); 176 } 177 178 bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate( 179 const ConstantRange &CR1, const ConstantRange &CR2) { 180 if (CR1.isEmptySet() || CR2.isEmptySet()) 181 return true; 182 183 return (CR1.isAllNonNegative() && CR2.isAllNegative()) || 184 (CR1.isAllNegative() && CR2.isAllNonNegative()); 185 } 186 187 CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness( 188 CmpInst::Predicate Pred, const ConstantRange &CR1, 189 const ConstantRange &CR2) { 190 assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) && 191 "Only for relational integer predicates!"); 192 193 CmpInst::Predicate FlippedSignednessPred = 194 CmpInst::getFlippedSignednessPredicate(Pred); 195 196 if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2)) 197 return FlippedSignednessPred; 198 199 if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2)) 200 return CmpInst::getInversePredicate(FlippedSignednessPred); 201 202 return CmpInst::Predicate::BAD_ICMP_PREDICATE; 203 } 204 205 void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 206 APInt &RHS, APInt &Offset) const { 207 Offset = APInt(getBitWidth(), 0); 208 if (isFullSet() || isEmptySet()) { 209 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 210 RHS = APInt(getBitWidth(), 0); 211 } else if (auto *OnlyElt = getSingleElement()) { 212 Pred = CmpInst::ICMP_EQ; 213 RHS = *OnlyElt; 214 } else if (auto *OnlyMissingElt = getSingleMissingElement()) { 215 Pred = CmpInst::ICMP_NE; 216 RHS = *OnlyMissingElt; 217 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { 218 Pred = 219 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 220 RHS = getUpper(); 221 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { 222 Pred = 223 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; 224 RHS = getLower(); 225 } else { 226 Pred = CmpInst::ICMP_ULT; 227 RHS = getUpper() - getLower(); 228 Offset = -getLower(); 229 } 230 231 assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) && 232 "Bad result!"); 233 } 234 235 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 236 APInt &RHS) const { 237 APInt Offset; 238 getEquivalentICmp(Pred, RHS, Offset); 239 return Offset.isZero(); 240 } 241 242 bool ConstantRange::icmp(CmpInst::Predicate Pred, 243 const ConstantRange &Other) const { 244 if (isEmptySet() || Other.isEmptySet()) 245 return true; 246 247 switch (Pred) { 248 case CmpInst::ICMP_EQ: 249 if (const APInt *L = getSingleElement()) 250 if (const APInt *R = Other.getSingleElement()) 251 return *L == *R; 252 return false; 253 case CmpInst::ICMP_NE: 254 return inverse().contains(Other); 255 case CmpInst::ICMP_ULT: 256 return getUnsignedMax().ult(Other.getUnsignedMin()); 257 case CmpInst::ICMP_ULE: 258 return getUnsignedMax().ule(Other.getUnsignedMin()); 259 case CmpInst::ICMP_UGT: 260 return getUnsignedMin().ugt(Other.getUnsignedMax()); 261 case CmpInst::ICMP_UGE: 262 return getUnsignedMin().uge(Other.getUnsignedMax()); 263 case CmpInst::ICMP_SLT: 264 return getSignedMax().slt(Other.getSignedMin()); 265 case CmpInst::ICMP_SLE: 266 return getSignedMax().sle(Other.getSignedMin()); 267 case CmpInst::ICMP_SGT: 268 return getSignedMin().sgt(Other.getSignedMax()); 269 case CmpInst::ICMP_SGE: 270 return getSignedMin().sge(Other.getSignedMax()); 271 default: 272 llvm_unreachable("Invalid ICmp predicate"); 273 } 274 } 275 276 /// Exact mul nuw region for single element RHS. 277 static ConstantRange makeExactMulNUWRegion(const APInt &V) { 278 unsigned BitWidth = V.getBitWidth(); 279 if (V == 0) 280 return ConstantRange::getFull(V.getBitWidth()); 281 282 return ConstantRange::getNonEmpty( 283 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V, 284 APInt::Rounding::UP), 285 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V, 286 APInt::Rounding::DOWN) + 1); 287 } 288 289 /// Exact mul nsw region for single element RHS. 290 static ConstantRange makeExactMulNSWRegion(const APInt &V) { 291 // Handle 0 and -1 separately to avoid division by zero or overflow. 292 unsigned BitWidth = V.getBitWidth(); 293 if (V == 0) 294 return ConstantRange::getFull(BitWidth); 295 296 APInt MinValue = APInt::getSignedMinValue(BitWidth); 297 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 298 // e.g. Returning [-127, 127], represented as [-127, -128). 299 if (V.isAllOnes()) 300 return ConstantRange(-MaxValue, MinValue); 301 302 APInt Lower, Upper; 303 if (V.isNegative()) { 304 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); 305 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); 306 } else { 307 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); 308 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); 309 } 310 return ConstantRange::getNonEmpty(Lower, Upper + 1); 311 } 312 313 ConstantRange 314 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, 315 const ConstantRange &Other, 316 unsigned NoWrapKind) { 317 using OBO = OverflowingBinaryOperator; 318 319 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 320 321 assert((NoWrapKind == OBO::NoSignedWrap || 322 NoWrapKind == OBO::NoUnsignedWrap) && 323 "NoWrapKind invalid!"); 324 325 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; 326 unsigned BitWidth = Other.getBitWidth(); 327 328 switch (BinOp) { 329 default: 330 llvm_unreachable("Unsupported binary op"); 331 332 case Instruction::Add: { 333 if (Unsigned) 334 return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax()); 335 336 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 337 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 338 return getNonEmpty( 339 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal, 340 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal); 341 } 342 343 case Instruction::Sub: { 344 if (Unsigned) 345 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth)); 346 347 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 348 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 349 return getNonEmpty( 350 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal, 351 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal); 352 } 353 354 case Instruction::Mul: 355 if (Unsigned) 356 return makeExactMulNUWRegion(Other.getUnsignedMax()); 357 358 // Avoid one makeExactMulNSWRegion() call for the common case of constants. 359 if (const APInt *C = Other.getSingleElement()) 360 return makeExactMulNSWRegion(*C); 361 362 return makeExactMulNSWRegion(Other.getSignedMin()) 363 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax())); 364 365 case Instruction::Shl: { 366 // For given range of shift amounts, if we ignore all illegal shift amounts 367 // (that always produce poison), what shift amount range is left? 368 ConstantRange ShAmt = Other.intersectWith( 369 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1))); 370 if (ShAmt.isEmptySet()) { 371 // If the entire range of shift amounts is already poison-producing, 372 // then we can freely add more poison-producing flags ontop of that. 373 return getFull(BitWidth); 374 } 375 // There are some legal shift amounts, we can compute conservatively-correct 376 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax 377 // to be at most bitwidth-1, which results in most conservative range. 