1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Represent a range of possible values that may occur when the program is run 10 // for an integral value. This keeps track of a lower and upper bound for the 11 // constant, which MAY wrap around the end of the numeric range. To do this, it 12 // keeps track of a [lower, upper) bound, which specifies an interval just like 13 // STL iterators. When used with boolean values, the following are important 14 // ranges (other integral ranges use min/max values for special range values): 15 // 16 // [F, F) = {} = Empty set 17 // [T, F) = {T} 18 // [F, T) = {F} 19 // [T, T) = {F, T} = Full set 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 41 using namespace llvm; 42 43 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) 44 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), 45 Upper(Lower) {} 46 47 ConstantRange::ConstantRange(APInt V) 48 : Lower(std::move(V)), Upper(Lower + 1) {} 49 50 ConstantRange::ConstantRange(APInt L, APInt U) 51 : Lower(std::move(L)), Upper(std::move(U)) { 52 assert(Lower.getBitWidth() == Upper.getBitWidth() && 53 "ConstantRange with unequal bit widths"); 54 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && 55 "Lower == Upper, but they aren't min or max value!"); 56 } 57 58 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known, 59 bool IsSigned) { 60 assert(!Known.hasConflict() && "Expected valid KnownBits"); 61 62 if (Known.isUnknown()) 63 return getFull(Known.getBitWidth()); 64 65 // For unsigned ranges, or signed ranges with known sign bit, create a simple 66 // range between the smallest and largest possible value. 67 if (!IsSigned || Known.isNegative() || Known.isNonNegative()) 68 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1); 69 70 // If we don't know the sign bit, pick the lower bound as a negative number 71 // and the upper bound as a non-negative one. 72 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue(); 73 Lower.setSignBit(); 74 Upper.clearSignBit(); 75 return ConstantRange(Lower, Upper + 1); 76 } 77 78 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, 79 const ConstantRange &CR) { 80 if (CR.isEmptySet()) 81 return CR; 82 83 uint32_t W = CR.getBitWidth(); 84 switch (Pred) { 85 default: 86 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); 87 case CmpInst::ICMP_EQ: 88 return CR; 89 case CmpInst::ICMP_NE: 90 if (CR.isSingleElement()) 91 return ConstantRange(CR.getUpper(), CR.getLower()); 92 return getFull(W); 93 case CmpInst::ICMP_ULT: { 94 APInt UMax(CR.getUnsignedMax()); 95 if (UMax.isMinValue()) 96 return getEmpty(W); 97 return ConstantRange(APInt::getMinValue(W), std::move(UMax)); 98 } 99 case CmpInst::ICMP_SLT: { 100 APInt SMax(CR.getSignedMax()); 101 if (SMax.isMinSignedValue()) 102 return getEmpty(W); 103 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); 104 } 105 case CmpInst::ICMP_ULE: 106 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1); 107 case CmpInst::ICMP_SLE: 108 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1); 109 case CmpInst::ICMP_UGT: { 110 APInt UMin(CR.getUnsignedMin()); 111 if (UMin.isMaxValue()) 112 return getEmpty(W); 113 return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W)); 114 } 115 case CmpInst::ICMP_SGT: { 116 APInt SMin(CR.getSignedMin()); 117 if (SMin.isMaxSignedValue()) 118 return getEmpty(W); 119 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); 120 } 121 case CmpInst::ICMP_UGE: 122 return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W)); 123 case CmpInst::ICMP_SGE: 124 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W)); 125 } 126 } 127 128 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 129 const ConstantRange &CR) { 130 // Follows from De-Morgan's laws: 131 // 132 // ~(~A union ~B) == A intersect B. 133 // 134 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) 135 .inverse(); 136 } 137 138 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, 139 const APInt &C) { 140 // Computes the exact range that is equal to both the constant ranges returned 141 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true 142 // when RHS is a singleton such as an APInt and so the assert is valid. 143 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion 144 // returns [0,4) but makeSatisfyICmpRegion returns [0,2). 145 // 146 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); 147 return makeAllowedICmpRegion(Pred, C); 148 } 149 150 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 151 APInt &RHS) const { 152 bool Success = false; 153 154 if (isFullSet() || isEmptySet()) { 155 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 156 RHS = APInt(getBitWidth(), 0); 157 Success = true; 158 } else if (auto *OnlyElt = getSingleElement()) { 159 Pred = CmpInst::ICMP_EQ; 160 RHS = *OnlyElt; 161 Success = true; 162 } else if (auto *OnlyMissingElt = getSingleMissingElement()) { 163 Pred = CmpInst::ICMP_NE; 164 RHS = *OnlyMissingElt; 165 Success = true; 166 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { 167 Pred = 168 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 169 RHS = getUpper(); 170 Success = true; 171 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { 172 Pred = 173 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; 174 RHS = getLower(); 175 Success = true; 176 } 177 178 assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && 179 "Bad result!"); 180 181 return Success; 182 } 183 184 /// Exact mul nuw region for single element RHS. 185 static ConstantRange makeExactMulNUWRegion(const APInt &V) { 186 unsigned BitWidth = V.getBitWidth(); 187 if (V == 0) 188 return ConstantRange::getFull(V.getBitWidth()); 189 190 return ConstantRange::getNonEmpty( 191 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V, 192 APInt::Rounding::UP), 193 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V, 194 APInt::Rounding::DOWN) + 1); 195 } 196 197 /// Exact mul nsw region for single element RHS. 198 static ConstantRange makeExactMulNSWRegion(const APInt &V) { 199 // Handle special case for 0, -1 and 1. See the last for reason why we 200 // specialize -1 and 1. 201 unsigned BitWidth = V.getBitWidth(); 202 if (V == 0 || V.isOneValue()) 203 return ConstantRange::getFull(BitWidth); 204 205 APInt MinValue = APInt::getSignedMinValue(BitWidth); 206 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 207 // e.g. Returning [-127, 127], represented as [-127, -128). 208 if (V.isAllOnesValue()) 209 return ConstantRange(-MaxValue, MinValue); 210 211 APInt Lower, Upper; 212 if (V.isNegative()) { 213 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); 214 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); 215 } else { 216 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); 217 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); 218 } 219 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1). 220 // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1, 221 // and 1 are already handled as special cases. 