xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantRange.cpp (revision 8bcb0991864975618c09697b1aca10683346d9f0)
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 
40 using namespace llvm;
41 
42 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
43     : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
44       Upper(Lower) {}
45 
46 ConstantRange::ConstantRange(APInt V)
47     : Lower(std::move(V)), Upper(Lower + 1) {}
48 
49 ConstantRange::ConstantRange(APInt L, APInt U)
50     : Lower(std::move(L)), Upper(std::move(U)) {
51   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
52          "ConstantRange with unequal bit widths");
53   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
54          "Lower == Upper, but they aren't min or max value!");
55 }
56 
57 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
58                                            bool IsSigned) {
59   assert(!Known.hasConflict() && "Expected valid KnownBits");
60 
61   if (Known.isUnknown())
62     return getFull(Known.getBitWidth());
63 
64   // For unsigned ranges, or signed ranges with known sign bit, create a simple
65   // range between the smallest and largest possible value.
66   if (!IsSigned || Known.isNegative() || Known.isNonNegative())
67     return ConstantRange(Known.One, ~Known.Zero + 1);
68 
69   // If we don't know the sign bit, pick the lower bound as a negative number
70   // and the upper bound as a non-negative one.
71   APInt Lower = Known.One, Upper = ~Known.Zero;
72   Lower.setSignBit();
73   Upper.clearSignBit();
74   return ConstantRange(Lower, Upper + 1);
75 }
76 
77 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
78                                                    const ConstantRange &CR) {
79   if (CR.isEmptySet())
80     return CR;
81 
82   uint32_t W = CR.getBitWidth();
83   switch (Pred) {
84   default:
85     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
86   case CmpInst::ICMP_EQ:
87     return CR;
88   case CmpInst::ICMP_NE:
89     if (CR.isSingleElement())
90       return ConstantRange(CR.getUpper(), CR.getLower());
91     return getFull(W);
92   case CmpInst::ICMP_ULT: {
93     APInt UMax(CR.getUnsignedMax());
94     if (UMax.isMinValue())
95       return getEmpty(W);
96     return ConstantRange(APInt::getMinValue(W), std::move(UMax));
97   }
98   case CmpInst::ICMP_SLT: {
99     APInt SMax(CR.getSignedMax());
100     if (SMax.isMinSignedValue())
101       return getEmpty(W);
102     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
103   }
104   case CmpInst::ICMP_ULE:
105     return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
106   case CmpInst::ICMP_SLE:
107     return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
108   case CmpInst::ICMP_UGT: {
109     APInt UMin(CR.getUnsignedMin());
110     if (UMin.isMaxValue())
111       return getEmpty(W);
112     return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
113   }
114   case CmpInst::ICMP_SGT: {
115     APInt SMin(CR.getSignedMin());
116     if (SMin.isMaxSignedValue())
117       return getEmpty(W);
118     return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
119   }
120   case CmpInst::ICMP_UGE:
121     return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
122   case CmpInst::ICMP_SGE:
123     return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
124   }
125 }
126 
127 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
128                                                       const ConstantRange &CR) {
129   // Follows from De-Morgan's laws:
130   //
131   // ~(~A union ~B) == A intersect B.
132   //
133   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
134       .inverse();
135 }
136 
137 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
138                                                  const APInt &C) {
139   // Computes the exact range that is equal to both the constant ranges returned
140   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
141   // when RHS is a singleton such as an APInt and so the assert is valid.
142   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
143   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
144   //
145   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
146   return makeAllowedICmpRegion(Pred, C);
147 }
148 
149 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
150                                       APInt &RHS) const {
151   bool Success = false;
152 
153   if (isFullSet() || isEmptySet()) {
154     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
155     RHS = APInt(getBitWidth(), 0);
156     Success = true;
157   } else if (auto *OnlyElt = getSingleElement()) {
158     Pred = CmpInst::ICMP_EQ;
159     RHS = *OnlyElt;
160     Success = true;
161   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
162     Pred = CmpInst::ICMP_NE;
163     RHS = *OnlyMissingElt;
164     Success = true;
165   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
166     Pred =
167         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
168     RHS = getUpper();
169     Success = true;
170   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
171     Pred =
172         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
173     RHS = getLower();
174     Success = true;
175   }
176 
177   assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
178          "Bad result!");
179 
180   return Success;
181 }
182 
183 /// Exact mul nuw region for single element RHS.
184 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
185   unsigned BitWidth = V.getBitWidth();
186   if (V == 0)
187     return ConstantRange::getFull(V.getBitWidth());
188 
189   return ConstantRange::getNonEmpty(
190       APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
191                              APInt::Rounding::UP),
192       APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
193                              APInt::Rounding::DOWN) + 1);
194 }
195 
196 /// Exact mul nsw region for single element RHS.
197 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
198   // Handle special case for 0, -1 and 1. See the last for reason why we
199   // specialize -1 and 1.
200   unsigned BitWidth = V.getBitWidth();
201   if (V == 0 || V.isOneValue())
202     return ConstantRange::getFull(BitWidth);
203 
204   APInt MinValue = APInt::getSignedMinValue(BitWidth);
205   APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
206   // e.g. Returning [-127, 127], represented as [-127, -128).
207   if (V.isAllOnesValue())
208     return ConstantRange(-MaxValue, MinValue);
209 
210   APInt Lower, Upper;
211   if (V.isNegative()) {
212     Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
213     Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
214   } else {
215     Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
216     Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
217   }
218   // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
219   // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
220   // and 1 are already handled as special cases.