378 APInt ShAmtUMax = ShAmt.getUnsignedMax(); 379 if (Unsigned) 380 return getNonEmpty(APInt::getZero(BitWidth), 381 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1); 382 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax), 383 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1); 384 } 385 } 386 } 387 388 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp, 389 const APInt &Other, 390 unsigned NoWrapKind) { 391 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as 392 // "for all" and "for any" coincide in this case. 393 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind); 394 } 395 396 ConstantRange ConstantRange::makeMaskNotEqualRange(const APInt &Mask, 397 const APInt &C) { 398 unsigned BitWidth = Mask.getBitWidth(); 399 400 if ((Mask & C) != C) 401 return getFull(BitWidth); 402 403 if (Mask.isZero()) 404 return getEmpty(BitWidth); 405 406 // If (Val & Mask) != C, constrained to the non-equality being 407 // satisfiable, then the value must be larger than the lowest set bit of 408 // Mask, offset by constant C. 409 return ConstantRange::getNonEmpty( 410 APInt::getOneBitSet(BitWidth, Mask.countr_zero()) + C, C); 411 } 412 413 bool ConstantRange::isFullSet() const { 414 return Lower == Upper && Lower.isMaxValue(); 415 } 416 417 bool ConstantRange::isEmptySet() const { 418 return Lower == Upper && Lower.isMinValue(); 419 } 420 421 bool ConstantRange::isWrappedSet() const { 422 return Lower.ugt(Upper) && !Upper.isZero(); 423 } 424 425 bool ConstantRange::isUpperWrapped() const { 426 return Lower.ugt(Upper); 427 } 428 429 bool ConstantRange::isSignWrappedSet() const { 430 return Lower.sgt(Upper) && !Upper.isMinSignedValue(); 431 } 432 433 bool ConstantRange::isUpperSignWrapped() const { 434 return Lower.sgt(Upper); 435 } 436 437 bool 438 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { 439 assert(getBitWidth() == Other.getBitWidth()); 440 if (isFullSet()) 441 return false; 442 if (Other.isFullSet()) 443 return true; 444 return (Upper - Lower).ult(Other.Upper - Other.Lower); 445 } 446 447 bool 448 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { 449 // If this a full set, we need special handling to avoid needing an extra bit 450 // to represent the size. 451 if (isFullSet()) 452 return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); 453 454 return (Upper - Lower).ugt(MaxSize); 455 } 456 457 bool ConstantRange::isAllNegative() const { 458 // Empty set is all negative, full set is not. 459 if (isEmptySet()) 460 return true; 461 if (isFullSet()) 462 return false; 463 464 return !isUpperSignWrapped() && !Upper.isStrictlyPositive(); 465 } 466 467 bool ConstantRange::isAllNonNegative() const { 468 // Empty and full set are automatically treated correctly. 469 return !isSignWrappedSet() && Lower.isNonNegative(); 470 } 471 472 bool ConstantRange::isAllPositive() const { 473 // Empty set is all positive, full set is not. 474 if (isEmptySet()) 475 return true; 476 if (isFullSet()) 477 return false; 478 479 return !isSignWrappedSet() && Lower.isStrictlyPositive(); 480 } 481 482 APInt ConstantRange::getUnsignedMax() const { 483 if (isFullSet() || isUpperWrapped()) 484 return APInt::getMaxValue(getBitWidth()); 485 return getUpper() - 1; 486 } 487 488 APInt ConstantRange::getUnsignedMin() const { 489 if (isFullSet() || isWrappedSet()) 490 return APInt::getMinValue(getBitWidth()); 491 return getLower(); 492 } 493 494 APInt ConstantRange::getSignedMax() const { 495 if (isFullSet() || isUpperSignWrapped()) 496 return APInt::getSignedMaxValue(getBitWidth()); 497 return getUpper() - 1; 498 } 499 500 APInt ConstantRange::getSignedMin() const { 501 if (isFullSet() || isSignWrappedSet()) 502 return APInt::getSignedMinValue(getBitWidth()); 503 return getLower(); 504 } 505 506 bool ConstantRange::contains(const APInt &V) const { 507 if (Lower == Upper) 508 return isFullSet(); 509 510 if (!isUpperWrapped()) 511 return Lower.ule(V) && V.ult(Upper); 512 return Lower.ule(V) || V.ult(Upper); 513 } 514 515 bool ConstantRange::contains(const ConstantRange &Other) const { 516 if (isFullSet() || Other.isEmptySet()) return true; 517 if (isEmptySet() || Other.isFullSet()) return false; 518 519 if (!isUpperWrapped()) { 520 if (Other.isUpperWrapped()) 521 return false; 522 523 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); 524 } 525 526 if (!Other.isUpperWrapped()) 527 return Other.getUpper().ule(Upper) || 528 Lower.ule(Other.getLower()); 529 530 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); 531 } 532 533 unsigned ConstantRange::getActiveBits() const { 534 if (isEmptySet()) 535 return 0; 536 537 return getUnsignedMax().getActiveBits(); 538 } 539 540 unsigned ConstantRange::getMinSignedBits() const { 541 if (isEmptySet()) 542 return 0; 543 544 return std::max(getSignedMin().getSignificantBits(), 545 getSignedMax().getSignificantBits()); 546 } 547 548 ConstantRange ConstantRange::subtract(const APInt &Val) const { 549 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); 550 // If the set is empty or full, don't modify the endpoints. 551 if (Lower == Upper) 552 return *this; 553 return ConstantRange(Lower - Val, Upper - Val); 554 } 555 556 ConstantRange ConstantRange::difference(const ConstantRange &CR) const { 557 return intersectWith(CR.inverse()); 558 } 559 560 static ConstantRange getPreferredRange( 561 const ConstantRange &CR1, const ConstantRange &CR2, 562 ConstantRange::PreferredRangeType Type) { 563 if (Type == ConstantRange::Unsigned) { 564 if (!CR1.isWrappedSet() && CR2.isWrappedSet()) 565 return CR1; 566 if (CR1.isWrappedSet() && !CR2.isWrappedSet()) 567 return CR2; 568 } else if (Type == ConstantRange::Signed) { 569 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet()) 570 return CR1; 571 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet()) 572 return CR2; 573 } 574 575 if (CR1.isSizeStrictlySmallerThan(CR2)) 576 return CR1; 577 return CR2; 578 } 579 580 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, 581 PreferredRangeType Type) const { 582 assert(getBitWidth() == CR.getBitWidth() && 583 "ConstantRange types don't agree!"); 584 585 // Handle common cases. 586 if ( isEmptySet() || CR.isFullSet()) return *this; 587 if (CR.isEmptySet() || isFullSet()) return CR; 588 589 if (!isUpperWrapped() && CR.isUpperWrapped()) 590 return CR.intersectWith(*this, Type); 591 592 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 593 if (Lower.ult(CR.Lower)) { 594 // L---U : this 595 // L---U : CR 596 if (Upper.ule(CR.Lower)) 597 return getEmpty(); 598 599 // L---U : this 600 // L---U : CR 601 if (Upper.ult(CR.Upper)) 602 return ConstantRange(CR.Lower, Upper); 603 604 // L-------U : this 605 // L---U : CR 606 return CR; 607 } 608 // L---U : this 609 // L-------U : CR 610 if (Upper.ult(CR.Upper)) 611 return *this; 612 613 // L-----U : this 614 // L-----U : CR 615 if (Lower.ult(CR.Upper)) 616 return ConstantRange(Lower, CR.Upper); 617 618 // L---U : this 619 // L---U : CR 620 return getEmpty(); 621 } 622 623 if (isUpperWrapped() && !CR.isUpperWrapped()) { 624 if (CR.Lower.ult(Upper)) { 625 // ------U L--- : this 626 // L--U : CR 627 if (CR.Upper.ult(Upper)) 628 return CR; 629 630 // ------U L--- : this 631 // L------U : CR 632 if (CR.Upper.ule(Lower)) 633 return ConstantRange(CR.Lower, Upper); 634 635 // ------U L--- : this 636 // L----------U : CR 637 return getPreferredRange(*this, CR, Type); 638 } 639 if (CR.Lower.ult(Lower)) { 640 // --U L---- : this 641 // L--U : CR 642 if (CR.Upper.ule(Lower)) 643 return getEmpty(); 644 645 // --U L---- : this 646 // L------U : CR 647 return ConstantRange(Lower, CR.Upper); 648 } 649 650 // --U L------ : this 651 // L--U : CR 652 return CR; 653 } 654 655 if (CR.Upper.ult(Upper)) { 656 // ------U L-- : this 657 // --U L------ : CR 658 if (CR.Lower.ult(Upper)) 659 return getPreferredRange(*this, CR, Type); 660 661 // ----U L-- : this 662 // --U L---- : CR 663 if (CR.Lower.ult(Lower)) 664 return ConstantRange(Lower, CR.Upper); 665 666 // ----U L---- : this 667 // --U L-- : CR 668 return CR; 669 } 670 if (CR.Upper.ule(Lower)) { 671 // --U L-- : this 672 // ----U L---- : CR 673 if (CR.Lower.ult(Lower)) 674 return *this; 675 676 // --U L---- : this 677 // ----U L-- : CR 678 return ConstantRange(CR.Lower, Upper); 679 } 680 681 // --U L------ : this 682 // ------U L-- : CR 683 return getPreferredRange(*this, CR, Type); 684 } 685 686 ConstantRange ConstantRange::unionWith(const ConstantRange &CR, 687 PreferredRangeType Type) const { 688 assert(getBitWidth() == CR.getBitWidth() && 689 "ConstantRange types don't agree!"); 690 691 if ( isFullSet() || CR.isEmptySet()) return *this; 692 if (CR.isFullSet() || isEmptySet()) return CR; 693 694 if (!isUpperWrapped() && CR.isUpperWrapped()) 695 return CR.unionWith(*this, Type); 696 697 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 698 // L---U and L---U : this 699 // L---U L---U : CR 700 // result in one of 701 // L---------U 702 // -----U L----- 703 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) 704 return getPreferredRange( 705 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 706 707 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 708 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; 709 710 if (L.isZero() && U.isZero()) 711 return getFull(); 712 713 return ConstantRange(std::move(L), std::move(U)); 714 } 715 716 if (!CR.isUpperWrapped()) { 717 // ------U L----- and ------U L----- : this 718 // L--U L--U : CR 719 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) 720 return *this; 721 722 // ------U L----- : this 723 // L---------U : CR 724 