222 return ConstantRange(Lower, Upper + 1); 223 } 224 225 ConstantRange 226 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, 227 const ConstantRange &Other, 228 unsigned NoWrapKind) { 229 using OBO = OverflowingBinaryOperator; 230 231 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 232 233 assert((NoWrapKind == OBO::NoSignedWrap || 234 NoWrapKind == OBO::NoUnsignedWrap) && 235 "NoWrapKind invalid!"); 236 237 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; 238 unsigned BitWidth = Other.getBitWidth(); 239 240 switch (BinOp) { 241 default: 242 llvm_unreachable("Unsupported binary op"); 243 244 case Instruction::Add: { 245 if (Unsigned) 246 return getNonEmpty(APInt::getNullValue(BitWidth), 247 -Other.getUnsignedMax()); 248 249 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 250 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 251 return getNonEmpty( 252 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal, 253 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal); 254 } 255 256 case Instruction::Sub: { 257 if (Unsigned) 258 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth)); 259 260 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 261 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 262 return getNonEmpty( 263 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal, 264 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal); 265 } 266 267 case Instruction::Mul: 268 if (Unsigned) 269 return makeExactMulNUWRegion(Other.getUnsignedMax()); 270 271 return makeExactMulNSWRegion(Other.getSignedMin()) 272 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax())); 273 274 case Instruction::Shl: { 275 // For given range of shift amounts, if we ignore all illegal shift amounts 276 // (that always produce poison), what shift amount range is left? 277 ConstantRange ShAmt = Other.intersectWith( 278 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1))); 279 if (ShAmt.isEmptySet()) { 280 // If the entire range of shift amounts is already poison-producing, 281 // then we can freely add more poison-producing flags ontop of that. 282 return getFull(BitWidth); 283 } 284 // There are some legal shift amounts, we can compute conservatively-correct 285 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax 286 // to be at most bitwidth-1, which results in most conservative range. 287 APInt ShAmtUMax = ShAmt.getUnsignedMax(); 288 if (Unsigned) 289 return getNonEmpty(APInt::getNullValue(BitWidth), 290 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1); 291 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax), 292 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1); 293 } 294 } 295 } 296 297 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp, 298 const APInt &Other, 299 unsigned NoWrapKind) { 300 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as 301 // "for all" and "for any" coincide in this case. 302 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind); 303 } 304 305 bool ConstantRange::isFullSet() const { 306 return Lower == Upper && Lower.isMaxValue(); 307 } 308 309 bool ConstantRange::isEmptySet() const { 310 return Lower == Upper && Lower.isMinValue(); 311 } 312 313 bool ConstantRange::isWrappedSet() const { 314 return Lower.ugt(Upper) && !Upper.isNullValue(); 315 } 316 317 bool ConstantRange::isUpperWrapped() const { 318 return Lower.ugt(Upper); 319 } 320 321 bool ConstantRange::isSignWrappedSet() const { 322 return Lower.sgt(Upper) && !Upper.isMinSignedValue(); 323 } 324 325 bool ConstantRange::isUpperSignWrapped() const { 326 return Lower.sgt(Upper); 327 } 328 329 bool 330 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { 331 assert(getBitWidth() == Other.getBitWidth()); 332 if (isFullSet()) 333 return false; 334 if (Other.isFullSet()) 335 return true; 336 return (Upper - Lower).ult(Other.Upper - Other.Lower); 337 } 338 339 bool 340 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { 341 assert(MaxSize && "MaxSize can't be 0."); 342 // If this a full set, we need special handling to avoid needing an extra bit 343 // to represent the size. 344 if (isFullSet()) 345 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); 346 347 return (Upper - Lower).ugt(MaxSize); 348 } 349 350 bool ConstantRange::isAllNegative() const { 351 // Empty set is all negative, full set is not. 352 if (isEmptySet()) 353 return true; 354 if (isFullSet()) 355 return false; 356 357 return !isUpperSignWrapped() && !Upper.isStrictlyPositive(); 358 } 359 360 bool ConstantRange::isAllNonNegative() const { 361 // Empty and full set are automatically treated correctly. 362 return !isSignWrappedSet() && Lower.isNonNegative(); 363 } 364 365 APInt ConstantRange::getUnsignedMax() const { 366 if (isFullSet() || isUpperWrapped()) 367 return APInt::getMaxValue(getBitWidth()); 368 return getUpper() - 1; 369 } 370 371 APInt ConstantRange::getUnsignedMin() const { 372 if (isFullSet() || isWrappedSet()) 373 return APInt::getMinValue(getBitWidth()); 374 return getLower(); 375 } 376 377 APInt ConstantRange::getSignedMax() const { 378 if (isFullSet() || isUpperSignWrapped()) 379 return APInt::getSignedMaxValue(getBitWidth()); 380 return getUpper() - 1; 381 } 382 383 APInt ConstantRange::getSignedMin() const { 384 if (isFullSet() || isSignWrappedSet()) 385 return APInt::getSignedMinValue(getBitWidth()); 386 return getLower(); 387 } 388 389 bool ConstantRange::contains(const APInt &V) const { 390 if (Lower == Upper) 391 return isFullSet(); 392 393 if (!isUpperWrapped()) 394 return Lower.ule(V) && V.ult(Upper); 395 return Lower.ule(V) || V.ult(Upper); 396 } 397 398 bool ConstantRange::contains(const ConstantRange &Other) const { 399 if (isFullSet() || Other.isEmptySet()) return true; 400 if (isEmptySet() || Other.isFullSet()) return false; 401 402 if (!isUpperWrapped()) { 403 if (Other.isUpperWrapped()) 404 return false; 405 406 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); 407 } 408 409 if (!Other.isUpperWrapped()) 410 return Other.getUpper().ule(Upper) || 411 Lower.ule(Other.getLower()); 412 413 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); 414 } 415 416 unsigned ConstantRange::getActiveBits() const { 417 if (isEmptySet()) 418 return 0; 419 420 return getUnsignedMax().getActiveBits(); 421 } 422 423 unsigned ConstantRange::getMinSignedBits() const { 424 if (isEmptySet()) 425 return 0; 426 427 return std::max(getSignedMin().getMinSignedBits(), 428 getSignedMax().getMinSignedBits()); 429 } 430 431 ConstantRange ConstantRange::subtract(const APInt &Val) const { 432 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); 433 // If the set is empty or full, don't modify the endpoints. 434 if (Lower == Upper) 435 return *this; 436 return ConstantRange(Lower - Val, Upper - Val); 437 } 438 439 ConstantRange ConstantRange::difference(const ConstantRange &CR) const { 440 return intersectWith(CR.inverse()); 441 } 442 443 static ConstantRange getPreferredRange( 444 const ConstantRange &CR1, const ConstantRange &CR2, 445 ConstantRange::PreferredRangeType Type) { 446 if (Type == ConstantRange::Unsigned) { 447 if (!CR1.isWrappedSet() && CR2.isWrappedSet()) 448 return CR1; 449 if (CR1.isWrappedSet() && !CR2.isWrappedSet()) 450 return CR2; 451 } else if (Type == ConstantRange::Signed) { 452 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet()) 453 return CR1; 454 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet()) 455 return CR2; 456 } 457 458 if (CR1.isSizeStrictlySmallerThan(CR2)) 459 return CR1; 460 return CR2; 461 } 462 463 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, 464 PreferredRangeType Type) const { 465 assert(getBitWidth() == CR.getBitWidth() && 466 "ConstantRange types don't agree!"); 467 468 // Handle common cases. 