221   return ConstantRange(Lower, Upper + 1);
222 }
223 
224 ConstantRange
225 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
226                                           const ConstantRange &Other,
227                                           unsigned NoWrapKind) {
228   using OBO = OverflowingBinaryOperator;
229 
230   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
231 
232   assert((NoWrapKind == OBO::NoSignedWrap ||
233           NoWrapKind == OBO::NoUnsignedWrap) &&
234          "NoWrapKind invalid!");
235 
236   bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
237   unsigned BitWidth = Other.getBitWidth();
238 
239   switch (BinOp) {
240   default:
241     llvm_unreachable("Unsupported binary op");
242 
243   case Instruction::Add: {
244     if (Unsigned)
245       return getNonEmpty(APInt::getNullValue(BitWidth),
246                          -Other.getUnsignedMax());
247 
248     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
249     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
250     return getNonEmpty(
251         SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
252         SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
253   }
254 
255   case Instruction::Sub: {
256     if (Unsigned)
257       return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
258 
259     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
260     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
261     return getNonEmpty(
262         SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
263         SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
264   }
265 
266   case Instruction::Mul:
267     if (Unsigned)
268       return makeExactMulNUWRegion(Other.getUnsignedMax());
269 
270     return makeExactMulNSWRegion(Other.getSignedMin())
271         .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
272 
273   case Instruction::Shl: {
274     // For given range of shift amounts, if we ignore all illegal shift amounts
275     // (that always produce poison), what shift amount range is left?
276     ConstantRange ShAmt = Other.intersectWith(
277         ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
278     if (ShAmt.isEmptySet()) {
279       // If the entire range of shift amounts is already poison-producing,
280       // then we can freely add more poison-producing flags ontop of that.
281       return getFull(BitWidth);
282     }
283     // There are some legal shift amounts, we can compute conservatively-correct
284     // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
285     // to be at most bitwidth-1, which results in most conservative range.
286     APInt ShAmtUMax = ShAmt.getUnsignedMax();
287     if (Unsigned)
288       return getNonEmpty(APInt::getNullValue(BitWidth),
289                          APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
290     return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
291                        APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
292   }
293   }
294 }
295 
296 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
297                                                    const APInt &Other,
298                                                    unsigned NoWrapKind) {
299   // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
300   // "for all" and "for any" coincide in this case.
301   return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
302 }
303 
304 bool ConstantRange::isFullSet() const {
305   return Lower == Upper && Lower.isMaxValue();
306 }
307 
308 bool ConstantRange::isEmptySet() const {
309   return Lower == Upper && Lower.isMinValue();
310 }
311 
312 bool ConstantRange::isWrappedSet() const {
313   return Lower.ugt(Upper) && !Upper.isNullValue();
314 }
315 
316 bool ConstantRange::isUpperWrapped() const {
317   return Lower.ugt(Upper);
318 }
319 
320 bool ConstantRange::isSignWrappedSet() const {
321   return Lower.sgt(Upper) && !Upper.isMinSignedValue();
322 }
323 
324 bool ConstantRange::isUpperSignWrapped() const {
325   return Lower.sgt(Upper);
326 }
327 
328 bool
329 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
330   assert(getBitWidth() == Other.getBitWidth());
331   if (isFullSet())
332     return false;
333   if (Other.isFullSet())
334     return true;
335   return (Upper - Lower).ult(Other.Upper - Other.Lower);
336 }
337 
338 bool
339 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
340   assert(MaxSize && "MaxSize can't be 0.");
341   // If this a full set, we need special handling to avoid needing an extra bit
342   // to represent the size.
343   if (isFullSet())
344     return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
345 
346   return (Upper - Lower).ugt(MaxSize);
347 }
348 
349 bool ConstantRange::isAllNegative() const {
350   // Empty set is all negative, full set is not.
351   if (isEmptySet())
352     return true;
353   if (isFullSet())
354     return false;
355 
356   return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
357 }
358 
359 bool ConstantRange::isAllNonNegative() const {
360   // Empty and full set are automatically treated correctly.
361   return !isSignWrappedSet() && Lower.isNonNegative();
362 }
363 
364 APInt ConstantRange::getUnsignedMax() const {
365   if (isFullSet() || isUpperWrapped())
366     return APInt::getMaxValue(getBitWidth());
367   return getUpper() - 1;
368 }
369 
370 APInt ConstantRange::getUnsignedMin() const {
371   if (isFullSet() || isWrappedSet())
372     return APInt::getMinValue(getBitWidth());
373   return getLower();
374 }
375 
376 APInt ConstantRange::getSignedMax() const {
377   if (isFullSet() || isUpperSignWrapped())
378     return APInt::getSignedMaxValue(getBitWidth());
379   return getUpper() - 1;
380 }
381 
382 APInt ConstantRange::getSignedMin() const {
383   if (isFullSet() || isSignWrappedSet())
384     return APInt::getSignedMinValue(getBitWidth());
385   return getLower();
386 }
387 
388 bool ConstantRange::contains(const APInt &V) const {
389   if (Lower == Upper)
390     return isFullSet();
391 
392   if (!isUpperWrapped())
393     return Lower.ule(V) && V.ult(Upper);
394   return Lower.ule(V) || V.ult(Upper);
395 }
396 
397 bool ConstantRange::contains(const ConstantRange &Other) const {
398   if (isFullSet() || Other.isEmptySet()) return true;
399   if (isEmptySet() || Other.isFullSet()) return false;
400 
401   if (!isUpperWrapped()) {
402     if (Other.isUpperWrapped())
403       return false;
404 
405     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
406   }
407 
408   if (!Other.isUpperWrapped())
409     return Other.getUpper().ule(Upper) ||
410            Lower.ule(Other.getLower());
411 
412   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
413 }
414 
415 ConstantRange ConstantRange::subtract(const APInt &Val) const {
416   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
417   // If the set is empty or full, don't modify the endpoints.
