1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Represent a range of possible values that may occur when the program is run 10 // for an integral value. This keeps track of a lower and upper bound for the 11 // constant, which MAY wrap around the end of the numeric range. To do this, it 12 // keeps track of a [lower, upper) bound, which specifies an interval just like 13 // STL iterators. When used with boolean values, the following are important 14 // ranges (other integral ranges use min/max values for special range values): 15 // 16 // [F, F) = {} = Empty set 17 // [T, F) = {T} 18 // [F, T) = {F} 19 // [T, T) = {F, T} = Full set 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <optional> 41 42 using namespace llvm; 43 44 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) 45 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), 46 Upper(Lower) {} 47 48 ConstantRange::ConstantRange(APInt V) 49 : Lower(std::move(V)), Upper(Lower + 1) {} 50 51 ConstantRange::ConstantRange(APInt L, APInt U) 52 : Lower(std::move(L)), Upper(std::move(U)) { 53 assert(Lower.getBitWidth() == Upper.getBitWidth() && 54 "ConstantRange with unequal bit widths"); 55 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && 56 "Lower == Upper, but they aren't min or max value!"); 57 } 58 59 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known, 60 bool IsSigned) { 61 assert(!Known.hasConflict() && "Expected valid KnownBits"); 62 63 if (Known.isUnknown()) 64 return getFull(Known.getBitWidth()); 65 66 // For unsigned ranges, or signed ranges with known sign bit, create a simple 67 // range between the smallest and largest possible value. 68 if (!IsSigned || Known.isNegative() || Known.isNonNegative()) 69 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1); 70 71 // If we don't know the sign bit, pick the lower bound as a negative number 72 // and the upper bound as a non-negative one. 73 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue(); 74 Lower.setSignBit(); 75 Upper.clearSignBit(); 76 return ConstantRange(Lower, Upper + 1); 77 } 78 79 KnownBits ConstantRange::toKnownBits() const { 80 // TODO: We could return conflicting known bits here, but consumers are 81 // likely not prepared for that. 82 if (isEmptySet()) 83 return KnownBits(getBitWidth()); 84 85 // We can only retain the top bits that are the same between min and max. 86 APInt Min = getUnsignedMin(); 87 APInt Max = getUnsignedMax(); 88 KnownBits Known = KnownBits::makeConstant(Min); 89 if (std::optional<unsigned> DifferentBit = 90 APIntOps::GetMostSignificantDifferentBit(Min, Max)) { 91 Known.Zero.clearLowBits(*DifferentBit + 1); 92 Known.One.clearLowBits(*DifferentBit + 1); 93 } 94 return Known; 95 } 96 97 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, 98 const ConstantRange &CR) { 99 if (CR.isEmptySet()) 100 return CR; 101 102 uint32_t W = CR.getBitWidth(); 103 switch (Pred) { 104 default: 105 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); 106 case CmpInst::ICMP_EQ: 107 return CR; 108 case CmpInst::ICMP_NE: 109 if (CR.isSingleElement()) 110 return ConstantRange(CR.getUpper(), CR.getLower()); 111 return getFull(W); 112 case CmpInst::ICMP_ULT: { 113 APInt UMax(CR.getUnsignedMax()); 114 if (UMax.isMinValue()) 115 return getEmpty(W); 116 return ConstantRange(APInt::getMinValue(W), std::move(UMax)); 117 } 118 case CmpInst::ICMP_SLT: { 119 APInt SMax(CR.getSignedMax()); 120 if (SMax.isMinSignedValue()) 121 return getEmpty(W); 122 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); 123 } 124 case CmpInst::ICMP_ULE: 125 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1); 126 case CmpInst::ICMP_SLE: 127 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1); 128 case CmpInst::ICMP_UGT: { 129 APInt UMin(CR.getUnsignedMin()); 130 if (UMin.isMaxValue()) 131 return getEmpty(W); 132 return ConstantRange(std::move(UMin) + 1, APInt::getZero(W)); 133 } 134 case CmpInst::ICMP_SGT: { 135 APInt SMin(CR.getSignedMin()); 136 if (SMin.isMaxSignedValue()) 137 return getEmpty(W); 138 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); 139 } 140 case CmpInst::ICMP_UGE: 141 return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W)); 142 case CmpInst::ICMP_SGE: 143 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W)); 144 } 145 } 146 147 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 148 const ConstantRange &CR) { 149 // Follows from De-Morgan's laws: 150 // 151 // ~(~A union ~B) == A intersect B. 152 // 153 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) 154 .inverse(); 155 } 156 157 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, 158 const APInt &C) { 159 // Computes the exact range that is equal to both the constant ranges returned 160 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true 161 // when RHS is a singleton such as an APInt and so the assert is valid. 162 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion 163 // returns [0,4) but makeSatisfyICmpRegion returns [0,2). 164 // 165 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); 166 return makeAllowedICmpRegion(Pred, C); 167 } 168 169 bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate( 170 const ConstantRange &CR1, const ConstantRange &CR2) { 171 if (CR1.isEmptySet() || CR2.isEmptySet()) 172 return true; 173 174 return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) || 175 (CR1.isAllNegative() && CR2.isAllNegative()); 176 } 177 178 bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate( 179 const ConstantRange &CR1, const ConstantRange &CR2) { 180 if (CR1.isEmptySet() || CR2.isEmptySet()) 181 return true; 182 183 return (CR1.isAllNonNegative() && CR2.isAllNegative()) || 184 (CR1.isAllNegative() && CR2.isAllNonNegative()); 185 } 186 187 CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness( 188 CmpInst::Predicate Pred, const ConstantRange &CR1, 189 const ConstantRange &CR2) { 190 assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) && 191 "Only for relational integer predicates!"); 192 193 CmpInst::Predicate FlippedSignednessPred = 194 CmpInst::getFlippedSignednessPredicate(Pred); 195 196 if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2)) 197 return FlippedSignednessPred; 198 199 if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2)) 200 return CmpInst::getInversePredicate(FlippedSignednessPred); 201 202 return CmpInst::Predicate::BAD_ICMP_PREDICATE; 203 } 204 205 void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 206 APInt &RHS, APInt &Offset) const { 207 Offset = APInt(getBitWidth(), 0); 208 if (isFullSet() || isEmptySet()) { 209 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 210 RHS = APInt(getBitWidth(), 0); 211 } else if (auto *OnlyElt = getSingleElement()) { 212 Pred = CmpInst::ICMP_EQ; 213 RHS = *OnlyElt; 214 } else if (auto *OnlyMissingElt = getSingleMissingElement()) { 215 Pred = CmpInst::ICMP_NE; 216 RHS = *OnlyMissingElt; 217 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { 218 Pred = 219 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 220 RHS = getUpper(); 221 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { 222 Pred = 223 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; 224 RHS = getLower(); 225 } else { 226 Pred = CmpInst::ICMP_ULT; 227 RHS = getUpper() - getLower(); 228 Offset = -getLower(); 