469 if ( isEmptySet() || CR.isFullSet()) return *this; 470 if (CR.isEmptySet() || isFullSet()) return CR; 471 472 if (!isUpperWrapped() && CR.isUpperWrapped()) 473 return CR.intersectWith(*this, Type); 474 475 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 476 if (Lower.ult(CR.Lower)) { 477 // L---U : this 478 // L---U : CR 479 if (Upper.ule(CR.Lower)) 480 return getEmpty(); 481 482 // L---U : this 483 // L---U : CR 484 if (Upper.ult(CR.Upper)) 485 return ConstantRange(CR.Lower, Upper); 486 487 // L-------U : this 488 // L---U : CR 489 return CR; 490 } 491 // L---U : this 492 // L-------U : CR 493 if (Upper.ult(CR.Upper)) 494 return *this; 495 496 // L-----U : this 497 // L-----U : CR 498 if (Lower.ult(CR.Upper)) 499 return ConstantRange(Lower, CR.Upper); 500 501 // L---U : this 502 // L---U : CR 503 return getEmpty(); 504 } 505 506 if (isUpperWrapped() && !CR.isUpperWrapped()) { 507 if (CR.Lower.ult(Upper)) { 508 // ------U L--- : this 509 // L--U : CR 510 if (CR.Upper.ult(Upper)) 511 return CR; 512 513 // ------U L--- : this 514 // L------U : CR 515 if (CR.Upper.ule(Lower)) 516 return ConstantRange(CR.Lower, Upper); 517 518 // ------U L--- : this 519 // L----------U : CR 520 return getPreferredRange(*this, CR, Type); 521 } 522 if (CR.Lower.ult(Lower)) { 523 // --U L---- : this 524 // L--U : CR 525 if (CR.Upper.ule(Lower)) 526 return getEmpty(); 527 528 // --U L---- : this 529 // L------U : CR 530 return ConstantRange(Lower, CR.Upper); 531 } 532 533 // --U L------ : this 534 // L--U : CR 535 return CR; 536 } 537 538 if (CR.Upper.ult(Upper)) { 539 // ------U L-- : this 540 // --U L------ : CR 541 if (CR.Lower.ult(Upper)) 542 return getPreferredRange(*this, CR, Type); 543 544 // ----U L-- : this 545 // --U L---- : CR 546 if (CR.Lower.ult(Lower)) 547 return ConstantRange(Lower, CR.Upper); 548 549 // ----U L---- : this 550 // --U L-- : CR 551 return CR; 552 } 553 if (CR.Upper.ule(Lower)) { 554 // --U L-- : this 555 // ----U L---- : CR 556 if (CR.Lower.ult(Lower)) 557 return *this; 558 559 // --U L---- : this 560 // ----U L-- : CR 561 return ConstantRange(CR.Lower, Upper); 562 } 563 564 // --U L------ : this 565 // ------U L-- : CR 566 return getPreferredRange(*this, CR, Type); 567 } 568 569 ConstantRange ConstantRange::unionWith(const ConstantRange &CR, 570 PreferredRangeType Type) const { 571 assert(getBitWidth() == CR.getBitWidth() && 572 "ConstantRange types don't agree!"); 573 574 if ( isFullSet() || CR.isEmptySet()) return *this; 575 if (CR.isFullSet() || isEmptySet()) return CR; 576 577 if (!isUpperWrapped() && CR.isUpperWrapped()) 578 return CR.unionWith(*this, Type); 579 580 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 581 // L---U and L---U : this 582 // L---U L---U : CR 583 // result in one of 584 // L---------U 585 // -----U L----- 586 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) 587 return getPreferredRange( 588 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 589 590 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 591 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; 592 593 if (L.isNullValue() && U.isNullValue()) 594 return getFull(); 595 596 return ConstantRange(std::move(L), std::move(U)); 597 } 598 599 if (!CR.isUpperWrapped()) { 600 // ------U L----- and ------U L----- : this 601 // L--U L--U : CR 602 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) 603 return *this; 604 605 // ------U L----- : this 606 // L---------U : CR 607 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) 608 return getFull(); 609 610 // ----U L---- : this 611 // L---U : CR 612 // results in one of 613 // ----------U L---- 614 // ----U L---------- 615 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) 616 return getPreferredRange( 617 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 618 619 // ----U L----- : this 620 // L----U : CR 621 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper)) 622 return ConstantRange(CR.Lower, Upper); 623 624 // ------U L---- : this 625 // L-----U : CR 626 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) && 627 "ConstantRange::unionWith missed a case with one range wrapped"); 628 return ConstantRange(Lower, CR.Upper); 629 } 630 631 // ------U L---- and ------U L---- : this 632 // -U L----------- and ------------U L : CR 633 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) 634 return getFull(); 635 636 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 637 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; 638 639 return ConstantRange(std::move(L), std::move(U)); 640 } 641 642 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, 643 uint32_t ResultBitWidth) const { 644 switch (CastOp) { 645 default: 646 llvm_unreachable("unsupported cast type"); 647 case Instruction::Trunc: 648 return truncate(ResultBitWidth); 649 case Instruction::SExt: 650 return signExtend(ResultBitWidth); 651 case Instruction::ZExt: 652 return zeroExtend(ResultBitWidth); 653 case Instruction::BitCast: 654 return *this; 655 case Instruction::FPToUI: 656 case Instruction::FPToSI: 657 if (getBitWidth() == ResultBitWidth) 658 return *this; 659 else 660 return getFull(ResultBitWidth); 661 case Instruction::UIToFP: { 662 // TODO: use input range if available 663 auto BW = getBitWidth(); 664 APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth); 665 APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth); 666 return ConstantRange(std::move(Min), std::move(Max)); 667 } 668 case Instruction::SIToFP: { 669 // TODO: use input range if available 670 auto BW = getBitWidth(); 671 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth); 672 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth); 673 return ConstantRange(std::move(SMin), std::move(SMax)); 674 } 675 case Instruction::FPTrunc: 676 case Instruction::FPExt: 677 case Instruction::IntToPtr: 678 case Instruction::PtrToInt: 679 case Instruction::AddrSpaceCast: 680 // Conservatively return getFull set. 681 return getFull(ResultBitWidth); 682 }; 683 } 684 685 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { 686 if (isEmptySet()) return getEmpty(DstTySize); 687 688 unsigned SrcTySize = getBitWidth(); 689 assert(SrcTySize < DstTySize && "Not a value extension"); 690 if (isFullSet() || isUpperWrapped()) { 691 // Change into [0, 1 << src bit width) 692 APInt LowerExt(DstTySize, 0); 693 if (!Upper) // special case: [X, 0) -- not really wrapping around 694 LowerExt = Lower.zext(DstTySize); 695 return ConstantRange(std::move(LowerExt), 696 APInt::getOneBitSet(DstTySize, SrcTySize)); 697 } 698 699 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); 700 } 701 702 