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) 725 return getFull(); 726 727 // ----U L---- : this 728 // L---U : CR 729 // results in one of 730 // ----------U L---- 731 // ----U L---------- 732 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) 733 return getPreferredRange( 734 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 735 736 // ----U L----- : this 737 // L----U : CR 738 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper)) 739 return ConstantRange(CR.Lower, Upper); 740 741 // ------U L---- : this 742 // L-----U : CR 743 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) && 744 "ConstantRange::unionWith missed a case with one range wrapped"); 745 return ConstantRange(Lower, CR.Upper); 746 } 747 748 // ------U L---- and ------U L---- : this 749 // -U L----------- and ------------U L : CR 750 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) 751 return getFull(); 752 753 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 754 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; 755 756 return ConstantRange(std::move(L), std::move(U)); 757 } 758 759 std::optional<ConstantRange> 760 ConstantRange::exactIntersectWith(const ConstantRange &CR) const { 761 // TODO: This can be implemented more efficiently. 762 ConstantRange Result = intersectWith(CR); 763 if (Result == inverse().unionWith(CR.inverse()).inverse()) 764 return Result; 765 return std::nullopt; 766 } 767 768 std::optional<ConstantRange> 769 ConstantRange::exactUnionWith(const ConstantRange &CR) const { 770 // TODO: This can be implemented more efficiently. 771 ConstantRange Result = unionWith(CR); 772 if (Result == inverse().intersectWith(CR.inverse()).inverse()) 773 return Result; 774 return std::nullopt; 775 } 776 777 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, 778 uint32_t ResultBitWidth) const { 779 switch (CastOp) { 780 default: 781 llvm_unreachable("unsupported cast type"); 782 case Instruction::Trunc: 783 return truncate(ResultBitWidth); 784 case Instruction::SExt: 785 return signExtend(ResultBitWidth); 786 case Instruction::ZExt: 787 return zeroExtend(ResultBitWidth); 788 case Instruction::BitCast: 789 return *this; 790 case Instruction::FPToUI: 791 case Instruction::FPToSI: 792 if (getBitWidth() == ResultBitWidth) 793 return *this; 794 else 795 return getFull(ResultBitWidth); 796 case Instruction::UIToFP: { 797 // TODO: use input range if available 798 auto BW = getBitWidth(); 799 APInt Min = APInt::getMinValue(BW); 800 APInt Max = APInt::getMaxValue(BW); 801 if (ResultBitWidth > BW) { 802 Min = Min.zext(ResultBitWidth); 803 Max = Max.zext(ResultBitWidth); 804 } 805 return getNonEmpty(std::move(Min), std::move(Max) + 1); 806 } 807 case Instruction::SIToFP: { 808 // TODO: use input range if available 809 auto BW = getBitWidth(); 810 APInt SMin = APInt::getSignedMinValue(BW); 811 APInt SMax = APInt::getSignedMaxValue(BW); 812 if (ResultBitWidth > BW) { 813 SMin = SMin.sext(ResultBitWidth); 814 SMax = SMax.sext(ResultBitWidth); 815 } 816 return getNonEmpty(std::move(SMin), std::move(SMax) + 1); 817 } 818 case Instruction::FPTrunc: 819 case Instruction::FPExt: 820 case Instruction::IntToPtr: 821 case Instruction::PtrToInt: 822 case Instruction::AddrSpaceCast: 823 // Conservatively return getFull set. 824 return getFull(ResultBitWidth); 825 }; 826 } 827 828 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { 829 if (isEmptySet()) return getEmpty(DstTySize); 830 831 unsigned SrcTySize = getBitWidth(); 832 assert(SrcTySize < DstTySize && "Not a value extension"); 833 if (isFullSet() || isUpperWrapped()) { 834 // Change into [0, 1 << src bit width) 835 APInt LowerExt(DstTySize, 0); 836 if (!Upper) // special case: [X, 0) -- not really wrapping around 837 LowerExt = Lower.zext(DstTySize); 838 return ConstantRange(std::move(LowerExt), 839 APInt::getOneBitSet(DstTySize, SrcTySize)); 840 } 841 842 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); 843 } 844 845 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { 846 if (isEmptySet()) return getEmpty(DstTySize); 847 848 unsigned SrcTySize = getBitWidth(); 849 assert(SrcTySize < DstTySize && "Not a value extension"); 850 851 // special case: [X, INT_MIN) -- not really wrapping around 852 if (Upper.isMinSignedValue()) 853 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); 854 855 if (isFullSet() || isSignWrappedSet()) { 856 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), 857 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); 858 } 859 860 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); 861 } 862 863 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { 864 assert(getBitWidth() > DstTySize && "Not a value truncation"); 865 if (isEmptySet()) 866 return getEmpty(DstTySize); 867 if (isFullSet()) 868 return getFull(DstTySize); 869 870 APInt LowerDiv(Lower), UpperDiv(Upper); 871 ConstantRange Union(DstTySize, /*isFullSet=*/false); 872 873 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] 874 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and 875 // then we do the union with [MaxValue, Upper) 876 if (isUpperWrapped()) { 877 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole 878 // truncated range. 879 if (Upper.getActiveBits() > DstTySize || Upper.countr_one() == DstTySize) 880 return getFull(DstTySize); 881 882 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); 883 UpperDiv.setAllBits(); 884 885 // Union covers the MaxValue case, so return if the remaining range is just 886 // MaxValue(DstTy). 887 if (LowerDiv == UpperDiv) 888 return Union; 889 } 890 891 // Chop off the most significant bits that are past the destination bitwidth. 892 if (LowerDiv.getActiveBits() > DstTySize) { 893 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. 894 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); 895 LowerDiv -= Adjust; 896 UpperDiv -= Adjust; 897 } 898 899 unsigned UpperDivWidth = UpperDiv.getActiveBits(); 900 if (UpperDivWidth <= DstTySize) 901 return ConstantRange(LowerDiv.trunc(DstTySize), 902 UpperDiv.trunc(DstTySize)).unionWith(Union); 903 904 // The truncated value wraps around. Check if we can do better than fullset. 905 if (UpperDivWidth == DstTySize + 1) { 906 // Clear the MSB so that UpperDiv wraps around. 907 UpperDiv.clearBit(DstTySize); 908 if (UpperDiv.ult(LowerDiv)) 909 return ConstantRange(LowerDiv.trunc(DstTySize), 910 UpperDiv.trunc(DstTySize)).unionWith(Union); 911 } 912 913 return getFull(DstTySize); 914 } 915 916 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { 917 unsigned SrcTySize = getBitWidth(); 918 if (SrcTySize > DstTySize) 919 return truncate(DstTySize); 920 if (SrcTySize < DstTySize) 921 return zeroExtend(DstTySize); 922 return *this; 923 } 924 925 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { 926 unsigned SrcTySize = getBitWidth(); 927 if (SrcTySize > DstTySize) 928 return truncate(DstTySize); 929 if (SrcTySize < DstTySize) 930 return signExtend(DstTySize); 931 return *this; 932 } 933 934 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, 935 const ConstantRange &Other) const { 936 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 937 938 switch (BinOp) { 939 case Instruction::Add: 940 return add(Other); 941 case Instruction::Sub: 942 return sub(Other); 943 case Instruction::Mul: 944 return multiply(Other); 945 case Instruction::UDiv: 946 return udiv(Other); 947 case Instruction::SDiv: 948 return sdiv(Other); 949 case Instruction::URem: 950 return urem(Other); 951 case Instruction::SRem: 952 return srem(Other); 953 case Instruction::Shl: 954 return shl(Other); 955 case Instruction::LShr: 956 return lshr(Other); 957 case Instruction::AShr: 958 return ashr(Other); 959 case Instruction::And: 960 return binaryAnd(Other); 961 case Instruction::Or: 962 return binaryOr(Other); 963 case Instruction::Xor: 964 return binaryXor(Other); 965 // Note: floating point operations applied to abstract ranges are just 966 // ideal integer operations with a lossy representation 967 case Instruction::FAdd: 968 return add(Other); 969 case Instruction::FSub: 970 return sub(Other); 971 case Instruction::FMul: 972 return multiply(Other); 973 default: 974 // Conservatively return getFull set. 975 return getFull(); 976 } 977 } 978 979 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp, 980 const ConstantRange &Other, 981 unsigned NoWrapKind) const { 982 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 983 984 switch (BinOp) { 985 case Instruction::Add: 986 return addWithNoWrap(Other, NoWrapKind); 987 case Instruction::Sub: 988 return subWithNoWrap(Other, NoWrapKind); 989 case Instruction::Mul: 990 return multiplyWithNoWrap(Other, NoWrapKind); 991 default: 992 // Don't know about this Overflowing Binary Operation. 