418   if (Lower == Upper)
419     return *this;
420   return ConstantRange(Lower - Val, Upper - Val);
421 }
422 
423 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
424   return intersectWith(CR.inverse());
425 }
426 
427 static ConstantRange getPreferredRange(
428     const ConstantRange &CR1, const ConstantRange &CR2,
429     ConstantRange::PreferredRangeType Type) {
430   if (Type == ConstantRange::Unsigned) {
431     if (!CR1.isWrappedSet() && CR2.isWrappedSet())
432       return CR1;
433     if (CR1.isWrappedSet() && !CR2.isWrappedSet())
434       return CR2;
435   } else if (Type == ConstantRange::Signed) {
436     if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
437       return CR1;
438     if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
439       return CR2;
440   }
441 
442   if (CR1.isSizeStrictlySmallerThan(CR2))
443     return CR1;
444   return CR2;
445 }
446 
447 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
448                                            PreferredRangeType Type) const {
449   assert(getBitWidth() == CR.getBitWidth() &&
450          "ConstantRange types don't agree!");
451 
452   // Handle common cases.
453   if (   isEmptySet() || CR.isFullSet()) return *this;
454   if (CR.isEmptySet() ||    isFullSet()) return CR;
455 
456   if (!isUpperWrapped() && CR.isUpperWrapped())
457     return CR.intersectWith(*this, Type);
458 
459   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
460     if (Lower.ult(CR.Lower)) {
461       // L---U       : this
462       //       L---U : CR
463       if (Upper.ule(CR.Lower))
464         return getEmpty();
465 
466       // L---U       : this
467       //   L---U     : CR
468       if (Upper.ult(CR.Upper))
469         return ConstantRange(CR.Lower, Upper);
470 
471       // L-------U   : this
472       //   L---U     : CR
473       return CR;
474     }
475     //   L---U     : this
476     // L-------U   : CR
477     if (Upper.ult(CR.Upper))
478       return *this;
479 
480     //   L-----U   : this
481     // L-----U     : CR
482     if (Lower.ult(CR.Upper))
483       return ConstantRange(Lower, CR.Upper);
484 
485     //       L---U : this
486     // L---U       : CR
487     return getEmpty();
488   }
489 
490   if (isUpperWrapped() && !CR.isUpperWrapped()) {
491     if (CR.Lower.ult(Upper)) {
492       // ------U   L--- : this
493       //  L--U          : CR
494       if (CR.Upper.ult(Upper))
495         return CR;
496 
497       // ------U   L--- : this
498       //  L------U      : CR
499       if (CR.Upper.ule(Lower))
500         return ConstantRange(CR.Lower, Upper);
501 
502       // ------U   L--- : this
503       //  L----------U  : CR
504       return getPreferredRange(*this, CR, Type);
505     }
506     if (CR.Lower.ult(Lower)) {
507       // --U      L---- : this
508       //     L--U       : CR
509       if (CR.Upper.ule(Lower))
510         return getEmpty();
511 
512       // --U      L---- : this
513       //     L------U   : CR
514       return ConstantRange(Lower, CR.Upper);
515     }
516 
517     // --U  L------ : this
518     //        L--U  : CR
519     return CR;
520   }
521 
522   if (CR.Upper.ult(Upper)) {
523     // ------U L-- : this
524     // --U L------ : CR
525     if (CR.Lower.ult(Upper))
526       return getPreferredRange(*this, CR, Type);
527 
528     // ----U   L-- : this
529     // --U   L---- : CR
530     if (CR.Lower.ult(Lower))
531       return ConstantRange(Lower, CR.Upper);
532 
533     // ----U L---- : this
534     // --U     L-- : CR
535     return CR;
536   }
537   if (CR.Upper.ule(Lower)) {
538     // --U     L-- : this
539     // ----U L---- : CR
540     if (CR.Lower.ult(Lower))
541       return *this;
542 
543     // --U   L---- : this
544     // ----U   L-- : CR
545     return ConstantRange(CR.Lower, Upper);
546   }
547 
548   // --U L------ : this
549   // ------U L-- : CR
550   return getPreferredRange(*this, CR, Type);
551 }
552 
553 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
554                                        PreferredRangeType Type) const {
555   assert(getBitWidth() == CR.getBitWidth() &&
556          "ConstantRange types don't agree!");
557 
558   if (   isFullSet() || CR.isEmptySet()) return *this;
559   if (CR.isFullSet() ||    isEmptySet()) return CR;
560 
561   if (!isUpperWrapped() && CR.isUpperWrapped())
562     return CR.unionWith(*this, Type);
563 
564   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
565     //        L---U  and  L---U        : this
566     //  L---U                   L---U  : CR
567     // result in one of
568     //  L---------U
569     // -----U L-----
570     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
571       return getPreferredRange(
572           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
573 
574     APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
575     APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
576 
577     if (L.isNullValue() && U.isNullValue())
578       return getFull();
579 
580     return ConstantRange(std::move(L), std::move(U));
581   }
582 
583   if (!CR.isUpperWrapped()) {
584     // ------U   L-----  and  ------U   L----- : this
585     //   L--U                            L--U  : CR
586     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
587       return *this;
588 
589     // ------U   L----- : this
590     //    L---------U   : CR
591     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
592       return getFull();
593 
594     // ----U       L---- : this
595     //       L---U       : CR
596     // results in one of
597     // ----------U L----
598     // ----U L----------
599     if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
600       return getPreferredRange(
601           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
602 
603     // ----U     L----- : this
604     //        L----U    : CR
605     if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
606       return ConstantRange(CR.Lower, Upper);
607 
608     // ------U    L---- : this
609     //    L-----U       : CR
610     assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
611            "ConstantRange::unionWith missed a case with one range wrapped");
612     return ConstantRange(Lower, CR.Upper);
613   }
614 
615   // ------U    L----  and  ------U    L---- : this
616   // -U  L-----------  and  ------------U  L : CR
617   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
618     return getFull();
619 
620   APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
621   APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
622 
623   return ConstantRange(std::move(L), std::move(U));
624 }
625 
626 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
627                                     uint32_t ResultBitWidth) const {
628   switch (CastOp) {
629   default:
630     llvm_unreachable("unsupported cast type");
631   case Instruction::Trunc:
632     return truncate(ResultBitWidth);
633   case Instruction::SExt:
634     return signExtend(ResultBitWidth);
635   case Instruction::ZExt:
636     return zeroExtend(ResultBitWidth);
637   case Instruction::BitCast:
638     return *this;
639   case Instruction::FPToUI:
640   case Instruction::FPToSI:
641     if (getBitWidth() == ResultBitWidth)
642       return *this;
643     else
644       return getFull();
645   case Instruction::UIToFP: {
646     // TODO: use input range if available
647     auto BW = getBitWidth();
648     APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
649     APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
650     return ConstantRange(std::move(Min), std::move(Max));
651   }
652   case Instruction::SIToFP: {
653     // TODO: use input range if available
654     auto BW = getBitWidth();
655     APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
656     APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
657     return ConstantRange(std::move(SMin), std::move(SMax));
658   }
659   case Instruction::FPTrunc:
660   case Instruction::FPExt:
661   case Instruction::IntToPtr:
662   case Instruction::PtrToInt:
663   case Instruction::AddrSpaceCast:
664     // Conservatively return getFull set.