229 } 230 231 assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) && 232 "Bad result!"); 233 } 234 235 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 236 APInt &RHS) const { 237 APInt Offset; 238 getEquivalentICmp(Pred, RHS, Offset); 239 return Offset.isZero(); 240 } 241 242 bool ConstantRange::icmp(CmpInst::Predicate Pred, 243 const ConstantRange &Other) const { 244 return makeSatisfyingICmpRegion(Pred, Other).contains(*this); 245 } 246 247 /// Exact mul nuw region for single element RHS. 248 static ConstantRange makeExactMulNUWRegion(const APInt &V) { 249 unsigned BitWidth = V.getBitWidth(); 250 if (V == 0) 251 return ConstantRange::getFull(V.getBitWidth()); 252 253 return ConstantRange::getNonEmpty( 254 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V, 255 APInt::Rounding::UP), 256 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V, 257 APInt::Rounding::DOWN) + 1); 258 } 259 260 /// Exact mul nsw region for single element RHS. 261 static ConstantRange makeExactMulNSWRegion(const APInt &V) { 262 // Handle 0 and -1 separately to avoid division by zero or overflow. 263 unsigned BitWidth = V.getBitWidth(); 264 if (V == 0) 265 return ConstantRange::getFull(BitWidth); 266 267 APInt MinValue = APInt::getSignedMinValue(BitWidth); 268 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 269 // e.g. Returning [-127, 127], represented as [-127, -128). 270 if (V.isAllOnes()) 271 return ConstantRange(-MaxValue, MinValue); 272 273 APInt Lower, Upper; 274 if (V.isNegative()) { 275 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); 276 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); 277 } else { 278 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); 279 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); 280 } 281 return ConstantRange::getNonEmpty(Lower, Upper + 1); 282 } 283 284 ConstantRange 285 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, 286 const ConstantRange &Other, 287 unsigned NoWrapKind) { 288 using OBO = OverflowingBinaryOperator; 289 290 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 291 292 assert((NoWrapKind == OBO::NoSignedWrap || 293 NoWrapKind == OBO::NoUnsignedWrap) && 294 "NoWrapKind invalid!"); 295 296 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; 297 unsigned BitWidth = Other.getBitWidth(); 298 299 switch (BinOp) { 300 default: 301 llvm_unreachable("Unsupported binary op"); 302 303 case Instruction::Add: { 304 if (Unsigned) 305 return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax()); 306 307 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 308 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 309 return getNonEmpty( 310 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal, 311 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal); 312 } 313 314 case Instruction::Sub: { 315 if (Unsigned) 316 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth)); 317 318 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 319 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 320 return getNonEmpty( 321 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal, 322 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal); 323 } 324 325 case Instruction::Mul: 326 if (Unsigned) 327 return makeExactMulNUWRegion(Other.getUnsignedMax()); 328 329 return makeExactMulNSWRegion(Other.getSignedMin()) 330 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax())); 331 332 case Instruction::Shl: { 333 // For given range of shift amounts, if we ignore all illegal shift amounts 334 // (that always produce poison), what shift amount range is left? 335 ConstantRange ShAmt = Other.intersectWith( 336 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1))); 337 if (ShAmt.isEmptySet()) { 338 // If the entire range of shift amounts is already poison-producing, 339 // then we can freely add more poison-producing flags ontop of that. 340 return getFull(BitWidth); 341 } 342 // There are some legal shift amounts, we can compute conservatively-correct 343 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax 344 // to be at most bitwidth-1, which results in most conservative range. 345 APInt ShAmtUMax = ShAmt.getUnsignedMax(); 346 if (Unsigned) 347 return getNonEmpty(APInt::getZero(BitWidth), 348 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1); 349 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax), 350 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1); 351 } 352 } 353 } 354 355 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp, 356 const APInt &Other, 357 unsigned NoWrapKind) { 358 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as 359 // "for all" and "for any" coincide in this case. 360 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind); 361 } 362 363 bool ConstantRange::isFullSet() const { 364 return Lower == Upper && Lower.isMaxValue(); 365 } 366 367 bool ConstantRange::isEmptySet() const { 368 return Lower == Upper && Lower.isMinValue(); 369 } 370 371 bool ConstantRange::isWrappedSet() const { 372 return Lower.ugt(Upper) && !Upper.isZero(); 373 } 374 375 bool ConstantRange::isUpperWrapped() const { 376 return Lower.ugt(Upper); 377 } 378 379 bool ConstantRange::isSignWrappedSet() const { 380 return Lower.sgt(Upper) && !Upper.isMinSignedValue(); 381 } 382 383 bool ConstantRange::isUpperSignWrapped() const { 384 return Lower.sgt(Upper); 385 } 386 387 bool 388 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { 389 assert(getBitWidth() == Other.getBitWidth()); 390 if (isFullSet()) 391 return false; 392 if (Other.isFullSet()) 393 return true; 394 return (Upper - Lower).ult(Other.Upper - Other.Lower); 395 } 396 397 bool 398 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { 399 // If this a full set, we need special handling to avoid needing an extra bit 400 // to represent the size. 401 if (isFullSet()) 402 return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); 403 404 return (Upper - Lower).ugt(MaxSize); 405 } 406 407 bool ConstantRange::isAllNegative() const { 408 // Empty set is all negative, full set is not. 409 if (isEmptySet()) 410 return true; 411 if (isFullSet()) 412 return false; 413 414 return !isUpperSignWrapped() && !Upper.isStrictlyPositive(); 415 } 416 417 bool ConstantRange::isAllNonNegative() const { 418 // Empty and full set are automatically treated correctly. 