993 // Conservatively fallback to plain binop handling. 994 return binaryOp(BinOp, Other); 995 } 996 } 997 998 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) { 999 switch (IntrinsicID) { 1000 case Intrinsic::uadd_sat: 1001 case Intrinsic::usub_sat: 1002 case Intrinsic::sadd_sat: 1003 case Intrinsic::ssub_sat: 1004 case Intrinsic::umin: 1005 case Intrinsic::umax: 1006 case Intrinsic::smin: 1007 case Intrinsic::smax: 1008 case Intrinsic::abs: 1009 case Intrinsic::ctlz: 1010 case Intrinsic::cttz: 1011 case Intrinsic::ctpop: 1012 return true; 1013 default: 1014 return false; 1015 } 1016 } 1017 1018 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID, 1019 ArrayRef<ConstantRange> Ops) { 1020 switch (IntrinsicID) { 1021 case Intrinsic::uadd_sat: 1022 return Ops[0].uadd_sat(Ops[1]); 1023 case Intrinsic::usub_sat: 1024 return Ops[0].usub_sat(Ops[1]); 1025 case Intrinsic::sadd_sat: 1026 return Ops[0].sadd_sat(Ops[1]); 1027 case Intrinsic::ssub_sat: 1028 return Ops[0].ssub_sat(Ops[1]); 1029 case Intrinsic::umin: 1030 return Ops[0].umin(Ops[1]); 1031 case Intrinsic::umax: 1032 return Ops[0].umax(Ops[1]); 1033 case Intrinsic::smin: 1034 return Ops[0].smin(Ops[1]); 1035 case Intrinsic::smax: 1036 return Ops[0].smax(Ops[1]); 1037 case Intrinsic::abs: { 1038 const APInt *IntMinIsPoison = Ops[1].getSingleElement(); 1039 assert(IntMinIsPoison && "Must be known (immarg)"); 1040 assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean"); 1041 return Ops[0].abs(IntMinIsPoison->getBoolValue()); 1042 } 1043 case Intrinsic::ctlz: { 1044 const APInt *ZeroIsPoison = Ops[1].getSingleElement(); 1045 assert(ZeroIsPoison && "Must be known (immarg)"); 1046 assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean"); 1047 return Ops[0].ctlz(ZeroIsPoison->getBoolValue()); 1048 } 1049 case Intrinsic::cttz: { 1050 const APInt *ZeroIsPoison = Ops[1].getSingleElement(); 1051 assert(ZeroIsPoison && "Must be known (immarg)"); 1052 assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean"); 1053 return Ops[0].cttz(ZeroIsPoison->getBoolValue()); 1054 } 1055 case Intrinsic::ctpop: 1056 return Ops[0].ctpop(); 1057 default: 1058 assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported"); 1059 llvm_unreachable("Unsupported intrinsic"); 1060 } 1061 } 1062 1063 ConstantRange 1064 ConstantRange::add(const ConstantRange &Other) const { 1065 if (isEmptySet() || Other.isEmptySet()) 1066 return getEmpty(); 1067 if (isFullSet() || Other.isFullSet()) 1068 return getFull(); 1069 1070 APInt NewLower = getLower() + Other.getLower(); 1071 APInt NewUpper = getUpper() + Other.getUpper() - 1; 1072 if (NewLower == NewUpper) 1073 return getFull(); 1074 1075 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 1076 if (X.isSizeStrictlySmallerThan(*this) || 1077 X.isSizeStrictlySmallerThan(Other)) 1078 // We've wrapped, therefore, full set. 1079 return getFull(); 1080 return X; 1081 } 1082 1083 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other, 1084 unsigned NoWrapKind, 1085 PreferredRangeType RangeType) const { 1086 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow). 1087 // (X is from this, and Y is from Other) 1088 if (isEmptySet() || Other.isEmptySet()) 1089 return getEmpty(); 1090 if (isFullSet() && Other.isFullSet()) 1091 return getFull(); 1092 1093 using OBO = OverflowingBinaryOperator; 1094 ConstantRange Result = add(Other); 1095 1096 // If an overflow happens for every value pair in these two constant ranges, 1097 // we must return Empty set. In this case, we get that for free, because we 1098 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results 1099 // in an empty set. 1100 1101 if (NoWrapKind & OBO::NoSignedWrap) 1102 Result = Result.intersectWith(sadd_sat(Other), RangeType); 1103 1104 if (NoWrapKind & OBO::NoUnsignedWrap) 1105 Result = Result.intersectWith(uadd_sat(Other), RangeType); 1106 1107 return Result; 1108 } 1109 1110 ConstantRange 1111 ConstantRange::sub(const ConstantRange &Other) const { 1112 if (isEmptySet() || Other.isEmptySet()) 1113 return getEmpty(); 1114 if (isFullSet() || Other.isFullSet()) 1115 return getFull(); 1116 1117 APInt NewLower = getLower() - Other.getUpper() + 1; 1118 APInt NewUpper = getUpper() - Other.getLower(); 1119 if (NewLower == NewUpper) 1120 return getFull(); 1121 1122 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 1123 if (X.isSizeStrictlySmallerThan(*this) || 1124 X.isSizeStrictlySmallerThan(Other)) 1125 // We've wrapped, therefore, full set. 1126 return getFull(); 1127 return X; 1128 } 1129 1130 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other, 1131 unsigned NoWrapKind, 1132 PreferredRangeType RangeType) const { 1133 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow). 1134 // (X is from this, and Y is from Other) 1135 if (isEmptySet() || Other.isEmptySet()) 1136 return getEmpty(); 1137 if (isFullSet() && Other.isFullSet()) 1138 return getFull(); 1139 1140 using OBO = OverflowingBinaryOperator; 1141 ConstantRange Result = sub(Other); 1142 1143 // If an overflow happens for every value pair in these two constant ranges, 1144 // we must return Empty set. In signed case, we get that for free, because we 1145 // get lucky that intersection of sub() with ssub_sat() results in an 1146 // empty set. But for unsigned we must perform the overflow check manually. 1147 1148 if (NoWrapKind & OBO::NoSignedWrap) 1149 Result = Result.intersectWith(ssub_sat(Other), RangeType); 1150 1151 if (NoWrapKind & OBO::NoUnsignedWrap) { 1152 if (getUnsignedMax().ult(Other.getUnsignedMin())) 1153 return getEmpty(); // Always overflows. 1154 Result = Result.intersectWith(usub_sat(Other), RangeType); 1155 } 1156 1157 return Result; 1158 } 1159 1160 ConstantRange 1161 ConstantRange::multiply(const ConstantRange &Other) const { 1162 // TODO: If either operand is a single element and the multiply is known to 1163 // be non-wrapping, round the result min and max value to the appropriate 1164 // multiple of that element. If wrapping is possible, at least adjust the 1165 // range according to the greatest power-of-two factor of the single element. 1166 1167 if (isEmptySet() || Other.isEmptySet()) 1168 return getEmpty(); 1169 1170 if (const APInt *C = getSingleElement()) { 1171 if (C->isOne()) 1172 return Other; 1173 if (C->isAllOnes()) 1174 return ConstantRange(APInt::getZero(getBitWidth())).sub(Other); 1175 } 1176 1177 if (const APInt *C = Other.getSingleElement()) { 1178 if (C->isOne()) 1179 return *this; 1180 if (C->isAllOnes()) 1181 return ConstantRange(APInt::getZero(getBitWidth())).sub(*this); 1182 } 1183 1184 // Multiplication is signedness-independent. However different ranges can be 1185 // obtained depending on how the input ranges are treated. These different 1186 // ranges are all conservatively correct, but one might be better than the 1187 // other. We calculate two ranges; one treating the inputs as unsigned 1188 // and the other signed, then return the smallest of these ranges. 1189 1190 // Unsigned range first. 1191 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); 1192 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); 1193 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); 1194 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); 1195 1196 ConstantRange Result_zext = ConstantRange(this_min * Other_min, 1197 this_max * Other_max + 1); 1198 ConstantRange UR = Result_zext.truncate(getBitWidth()); 1199 1200 // If the unsigned range doesn't wrap, and isn't negative then it's a range 1201 // from one positive number to another which is as good as we can generate. 1202 // In this case, skip the extra work of generating signed ranges which aren't 1203 // going to be better than this range. 