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { 703 if (isEmptySet()) return getEmpty(DstTySize); 704 705 unsigned SrcTySize = getBitWidth(); 706 assert(SrcTySize < DstTySize && "Not a value extension"); 707 708 // special case: [X, INT_MIN) -- not really wrapping around 709 if (Upper.isMinSignedValue()) 710 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); 711 712 if (isFullSet() || isSignWrappedSet()) { 713 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), 714 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); 715 } 716 717 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); 718 } 719 720 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { 721 assert(getBitWidth() > DstTySize && "Not a value truncation"); 722 if (isEmptySet()) 723 return getEmpty(DstTySize); 724 if (isFullSet()) 725 return getFull(DstTySize); 726 727 APInt LowerDiv(Lower), UpperDiv(Upper); 728 ConstantRange Union(DstTySize, /*isFullSet=*/false); 729 730 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] 731 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and 732 // then we do the union with [MaxValue, Upper) 733 if (isUpperWrapped()) { 734 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole 735 // truncated range. 736 if (Upper.getActiveBits() > DstTySize || 737 Upper.countTrailingOnes() == DstTySize) 738 return getFull(DstTySize); 739 740 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); 741 UpperDiv.setAllBits(); 742 743 // Union covers the MaxValue case, so return if the remaining range is just 744 // MaxValue(DstTy). 745 if (LowerDiv == UpperDiv) 746 return Union; 747 } 748 749 // Chop off the most significant bits that are past the destination bitwidth. 750 if (LowerDiv.getActiveBits() > DstTySize) { 751 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. 752 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); 753 LowerDiv -= Adjust; 754 UpperDiv -= Adjust; 755 } 756 757 unsigned UpperDivWidth = UpperDiv.getActiveBits(); 758 if (UpperDivWidth <= DstTySize) 759 return ConstantRange(LowerDiv.trunc(DstTySize), 760 UpperDiv.trunc(DstTySize)).unionWith(Union); 761 762 // The truncated value wraps around. Check if we can do better than fullset. 763 if (UpperDivWidth == DstTySize + 1) { 764 // Clear the MSB so that UpperDiv wraps around. 765 UpperDiv.clearBit(DstTySize); 766 if (UpperDiv.ult(LowerDiv)) 767 return ConstantRange(LowerDiv.trunc(DstTySize), 768 UpperDiv.trunc(DstTySize)).unionWith(Union); 769 } 770 771 return getFull(DstTySize); 772 } 773 774 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { 775 unsigned SrcTySize = getBitWidth(); 776 if (SrcTySize > DstTySize) 777 return truncate(DstTySize); 778 if (SrcTySize < DstTySize) 779 return zeroExtend(DstTySize); 780 return *this; 781 } 782 783 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { 784 unsigned SrcTySize = getBitWidth(); 785 if (SrcTySize > DstTySize) 786 return truncate(DstTySize); 787 if (SrcTySize < DstTySize) 788 return signExtend(DstTySize); 789 return *this; 790 } 791 792 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, 793 const ConstantRange &Other) const { 794 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 795 796 switch (BinOp) { 797 case Instruction::Add: 798 return add(Other); 799 case Instruction::Sub: 800 return sub(Other); 801 case Instruction::Mul: 802 return multiply(Other); 803 case Instruction::UDiv: 804 return udiv(Other); 805 case Instruction::SDiv: 806 return sdiv(Other); 807 case Instruction::URem: 808 return urem(Other); 809 case Instruction::SRem: 810 return srem(Other); 811 case Instruction::Shl: 812 return shl(Other); 813 case Instruction::LShr: 814 return lshr(Other); 815 case Instruction::AShr: 816 return ashr(Other); 817 case Instruction::And: 818 return binaryAnd(Other); 819 case Instruction::Or: 820 return binaryOr(Other); 821 case Instruction::Xor: 822 return binaryXor(Other); 823 // Note: floating point operations applied to abstract ranges are just 824 // ideal integer operations with a lossy representation 825 case Instruction::FAdd: 826 return add(Other); 827 case Instruction::FSub: 828 return sub(Other); 829 case Instruction::FMul: 830 return multiply(Other); 831 default: 832 // Conservatively return getFull set. 833 return getFull(); 834 } 835 } 836 837 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp, 838 const ConstantRange &Other, 839 unsigned NoWrapKind) const { 840 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 841 842 switch (BinOp) { 843 case Instruction::Add: 844 return addWithNoWrap(Other, NoWrapKind); 845 case Instruction::Sub: 846 return subWithNoWrap(Other, NoWrapKind); 847 default: 848 // Don't know about this Overflowing Binary Operation. 849 // Conservatively fallback to plain binop handling. 850 return binaryOp(BinOp, Other); 851 } 852 } 853 854 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) { 855 switch (IntrinsicID) { 856 case Intrinsic::uadd_sat: 857 case Intrinsic::usub_sat: 858 case Intrinsic::sadd_sat: 859 case Intrinsic::ssub_sat: 860 case Intrinsic::umin: 861 case Intrinsic::umax: 862 case Intrinsic::smin: 863 case Intrinsic::smax: 864 case Intrinsic::abs: 865 return true; 866 default: 867 return false; 868 } 869 } 870 871 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID, 872 ArrayRef<ConstantRange> Ops) { 873 switch (IntrinsicID) { 874 case Intrinsic::uadd_sat: 875 return Ops[0].uadd_sat(Ops[1]); 876 case Intrinsic::usub_sat: 877 return Ops[0].usub_sat(Ops[1]); 878 case Intrinsic::sadd_sat: 879 return Ops[0].sadd_sat(Ops[1]); 880 case Intrinsic::ssub_sat: 881 return Ops[0].ssub_sat(Ops[1]); 882 case Intrinsic::umin: 883 return Ops[0].umin(Ops[1]); 884 case Intrinsic::umax: 885 return Ops[0].umax(Ops[1]); 886 case Intrinsic::smin: 887 return Ops[0].smin(Ops[1]); 888 case Intrinsic::smax: 889 return Ops[0].smax(Ops[1]); 890 case Intrinsic::abs: { 891 const APInt *IntMinIsPoison = Ops[1].getSingleElement(); 892 assert(IntMinIsPoison && "Must be known (immarg)"); 893 assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean"); 894 return Ops[0].abs(IntMinIsPoison->getBoolValue()); 895 } 896 default: 897 assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported"); 898 llvm_unreachable("Unsupported intrinsic"); 899 } 900 } 901 902 ConstantRange 903 ConstantRange::add(const ConstantRange &Other) const { 904 if (isEmptySet() || Other.isEmptySet()) 905 return getEmpty(); 906 if (isFullSet() || Other.isFullSet()) 907 return getFull(); 908 909 APInt NewLower = getLower() + Other.getLower(); 910 APInt NewUpper = getUpper() + Other.getUpper() - 1; 911 if (NewLower == NewUpper) 912 return getFull(); 913 914 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 915 if (X.isSizeStrictlySmallerThan(*this) || 916 X.isSizeStrictlySmallerThan(Other)) 917 // We've wrapped, therefore, full set. 918 return getFull(); 919 return X; 920 } 921 922 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other, 923 unsigned NoWrapKind, 924 PreferredRangeType RangeType) const { 925 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow). 