665     return getFull();
666   };
667 }
668 
669 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
670   if (isEmptySet()) return getEmpty(DstTySize);
671 
672   unsigned SrcTySize = getBitWidth();
673   assert(SrcTySize < DstTySize && "Not a value extension");
674   if (isFullSet() || isUpperWrapped()) {
675     // Change into [0, 1 << src bit width)
676     APInt LowerExt(DstTySize, 0);
677     if (!Upper) // special case: [X, 0) -- not really wrapping around
678       LowerExt = Lower.zext(DstTySize);
679     return ConstantRange(std::move(LowerExt),
680                          APInt::getOneBitSet(DstTySize, SrcTySize));
681   }
682 
683   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
684 }
685 
686 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
687   if (isEmptySet()) return getEmpty(DstTySize);
688 
689   unsigned SrcTySize = getBitWidth();
690   assert(SrcTySize < DstTySize && "Not a value extension");
691 
692   // special case: [X, INT_MIN) -- not really wrapping around
693   if (Upper.isMinSignedValue())
694     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
695 
696   if (isFullSet() || isSignWrappedSet()) {
697     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
698                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
699   }
700 
701   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
702 }
703 
704 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
705   assert(getBitWidth() > DstTySize && "Not a value truncation");
706   if (isEmptySet())
707     return getEmpty(DstTySize);
708   if (isFullSet())
709     return getFull(DstTySize);
710 
711   APInt LowerDiv(Lower), UpperDiv(Upper);
712   ConstantRange Union(DstTySize, /*isFullSet=*/false);
713 
714   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
715   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
716   // then we do the union with [MaxValue, Upper)
717   if (isUpperWrapped()) {
718     // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
719     // truncated range.
720     if (Upper.getActiveBits() > DstTySize ||
721         Upper.countTrailingOnes() == DstTySize)
722       return getFull(DstTySize);
723 
724     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
725     UpperDiv.setAllBits();
726 
727     // Union covers the MaxValue case, so return if the remaining range is just
728     // MaxValue(DstTy).
729     if (LowerDiv == UpperDiv)
730       return Union;
731   }
732 
733   // Chop off the most significant bits that are past the destination bitwidth.
734   if (LowerDiv.getActiveBits() > DstTySize) {
735     // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
736     APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
737     LowerDiv -= Adjust;
738     UpperDiv -= Adjust;
739   }
740 
741   unsigned UpperDivWidth = UpperDiv.getActiveBits();
742   if (UpperDivWidth <= DstTySize)
743     return ConstantRange(LowerDiv.trunc(DstTySize),
744                          UpperDiv.trunc(DstTySize)).unionWith(Union);
745 
746   // The truncated value wraps around. Check if we can do better than fullset.
747   if (UpperDivWidth == DstTySize + 1) {
748     // Clear the MSB so that UpperDiv wraps around.
749     UpperDiv.clearBit(DstTySize);
750     if (UpperDiv.ult(LowerDiv))
751       return ConstantRange(LowerDiv.trunc(DstTySize),
752                            UpperDiv.trunc(DstTySize)).unionWith(Union);
753   }
754 
755   return getFull(DstTySize);
756 }
757 
758 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
759   unsigned SrcTySize = getBitWidth();
760   if (SrcTySize > DstTySize)
761     return truncate(DstTySize);
762   if (SrcTySize < DstTySize)
763     return zeroExtend(DstTySize);
764   return *this;
765 }
766 
767 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
768   unsigned SrcTySize = getBitWidth();
769   if (SrcTySize > DstTySize)
770     return truncate(DstTySize);
771   if (SrcTySize < DstTySize)
772     return signExtend(DstTySize);
773   return *this;
774 }
775 
776 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
777                                       const ConstantRange &Other) const {
778   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
779 
780   switch (BinOp) {
781   case Instruction::Add:
782     return add(Other);
783   case Instruction::Sub:
784     return sub(Other);
785   case Instruction::Mul:
786     return multiply(Other);
787   case Instruction::UDiv:
788     return udiv(Other);
789   case Instruction::SDiv:
790     return sdiv(Other);
791   case Instruction::URem:
792     return urem(Other);
793   case Instruction::SRem:
794     return srem(Other);
795   case Instruction::Shl:
796     return shl(Other);
797   case Instruction::LShr:
798     return lshr(Other);
799   case Instruction::AShr:
800     return ashr(Other);
801   case Instruction::And:
802     return binaryAnd(Other);
803   case Instruction::Or:
804     return binaryOr(Other);
805   // Note: floating point operations applied to abstract ranges are just
806   // ideal integer operations with a lossy representation
807   case Instruction::FAdd:
808     return add(Other);
809   case Instruction::FSub:
810     return sub(Other);
811   case Instruction::FMul:
812     return multiply(Other);
813   default:
814     // Conservatively return getFull set.