1204 if (!UR.isUpperWrapped() && 1205 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) 1206 return UR; 1207 1208 // Now the signed range. Because we could be dealing with negative numbers 1209 // here, the lower bound is the smallest of the cartesian product of the 1210 // lower and upper ranges; for example: 1211 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1212 // Similarly for the upper bound, swapping min for max. 1213 1214 this_min = getSignedMin().sext(getBitWidth() * 2); 1215 this_max = getSignedMax().sext(getBitWidth() * 2); 1216 Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1217 Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1218 1219 auto L = {this_min * Other_min, this_min * Other_max, 1220 this_max * Other_min, this_max * Other_max}; 1221 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1222 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); 1223 ConstantRange SR = Result_sext.truncate(getBitWidth()); 1224 1225 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; 1226 } 1227 1228 ConstantRange 1229 ConstantRange::multiplyWithNoWrap(const ConstantRange &Other, 1230 unsigned NoWrapKind, 1231 PreferredRangeType RangeType) const { 1232 if (isEmptySet() || Other.isEmptySet()) 1233 return getEmpty(); 1234 if (isFullSet() && Other.isFullSet()) 1235 return getFull(); 1236 1237 ConstantRange Result = multiply(Other); 1238 1239 if (NoWrapKind & OverflowingBinaryOperator::NoSignedWrap) 1240 Result = Result.intersectWith(smul_sat(Other), RangeType); 1241 1242 if (NoWrapKind & OverflowingBinaryOperator::NoUnsignedWrap) 1243 Result = Result.intersectWith(umul_sat(Other), RangeType); 1244 1245 return Result; 1246 } 1247 1248 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const { 1249 if (isEmptySet() || Other.isEmptySet()) 1250 return getEmpty(); 1251 1252 APInt Min = getSignedMin(); 1253 APInt Max = getSignedMax(); 1254 APInt OtherMin = Other.getSignedMin(); 1255 APInt OtherMax = Other.getSignedMax(); 1256 1257 bool O1, O2, O3, O4; 1258 auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2), 1259 Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)}; 1260 if (O1 || O2 || O3 || O4) 1261 return getFull(); 1262 1263 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1264 return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1); 1265 } 1266 1267 ConstantRange 1268 ConstantRange::smax(const ConstantRange &Other) const { 1269 // X smax Y is: range(smax(X_smin, Y_smin), 1270 // smax(X_smax, Y_smax)) 1271 if (isEmptySet() || Other.isEmptySet()) 1272 return getEmpty(); 1273 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); 1274 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; 1275 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1276 if (isSignWrappedSet() || Other.isSignWrappedSet()) 1277 return Res.intersectWith(unionWith(Other, Signed), Signed); 1278 return Res; 1279 } 1280 1281 ConstantRange 1282 ConstantRange::umax(const ConstantRange &Other) const { 1283 // X umax Y is: range(umax(X_umin, Y_umin), 1284 // umax(X_umax, Y_umax)) 1285 if (isEmptySet() || Other.isEmptySet()) 1286 return getEmpty(); 1287 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1288 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1289 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1290 if (isWrappedSet() || Other.isWrappedSet()) 1291 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned); 1292 return Res; 1293 } 1294 1295 ConstantRange 1296 ConstantRange::smin(const ConstantRange &Other) const { 1297 // X smin Y is: range(smin(X_smin, Y_smin), 1298 // smin(X_smax, Y_smax)) 1299 if (isEmptySet() || Other.isEmptySet()) 1300 return getEmpty(); 1301 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); 1302 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; 1303 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1304 if (isSignWrappedSet() || Other.isSignWrappedSet()) 1305 return Res.intersectWith(unionWith(Other, Signed), Signed); 1306 return Res; 1307 } 1308 1309 ConstantRange 1310 ConstantRange::umin(const ConstantRange &Other) const { 1311 // X umin Y is: range(umin(X_umin, Y_umin), 1312 // umin(X_umax, Y_umax)) 1313 if (isEmptySet() || Other.isEmptySet()) 1314 return getEmpty(); 1315 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); 1316 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1317 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1318 if (isWrappedSet() || Other.isWrappedSet()) 1319 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned); 1320 return Res; 1321 } 1322 1323 ConstantRange 1324 ConstantRange::udiv(const ConstantRange &RHS) const { 1325 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) 1326 return getEmpty(); 1327 1328 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); 1329 1330 APInt RHS_umin = RHS.getUnsignedMin(); 1331 if (RHS_umin.isZero()) { 1332 // We want the lowest value in RHS excluding zero. Usually that would be 1 1333 // except for a range in the form of [X, 1) in which case it would be X. 1334 if (RHS.getUpper() == 1) 1335 RHS_umin = RHS.getLower(); 1336 else 1337 RHS_umin = 1; 1338 } 1339 1340 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; 1341 return getNonEmpty(std::move(Lower), std::move(Upper)); 1342 } 1343 1344 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const { 1345 // We split up the LHS and RHS into positive and negative components 1346 // and then also compute the positive and negative components of the result 1347 // separately by combining division results with the appropriate signs. 1348 APInt Zero = APInt::getZero(getBitWidth()); 1349 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1350 // There are no positive 1-bit values. The 1 would get interpreted as -1. 1351 ConstantRange PosFilter = 1352 getBitWidth() == 1 ? getEmpty() 1353 : ConstantRange(APInt(getBitWidth(), 1), SignedMin); 1354 ConstantRange NegFilter(SignedMin, Zero); 1355 ConstantRange PosL = intersectWith(PosFilter); 1356 ConstantRange NegL = intersectWith(NegFilter); 1357 ConstantRange PosR = RHS.intersectWith(PosFilter); 1358 ConstantRange NegR = RHS.intersectWith(NegFilter); 1359 1360 ConstantRange PosRes = getEmpty(); 1361 if (!PosL.isEmptySet() && !PosR.isEmptySet()) 1362 // pos / pos = pos. 1363 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1), 1364 (PosL.Upper - 1).sdiv(PosR.Lower) + 1); 1365 1366 if (!NegL.isEmptySet() && !NegR.isEmptySet()) { 1367 // neg / neg = pos. 1368 // 1369 // We need to deal with one tricky case here: SignedMin / -1 is UB on the 1370 // IR level, so we'll want to exclude this case when calculating bounds. 1371 // (For APInts the operation is well-defined and yields SignedMin.) We 1372 // handle this by dropping either SignedMin from the LHS or -1 from the RHS. 1373 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower); 1374 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) { 1375 // Remove -1 from the LHS. Skip if it's the only element, as this would 1376 // leave us with an empty set. 1377 if (!NegR.Lower.isAllOnes()) { 1378 APInt AdjNegRUpper; 1379 if (RHS.Lower.isAllOnes()) 1380 // Negative part of [-1, X] without -1 is [SignedMin, X]. 1381 AdjNegRUpper = RHS.Upper; 1382 else 1383 // [X, -1] without -1 is [X, -2]. 1384 AdjNegRUpper = NegR.Upper - 1; 1385 1386 PosRes = PosRes.unionWith( 1387 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1)); 1388 } 1389 1390 // Remove SignedMin from the RHS. Skip if it's the only element, as this 1391 // would leave us with an empty set. 1392 if (NegL.Upper != SignedMin + 1) { 1393 APInt AdjNegLLower; 1394 if (Upper == SignedMin + 1) 1395 // Negative part of [X, SignedMin] without SignedMin is [X, -1]. 1396 AdjNegLLower = Lower; 1397 else 1398 // [SignedMin, X] without SignedMin is [SignedMin + 1, X]. 1399 AdjNegLLower = NegL.Lower + 1; 1400 1401 PosRes = PosRes.unionWith( 1402 ConstantRange(std::move(Lo), 1403 AdjNegLLower.sdiv(NegR.Upper - 1) + 1)); 1404 } 1405 } else { 1406 PosRes = PosRes.unionWith( 1407 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1)); 1408 } 1409 } 1410 1411 ConstantRange NegRes = getEmpty(); 1412 if (!PosL.isEmptySet() && !NegR.isEmptySet()) 1413 // pos / neg = neg. 1414 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1), 1415 PosL.Lower.sdiv(NegR.Lower) + 1); 1416 1417 if (!NegL.isEmptySet() && !PosR.isEmptySet()) 1418 // neg / pos = neg. 1419 NegRes = NegRes.unionWith( 1420 ConstantRange(NegL.Lower.sdiv(PosR.Lower), 1421 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1)); 1422 1423 // Prefer a non-wrapping signed range here. 1424 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed); 1425 1426 // Preserve the zero that we dropped when splitting the LHS by sign. 1427 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet())) 1428 Res = Res.unionWith(ConstantRange(Zero)); 1429 return Res; 1430 } 1431 1432 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const { 1433 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) 1434 return getEmpty(); 1435 1436 if (const APInt *RHSInt = RHS.getSingleElement()) { 1437 // UREM by null is UB. 1438 if (RHSInt->isZero()) 1439 return getEmpty(); 1440 // Use APInt's implementation of UREM for single element ranges. 