926 // (X is from this, and Y is from Other) 927 if (isEmptySet() || Other.isEmptySet()) 928 return getEmpty(); 929 if (isFullSet() && Other.isFullSet()) 930 return getFull(); 931 932 using OBO = OverflowingBinaryOperator; 933 ConstantRange Result = add(Other); 934 935 // If an overflow happens for every value pair in these two constant ranges, 936 // we must return Empty set. In this case, we get that for free, because we 937 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results 938 // in an empty set. 939 940 if (NoWrapKind & OBO::NoSignedWrap) 941 Result = Result.intersectWith(sadd_sat(Other), RangeType); 942 943 if (NoWrapKind & OBO::NoUnsignedWrap) 944 Result = Result.intersectWith(uadd_sat(Other), RangeType); 945 946 return Result; 947 } 948 949 ConstantRange 950 ConstantRange::sub(const ConstantRange &Other) const { 951 if (isEmptySet() || Other.isEmptySet()) 952 return getEmpty(); 953 if (isFullSet() || Other.isFullSet()) 954 return getFull(); 955 956 APInt NewLower = getLower() - Other.getUpper() + 1; 957 APInt NewUpper = getUpper() - Other.getLower(); 958 if (NewLower == NewUpper) 959 return getFull(); 960 961 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 962 if (X.isSizeStrictlySmallerThan(*this) || 963 X.isSizeStrictlySmallerThan(Other)) 964 // We've wrapped, therefore, full set. 965 return getFull(); 966 return X; 967 } 968 969 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other, 970 unsigned NoWrapKind, 971 PreferredRangeType RangeType) const { 972 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow). 973 // (X is from this, and Y is from Other) 974 if (isEmptySet() || Other.isEmptySet()) 975 return getEmpty(); 976 if (isFullSet() && Other.isFullSet()) 977 return getFull(); 978 979 using OBO = OverflowingBinaryOperator; 980 ConstantRange Result = sub(Other); 981 982 // If an overflow happens for every value pair in these two constant ranges, 983 // we must return Empty set. In signed case, we get that for free, because we 984 // get lucky that intersection of sub() with ssub_sat() results in an 985 // empty set. But for unsigned we must perform the overflow check manually. 986 987 if (NoWrapKind & OBO::NoSignedWrap) 988 Result = Result.intersectWith(ssub_sat(Other), RangeType); 989 990 if (NoWrapKind & OBO::NoUnsignedWrap) { 991 if (getUnsignedMax().ult(Other.getUnsignedMin())) 992 return getEmpty(); // Always overflows. 993 Result = Result.intersectWith(usub_sat(Other), RangeType); 994 } 995 996 return Result; 997 } 998 999 ConstantRange 1000 ConstantRange::multiply(const ConstantRange &Other) const { 1001 // TODO: If either operand is a single element and the multiply is known to 1002 // be non-wrapping, round the result min and max value to the appropriate 1003 // multiple of that element. If wrapping is possible, at least adjust the 1004 // range according to the greatest power-of-two factor of the single element. 1005 1006 if (isEmptySet() || Other.isEmptySet()) 1007 return getEmpty(); 1008 1009 // Multiplication is signedness-independent. However different ranges can be 1010 // obtained depending on how the input ranges are treated. These different 1011 // ranges are all conservatively correct, but one might be better than the 1012 // other. We calculate two ranges; one treating the inputs as unsigned 1013 // and the other signed, then return the smallest of these ranges. 1014 1015 // Unsigned range first. 1016 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); 1017 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); 1018 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); 1019 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); 1020 1021 ConstantRange Result_zext = ConstantRange(this_min * Other_min, 1022 this_max * Other_max + 1); 1023 ConstantRange UR = Result_zext.truncate(getBitWidth()); 1024 1025 // If the unsigned range doesn't wrap, and isn't negative then it's a range 1026 // from one positive number to another which is as good as we can generate. 1027 // In this case, skip the extra work of generating signed ranges which aren't 1028 // going to be better than this range. 1029 if (!UR.isUpperWrapped() && 1030 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) 1031 return UR; 1032 1033 // Now the signed range. Because we could be dealing with negative numbers 1034 // here, the lower bound is the smallest of the cartesian product of the 1035 // lower and upper ranges; for example: 1036 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1037 // Similarly for the upper bound, swapping min for max. 1038 1039 this_min = getSignedMin().sext(getBitWidth() * 2); 1040 this_max = getSignedMax().sext(getBitWidth() * 2); 1041 Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1042 Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1043 1044 auto L = {this_min * Other_min, this_min * Other_max, 1045 this_max * Other_min, this_max * Other_max}; 1046 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1047 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); 1048 ConstantRange SR = Result_sext.truncate(getBitWidth()); 1049 1050 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; 1051 } 1052 1053 ConstantRange 1054 ConstantRange::smax(const ConstantRange &Other) const { 1055 // X smax Y is: range(smax(X_smin, Y_smin), 1056 // smax(X_smax, Y_smax)) 1057 if (isEmptySet() || Other.isEmptySet()) 1058 return getEmpty(); 1059 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); 1060 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; 1061 return getNonEmpty(std::move(NewL), std::move(NewU)); 1062 } 1063 1064 ConstantRange 1065 ConstantRange::umax(const ConstantRange &Other) const { 1066 // X umax Y is: range(umax(X_umin, Y_umin), 1067 // umax(X_umax, Y_umax)) 1068 if (isEmptySet() || Other.isEmptySet()) 1069 return getEmpty(); 1070 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1071 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1072 return getNonEmpty(std::move(NewL), std::move(NewU)); 1073 } 1074 1075 ConstantRange 1076 ConstantRange::smin(const ConstantRange &Other) const { 1077 // X smin Y is: range(smin(X_smin, Y_smin), 1078 // smin(X_smax, Y_smax)) 1079 if (isEmptySet() || Other.isEmptySet()) 1080 return getEmpty(); 1081 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); 1082 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; 1083 return getNonEmpty(std::move(NewL), std::move(NewU)); 1084 } 1085 1086 ConstantRange 1087 ConstantRange::umin(const ConstantRange &Other) const { 1088 // X umin Y is: range(umin(X_umin, Y_umin), 1089 // umin(X_umax, Y_umax)) 1090 if (isEmptySet() || Other.isEmptySet()) 1091 return getEmpty(); 1092 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); 1093 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1094 return getNonEmpty(std::move(NewL), std::move(NewU)); 1095 } 1096 1097 ConstantRange 1098 ConstantRange::udiv(const ConstantRange &RHS) const { 1099 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) 1100 return getEmpty(); 1101 1102 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); 1103 1104 APInt RHS_umin = RHS.getUnsignedMin(); 1105 if (RHS_umin.isNullValue()) { 1106 // We want the lowest value in RHS excluding zero. Usually that would be 1 1107 // except for a range in the form of [X, 1) in which case it would be X. 1108 if (RHS.getUpper() == 1) 1109 RHS_umin = RHS.getLower(); 1110 else 1111 RHS_umin = 1; 1112 } 1113 1114 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; 1115 return getNonEmpty(std::move(Lower), std::move(Upper)); 1116 } 1117 1118 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const { 1119 // We split up the LHS and RHS into positive and negative components 1120 // and then also compute the positive and negative components of the result 1121 // separately by combining division results with the appropriate signs. 