815     return getFull();
816   }
817 }
818 
819 ConstantRange
820 ConstantRange::add(const ConstantRange &Other) const {
821   if (isEmptySet() || Other.isEmptySet())
822     return getEmpty();
823   if (isFullSet() || Other.isFullSet())
824     return getFull();
825 
826   APInt NewLower = getLower() + Other.getLower();
827   APInt NewUpper = getUpper() + Other.getUpper() - 1;
828   if (NewLower == NewUpper)
829     return getFull();
830 
831   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
832   if (X.isSizeStrictlySmallerThan(*this) ||
833       X.isSizeStrictlySmallerThan(Other))
834     // We've wrapped, therefore, full set.
835     return getFull();
836   return X;
837 }
838 
839 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
840                                            unsigned NoWrapKind,
841                                            PreferredRangeType RangeType) const {
842   // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
843   // (X is from this, and Y is from Other)
844   if (isEmptySet() || Other.isEmptySet())
845     return getEmpty();
846   if (isFullSet() && Other.isFullSet())
847     return getFull();
848 
849   using OBO = OverflowingBinaryOperator;
850   ConstantRange Result = add(Other);
851 
852   auto addWithNoUnsignedWrap = [this](const ConstantRange &Other) {
853     APInt LMin = getUnsignedMin(), LMax = getUnsignedMax();
854     APInt RMin = Other.getUnsignedMin(), RMax = Other.getUnsignedMax();
855     bool Overflow;
856     APInt NewMin = LMin.uadd_ov(RMin, Overflow);
857     if (Overflow)
858       return getEmpty();
859     APInt NewMax = LMax.uadd_sat(RMax);
860     return getNonEmpty(std::move(NewMin), std::move(NewMax) + 1);
861   };
862 
863   auto addWithNoSignedWrap = [this](const ConstantRange &Other) {
864     APInt LMin = getSignedMin(), LMax = getSignedMax();
865     APInt RMin = Other.getSignedMin(), RMax = Other.getSignedMax();
866     if (LMin.isNonNegative()) {
867       bool Overflow;
868       APInt Temp = LMin.sadd_ov(RMin, Overflow);
869       if (Overflow)
870         return getEmpty();
871     }
872     if (LMax.isNegative()) {
873       bool Overflow;
874       APInt Temp = LMax.sadd_ov(RMax, Overflow);
875       if (Overflow)
876         return getEmpty();
877     }
878     APInt NewMin = LMin.sadd_sat(RMin);
879     APInt NewMax = LMax.sadd_sat(RMax);
880     return getNonEmpty(std::move(NewMin), std::move(NewMax) + 1);
881   };
882 
883   if (NoWrapKind & OBO::NoSignedWrap)
884     Result = Result.intersectWith(addWithNoSignedWrap(Other), RangeType);
885   if (NoWrapKind & OBO::NoUnsignedWrap)
886     Result = Result.intersectWith(addWithNoUnsignedWrap(Other), RangeType);
887   return Result;
888 }
889 
890 ConstantRange
891 ConstantRange::sub(const ConstantRange &Other) const {
892   if (isEmptySet() || Other.isEmptySet())
893     return getEmpty();
894   if (isFullSet() || Other.isFullSet())
895     return getFull();
896 
897   APInt NewLower = getLower() - Other.getUpper() + 1;
898   APInt NewUpper = getUpper() - Other.getLower();
899   if (NewLower == NewUpper)
900     return getFull();
901 
902   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
903   if (X.isSizeStrictlySmallerThan(*this) ||
904       X.isSizeStrictlySmallerThan(Other))
905     // We've wrapped, therefore, full set.
906     return getFull();
907   return X;
908 }
909 
910 ConstantRange
911 ConstantRange::multiply(const ConstantRange &Other) const {
912   // TODO: If either operand is a single element and the multiply is known to
913   // be non-wrapping, round the result min and max value to the appropriate
914   // multiple of that element. If wrapping is possible, at least adjust the
915   // range according to the greatest power-of-two factor of the single element.
916 
917   if (isEmptySet() || Other.isEmptySet())
918     return getEmpty();
919 
920   // Multiplication is signedness-independent. However different ranges can be
921   // obtained depending on how the input ranges are treated. These different
922   // ranges are all conservatively correct, but one might be better than the
923   // other. We calculate two ranges; one treating the inputs as unsigned
924   // and the other signed, then return the smallest of these ranges.
925 
926   // Unsigned range first.
927   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
928   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
929   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
930   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
931 
932   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
933                                             this_max * Other_max + 1);
934   ConstantRange UR = Result_zext.truncate(getBitWidth());
935 
936   // If the unsigned range doesn't wrap, and isn't negative then it's a range
937   // from one positive number to another which is as good as we can generate.
938   // In this case, skip the extra work of generating signed ranges which aren't
939   // going to be better than this range.
940   if (!UR.isUpperWrapped() &&
941       (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
942     return UR;
943 
944   // Now the signed range. Because we could be dealing with negative numbers
945   // here, the lower bound is the smallest of the cartesian product of the
946   // lower and upper ranges; for example:
947   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
948   // Similarly for the upper bound, swapping min for max.