1441 if (const APInt *LHSInt = getSingleElement()) 1442 return {LHSInt->urem(*RHSInt)}; 1443 } 1444 1445 // L % R for L < R is L. 1446 if (getUnsignedMax().ult(RHS.getUnsignedMin())) 1447 return *this; 1448 1449 // L % R is <= L and < R. 1450 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1; 1451 return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper)); 1452 } 1453 1454 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const { 1455 if (isEmptySet() || RHS.isEmptySet()) 1456 return getEmpty(); 1457 1458 if (const APInt *RHSInt = RHS.getSingleElement()) { 1459 // SREM by null is UB. 1460 if (RHSInt->isZero()) 1461 return getEmpty(); 1462 // Use APInt's implementation of SREM for single element ranges. 1463 if (const APInt *LHSInt = getSingleElement()) 1464 return {LHSInt->srem(*RHSInt)}; 1465 } 1466 1467 ConstantRange AbsRHS = RHS.abs(); 1468 APInt MinAbsRHS = AbsRHS.getUnsignedMin(); 1469 APInt MaxAbsRHS = AbsRHS.getUnsignedMax(); 1470 1471 // Modulus by zero is UB. 1472 if (MaxAbsRHS.isZero()) 1473 return getEmpty(); 1474 1475 if (MinAbsRHS.isZero()) 1476 ++MinAbsRHS; 1477 1478 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax(); 1479 1480 if (MinLHS.isNonNegative()) { 1481 // L % R for L < R is L. 1482 if (MaxLHS.ult(MinAbsRHS)) 1483 return *this; 1484 1485 // L % R is <= L and < R. 1486 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1487 return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper)); 1488 } 1489 1490 // Same basic logic as above, but the result is negative. 1491 if (MaxLHS.isNegative()) { 1492 if (MinLHS.ugt(-MinAbsRHS)) 1493 return *this; 1494 1495 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1496 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1)); 1497 } 1498 1499 // LHS range crosses zero. 1500 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1501 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1502 return ConstantRange(std::move(Lower), std::move(Upper)); 1503 } 1504 1505 ConstantRange ConstantRange::binaryNot() const { 1506 return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this); 1507 } 1508 1509 ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const { 1510 if (isEmptySet() || Other.isEmptySet()) 1511 return getEmpty(); 1512 1513 ConstantRange KnownBitsRange = 1514 fromKnownBits(toKnownBits() & Other.toKnownBits(), false); 1515 ConstantRange UMinUMaxRange = 1516 getNonEmpty(APInt::getZero(getBitWidth()), 1517 APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()) + 1); 1518 return KnownBitsRange.intersectWith(UMinUMaxRange); 1519 } 1520 1521 ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const { 1522 if (isEmptySet() || Other.isEmptySet()) 1523 return getEmpty(); 1524 1525 ConstantRange KnownBitsRange = 1526 fromKnownBits(toKnownBits() | Other.toKnownBits(), false); 1527 // Upper wrapped range. 1528 ConstantRange UMaxUMinRange = 1529 getNonEmpty(APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()), 1530 APInt::getZero(getBitWidth())); 1531 return KnownBitsRange.intersectWith(UMaxUMinRange); 1532 } 1533 1534 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const { 1535 if (isEmptySet() || Other.isEmptySet()) 1536 return getEmpty(); 1537 1538 // Use APInt's implementation of XOR for single element ranges. 1539 if (isSingleElement() && Other.isSingleElement()) 1540 return {*getSingleElement() ^ *Other.getSingleElement()}; 1541 1542 // Special-case binary complement, since we can give a precise answer. 1543 if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes()) 1544 return binaryNot(); 1545 if (isSingleElement() && getSingleElement()->isAllOnes()) 1546 return Other.binaryNot(); 1547 1548 KnownBits LHSKnown = toKnownBits(); 1549 KnownBits RHSKnown = Other.toKnownBits(); 1550 KnownBits Known = LHSKnown ^ RHSKnown; 1551 ConstantRange CR = fromKnownBits(Known, /*IsSigned*/ false); 1552 // Typically the following code doesn't improve the result if BW = 1. 1553 if (getBitWidth() == 1) 1554 return CR; 1555 1556 // If LHS is known to be the subset of RHS, treat LHS ^ RHS as RHS -nuw/nsw 1557 // LHS. If RHS is known to be the subset of LHS, treat LHS ^ RHS as LHS 1558 // -nuw/nsw RHS. 1559 if ((~LHSKnown.Zero).isSubsetOf(RHSKnown.One)) 1560 CR = CR.intersectWith(Other.sub(*this), PreferredRangeType::Unsigned); 1561 else if ((~RHSKnown.Zero).isSubsetOf(LHSKnown.One)) 1562 CR = CR.intersectWith(this->sub(Other), PreferredRangeType::Unsigned); 1563 return CR; 1564 } 1565 1566 ConstantRange 1567 ConstantRange::shl(const ConstantRange &Other) const { 1568 if (isEmptySet() || Other.isEmptySet()) 1569 return getEmpty(); 1570 1571 APInt Min = getUnsignedMin(); 1572 APInt Max = getUnsignedMax(); 1573 if (const APInt *RHS = Other.getSingleElement()) { 1574 unsigned BW = getBitWidth(); 1575 if (RHS->uge(BW)) 1576 return getEmpty(); 1577 1578 unsigned EqualLeadingBits = (Min ^ Max).countl_zero(); 1579 if (RHS->ule(EqualLeadingBits)) 1580 return getNonEmpty(Min << *RHS, (Max << *RHS) + 1); 1581 1582 return getNonEmpty(APInt::getZero(BW), 1583 APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1); 1584 } 1585 1586 APInt OtherMax = Other.getUnsignedMax(); 1587 if (isAllNegative() && OtherMax.ule(Min.countl_one())) { 1588 // For negative numbers, if the shift does not overflow in a signed sense, 1589 // a larger shift will make the number smaller. 1590 Max <<= Other.getUnsignedMin(); 1591 Min <<= OtherMax; 1592 return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1); 1593 } 1594 1595 // There's overflow! 1596 if (OtherMax.ugt(Max.countl_zero())) 1597 return getFull(); 1598 1599 // FIXME: implement the other tricky cases 1600 1601 Min <<= Other.getUnsignedMin(); 1602 Max <<= OtherMax; 1603 1604 return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1); 1605 } 1606 1607 ConstantRange 1608 ConstantRange::lshr(const ConstantRange &Other) const { 1609 if (isEmptySet() || Other.isEmptySet()) 1610 return getEmpty(); 1611 1612 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; 1613 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); 1614 return getNonEmpty(std::move(min), std::move(max)); 1615 } 1616 1617 ConstantRange 1618 ConstantRange::ashr(const ConstantRange &Other) const { 1619 if (isEmptySet() || Other.isEmptySet()) 1620 return getEmpty(); 1621 1622 // May straddle zero, so handle both positive and negative cases. 1623 // 'PosMax' is the upper bound of the result of the ashr 1624 // operation, when Upper of the LHS of ashr is a non-negative. 1625 // number. Since ashr of a non-negative number will result in a 1626 // smaller number, the Upper value of LHS is shifted right with 1627 // the minimum value of 'Other' instead of the maximum value. 1628 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; 1629 1630 // 'PosMin' is the lower bound of the result of the ashr 1631 // operation, when Lower of the LHS is a non-negative number. 1632 // Since ashr of a non-negative number will result in a smaller 1633 // number, the Lower value of LHS is shifted right with the 1634 // maximum value of 'Other'. 1635 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); 1636 1637 // 'NegMax' is the upper bound of the result of the ashr 1638 // operation, when Upper of the LHS of ashr is a negative number. 1639 // Since 'ashr' of a negative number will result in a bigger 1640 // number, the Upper value of LHS is shifted right with the 1641 // maximum value of 'Other'. 1642 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; 1643 1644 // 'NegMin' is the lower bound of the result of the ashr 1645 // operation, when Lower of the LHS of ashr is a negative number. 1646 // Since 'ashr' of a negative number will result in a bigger 1647 // number, the Lower value of LHS is shifted right with the 1648 // minimum value of 'Other'. 1649 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); 1650 1651 APInt max, min; 1652 if (getSignedMin().isNonNegative()) { 1653 // Upper and Lower of LHS are non-negative. 