1122 APInt Zero = APInt::getNullValue(getBitWidth()); 1123 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1124 ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin); 1125 ConstantRange NegFilter(SignedMin, Zero); 1126 ConstantRange PosL = intersectWith(PosFilter); 1127 ConstantRange NegL = intersectWith(NegFilter); 1128 ConstantRange PosR = RHS.intersectWith(PosFilter); 1129 ConstantRange NegR = RHS.intersectWith(NegFilter); 1130 1131 ConstantRange PosRes = getEmpty(); 1132 if (!PosL.isEmptySet() && !PosR.isEmptySet()) 1133 // pos / pos = pos. 1134 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1), 1135 (PosL.Upper - 1).sdiv(PosR.Lower) + 1); 1136 1137 if (!NegL.isEmptySet() && !NegR.isEmptySet()) { 1138 // neg / neg = pos. 1139 // 1140 // We need to deal with one tricky case here: SignedMin / -1 is UB on the 1141 // IR level, so we'll want to exclude this case when calculating bounds. 1142 // (For APInts the operation is well-defined and yields SignedMin.) We 1143 // handle this by dropping either SignedMin from the LHS or -1 from the RHS. 1144 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower); 1145 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) { 1146 // Remove -1 from the LHS. Skip if it's the only element, as this would 1147 // leave us with an empty set. 1148 if (!NegR.Lower.isAllOnesValue()) { 1149 APInt AdjNegRUpper; 1150 if (RHS.Lower.isAllOnesValue()) 1151 // Negative part of [-1, X] without -1 is [SignedMin, X]. 1152 AdjNegRUpper = RHS.Upper; 1153 else 1154 // [X, -1] without -1 is [X, -2]. 1155 AdjNegRUpper = NegR.Upper - 1; 1156 1157 PosRes = PosRes.unionWith( 1158 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1)); 1159 } 1160 1161 // Remove SignedMin from the RHS. Skip if it's the only element, as this 1162 // would leave us with an empty set. 1163 if (NegL.Upper != SignedMin + 1) { 1164 APInt AdjNegLLower; 1165 if (Upper == SignedMin + 1) 1166 // Negative part of [X, SignedMin] without SignedMin is [X, -1]. 1167 AdjNegLLower = Lower; 1168 else 1169 // [SignedMin, X] without SignedMin is [SignedMin + 1, X]. 1170 AdjNegLLower = NegL.Lower + 1; 1171 1172 PosRes = PosRes.unionWith( 1173 ConstantRange(std::move(Lo), 1174 AdjNegLLower.sdiv(NegR.Upper - 1) + 1)); 1175 } 1176 } else { 1177 PosRes = PosRes.unionWith( 1178 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1)); 1179 } 1180 } 1181 1182 ConstantRange NegRes = getEmpty(); 1183 if (!PosL.isEmptySet() && !NegR.isEmptySet()) 1184 // pos / neg = neg. 1185 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1), 1186 PosL.Lower.sdiv(NegR.Lower) + 1); 1187 1188 if (!NegL.isEmptySet() && !PosR.isEmptySet()) 1189 // neg / pos = neg. 1190 NegRes = NegRes.unionWith( 1191 ConstantRange(NegL.Lower.sdiv(PosR.Lower), 1192 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1)); 1193 1194 // Prefer a non-wrapping signed range here. 1195 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed); 1196 1197 // Preserve the zero that we dropped when splitting the LHS by sign. 1198 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet())) 1199 Res = Res.unionWith(ConstantRange(Zero)); 1200 return Res; 1201 } 1202 1203 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const { 1204 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) 1205 return getEmpty(); 1206 1207 // L % R for L < R is L. 1208 if (getUnsignedMax().ult(RHS.getUnsignedMin())) 1209 return *this; 1210 1211 // L % R is <= L and < R. 1212 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1; 1213 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper)); 1214 } 1215 1216 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const { 1217 if (isEmptySet() || RHS.isEmptySet()) 1218 return getEmpty(); 1219 1220 ConstantRange AbsRHS = RHS.abs(); 1221 APInt MinAbsRHS = AbsRHS.getUnsignedMin(); 1222 APInt MaxAbsRHS = AbsRHS.getUnsignedMax(); 1223 1224 // Modulus by zero is UB. 1225 if (MaxAbsRHS.isNullValue()) 1226 return getEmpty(); 1227 1228 if (MinAbsRHS.isNullValue()) 1229 ++MinAbsRHS; 1230 1231 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax(); 1232 1233 if (MinLHS.isNonNegative()) { 1234 // L % R for L < R is L. 1235 if (MaxLHS.ult(MinAbsRHS)) 1236 return *this; 1237 1238 // L % R is <= L and < R. 1239 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1240 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper)); 1241 } 1242 1243 // Same basic logic as above, but the result is negative. 1244 if (MaxLHS.isNegative()) { 1245 if (MinLHS.ugt(-MinAbsRHS)) 1246 return *this; 1247 1248 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1249 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1)); 1250 } 1251 1252 // LHS range crosses zero. 1253 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1254 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1255 return ConstantRange(std::move(Lower), std::move(Upper)); 1256 } 1257 1258 ConstantRange ConstantRange::binaryNot() const { 1259 if (isEmptySet()) 1260 return getEmpty(); 1261 1262 if (isWrappedSet()) 1263 return getFull(); 1264 1265 return ConstantRange(APInt::getAllOnesValue(getBitWidth())).sub(*this); 1266 } 1267 1268 ConstantRange 1269 ConstantRange::binaryAnd(const ConstantRange &Other) const { 1270 if (isEmptySet() || Other.isEmptySet()) 1271 return getEmpty(); 1272 1273 // Use APInt's implementation of AND for single element ranges. 1274 if (isSingleElement() && Other.isSingleElement()) 1275 return {*getSingleElement() & *Other.getSingleElement()}; 1276 1277 // TODO: replace this with something less conservative 1278 1279 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); 1280 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1); 1281 } 1282 1283 ConstantRange 1284 ConstantRange::binaryOr(const ConstantRange &Other) const { 1285 if (isEmptySet() || Other.isEmptySet()) 1286 return getEmpty(); 1287 1288 // Use APInt's implementation of OR for single element ranges. 1289 if (isSingleElement() && Other.isSingleElement()) 1290 return {*getSingleElement() | *Other.getSingleElement()}; 1291 1292 // TODO: replace this with something less conservative 1293 1294 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1295 return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth())); 1296 } 1297 1298 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const { 1299 if (isEmptySet() || Other.isEmptySet()) 1300 return getEmpty(); 1301 1302 // Use APInt's implementation of XOR for single element ranges. 