419 return !isSignWrappedSet() && Lower.isNonNegative(); 420 } 421 422 APInt ConstantRange::getUnsignedMax() const { 423 if (isFullSet() || isUpperWrapped()) 424 return APInt::getMaxValue(getBitWidth()); 425 return getUpper() - 1; 426 } 427 428 APInt ConstantRange::getUnsignedMin() const { 429 if (isFullSet() || isWrappedSet()) 430 return APInt::getMinValue(getBitWidth()); 431 return getLower(); 432 } 433 434 APInt ConstantRange::getSignedMax() const { 435 if (isFullSet() || isUpperSignWrapped()) 436 return APInt::getSignedMaxValue(getBitWidth()); 437 return getUpper() - 1; 438 } 439 440 APInt ConstantRange::getSignedMin() const { 441 if (isFullSet() || isSignWrappedSet()) 442 return APInt::getSignedMinValue(getBitWidth()); 443 return getLower(); 444 } 445 446 bool ConstantRange::contains(const APInt &V) const { 447 if (Lower == Upper) 448 return isFullSet(); 449 450 if (!isUpperWrapped()) 451 return Lower.ule(V) && V.ult(Upper); 452 return Lower.ule(V) || V.ult(Upper); 453 } 454 455 bool ConstantRange::contains(const ConstantRange &Other) const { 456 if (isFullSet() || Other.isEmptySet()) return true; 457 if (isEmptySet() || Other.isFullSet()) return false; 458 459 if (!isUpperWrapped()) { 460 if (Other.isUpperWrapped()) 461 return false; 462 463 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); 464 } 465 466 if (!Other.isUpperWrapped()) 467 return Other.getUpper().ule(Upper) || 468 Lower.ule(Other.getLower()); 469 470 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); 471 } 472 473 unsigned ConstantRange::getActiveBits() const { 474 if (isEmptySet()) 475 return 0; 476 477 return getUnsignedMax().getActiveBits(); 478 } 479 480 unsigned ConstantRange::getMinSignedBits() const { 481 if (isEmptySet()) 482 return 0; 483 484 return std::max(getSignedMin().getMinSignedBits(), 485 getSignedMax().getMinSignedBits()); 486 } 487 488 ConstantRange ConstantRange::subtract(const APInt &Val) const { 489 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); 490 // If the set is empty or full, don't modify the endpoints. 491 if (Lower == Upper) 492 return *this; 493 return ConstantRange(Lower - Val, Upper - Val); 494 } 495 496 ConstantRange ConstantRange::difference(const ConstantRange &CR) const { 497 return intersectWith(CR.inverse()); 498 } 499 500 static ConstantRange getPreferredRange( 501 const ConstantRange &CR1, const ConstantRange &CR2, 502 ConstantRange::PreferredRangeType Type) { 503 if (Type == ConstantRange::Unsigned) { 504 if (!CR1.isWrappedSet() && CR2.isWrappedSet()) 505 return CR1; 506 if (CR1.isWrappedSet() && !CR2.isWrappedSet()) 507 return CR2; 508 } else if (Type == ConstantRange::Signed) { 509 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet()) 510 return CR1; 511 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet()) 512 return CR2; 513 } 514 515 if (CR1.isSizeStrictlySmallerThan(CR2)) 516 return CR1; 517 return CR2; 518 } 519 520 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, 521 PreferredRangeType Type) const { 522 assert(getBitWidth() == CR.getBitWidth() && 523 "ConstantRange types don't agree!"); 524 525 // Handle common cases. 526 if ( isEmptySet() || CR.isFullSet()) return *this; 527 if (CR.isEmptySet() || isFullSet()) return CR; 528 529 if (!isUpperWrapped() && CR.isUpperWrapped()) 530 return CR.intersectWith(*this, Type); 531 532 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 533 if (Lower.ult(CR.Lower)) { 534 // L---U : this 535 // L---U : CR 536 if (Upper.ule(CR.Lower)) 537 return getEmpty(); 538 539 // L---U : this 540 // L---U : CR 541 if (Upper.ult(CR.Upper)) 542 return ConstantRange(CR.Lower, Upper); 543 544 // L-------U : this 545 // L---U : CR 546 return CR; 547 } 548 // L---U : this 549 // L-------U : CR 550 if (Upper.ult(CR.Upper)) 551 return *this; 552 553 // L-----U : this 554 // L-----U : CR 555 if (Lower.ult(CR.Upper)) 556 return ConstantRange(Lower, CR.Upper); 557 558 // L---U : this 559 // L---U : CR 560 return getEmpty(); 561 } 562 563 if (isUpperWrapped() && !CR.isUpperWrapped()) { 564 if (CR.Lower.ult(Upper)) { 565 // ------U L--- : this 566 // L--U : CR 567 if (CR.Upper.ult(Upper)) 568 return CR; 569 570 // ------U L--- : this 571 // L------U : CR 572 if (CR.Upper.ule(Lower)) 573 return ConstantRange(CR.Lower, Upper); 574 575 // ------U L--- : this 576 // L----------U : CR 577 return getPreferredRange(*this, CR, Type); 578 } 579 if (CR.Lower.ult(Lower)) { 580 // --U L---- : this 581 // L--U : CR 582 if (CR.Upper.ule(Lower)) 583 return getEmpty(); 584 585 // --U L---- : this 586 // L------U : CR 587 return ConstantRange(Lower, CR.Upper); 588 } 589 590 // --U L------ : this 591 // L--U : CR 592 return CR; 593 } 594 595 if (CR.Upper.ult(Upper)) { 596 // ------U L-- : this 597 // --U L------ : CR 598 if (CR.Lower.ult(Upper)) 599 return getPreferredRange(*this, CR, Type); 600 601 // ----U L-- : this 602 // --U L---- : CR 603 if (CR.Lower.ult(Lower)) 604 return ConstantRange(Lower, CR.Upper); 605 606 // ----U L---- : this 607 // --U L-- : CR 608 return CR; 609 } 610 if (CR.Upper.ule(Lower)) { 611 // --U L-- : this 612 // ----U L---- : CR 613 if (CR.Lower.ult(Lower)) 614 return *this; 615 616 // --U L---- : this 617 // ----U L-- : CR 618 return ConstantRange(CR.Lower, Upper); 619 } 620 621 // --U L------ : this 622 // ------U L-- : CR 623 return getPreferredRange(*this, CR, Type); 624 } 625 626 ConstantRange ConstantRange::unionWith(const ConstantRange &CR, 627 PreferredRangeType Type) const { 628 assert(getBitWidth() == CR.getBitWidth() && 629 "ConstantRange types don't agree!"); 630 631 if ( isFullSet() || CR.isEmptySet()) return *this; 632 if (CR.isFullSet() || isEmptySet()) return CR; 633 634 if (!isUpperWrapped() && CR.isUpperWrapped()) 635 return CR.unionWith(*this, Type); 636 637 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 638 // L---U and L---U : this 639 // L---U L---U : CR 640 // result in one of 641 // L---------U 642 // -----U L----- 643 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) 644 return getPreferredRange( 645 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 646 647 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 648 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; 649 650 if (L.isZero() && U.isZero()) 651 return getFull(); 652 653 return ConstantRange(std::move(L), std::move(U)); 654 } 655 656 if (!CR.isUpperWrapped()) { 657 // ------U L----- and ------U L----- : this 658 // L--U L--U : CR 659 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) 660 return *this; 661 662 // ------U L----- : this 663 // L---------U : CR 664 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) 665 return getFull(); 666 667 // ----U L---- : this 668 // L---U : CR 669 // results in one of 670 // ----------U L---- 671 // ----U L---------- 672 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) 673 return getPreferredRange( 674 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 675 676 // ----U L----- : this 677 // L----U : CR 678 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper)) 679 return ConstantRange(CR.Lower, Upper); 680 681 // ------U L---- : this 682 // L-----U : CR 683 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) && 684 "ConstantRange::unionWith missed a case with one range wrapped"); 685 return ConstantRange(Lower, CR.Upper); 686 } 687 688 // ------U L---- and ------U L---- : this 689 // -U L----------- and ------------U L : CR 690 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) 691 return getFull(); 692 693 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 694 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; 695 696 return ConstantRange(std::move(L), std::move(U)); 697 } 698 699 std::optional<ConstantRange> 700 ConstantRange::exactIntersectWith(const ConstantRange &CR) const { 701 // TODO: This can be implemented more efficiently. 702 ConstantRange Result = intersectWith(CR); 703 if (Result == inverse().unionWith(CR.inverse()).inverse()) 704 return Result; 705 return std::nullopt; 706 } 707 708 std::optional<ConstantRange> 709 ConstantRange::exactUnionWith(const ConstantRange &CR) const { 710 // TODO: This can be implemented more efficiently. 