949 
950   this_min = getSignedMin().sext(getBitWidth() * 2);
951   this_max = getSignedMax().sext(getBitWidth() * 2);
952   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
953   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
954 
955   auto L = {this_min * Other_min, this_min * Other_max,
956             this_max * Other_min, this_max * Other_max};
957   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
958   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
959   ConstantRange SR = Result_sext.truncate(getBitWidth());
960 
961   return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
962 }
963 
964 ConstantRange
965 ConstantRange::smax(const ConstantRange &Other) const {
966   // X smax Y is: range(smax(X_smin, Y_smin),
967   //                    smax(X_smax, Y_smax))
968   if (isEmptySet() || Other.isEmptySet())
969     return getEmpty();
970   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
971   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
972   return getNonEmpty(std::move(NewL), std::move(NewU));
973 }
974 
975 ConstantRange
976 ConstantRange::umax(const ConstantRange &Other) const {
977   // X umax Y is: range(umax(X_umin, Y_umin),
978   //                    umax(X_umax, Y_umax))
979   if (isEmptySet() || Other.isEmptySet())
980     return getEmpty();
981   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
982   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
983   return getNonEmpty(std::move(NewL), std::move(NewU));
984 }
985 
986 ConstantRange
987 ConstantRange::smin(const ConstantRange &Other) const {
988   // X smin Y is: range(smin(X_smin, Y_smin),
989   //                    smin(X_smax, Y_smax))
990   if (isEmptySet() || Other.isEmptySet())
991     return getEmpty();
992   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
993   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
994   return getNonEmpty(std::move(NewL), std::move(NewU));
995 }
996 
997 ConstantRange
998 ConstantRange::umin(const ConstantRange &Other) const {
999   // X umin Y is: range(umin(X_umin, Y_umin),
1000   //                    umin(X_umax, Y_umax))
1001   if (isEmptySet() || Other.isEmptySet())
1002     return getEmpty();
1003   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1004   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1005   return getNonEmpty(std::move(NewL), std::move(NewU));
1006 }
1007 
1008 ConstantRange
1009 ConstantRange::udiv(const ConstantRange &RHS) const {
1010   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1011     return getEmpty();
1012 
1013   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1014 
1015   APInt RHS_umin = RHS.getUnsignedMin();
1016   if (RHS_umin.isNullValue()) {
1017     // We want the lowest value in RHS excluding zero. Usually that would be 1
1018     // except for a range in the form of [X, 1) in which case it would be X.
1019     if (RHS.getUpper() == 1)
1020       RHS_umin = RHS.getLower();
1021     else
1022       RHS_umin = 1;
1023   }
1024 
1025   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1026   return getNonEmpty(std::move(Lower), std::move(Upper));
1027 }
1028 
1029 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1030   // We split up the LHS and RHS into positive and negative components
1031   // and then also compute the positive and negative components of the result
1032   // separately by combining division results with the appropriate signs.
1033   APInt Zero = APInt::getNullValue(getBitWidth());
1034   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1035   ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1036   ConstantRange NegFilter(SignedMin, Zero);
1037   ConstantRange PosL = intersectWith(PosFilter);
1038   ConstantRange NegL = intersectWith(NegFilter);
1039   ConstantRange PosR = RHS.intersectWith(PosFilter);
1040   ConstantRange NegR = RHS.intersectWith(NegFilter);
1041 
1042   ConstantRange PosRes = getEmpty();
1043   if (!PosL.isEmptySet() && !PosR.isEmptySet())
1044     // pos / pos = pos.
1045     PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1046                            (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1047 
1048   if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1049     // neg / neg = pos.
1050     //
1051     // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1052     // IR level, so we'll want to exclude this case when calculating bounds.
1053     // (For APInts the operation is well-defined and yields SignedMin.) We
1054     // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1055     APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1056     if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
1057       // Remove -1 from the LHS. Skip if it's the only element, as this would
1058       // leave us with an empty set.
1059       if (!NegR.Lower.isAllOnesValue()) {
1060         APInt AdjNegRUpper;
1061         if (RHS.Lower.isAllOnesValue())
1062           // Negative part of [-1, X] without -1 is [SignedMin, X].
1063           AdjNegRUpper = RHS.Upper;
1064         else
1065           // [X, -1] without -1 is [X, -2].
1066           AdjNegRUpper = NegR.Upper - 1;
1067 
1068         PosRes = PosRes.unionWith(
1069             ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1070       }
1071 
1072       // Remove SignedMin from the RHS. Skip if it's the only element, as this
1073       // would leave us with an empty set.
1074       if (NegL.Upper != SignedMin + 1) {
1075         APInt AdjNegLLower;
1076         if (Upper == SignedMin + 1)
1077           // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1078           AdjNegLLower = Lower;
1079         else
1080           // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1081           AdjNegLLower = NegL.Lower + 1;
1082 
1083         PosRes = PosRes.unionWith(
1084             ConstantRange(std::move(Lo),
1085                           AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1086       }
1087     } else {
1088       PosRes = PosRes.unionWith(
1089           ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1090     }
1091   }
1092 
1093   ConstantRange NegRes = getEmpty();
1094   if (!PosL.isEmptySet() && !NegR.isEmptySet())
1095     // pos / neg = neg.
1096     NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1097                            PosL.Lower.sdiv(NegR.Lower) + 1);
1098 
1099   if (!NegL.isEmptySet() && !PosR.isEmptySet())
1100     // neg / pos = neg.
1101     NegRes = NegRes.unionWith(
1102         ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1103                       (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1104 
1105   // Prefer a non-wrapping signed range here.
1106   ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1107 
1108   // Preserve the zero that we dropped when splitting the LHS by sign.
1109   if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1110     Res = Res.unionWith(ConstantRange(Zero));
1111   return Res;
1112 }
1113 
1114 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1115   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1116     return getEmpty();
1117 
1118   // L % R for L < R is L.
1119   if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1120     return *this;
1121 
1122   // L % R is <= L and < R.
1123   APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1124   return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
1125 }
1126 
1127 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1128   if (isEmptySet() || RHS.isEmptySet())
1129     return getEmpty();
1130 
1131   ConstantRange AbsRHS = RHS.abs();
1132   APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1133   APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1134 
1135   // Modulus by zero is UB.