1303 if (isSingleElement() && Other.isSingleElement()) 1304 return {*getSingleElement() ^ *Other.getSingleElement()}; 1305 1306 // Special-case binary complement, since we can give a precise answer. 1307 if (Other.isSingleElement() && Other.getSingleElement()->isAllOnesValue()) 1308 return binaryNot(); 1309 if (isSingleElement() && getSingleElement()->isAllOnesValue()) 1310 return Other.binaryNot(); 1311 1312 // TODO: replace this with something less conservative 1313 return getFull(); 1314 } 1315 1316 ConstantRange 1317 ConstantRange::shl(const ConstantRange &Other) const { 1318 if (isEmptySet() || Other.isEmptySet()) 1319 return getEmpty(); 1320 1321 APInt max = getUnsignedMax(); 1322 APInt Other_umax = Other.getUnsignedMax(); 1323 1324 // If we are shifting by maximum amount of 1325 // zero return return the original range. 1326 if (Other_umax.isNullValue()) 1327 return *this; 1328 // there's overflow! 1329 if (Other_umax.ugt(max.countLeadingZeros())) 1330 return getFull(); 1331 1332 // FIXME: implement the other tricky cases 1333 1334 APInt min = getUnsignedMin(); 1335 min <<= Other.getUnsignedMin(); 1336 max <<= Other_umax; 1337 1338 return ConstantRange(std::move(min), std::move(max) + 1); 1339 } 1340 1341 ConstantRange 1342 ConstantRange::lshr(const ConstantRange &Other) const { 1343 if (isEmptySet() || Other.isEmptySet()) 1344 return getEmpty(); 1345 1346 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; 1347 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); 1348 return getNonEmpty(std::move(min), std::move(max)); 1349 } 1350 1351 ConstantRange 1352 ConstantRange::ashr(const ConstantRange &Other) const { 1353 if (isEmptySet() || Other.isEmptySet()) 1354 return getEmpty(); 1355 1356 // May straddle zero, so handle both positive and negative cases. 1357 // 'PosMax' is the upper bound of the result of the ashr 1358 // operation, when Upper of the LHS of ashr is a non-negative. 1359 // number. Since ashr of a non-negative number will result in a 1360 // smaller number, the Upper value of LHS is shifted right with 1361 // the minimum value of 'Other' instead of the maximum value. 1362 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; 1363 1364 // 'PosMin' is the lower bound of the result of the ashr 1365 // operation, when Lower of the LHS is a non-negative number. 1366 // Since ashr of a non-negative number will result in a smaller 1367 // number, the Lower value of LHS is shifted right with the 1368 // maximum value of 'Other'. 1369 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); 1370 1371 // 'NegMax' is the upper bound of the result of the ashr 1372 // operation, when Upper of the LHS of ashr is a negative number. 1373 // Since 'ashr' of a negative number will result in a bigger 1374 // number, the Upper value of LHS is shifted right with the 1375 // maximum value of 'Other'. 1376 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; 1377 1378 // 'NegMin' is the lower bound of the result of the ashr 1379 // operation, when Lower of the LHS of ashr is a negative number. 1380 // Since 'ashr' of a negative number will result in a bigger 1381 // number, the Lower value of LHS is shifted right with the 1382 // minimum value of 'Other'. 1383 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); 1384 1385 APInt max, min; 1386 if (getSignedMin().isNonNegative()) { 1387 // Upper and Lower of LHS are non-negative. 1388 min = PosMin; 1389 max = PosMax; 1390 } else if (getSignedMax().isNegative()) { 1391 // Upper and Lower of LHS are negative. 1392 min = NegMin; 1393 max = NegMax; 1394 } else { 1395 // Upper is non-negative and Lower is negative. 1396 min = NegMin; 1397 max = PosMax; 1398 } 1399 return getNonEmpty(std::move(min), std::move(max)); 1400 } 1401 1402 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const { 1403 if (isEmptySet() || Other.isEmptySet()) 1404 return getEmpty(); 1405 1406 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin()); 1407 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1; 1408 return getNonEmpty(std::move(NewL), std::move(NewU)); 1409 } 1410 1411 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const { 1412 if (isEmptySet() || Other.isEmptySet()) 1413 return getEmpty(); 1414 1415 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin()); 1416 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1; 1417 return getNonEmpty(std::move(NewL), std::move(NewU)); 1418 } 1419 1420 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const { 1421 if (isEmptySet() || Other.isEmptySet()) 1422 return getEmpty(); 1423 1424 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax()); 1425 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1; 1426 return getNonEmpty(std::move(NewL), std::move(NewU)); 1427 } 1428 1429 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const { 1430 if (isEmptySet() || Other.isEmptySet()) 1431 return getEmpty(); 1432 1433 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax()); 1434 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1; 1435 return getNonEmpty(std::move(NewL), std::move(NewU)); 1436 } 1437 1438 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const { 1439 if (isEmptySet() || Other.isEmptySet()) 1440 return getEmpty(); 1441 1442 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin()); 1443 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1; 1444 return getNonEmpty(std::move(NewL), std::move(NewU)); 1445 } 1446 1447 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const { 1448 if (isEmptySet() || Other.isEmptySet()) 1449 return getEmpty(); 1450 1451 // Because we could be dealing with negative numbers here, the lower bound is 1452 // the smallest of the cartesian product of the lower and upper ranges; 1453 // for example: 1454 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1455 // Similarly for the upper bound, swapping min for max. 1456 1457 APInt this_min = getSignedMin().sext(getBitWidth() * 2); 1458 APInt this_max = getSignedMax().sext(getBitWidth() * 2); 1459 APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1460 APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1461 1462 auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min, 1463 this_max * Other_max}; 1464 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1465 1466 // Note that we wanted to perform signed saturating multiplication, 1467 // so since we performed plain multiplication in twice the bitwidth, 1468 // we need to perform signed saturating truncation. 