711 ConstantRange Result = unionWith(CR); 712 if (Result == inverse().intersectWith(CR.inverse()).inverse()) 713 return Result; 714 return std::nullopt; 715 } 716 717 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, 718 uint32_t ResultBitWidth) const { 719 switch (CastOp) { 720 default: 721 llvm_unreachable("unsupported cast type"); 722 case Instruction::Trunc: 723 return truncate(ResultBitWidth); 724 case Instruction::SExt: 725 return signExtend(ResultBitWidth); 726 case Instruction::ZExt: 727 return zeroExtend(ResultBitWidth); 728 case Instruction::BitCast: 729 return *this; 730 case Instruction::FPToUI: 731 case Instruction::FPToSI: 732 if (getBitWidth() == ResultBitWidth) 733 return *this; 734 else 735 return getFull(ResultBitWidth); 736 case Instruction::UIToFP: { 737 // TODO: use input range if available 738 auto BW = getBitWidth(); 739 APInt Min = APInt::getMinValue(BW); 740 APInt Max = APInt::getMaxValue(BW); 741 if (ResultBitWidth > BW) { 742 Min = Min.zext(ResultBitWidth); 743 Max = Max.zext(ResultBitWidth); 744 } 745 return ConstantRange(std::move(Min), std::move(Max)); 746 } 747 case Instruction::SIToFP: { 748 // TODO: use input range if available 749 auto BW = getBitWidth(); 750 APInt SMin = APInt::getSignedMinValue(BW); 751 APInt SMax = APInt::getSignedMaxValue(BW); 752 if (ResultBitWidth > BW) { 753 SMin = SMin.sext(ResultBitWidth); 754 SMax = SMax.sext(ResultBitWidth); 755 } 756 return ConstantRange(std::move(SMin), std::move(SMax)); 757 } 758 case Instruction::FPTrunc: 759 case Instruction::FPExt: 760 case Instruction::IntToPtr: 761 case Instruction::PtrToInt: 762 case Instruction::AddrSpaceCast: 763 // Conservatively return getFull set. 764 return getFull(ResultBitWidth); 765 }; 766 } 767 768 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { 769 if (isEmptySet()) return getEmpty(DstTySize); 770 771 unsigned SrcTySize = getBitWidth(); 772 assert(SrcTySize < DstTySize && "Not a value extension"); 773 if (isFullSet() || isUpperWrapped()) { 774 // Change into [0, 1 << src bit width) 775 APInt LowerExt(DstTySize, 0); 776 if (!Upper) // special case: [X, 0) -- not really wrapping around 777 LowerExt = Lower.zext(DstTySize); 778 return ConstantRange(std::move(LowerExt), 779 APInt::getOneBitSet(DstTySize, SrcTySize)); 780 } 781 782 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); 783 } 784 785 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { 786 if (isEmptySet()) return getEmpty(DstTySize); 787 788 unsigned SrcTySize = getBitWidth(); 789 assert(SrcTySize < DstTySize && "Not a value extension"); 790 791 // special case: [X, INT_MIN) -- not really wrapping around 792 if (Upper.isMinSignedValue()) 793 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); 794 795 if (isFullSet() || isSignWrappedSet()) { 796 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), 797 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); 798 } 799 800 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); 801 } 802 803 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { 804 assert(getBitWidth() > DstTySize && "Not a value truncation"); 805 if (isEmptySet()) 806 return getEmpty(DstTySize); 807 if (isFullSet()) 808 return getFull(DstTySize); 809 810 APInt LowerDiv(Lower), UpperDiv(Upper); 811 ConstantRange Union(DstTySize, /*isFullSet=*/false); 812 813 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] 814 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and 815 // then we do the union with [MaxValue, Upper) 816 if (isUpperWrapped()) { 817 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole 818 // truncated range. 819 if (Upper.getActiveBits() > DstTySize || 820 Upper.countTrailingOnes() == DstTySize) 821 return getFull(DstTySize); 822 823 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); 824 UpperDiv.setAllBits(); 825 826 // Union covers the MaxValue case, so return if the remaining range is just 827 // MaxValue(DstTy). 828 if (LowerDiv == UpperDiv) 829 return Union; 830 } 831 832 // Chop off the most significant bits that are past the destination bitwidth. 833 if (LowerDiv.getActiveBits() > DstTySize) { 834 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. 835 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); 836 LowerDiv -= Adjust; 837 UpperDiv -= Adjust; 838 } 839 840 unsigned UpperDivWidth = UpperDiv.getActiveBits(); 841 if (UpperDivWidth <= DstTySize) 842 return ConstantRange(LowerDiv.trunc(DstTySize), 843 UpperDiv.trunc(DstTySize)).unionWith(Union); 844 845 // The truncated value wraps around. Check if we can do better than fullset. 846 if (UpperDivWidth == DstTySize + 1) { 847 // Clear the MSB so that UpperDiv wraps around. 848 UpperDiv.clearBit(DstTySize); 849 if (UpperDiv.ult(LowerDiv)) 850 return ConstantRange(LowerDiv.trunc(DstTySize), 851 UpperDiv.trunc(DstTySize)).unionWith(Union); 852 } 853 854 return getFull(DstTySize); 855 } 856 857 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { 858 unsigned SrcTySize = getBitWidth(); 859 if (SrcTySize > DstTySize) 860 return truncate(DstTySize); 861 if (SrcTySize < DstTySize) 862 return zeroExtend(DstTySize); 863 return *this; 864 } 865 866 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { 867 unsigned SrcTySize = getBitWidth(); 868 if (SrcTySize > DstTySize) 869 return truncate(DstTySize); 870 if (SrcTySize < DstTySize) 871 return signExtend(DstTySize); 872 return *this; 873 } 874 875 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, 876 const ConstantRange &Other) const { 877 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 878 879 switch (BinOp) { 880 case Instruction::Add: 881 return add(Other); 882 case Instruction::Sub: 883 return sub(Other); 884 case Instruction::Mul: 885 return multiply(Other); 886 case Instruction::UDiv: 887 return udiv(Other); 888 case Instruction::SDiv: 889 return sdiv(Other); 890 case Instruction::URem: 891 return urem(Other); 892 case Instruction::SRem: 893 return srem(Other); 894 case Instruction::Shl: 895 return shl(Other); 896 case Instruction::LShr: 897 return lshr(Other); 898 case Instruction::AShr: 899 return ashr(Other); 900 case Instruction::And: 901 return binaryAnd(Other); 902 case Instruction::Or: 903 return binaryOr(Other); 904 case Instruction::Xor: 905 return binaryXor(Other); 906 // Note: floating point operations applied to abstract ranges are just 907 // ideal integer operations with a lossy representation 908 case Instruction::FAdd: 909 return add(Other); 910 case Instruction::FSub: 911 return sub(Other); 912 case Instruction::FMul: 913 return multiply(Other); 914 default: 915 // Conservatively return getFull set. 916 return getFull(); 917 } 918 } 919 920 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp, 921 const ConstantRange &Other, 922 unsigned NoWrapKind) const { 923 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 924 925 switch (BinOp) { 926 case Instruction::Add: 927 return addWithNoWrap(Other, NoWrapKind); 928 case Instruction::Sub: 929 return subWithNoWrap(Other, NoWrapKind); 930 default: 931 // Don't know about this Overflowing Binary Operation. 932 // Conservatively fallback to plain binop handling. 