1654 min = PosMin; 1655 max = PosMax; 1656 } else if (getSignedMax().isNegative()) { 1657 // Upper and Lower of LHS are negative. 1658 min = NegMin; 1659 max = NegMax; 1660 } else { 1661 // Upper is non-negative and Lower is negative. 1662 min = NegMin; 1663 max = PosMax; 1664 } 1665 return getNonEmpty(std::move(min), std::move(max)); 1666 } 1667 1668 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const { 1669 if (isEmptySet() || Other.isEmptySet()) 1670 return getEmpty(); 1671 1672 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin()); 1673 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1; 1674 return getNonEmpty(std::move(NewL), std::move(NewU)); 1675 } 1676 1677 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const { 1678 if (isEmptySet() || Other.isEmptySet()) 1679 return getEmpty(); 1680 1681 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin()); 1682 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1; 1683 return getNonEmpty(std::move(NewL), std::move(NewU)); 1684 } 1685 1686 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const { 1687 if (isEmptySet() || Other.isEmptySet()) 1688 return getEmpty(); 1689 1690 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax()); 1691 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1; 1692 return getNonEmpty(std::move(NewL), std::move(NewU)); 1693 } 1694 1695 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const { 1696 if (isEmptySet() || Other.isEmptySet()) 1697 return getEmpty(); 1698 1699 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax()); 1700 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1; 1701 return getNonEmpty(std::move(NewL), std::move(NewU)); 1702 } 1703 1704 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const { 1705 if (isEmptySet() || Other.isEmptySet()) 1706 return getEmpty(); 1707 1708 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin()); 1709 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1; 1710 return getNonEmpty(std::move(NewL), std::move(NewU)); 1711 } 1712 1713 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const { 1714 if (isEmptySet() || Other.isEmptySet()) 1715 return getEmpty(); 1716 1717 // Because we could be dealing with negative numbers here, the lower bound is 1718 // the smallest of the cartesian product of the lower and upper ranges; 1719 // for example: 1720 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1721 // Similarly for the upper bound, swapping min for max. 1722 1723 APInt Min = getSignedMin(); 1724 APInt Max = getSignedMax(); 1725 APInt OtherMin = Other.getSignedMin(); 1726 APInt OtherMax = Other.getSignedMax(); 1727 1728 auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax), 1729 Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)}; 1730 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1731 return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1); 1732 } 1733 1734 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const { 1735 if (isEmptySet() || Other.isEmptySet()) 1736 return getEmpty(); 1737 1738 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin()); 1739 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1; 1740 return getNonEmpty(std::move(NewL), std::move(NewU)); 1741 } 1742 1743 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const { 1744 if (isEmptySet() || Other.isEmptySet()) 1745 return getEmpty(); 1746 1747 APInt Min = getSignedMin(), Max = getSignedMax(); 1748 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax(); 1749 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax); 1750 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1; 1751 return getNonEmpty(std::move(NewL), std::move(NewU)); 1752 } 1753 1754 ConstantRange ConstantRange::inverse() const { 1755 if (isFullSet()) 1756 return getEmpty(); 1757 if (isEmptySet()) 1758 return getFull(); 1759 return ConstantRange(Upper, Lower); 1760 } 1761 1762 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const { 1763 if (isEmptySet()) 1764 return getEmpty(); 1765 1766 if (isSignWrappedSet()) { 1767 APInt Lo; 1768 // Check whether the range crosses zero. 1769 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive()) 1770 Lo = APInt::getZero(getBitWidth()); 1771 else 1772 Lo = APIntOps::umin(Lower, -Upper + 1); 1773 1774 // If SignedMin is not poison, then it is included in the result range. 1775 if (IntMinIsPoison) 1776 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth())); 1777 else 1778 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1); 1779 } 1780 1781 APInt SMin = getSignedMin(), SMax = getSignedMax(); 1782 1783 // Skip SignedMin if it is poison. 1784 if (IntMinIsPoison && SMin.isMinSignedValue()) { 1785 // The range may become empty if it *only* contains SignedMin. 1786 if (SMax.isMinSignedValue()) 1787 return getEmpty(); 1788 ++SMin; 1789 } 1790 1791 // All non-negative. 1792 if (SMin.isNonNegative()) 1793 return ConstantRange(SMin, SMax + 1); 1794 1795 // All negative. 1796 if (SMax.isNegative()) 1797 return ConstantRange(-SMax, -SMin + 1); 1798 1799 // Range crosses zero. 1800 return ConstantRange::getNonEmpty(APInt::getZero(getBitWidth()), 1801 APIntOps::umax(-SMin, SMax) + 1); 1802 } 1803 1804 ConstantRange ConstantRange::ctlz(bool ZeroIsPoison) const { 1805 if (isEmptySet()) 1806 return getEmpty(); 1807 1808 APInt Zero = APInt::getZero(getBitWidth()); 1809 if (ZeroIsPoison && contains(Zero)) { 1810 // ZeroIsPoison is set, and zero is contained. We discern three cases, in 1811 // which a zero can appear: 1812 // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc. 1813 // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc. 1814 // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc. 1815 1816 if (getLower().isZero()) { 1817 if ((getUpper() - 1).isZero()) { 1818 // We have in input interval of kind [0, 1). In this case we cannot 1819 // really help but return empty-set. 1820 return getEmpty(); 1821 } 1822 1823 // Compute the resulting range by excluding zero from Lower. 1824 return ConstantRange( 1825 APInt(getBitWidth(), (getUpper() - 1).countl_zero()), 1826 APInt(getBitWidth(), (getLower() + 1).countl_zero() + 1)); 1827 } else if ((getUpper() - 1).isZero()) { 1828 // Compute the resulting range by excluding zero from Upper. 1829 return ConstantRange(Zero, 1830 APInt(getBitWidth(), getLower().countl_zero() + 1)); 1831 } else { 1832 return ConstantRange(Zero, APInt(getBitWidth(), getBitWidth())); 1833 } 1834 } 1835 1836 // Zero is either safe or not in the range. The output range is composed by 1837 // the result of countLeadingZero of the two extremes. 1838 return getNonEmpty(APInt(getBitWidth(), getUnsignedMax().countl_zero()), 1839 APInt(getBitWidth(), getUnsignedMin().countl_zero() + 1)); 1840 } 1841 1842 static ConstantRange getUnsignedCountTrailingZerosRange(const APInt &Lower, 1843 const APInt &Upper) { 1844 assert(!ConstantRange(Lower, Upper).isWrappedSet() && 1845 "Unexpected wrapped set."); 1846 assert(Lower != Upper && "Unexpected empty set."); 1847 unsigned BitWidth = Lower.getBitWidth(); 1848 if (Lower + 1 == Upper) 1849 return ConstantRange(APInt(BitWidth, Lower.countr_zero())); 1850 if (Lower.isZero()) 1851 return ConstantRange(APInt::getZero(BitWidth), 1852 APInt(BitWidth, BitWidth + 1)); 1853 1854 // Calculate longest common prefix. 1855 unsigned LCPLength = (Lower ^ (Upper - 1)).countl_zero(); 1856 // If Lower is {LCP, 000...}, the maximum is Lower.countr_zero(). 1857 // Otherwise, the maximum is BitWidth - LCPLength - 1 ({LCP, 100...}). 1858 return ConstantRange( 1859 APInt::getZero(BitWidth), 1860 APInt(BitWidth, 1861 std::max(BitWidth - LCPLength - 1, Lower.countr_zero()) + 1)); 1862 } 1863 1864 ConstantRange ConstantRange::cttz(bool ZeroIsPoison) const { 1865 if (isEmptySet()) 1866 return getEmpty(); 1867 1868 unsigned BitWidth = getBitWidth(); 1869 APInt Zero = APInt::getZero(BitWidth); 1870 if (ZeroIsPoison && contains(Zero)) { 1871 // ZeroIsPoison is set, and zero is contained. We discern three cases, in 1872 // which a zero can appear: 1873 // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc. 1874 // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc. 1875 // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc. 1876 1877 if (Lower.isZero()) { 1878 if (Upper == 1) { 1879 // We have in input interval of kind [0, 1). In this case we cannot 1880 // really help but return empty-set. 1881 return getEmpty(); 1882 } 1883 1884 // Compute the resulting range by excluding zero from Lower. 