1136   if (MaxAbsRHS.isNullValue())
1137     return getEmpty();
1138 
1139   if (MinAbsRHS.isNullValue())
1140     ++MinAbsRHS;
1141 
1142   APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1143 
1144   if (MinLHS.isNonNegative()) {
1145     // L % R for L < R is L.
1146     if (MaxLHS.ult(MinAbsRHS))
1147       return *this;
1148 
1149     // L % R is <= L and < R.
1150     APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1151     return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
1152   }
1153 
1154   // Same basic logic as above, but the result is negative.
1155   if (MaxLHS.isNegative()) {
1156     if (MinLHS.ugt(-MinAbsRHS))
1157       return *this;
1158 
1159     APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1160     return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1161   }
1162 
1163   // LHS range crosses zero.
1164   APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1165   APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1166   return ConstantRange(std::move(Lower), std::move(Upper));
1167 }
1168 
1169 ConstantRange
1170 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1171   if (isEmptySet() || Other.isEmptySet())
1172     return getEmpty();
1173 
1174   // TODO: replace this with something less conservative
1175 
1176   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1177   return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
1178 }
1179 
1180 ConstantRange
1181 ConstantRange::binaryOr(const ConstantRange &Other) const {
1182   if (isEmptySet() || Other.isEmptySet())
1183     return getEmpty();
1184 
1185   // TODO: replace this with something less conservative
1186 
1187   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1188   return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
1189 }
1190 
1191 ConstantRange
1192 ConstantRange::shl(const ConstantRange &Other) const {
1193   if (isEmptySet() || Other.isEmptySet())
1194     return getEmpty();
1195 
1196   APInt max = getUnsignedMax();
1197   APInt Other_umax = Other.getUnsignedMax();
1198 
1199   // If we are shifting by maximum amount of
1200   // zero return return the original range.
1201   if (Other_umax.isNullValue())
1202     return *this;
1203   // there's overflow!
1204   if (Other_umax.ugt(max.countLeadingZeros()))
1205     return getFull();
1206 
1207   // FIXME: implement the other tricky cases
1208 
1209   APInt min = getUnsignedMin();
1210   min <<= Other.getUnsignedMin();
1211   max <<= Other_umax;
1212 
1213   return ConstantRange(std::move(min), std::move(max) + 1);
1214 }
1215 
1216 ConstantRange
1217 ConstantRange::lshr(const ConstantRange &Other) const {
1218   if (isEmptySet() || Other.isEmptySet())
1219     return getEmpty();
1220 
1221   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1222   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1223   return getNonEmpty(std::move(min), std::move(max));
1224 }
1225 
1226 ConstantRange
1227 ConstantRange::ashr(const ConstantRange &Other) const {
1228   if (isEmptySet() || Other.isEmptySet())
1229     return getEmpty();
1230 
1231   // May straddle zero, so handle both positive and negative cases.
1232   // 'PosMax' is the upper bound of the result of the ashr
1233   // operation, when Upper of the LHS of ashr is a non-negative.
1234   // number. Since ashr of a non-negative number will result in a
1235   // smaller number, the Upper value of LHS is shifted right with
1236   // the minimum value of 'Other' instead of the maximum value.
1237   APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1238 
1239   // 'PosMin' is the lower bound of the result of the ashr
1240   // operation, when Lower of the LHS is a non-negative number.
1241   // Since ashr of a non-negative number will result in a smaller
1242   // number, the Lower value of LHS is shifted right with the
1243   // maximum value of 'Other'.
1244   APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1245 
1246   // 'NegMax' is the upper bound of the result of the ashr
1247   // operation, when Upper of the LHS of ashr is a negative number.
1248   // Since 'ashr' of a negative number will result in a bigger
1249   // number, the Upper value of LHS is shifted right with the
1250   // maximum value of 'Other'.
1251   APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1252 
1253   // 'NegMin' is the lower bound of the result of the ashr
1254   // operation, when Lower of the LHS of ashr is a negative number.
1255   // Since 'ashr' of a negative number will result in a bigger
1256   // number, the Lower value of LHS is shifted right with the
1257   // minimum value of 'Other'.
1258   APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1259 
1260   APInt max, min;
1261   if (getSignedMin().isNonNegative()) {
1262     // Upper and Lower of LHS are non-negative.
1263     min = PosMin;
1264     max = PosMax;
1265   } else if (getSignedMax().isNegative()) {
1266     // Upper and Lower of LHS are negative.
1267     min = NegMin;
1268     max = NegMax;
1269   } else {
1270     // Upper is non-negative and Lower is negative.
1271     min = NegMin;
1272     max = PosMax;
1273   }
1274   return getNonEmpty(std::move(min), std::move(max));
1275 }
1276 
1277 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1278   if (isEmptySet() || Other.isEmptySet())
1279     return getEmpty();
1280 
1281   APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1282   APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1283   return getNonEmpty(std::move(NewL), std::move(NewU));
1284 }
1285 
1286 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1287   if (isEmptySet() || Other.isEmptySet())
1288     return getEmpty();
1289 
1290   APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1291   APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1292   return getNonEmpty(std::move(NewL), std::move(NewU));
1293 }
1294 
1295 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1296   if (isEmptySet() || Other.isEmptySet())
1297     return getEmpty();
1298 
1299   APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1300   APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1301   return getNonEmpty(std::move(NewL), std::move(NewU));
1302 }
1303 
1304 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1305   if (isEmptySet() || Other.isEmptySet())
1306     return getEmpty();
1307 
1308   APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1309   APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1310   return getNonEmpty(std::move(NewL), std::move(NewU));
1311 }
1312 
1313 ConstantRange ConstantRange::inverse() const {
1314   if (isFullSet())
1315     return getEmpty();
1316   if (isEmptySet())
1317     return getFull();
1318   return ConstantRange(Upper, Lower);
1319 }
1320 
1321 ConstantRange ConstantRange::abs() const {
1322   if (isEmptySet())
1323     return getEmpty();
1324 
1325   if (isSignWrappedSet()) {
1326     APInt Lo;
1327     // Check whether the range crosses zero.