933 return binaryOp(BinOp, Other); 934 } 935 } 936 937 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) { 938 switch (IntrinsicID) { 939 case Intrinsic::uadd_sat: 940 case Intrinsic::usub_sat: 941 case Intrinsic::sadd_sat: 942 case Intrinsic::ssub_sat: 943 case Intrinsic::umin: 944 case Intrinsic::umax: 945 case Intrinsic::smin: 946 case Intrinsic::smax: 947 case Intrinsic::abs: 948 return true; 949 default: 950 return false; 951 } 952 } 953 954 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID, 955 ArrayRef<ConstantRange> Ops) { 956 switch (IntrinsicID) { 957 case Intrinsic::uadd_sat: 958 return Ops[0].uadd_sat(Ops[1]); 959 case Intrinsic::usub_sat: 960 return Ops[0].usub_sat(Ops[1]); 961 case Intrinsic::sadd_sat: 962 return Ops[0].sadd_sat(Ops[1]); 963 case Intrinsic::ssub_sat: 964 return Ops[0].ssub_sat(Ops[1]); 965 case Intrinsic::umin: 966 return Ops[0].umin(Ops[1]); 967 case Intrinsic::umax: 968 return Ops[0].umax(Ops[1]); 969 case Intrinsic::smin: 970 return Ops[0].smin(Ops[1]); 971 case Intrinsic::smax: 972 return Ops[0].smax(Ops[1]); 973 case Intrinsic::abs: { 974 const APInt *IntMinIsPoison = Ops[1].getSingleElement(); 975 assert(IntMinIsPoison && "Must be known (immarg)"); 976 assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean"); 977 return Ops[0].abs(IntMinIsPoison->getBoolValue()); 978 } 979 default: 980 assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported"); 981 llvm_unreachable("Unsupported intrinsic"); 982 } 983 } 984 985 ConstantRange 986 ConstantRange::add(const ConstantRange &Other) const { 987 if (isEmptySet() || Other.isEmptySet()) 988 return getEmpty(); 989 if (isFullSet() || Other.isFullSet()) 990 return getFull(); 991 992 APInt NewLower = getLower() + Other.getLower(); 993 APInt NewUpper = getUpper() + Other.getUpper() - 1; 994 if (NewLower == NewUpper) 995 return getFull(); 996 997 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 998 if (X.isSizeStrictlySmallerThan(*this) || 999 X.isSizeStrictlySmallerThan(Other)) 1000 // We've wrapped, therefore, full set. 1001 return getFull(); 1002 return X; 1003 } 1004 1005 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other, 1006 unsigned NoWrapKind, 1007 PreferredRangeType RangeType) const { 1008 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow). 1009 // (X is from this, and Y is from Other) 1010 if (isEmptySet() || Other.isEmptySet()) 1011 return getEmpty(); 1012 if (isFullSet() && Other.isFullSet()) 1013 return getFull(); 1014 1015 using OBO = OverflowingBinaryOperator; 1016 ConstantRange Result = add(Other); 1017 1018 // If an overflow happens for every value pair in these two constant ranges, 1019 // we must return Empty set. In this case, we get that for free, because we 1020 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results 1021 // in an empty set. 1022 1023 if (NoWrapKind & OBO::NoSignedWrap) 1024 Result = Result.intersectWith(sadd_sat(Other), RangeType); 1025 1026 if (NoWrapKind & OBO::NoUnsignedWrap) 1027 Result = Result.intersectWith(uadd_sat(Other), RangeType); 1028 1029 return Result; 1030 } 1031 1032 ConstantRange 1033 ConstantRange::sub(const ConstantRange &Other) const { 1034 if (isEmptySet() || Other.isEmptySet()) 1035 return getEmpty(); 1036 if (isFullSet() || Other.isFullSet()) 1037 return getFull(); 1038 1039 APInt NewLower = getLower() - Other.getUpper() + 1; 1040 APInt NewUpper = getUpper() - Other.getLower(); 1041 if (NewLower == NewUpper) 1042 return getFull(); 1043 1044 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 1045 if (X.isSizeStrictlySmallerThan(*this) || 1046 X.isSizeStrictlySmallerThan(Other)) 1047 // We've wrapped, therefore, full set. 1048 return getFull(); 1049 return X; 1050 } 1051 1052 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other, 1053 unsigned NoWrapKind, 1054 PreferredRangeType RangeType) const { 1055 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow). 1056 // (X is from this, and Y is from Other) 1057 if (isEmptySet() || Other.isEmptySet()) 1058 return getEmpty(); 1059 if (isFullSet() && Other.isFullSet()) 1060 return getFull(); 1061 1062 using OBO = OverflowingBinaryOperator; 1063 ConstantRange Result = sub(Other); 1064 1065 // If an overflow happens for every value pair in these two constant ranges, 1066 // we must return Empty set. In signed case, we get that for free, because we 1067 // get lucky that intersection of sub() with ssub_sat() results in an 1068 // empty set. But for unsigned we must perform the overflow check manually. 1069 1070 if (NoWrapKind & OBO::NoSignedWrap) 1071 Result = Result.intersectWith(ssub_sat(Other), RangeType); 1072 1073 if (NoWrapKind & OBO::NoUnsignedWrap) { 1074 if (getUnsignedMax().ult(Other.getUnsignedMin())) 1075 return getEmpty(); // Always overflows. 1076 Result = Result.intersectWith(usub_sat(Other), RangeType); 1077 } 1078 1079 return Result; 1080 } 1081 1082 ConstantRange 1083 ConstantRange::multiply(const ConstantRange &Other) const { 1084 // TODO: If either operand is a single element and the multiply is known to 1085 // be non-wrapping, round the result min and max value to the appropriate 1086 // multiple of that element. If wrapping is possible, at least adjust the 1087 // range according to the greatest power-of-two factor of the single element. 1088 1089 if (isEmptySet() || Other.isEmptySet()) 1090 return getEmpty(); 1091 1092 // Multiplication is signedness-independent. However different ranges can be 1093 // obtained depending on how the input ranges are treated. These different 1094 // ranges are all conservatively correct, but one might be better than the 1095 // other. We calculate two ranges; one treating the inputs as unsigned 1096 // and the other signed, then return the smallest of these ranges. 1097 1098 // Unsigned range first. 1099 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); 1100 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); 1101 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); 1102 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); 1103 1104 ConstantRange Result_zext = ConstantRange(this_min * Other_min, 1105 this_max * Other_max + 1); 1106 ConstantRange UR = Result_zext.truncate(getBitWidth()); 1107 1108 // If the unsigned range doesn't wrap, and isn't negative then it's a range 1109 // from one positive number to another which is as good as we can generate. 1110 // In this case, skip the extra work of generating signed ranges which aren't 1111 // going to be better than this range. 