1885 return getUnsignedCountTrailingZerosRange(APInt(BitWidth, 1), Upper); 1886 } else if (Upper == 1) { 1887 // Compute the resulting range by excluding zero from Upper. 1888 return getUnsignedCountTrailingZerosRange(Lower, Zero); 1889 } else { 1890 ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Zero); 1891 ConstantRange CR2 = 1892 getUnsignedCountTrailingZerosRange(APInt(BitWidth, 1), Upper); 1893 return CR1.unionWith(CR2); 1894 } 1895 } 1896 1897 if (isFullSet()) 1898 return getNonEmpty(Zero, APInt(BitWidth, BitWidth + 1)); 1899 if (!isWrappedSet()) 1900 return getUnsignedCountTrailingZerosRange(Lower, Upper); 1901 // The range is wrapped. We decompose it into two ranges, [0, Upper) and 1902 // [Lower, 0). 1903 // Handle [Lower, 0) 1904 ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Zero); 1905 // Handle [0, Upper) 1906 ConstantRange CR2 = getUnsignedCountTrailingZerosRange(Zero, Upper); 1907 return CR1.unionWith(CR2); 1908 } 1909 1910 static ConstantRange getUnsignedPopCountRange(const APInt &Lower, 1911 const APInt &Upper) { 1912 assert(!ConstantRange(Lower, Upper).isWrappedSet() && 1913 "Unexpected wrapped set."); 1914 assert(Lower != Upper && "Unexpected empty set."); 1915 unsigned BitWidth = Lower.getBitWidth(); 1916 if (Lower + 1 == Upper) 1917 return ConstantRange(APInt(BitWidth, Lower.popcount())); 1918 1919 APInt Max = Upper - 1; 1920 // Calculate longest common prefix. 1921 unsigned LCPLength = (Lower ^ Max).countl_zero(); 1922 unsigned LCPPopCount = Lower.getHiBits(LCPLength).popcount(); 1923 // If Lower is {LCP, 000...}, the minimum is the popcount of LCP. 1924 // Otherwise, the minimum is the popcount of LCP + 1. 1925 unsigned MinBits = 1926 LCPPopCount + (Lower.countr_zero() < BitWidth - LCPLength ? 1 : 0); 1927 // If Max is {LCP, 111...}, the maximum is the popcount of LCP + (BitWidth - 1928 // length of LCP). 1929 // Otherwise, the minimum is the popcount of LCP + (BitWidth - 1930 // length of LCP - 1). 1931 unsigned MaxBits = LCPPopCount + (BitWidth - LCPLength) - 1932 (Max.countr_one() < BitWidth - LCPLength ? 1 : 0); 1933 return ConstantRange(APInt(BitWidth, MinBits), APInt(BitWidth, MaxBits + 1)); 1934 } 1935 1936 ConstantRange ConstantRange::ctpop() const { 1937 if (isEmptySet()) 1938 return getEmpty(); 1939 1940 unsigned BitWidth = getBitWidth(); 1941 APInt Zero = APInt::getZero(BitWidth); 1942 if (isFullSet()) 1943 return getNonEmpty(Zero, APInt(BitWidth, BitWidth + 1)); 1944 if (!isWrappedSet()) 1945 return getUnsignedPopCountRange(Lower, Upper); 1946 // The range is wrapped. We decompose it into two ranges, [0, Upper) and 1947 // [Lower, 0). 1948 // Handle [Lower, 0) == [Lower, Max] 1949 ConstantRange CR1 = ConstantRange(APInt(BitWidth, Lower.countl_one()), 1950 APInt(BitWidth, BitWidth + 1)); 1951 // Handle [0, Upper) 1952 ConstantRange CR2 = getUnsignedPopCountRange(Zero, Upper); 1953 return CR1.unionWith(CR2); 1954 } 1955 1956 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow( 1957 const ConstantRange &Other) const { 1958 if (isEmptySet() || Other.isEmptySet()) 1959 return OverflowResult::MayOverflow; 1960 1961 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1962 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1963 1964 // a u+ b overflows high iff a u> ~b. 1965 if (Min.ugt(~OtherMin)) 1966 return OverflowResult::AlwaysOverflowsHigh; 1967 if (Max.ugt(~OtherMax)) 1968 return OverflowResult::MayOverflow; 1969 return OverflowResult::NeverOverflows; 1970 } 1971 1972 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow( 1973 const ConstantRange &Other) const { 1974 if (isEmptySet() || Other.isEmptySet()) 1975 return OverflowResult::MayOverflow; 1976 1977 APInt Min = getSignedMin(), Max = getSignedMax(); 1978 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1979 1980 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1981 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1982 1983 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b. 1984 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b. 1985 if (Min.isNonNegative() && OtherMin.isNonNegative() && 1986 Min.sgt(SignedMax - OtherMin)) 1987 return OverflowResult::AlwaysOverflowsHigh; 1988 if (Max.isNegative() && OtherMax.isNegative() && 1989 Max.slt(SignedMin - OtherMax)) 1990 return OverflowResult::AlwaysOverflowsLow; 1991 1992 if (Max.isNonNegative() && OtherMax.isNonNegative() && 1993 Max.sgt(SignedMax - OtherMax)) 1994 return OverflowResult::MayOverflow; 1995 if (Min.isNegative() && OtherMin.isNegative() && 1996 Min.slt(SignedMin - OtherMin)) 1997 return OverflowResult::MayOverflow; 1998 1999 return OverflowResult::NeverOverflows; 2000 } 2001 2002 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow( 2003 const ConstantRange &Other) const { 2004 if (isEmptySet() || Other.isEmptySet()) 2005 return OverflowResult::MayOverflow; 2006 2007 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 2008 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 2009 2010 // a u- b overflows low iff a u< b. 2011 if (Max.ult(OtherMin)) 2012 return OverflowResult::AlwaysOverflowsLow; 2013 if (Min.ult(OtherMax)) 2014 return OverflowResult::MayOverflow; 2015 return OverflowResult::NeverOverflows; 2016 } 2017 2018 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow( 2019 const ConstantRange &Other) const { 2020 if (isEmptySet() || Other.isEmptySet()) 2021 return OverflowResult::MayOverflow; 2022 2023 APInt Min = getSignedMin(), Max = getSignedMax(); 2024 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 2025 2026 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 2027 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 2028 2029 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b. 2030 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b. 2031 if (Min.isNonNegative() && OtherMax.isNegative() && 2032 Min.sgt(SignedMax + OtherMax)) 2033 return OverflowResult::AlwaysOverflowsHigh; 2034 if (Max.isNegative() && OtherMin.isNonNegative() && 2035 Max.slt(SignedMin + OtherMin)) 2036 return OverflowResult::AlwaysOverflowsLow; 2037 2038 if (Max.isNonNegative() && OtherMin.isNegative() && 2039 Max.sgt(SignedMax + OtherMin)) 2040 return OverflowResult::MayOverflow; 2041 if (Min.isNegative() && OtherMax.isNonNegative() && 2042 Min.slt(SignedMin + OtherMax)) 2043 return OverflowResult::MayOverflow; 2044 2045 return OverflowResult::NeverOverflows; 2046 } 2047 2048 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow( 2049 const ConstantRange &Other) const { 2050 if (isEmptySet() || Other.isEmptySet()) 2051 return OverflowResult::MayOverflow; 2052 2053 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 2054 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 2055 bool Overflow; 2056 2057 (void) Min.umul_ov(OtherMin, Overflow); 2058 if (Overflow) 2059 return OverflowResult::AlwaysOverflowsHigh; 2060 2061 (void) Max.umul_ov(OtherMax, Overflow); 2062 if (Overflow) 2063 return OverflowResult::MayOverflow; 2064 2065 return OverflowResult::NeverOverflows; 2066 } 2067 2068 void ConstantRange::print(raw_ostream &OS) const { 2069 if (isFullSet()) 2070 OS << "full-set"; 2071 else if (isEmptySet()) 2072 OS << "empty-set"; 2073 else 2074 OS << "[" << Lower << "," << Upper << ")"; 2075 } 2076 2077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2078 LLVM_DUMP_METHOD void ConstantRange::dump() const { 2079 print(dbgs()); 2080 } 2081 #endif 2082 2083 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 2084 const unsigned NumRanges = Ranges.getNumOperands() / 2; 2085 assert(NumRanges >= 1 && "Must have at least one range!"); 2086 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 2087 2088 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 2089 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 2090 2091 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 2092 2093 for (unsigned i = 1; i < NumRanges; ++i) { 2094 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 2095 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 2096 2097 // Note: unionWith will potentially create a range that contains values not 2098 // contained in any of the original N ranges. 2099 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 2100 } 2101 2102 return CR; 2103 } 2104