1328     if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1329       Lo = APInt::getNullValue(getBitWidth());
1330     else
1331       Lo = APIntOps::umin(Lower, -Upper + 1);
1332 
1333     // SignedMin is included in the result range.
1334     return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1335   }
1336 
1337   APInt SMin = getSignedMin(), SMax = getSignedMax();
1338 
1339   // All non-negative.
1340   if (SMin.isNonNegative())
1341     return *this;
1342 
1343   // All negative.
1344   if (SMax.isNegative())
1345     return ConstantRange(-SMax, -SMin + 1);
1346 
1347   // Range crosses zero.
1348   return ConstantRange(APInt::getNullValue(getBitWidth()),
1349                        APIntOps::umax(-SMin, SMax) + 1);
1350 }
1351 
1352 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1353     const ConstantRange &Other) const {
1354   if (isEmptySet() || Other.isEmptySet())
1355     return OverflowResult::MayOverflow;
1356 
1357   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1358   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1359 
1360   // a u+ b overflows high iff a u> ~b.
1361   if (Min.ugt(~OtherMin))
1362     return OverflowResult::AlwaysOverflowsHigh;
1363   if (Max.ugt(~OtherMax))
1364     return OverflowResult::MayOverflow;
1365   return OverflowResult::NeverOverflows;
1366 }
1367 
1368 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1369     const ConstantRange &Other) const {
1370   if (isEmptySet() || Other.isEmptySet())
1371     return OverflowResult::MayOverflow;
1372 
1373   APInt Min = getSignedMin(), Max = getSignedMax();
1374   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1375 
1376   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1377   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1378 
1379   // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1380   // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1381   if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1382       Min.sgt(SignedMax - OtherMin))
1383     return OverflowResult::AlwaysOverflowsHigh;
1384   if (Max.isNegative() && OtherMax.isNegative() &&
1385       Max.slt(SignedMin - OtherMax))
1386     return OverflowResult::AlwaysOverflowsLow;
1387 
1388   if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1389       Max.sgt(SignedMax - OtherMax))
1390     return OverflowResult::MayOverflow;
1391   if (Min.isNegative() && OtherMin.isNegative() &&
1392       Min.slt(SignedMin - OtherMin))
1393     return OverflowResult::MayOverflow;
1394 
1395   return OverflowResult::NeverOverflows;
1396 }
1397 
1398 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1399     const ConstantRange &Other) const {
1400   if (isEmptySet() || Other.isEmptySet())
1401     return OverflowResult::MayOverflow;
1402 
1403   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1404   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1405 
1406   // a u- b overflows low iff a u< b.
1407   if (Max.ult(OtherMin))
1408     return OverflowResult::AlwaysOverflowsLow;
1409   if (Min.ult(OtherMax))
1410     return OverflowResult::MayOverflow;
1411   return OverflowResult::NeverOverflows;
1412 }
1413 
1414 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1415     const ConstantRange &Other) const {
1416   if (isEmptySet() || Other.isEmptySet())
1417     return OverflowResult::MayOverflow;
1418 
1419   APInt Min = getSignedMin(), Max = getSignedMax();
1420   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1421 
1422   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1423   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1424 
1425   // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1426   // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1427   if (Min.isNonNegative() && OtherMax.isNegative() &&
1428       Min.sgt(SignedMax + OtherMax))
1429     return OverflowResult::AlwaysOverflowsHigh;
1430   if (Max.isNegative() && OtherMin.isNonNegative() &&
1431       Max.slt(SignedMin + OtherMin))
1432     return OverflowResult::AlwaysOverflowsLow;
1433 
1434   if (Max.isNonNegative() && OtherMin.isNegative() &&
1435       Max.sgt(SignedMax + OtherMin))
1436     return OverflowResult::MayOverflow;
1437   if (Min.isNegative() && OtherMax.isNonNegative() &&
1438       Min.slt(SignedMin + OtherMax))
1439     return OverflowResult::MayOverflow;
1440 
1441   return OverflowResult::NeverOverflows;
1442 }
1443 
1444 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1445     const ConstantRange &Other) const {
1446   if (isEmptySet() || Other.isEmptySet())
1447     return OverflowResult::MayOverflow;
1448 
1449   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1450   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1451   bool Overflow;
1452 
1453   (void) Min.umul_ov(OtherMin, Overflow);
1454   if (Overflow)
1455     return OverflowResult::AlwaysOverflowsHigh;
1456 
1457   (void) Max.umul_ov(OtherMax, Overflow);
1458   if (Overflow)
1459     return OverflowResult::MayOverflow;
1460 
1461   return OverflowResult::NeverOverflows;
1462 }
1463 
1464 void ConstantRange::print(raw_ostream &OS) const {
1465   if (isFullSet())
1466     OS << "full-set";
1467   else if (isEmptySet())
1468     OS << "empty-set";
1469   else
1470     OS << "[" << Lower << "," << Upper << ")";
1471 }
1472 
1473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1474 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1475   print(dbgs());
1476 }
1477 #endif
1478 
1479 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1480   const unsigned NumRanges = Ranges.getNumOperands() / 2;
1481   assert(NumRanges >= 1 && "Must have at least one range!");
1482   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1483 
1484   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1485   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1486 
1487   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1488 
1489   for (unsigned i = 1; i < NumRanges; ++i) {
1490     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1491     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1492 
1493     // Note: unionWith will potentially create a range that contains values not
1494     // contained in any of the original N ranges.
1495     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1496   }
1497 
1498   return CR;
1499 }
1500