1112 if (!UR.isUpperWrapped() && 1113 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) 1114 return UR; 1115 1116 // Now the signed range. Because we could be dealing with negative numbers 1117 // here, the lower bound is the smallest of the cartesian product of the 1118 // lower and upper ranges; for example: 1119 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1120 // Similarly for the upper bound, swapping min for max. 1121 1122 this_min = getSignedMin().sext(getBitWidth() * 2); 1123 this_max = getSignedMax().sext(getBitWidth() * 2); 1124 Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1125 Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1126 1127 auto L = {this_min * Other_min, this_min * Other_max, 1128 this_max * Other_min, this_max * Other_max}; 1129 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1130 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); 1131 ConstantRange SR = Result_sext.truncate(getBitWidth()); 1132 1133 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; 1134 } 1135 1136 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const { 1137 if (isEmptySet() || Other.isEmptySet()) 1138 return getEmpty(); 1139 1140 APInt Min = getSignedMin(); 1141 APInt Max = getSignedMax(); 1142 APInt OtherMin = Other.getSignedMin(); 1143 APInt OtherMax = Other.getSignedMax(); 1144 1145 bool O1, O2, O3, O4; 1146 auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2), 1147 Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)}; 1148 if (O1 || O2 || O3 || O4) 1149 return getFull(); 1150 1151 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1152 return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1); 1153 } 1154 1155 ConstantRange 1156 ConstantRange::smax(const ConstantRange &Other) const { 1157 // X smax Y is: range(smax(X_smin, Y_smin), 1158 // smax(X_smax, Y_smax)) 1159 if (isEmptySet() || Other.isEmptySet()) 1160 return getEmpty(); 1161 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); 1162 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; 1163 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1164 if (isSignWrappedSet() || Other.isSignWrappedSet()) 1165 return Res.intersectWith(unionWith(Other, Signed), Signed); 1166 return Res; 1167 } 1168 1169 ConstantRange 1170 ConstantRange::umax(const ConstantRange &Other) const { 1171 // X umax Y is: range(umax(X_umin, Y_umin), 1172 // umax(X_umax, Y_umax)) 1173 if (isEmptySet() || Other.isEmptySet()) 1174 return getEmpty(); 1175 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1176 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1177 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1178 if (isWrappedSet() || Other.isWrappedSet()) 1179 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned); 1180 return Res; 1181 } 1182 1183 ConstantRange 1184 ConstantRange::smin(const ConstantRange &Other) const { 1185 // X smin Y is: range(smin(X_smin, Y_smin), 1186 // smin(X_smax, Y_smax)) 1187 if (isEmptySet() || Other.isEmptySet()) 1188 return getEmpty(); 1189 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); 1190 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; 1191 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1192 if (isSignWrappedSet() || Other.isSignWrappedSet()) 1193 return Res.intersectWith(unionWith(Other, Signed), Signed); 1194 return Res; 1195 } 1196 1197 ConstantRange 1198 ConstantRange::umin(const ConstantRange &Other) const { 1199 // X umin Y is: range(umin(X_umin, Y_umin), 1200 // umin(X_umax, Y_umax)) 1201 if (isEmptySet() || Other.isEmptySet()) 1202 return getEmpty(); 1203 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); 1204 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1205 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1206 if (isWrappedSet() || Other.isWrappedSet()) 1207 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned); 1208 return Res; 1209 } 1210 1211 ConstantRange 1212 ConstantRange::udiv(const ConstantRange &RHS) const { 1213 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) 1214 return getEmpty(); 1215 1216 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); 1217 1218 APInt RHS_umin = RHS.getUnsignedMin(); 1219 if (RHS_umin.isZero()) { 1220 // We want the lowest value in RHS excluding zero. Usually that would be 1 1221 // except for a range in the form of [X, 1) in which case it would be X. 1222 if (RHS.getUpper() == 1) 1223 RHS_umin = RHS.getLower(); 1224 else 1225 RHS_umin = 1; 1226 } 1227 1228 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; 1229 return getNonEmpty(std::move(Lower), std::move(Upper)); 1230 } 1231 1232 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const { 1233 // We split up the LHS and RHS into positive and negative components 1234 // and then also compute the positive and negative components of the result 1235 // separately by combining division results with the appropriate signs. 1236 APInt Zero = APInt::getZero(getBitWidth()); 1237 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1238 // There are no positive 1-bit values. The 1 would get interpreted as -1. 1239 ConstantRange PosFilter = 1240 getBitWidth() == 1 ? getEmpty() 1241 : ConstantRange(APInt(getBitWidth(), 1), SignedMin); 1242 ConstantRange NegFilter(SignedMin, Zero); 1243 ConstantRange PosL = intersectWith(PosFilter); 1244 ConstantRange NegL = intersectWith(NegFilter); 1245 ConstantRange PosR = RHS.intersectWith(PosFilter); 1246 ConstantRange NegR = RHS.intersectWith(NegFilter); 1247 1248 ConstantRange PosRes = getEmpty(); 1249 if (!PosL.isEmptySet() && !PosR.isEmptySet()) 1250 // pos / pos = pos. 1251 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1), 1252 (PosL.Upper - 1).sdiv(PosR.Lower) + 1); 1253 1254 if (!NegL.isEmptySet() && !NegR.isEmptySet()) { 1255 // neg / neg = pos. 1256 // 1257 // We need to deal with one tricky case here: SignedMin / -1 is UB on the 1258 // IR level, so we'll want to exclude this case when calculating bounds. 1259 // (For APInts the operation is well-defined and yields SignedMin.) We 1260 // handle this by dropping either SignedMin from the LHS or -1 from the RHS. 1261 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower); 1262 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) { 1263 // Remove -1 from the LHS. Skip if it's the only element, as this would 1264 // leave us with an empty set. 1265 if (!NegR.Lower.isAllOnes()) { 1266 APInt AdjNegRUpper; 1267 if (RHS.Lower.isAllOnes()) 1268 // Negative part of [-1, X] without -1 is [SignedMin, X]. 1269 AdjNegRUpper = RHS.Upper; 1270 else 1271 // [X, -1] without -1 is [X, -2]. 1272 AdjNegRUpper = NegR.Upper - 1; 1273 1274 PosRes = PosRes.unionWith( 1275 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1)); 1276 } 1277 1278 // Remove SignedMin from the RHS. Skip if it's the only element, as this 1279 // would leave us with an empty set. 1280 if (NegL.Upper != SignedMin + 1) { 1281 APInt AdjNegLLower; 1282 if (Upper == SignedMin + 1) 1283 // Negative part of [X, SignedMin] without SignedMin is [X, -1]. 1284 AdjNegLLower = Lower; 1285 else 1286 // [SignedMin, X] without SignedMin is [SignedMin + 1, X]. 1287 AdjNegLLower = NegL.Lower + 1; 1288 1289 PosRes = PosRes.unionWith( 1290 ConstantRange(std::move(Lo), 1291 AdjNegLLower.sdiv(NegR.Upper - 1) + 1)); 1292 } 1293 } else { 1294 PosRes = PosRes.unionWith( 1295 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1)); 1296 } 1297 } 1298 1299 ConstantRange NegRes = getEmpty(); 1300 if (!PosL.isEmptySet() && !NegR.isEmptySet()) 1301 // pos / neg = neg. 1302 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1), 1303 PosL.Lower.sdiv(NegR.Lower) + 1); 1304 1305 if (!NegL.isEmptySet() && !PosR.isEmptySet()) 1306 // neg / pos = neg. 1307 NegRes = NegRes.unionWith( 1308 ConstantRange(NegL.Lower.sdiv(PosR.Lower), 1309 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1)); 1310 1311 // Prefer a non-wrapping signed range here. 1312 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed); 1313 1314 // Preserve the zero that we dropped when splitting the LHS by sign. 1315 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet())) 1316 Res = Res.unionWith(ConstantRange(Zero)); 1317 return Res; 1318 } 1319 1320 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const { 1321 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) 1322 return getEmpty(); 1323 1324 if (const APInt *RHSInt = RHS.getSingleElement()) { 1325 // UREM by null is UB. 1326 if (RHSInt->isZero()) 1327 return getEmpty(); 1328 // Use APInt's implementation of UREM for single element ranges. 