1469 return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()), 1470 std::max(L, Compare).truncSSat(getBitWidth()) + 1); 1471 } 1472 1473 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const { 1474 if (isEmptySet() || Other.isEmptySet()) 1475 return getEmpty(); 1476 1477 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin()); 1478 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1; 1479 return getNonEmpty(std::move(NewL), std::move(NewU)); 1480 } 1481 1482 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const { 1483 if (isEmptySet() || Other.isEmptySet()) 1484 return getEmpty(); 1485 1486 APInt Min = getSignedMin(), Max = getSignedMax(); 1487 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax(); 1488 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax); 1489 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1; 1490 return getNonEmpty(std::move(NewL), std::move(NewU)); 1491 } 1492 1493 ConstantRange ConstantRange::inverse() const { 1494 if (isFullSet()) 1495 return getEmpty(); 1496 if (isEmptySet()) 1497 return getFull(); 1498 return ConstantRange(Upper, Lower); 1499 } 1500 1501 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const { 1502 if (isEmptySet()) 1503 return getEmpty(); 1504 1505 if (isSignWrappedSet()) { 1506 APInt Lo; 1507 // Check whether the range crosses zero. 1508 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive()) 1509 Lo = APInt::getNullValue(getBitWidth()); 1510 else 1511 Lo = APIntOps::umin(Lower, -Upper + 1); 1512 1513 // If SignedMin is not poison, then it is included in the result range. 1514 if (IntMinIsPoison) 1515 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth())); 1516 else 1517 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1); 1518 } 1519 1520 APInt SMin = getSignedMin(), SMax = getSignedMax(); 1521 1522 // Skip SignedMin if it is poison. 1523 if (IntMinIsPoison && SMin.isMinSignedValue()) { 1524 // The range may become empty if it *only* contains SignedMin. 1525 if (SMax.isMinSignedValue()) 1526 return getEmpty(); 1527 ++SMin; 1528 } 1529 1530 // All non-negative. 1531 if (SMin.isNonNegative()) 1532 return *this; 1533 1534 // All negative. 1535 if (SMax.isNegative()) 1536 return ConstantRange(-SMax, -SMin + 1); 1537 1538 // Range crosses zero. 1539 return ConstantRange(APInt::getNullValue(getBitWidth()), 1540 APIntOps::umax(-SMin, SMax) + 1); 1541 } 1542 1543 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow( 1544 const ConstantRange &Other) const { 1545 if (isEmptySet() || Other.isEmptySet()) 1546 return OverflowResult::MayOverflow; 1547 1548 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1549 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1550 1551 // a u+ b overflows high iff a u> ~b. 1552 if (Min.ugt(~OtherMin)) 1553 return OverflowResult::AlwaysOverflowsHigh; 1554 if (Max.ugt(~OtherMax)) 1555 return OverflowResult::MayOverflow; 1556 return OverflowResult::NeverOverflows; 1557 } 1558 1559 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow( 1560 const ConstantRange &Other) const { 1561 if (isEmptySet() || Other.isEmptySet()) 1562 return OverflowResult::MayOverflow; 1563 1564 APInt Min = getSignedMin(), Max = getSignedMax(); 1565 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1566 1567 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1568 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1569 1570 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b. 1571 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b. 1572 if (Min.isNonNegative() && OtherMin.isNonNegative() && 1573 Min.sgt(SignedMax - OtherMin)) 1574 return OverflowResult::AlwaysOverflowsHigh; 1575 if (Max.isNegative() && OtherMax.isNegative() && 1576 Max.slt(SignedMin - OtherMax)) 1577 return OverflowResult::AlwaysOverflowsLow; 1578 1579 if (Max.isNonNegative() && OtherMax.isNonNegative() && 1580 Max.sgt(SignedMax - OtherMax)) 1581 return OverflowResult::MayOverflow; 1582 if (Min.isNegative() && OtherMin.isNegative() && 1583 Min.slt(SignedMin - OtherMin)) 1584 return OverflowResult::MayOverflow; 1585 1586 return OverflowResult::NeverOverflows; 1587 } 1588 1589 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow( 1590 const ConstantRange &Other) const { 1591 if (isEmptySet() || Other.isEmptySet()) 1592 return OverflowResult::MayOverflow; 1593 1594 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1595 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1596 1597 // a u- b overflows low iff a u< b. 1598 if (Max.ult(OtherMin)) 1599 return OverflowResult::AlwaysOverflowsLow; 1600 if (Min.ult(OtherMax)) 1601 return OverflowResult::MayOverflow; 1602 return OverflowResult::NeverOverflows; 1603 } 1604 1605 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow( 1606 const ConstantRange &Other) const { 1607 if (isEmptySet() || Other.isEmptySet()) 1608 return OverflowResult::MayOverflow; 1609 1610 APInt Min = getSignedMin(), Max = getSignedMax(); 1611 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1612 1613 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1614 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1615 1616 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b. 1617 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b. 1618 if (Min.isNonNegative() && OtherMax.isNegative() && 1619 Min.sgt(SignedMax + OtherMax)) 1620 return OverflowResult::AlwaysOverflowsHigh; 1621 if (Max.isNegative() && OtherMin.isNonNegative() && 1622 Max.slt(SignedMin + OtherMin)) 1623 return OverflowResult::AlwaysOverflowsLow; 1624 1625 if (Max.isNonNegative() && OtherMin.isNegative() && 1626 Max.sgt(SignedMax + OtherMin)) 1627 return OverflowResult::MayOverflow; 1628 if (Min.isNegative() && OtherMax.isNonNegative() && 1629 Min.slt(SignedMin + OtherMax)) 1630 return OverflowResult::MayOverflow; 1631 1632 return OverflowResult::NeverOverflows; 1633 } 1634 1635 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow( 1636 const ConstantRange &Other) const { 1637 if (isEmptySet() || Other.isEmptySet()) 1638 return OverflowResult::MayOverflow; 1639 1640 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1641 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1642 bool Overflow; 1643 1644 (void) Min.umul_ov(OtherMin, Overflow); 1645 if (Overflow) 1646 return OverflowResult::AlwaysOverflowsHigh; 1647 1648 (void) Max.umul_ov(OtherMax, Overflow); 1649 if (Overflow) 1650 return OverflowResult::MayOverflow; 1651 1652 return OverflowResult::NeverOverflows; 1653 } 1654 1655 void ConstantRange::print(raw_ostream &OS) const { 1656 if (isFullSet()) 1657 OS << "full-set"; 1658 else if (isEmptySet()) 1659 OS << "empty-set"; 1660 else 1661 OS << "[" << Lower << "," << Upper << ")"; 1662 } 1663 1664 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1665 LLVM_DUMP_METHOD void ConstantRange::dump() const { 1666 print(dbgs()); 1667 } 1668 #endif 1669 1670 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 1671 const unsigned NumRanges = Ranges.getNumOperands() / 2; 1672 assert(NumRanges >= 1 && "Must have at least one range!"); 1673 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 1674 1675 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 1676 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 1677 1678 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 1679 1680 for (unsigned i = 1; i < NumRanges; ++i) { 1681 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 1682 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 1683 1684 // Note: unionWith will potentially create a range that contains values not 1685 // contained in any of the original N ranges. 1686 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 1687 } 1688 1689 return CR; 1690 } 1691