1329 if (const APInt *LHSInt = getSingleElement()) 1330 return {LHSInt->urem(*RHSInt)}; 1331 } 1332 1333 // L % R for L < R is L. 1334 if (getUnsignedMax().ult(RHS.getUnsignedMin())) 1335 return *this; 1336 1337 // L % R is <= L and < R. 1338 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1; 1339 return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper)); 1340 } 1341 1342 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const { 1343 if (isEmptySet() || RHS.isEmptySet()) 1344 return getEmpty(); 1345 1346 if (const APInt *RHSInt = RHS.getSingleElement()) { 1347 // SREM by null is UB. 1348 if (RHSInt->isZero()) 1349 return getEmpty(); 1350 // Use APInt's implementation of SREM for single element ranges. 1351 if (const APInt *LHSInt = getSingleElement()) 1352 return {LHSInt->srem(*RHSInt)}; 1353 } 1354 1355 ConstantRange AbsRHS = RHS.abs(); 1356 APInt MinAbsRHS = AbsRHS.getUnsignedMin(); 1357 APInt MaxAbsRHS = AbsRHS.getUnsignedMax(); 1358 1359 // Modulus by zero is UB. 1360 if (MaxAbsRHS.isZero()) 1361 return getEmpty(); 1362 1363 if (MinAbsRHS.isZero()) 1364 ++MinAbsRHS; 1365 1366 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax(); 1367 1368 if (MinLHS.isNonNegative()) { 1369 // L % R for L < R is L. 1370 if (MaxLHS.ult(MinAbsRHS)) 1371 return *this; 1372 1373 // L % R is <= L and < R. 1374 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1375 return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper)); 1376 } 1377 1378 // Same basic logic as above, but the result is negative. 1379 if (MaxLHS.isNegative()) { 1380 if (MinLHS.ugt(-MinAbsRHS)) 1381 return *this; 1382 1383 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1384 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1)); 1385 } 1386 1387 // LHS range crosses zero. 1388 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1389 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1390 return ConstantRange(std::move(Lower), std::move(Upper)); 1391 } 1392 1393 ConstantRange ConstantRange::binaryNot() const { 1394 return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this); 1395 } 1396 1397 ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const { 1398 if (isEmptySet() || Other.isEmptySet()) 1399 return getEmpty(); 1400 1401 ConstantRange KnownBitsRange = 1402 fromKnownBits(toKnownBits() & Other.toKnownBits(), false); 1403 ConstantRange UMinUMaxRange = 1404 getNonEmpty(APInt::getZero(getBitWidth()), 1405 APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()) + 1); 1406 return KnownBitsRange.intersectWith(UMinUMaxRange); 1407 } 1408 1409 ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const { 1410 if (isEmptySet() || Other.isEmptySet()) 1411 return getEmpty(); 1412 1413 ConstantRange KnownBitsRange = 1414 fromKnownBits(toKnownBits() | Other.toKnownBits(), false); 1415 // Upper wrapped range. 1416 ConstantRange UMaxUMinRange = 1417 getNonEmpty(APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()), 1418 APInt::getZero(getBitWidth())); 1419 return KnownBitsRange.intersectWith(UMaxUMinRange); 1420 } 1421 1422 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const { 1423 if (isEmptySet() || Other.isEmptySet()) 1424 return getEmpty(); 1425 1426 // Use APInt's implementation of XOR for single element ranges. 1427 if (isSingleElement() && Other.isSingleElement()) 1428 return {*getSingleElement() ^ *Other.getSingleElement()}; 1429 1430 // Special-case binary complement, since we can give a precise answer. 1431 if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes()) 1432 return binaryNot(); 1433 if (isSingleElement() && getSingleElement()->isAllOnes()) 1434 return Other.binaryNot(); 1435 1436 return fromKnownBits(toKnownBits() ^ Other.toKnownBits(), /*IsSigned*/false); 1437 } 1438 1439 ConstantRange 1440 ConstantRange::shl(const ConstantRange &Other) const { 1441 if (isEmptySet() || Other.isEmptySet()) 1442 return getEmpty(); 1443 1444 APInt Min = getUnsignedMin(); 1445 APInt Max = getUnsignedMax(); 1446 if (const APInt *RHS = Other.getSingleElement()) { 1447 unsigned BW = getBitWidth(); 1448 if (RHS->uge(BW)) 1449 return getEmpty(); 1450 1451 unsigned EqualLeadingBits = (Min ^ Max).countLeadingZeros(); 1452 if (RHS->ule(EqualLeadingBits)) 1453 return getNonEmpty(Min << *RHS, (Max << *RHS) + 1); 1454 1455 return getNonEmpty(APInt::getZero(BW), 1456 APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1); 1457 } 1458 1459 APInt OtherMax = Other.getUnsignedMax(); 1460 1461 // There's overflow! 1462 if (OtherMax.ugt(Max.countLeadingZeros())) 1463 return getFull(); 1464 1465 // FIXME: implement the other tricky cases 1466 1467 Min <<= Other.getUnsignedMin(); 1468 Max <<= OtherMax; 1469 1470 return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1); 1471 } 1472 1473 ConstantRange 1474 ConstantRange::lshr(const ConstantRange &Other) const { 1475 if (isEmptySet() || Other.isEmptySet()) 1476 return getEmpty(); 1477 1478 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; 1479 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); 1480 return getNonEmpty(std::move(min), std::move(max)); 1481 } 1482 1483 ConstantRange 1484 ConstantRange::ashr(const ConstantRange &Other) const { 1485 if (isEmptySet() || Other.isEmptySet()) 1486 return getEmpty(); 1487 1488 // May straddle zero, so handle both positive and negative cases. 1489 // 'PosMax' is the upper bound of the result of the ashr 1490 // operation, when Upper of the LHS of ashr is a non-negative. 1491 // number. Since ashr of a non-negative number will result in a 1492 // smaller number, the Upper value of LHS is shifted right with 1493 // the minimum value of 'Other' instead of the maximum value. 1494 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; 1495 1496 // 'PosMin' is the lower bound of the result of the ashr 1497 // operation, when Lower of the LHS is a non-negative number. 1498 // Since ashr of a non-negative number will result in a smaller 1499 // number, the Lower value of LHS is shifted right with the 1500 // maximum value of 'Other'. 1501 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); 1502 1503 // 'NegMax' is the upper bound of the result of the ashr 1504 // operation, when Upper of the LHS of ashr is a negative number. 1505 // Since 'ashr' of a negative number will result in a bigger 1506 // number, the Upper value of LHS is shifted right with the 1507 // maximum value of 'Other'. 1508 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; 1509 1510 // 'NegMin' is the lower bound of the result of the ashr 1511 // operation, when Lower of the LHS of ashr is a negative number. 1512 // Since 'ashr' of a negative number will result in a bigger 1513 // number, the Lower value of LHS is shifted right with the 1514 // minimum value of 'Other'. 1515 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); 1516 1517 APInt max, min; 1518 if (getSignedMin().isNonNegative()) { 1519 // Upper and Lower of LHS are non-negative. 1520 min = PosMin; 1521 max = PosMax; 1522 } else if (getSignedMax().isNegative()) { 1523 // Upper and Lower of LHS are negative. 1524 min = NegMin; 1525 max = NegMax; 1526 } else { 1527 // Upper is non-negative and Lower is negative. 1528 min = NegMin; 1529 max = PosMax; 1530 } 1531 return getNonEmpty(std::move(min), std::move(max)); 1532 } 1533 1534 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const { 1535 if (isEmptySet() || Other.isEmptySet()) 1536 return getEmpty(); 1537 1538 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin()); 1539 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1; 1540 return getNonEmpty(std::move(NewL), std::move(NewU)); 1541 } 1542 1543 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const { 1544 if (isEmptySet() || Other.isEmptySet()) 1545 return getEmpty(); 1546 1547 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin()); 1548 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1; 1549 return getNonEmpty(std::move(NewL), std::move(NewU)); 1550 } 1551 1552 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const { 1553 if (isEmptySet() || Other.isEmptySet()) 1554 return getEmpty(); 1555 1556 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax()); 1557 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1; 1558 return getNonEmpty(std::move(NewL), std::move(NewU)); 1559 } 1560 1561 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const { 1562 if (isEmptySet() || Other.isEmptySet()) 1563 return getEmpty(); 1564 1565 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax()); 1566 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1; 1567 return getNonEmpty(std::move(NewL), std::move(NewU)); 1568 } 1569 1570 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const { 1571 if (isEmptySet() || Other.isEmptySet()) 1572 return getEmpty(); 1573 1574 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin()); 1575 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1; 1576 return getNonEmpty(std::move(NewL), std::move(NewU)); 1577 } 1578 1579 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const { 1580 if (isEmptySet() || Other.isEmptySet()) 1581 return getEmpty(); 1582 1583 // Because we could be dealing with negative numbers here, the lower bound is 1584 // the smallest of the cartesian product of the lower and upper ranges; 1585 // for example: 1586 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1587 // Similarly for the upper bound, swapping min for max. 1588 1589 APInt Min = getSignedMin(); 1590 APInt Max = getSignedMax(); 1591 APInt OtherMin = Other.getSignedMin(); 1592 APInt OtherMax = Other.getSignedMax(); 1593 1594 auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax), 1595 Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)}; 1596 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1597 return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1); 1598 } 1599 1600 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const { 1601 if (isEmptySet() || Other.isEmptySet()) 1602 return getEmpty(); 1603 1604 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin()); 1605 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1; 1606 return getNonEmpty(std::move(NewL), std::move(NewU)); 1607 } 1608 1609 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const { 1610 if (isEmptySet() || Other.isEmptySet()) 1611 return getEmpty(); 1612 1613 APInt Min = getSignedMin(), Max = getSignedMax(); 1614 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax(); 1615 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax); 1616 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1; 1617 return getNonEmpty(std::move(NewL), std::move(NewU)); 1618 } 1619 1620 ConstantRange ConstantRange::inverse() const { 1621 if (isFullSet()) 1622 return getEmpty(); 1623 if (isEmptySet()) 1624 return getFull(); 1625 return ConstantRange(Upper, Lower); 1626 } 1627 1628 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const { 1629 if (isEmptySet()) 1630 return getEmpty(); 1631 1632 if (isSignWrappedSet()) { 1633 APInt Lo; 1634 // Check whether the range crosses zero. 1635 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive()) 1636 Lo = APInt::getZero(getBitWidth()); 1637 else 1638 Lo = APIntOps::umin(Lower, -Upper + 1); 1639 1640 // If SignedMin is not poison, then it is included in the result range. 1641 if (IntMinIsPoison) 1642 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth())); 1643 else 1644 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1); 1645 } 1646 1647 APInt SMin = getSignedMin(), SMax = getSignedMax(); 1648 1649 // Skip SignedMin if it is poison. 1650 if (IntMinIsPoison && SMin.isMinSignedValue()) { 1651 // The range may become empty if it *only* contains SignedMin. 1652 if (SMax.isMinSignedValue()) 1653 return getEmpty(); 1654 ++SMin; 1655 } 1656 1657 // All non-negative. 1658 if (SMin.isNonNegative()) 1659 return ConstantRange(SMin, SMax + 1); 1660 1661 // All negative. 1662 if (SMax.isNegative()) 1663 return ConstantRange(-SMax, -SMin + 1); 1664 1665 // Range crosses zero. 1666 return ConstantRange::getNonEmpty(APInt::getZero(getBitWidth()), 1667 APIntOps::umax(-SMin, SMax) + 1); 1668 } 1669 1670 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow( 1671 const ConstantRange &Other) const { 1672 if (isEmptySet() || Other.isEmptySet()) 1673 return OverflowResult::MayOverflow; 1674 1675 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1676 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1677 1678 // a u+ b overflows high iff a u> ~b. 1679 if (Min.ugt(~OtherMin)) 1680 return OverflowResult::AlwaysOverflowsHigh; 1681 if (Max.ugt(~OtherMax)) 1682 return OverflowResult::MayOverflow; 1683 return OverflowResult::NeverOverflows; 1684 } 1685 1686 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow( 1687 const ConstantRange &Other) const { 1688 if (isEmptySet() || Other.isEmptySet()) 1689 return OverflowResult::MayOverflow; 1690 1691 APInt Min = getSignedMin(), Max = getSignedMax(); 1692 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1693 1694 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1695 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1696 1697 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b. 1698 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b. 1699 if (Min.isNonNegative() && OtherMin.isNonNegative() && 1700 Min.sgt(SignedMax - OtherMin)) 1701 return OverflowResult::AlwaysOverflowsHigh; 1702 if (Max.isNegative() && OtherMax.isNegative() && 1703 Max.slt(SignedMin - OtherMax)) 1704 return OverflowResult::AlwaysOverflowsLow; 1705 1706 if (Max.isNonNegative() && OtherMax.isNonNegative() && 1707 Max.sgt(SignedMax - OtherMax)) 1708 return OverflowResult::MayOverflow; 1709 if (Min.isNegative() && OtherMin.isNegative() && 1710 Min.slt(SignedMin - OtherMin)) 1711 return OverflowResult::MayOverflow; 1712 1713 return OverflowResult::NeverOverflows; 1714 } 1715 1716 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow( 1717 const ConstantRange &Other) const { 1718 if (isEmptySet() || Other.isEmptySet()) 1719 return OverflowResult::MayOverflow; 1720 1721 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1722 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1723 1724 // a u- b overflows low iff a u< b. 1725 if (Max.ult(OtherMin)) 1726 return OverflowResult::AlwaysOverflowsLow; 1727 if (Min.ult(OtherMax)) 1728 return OverflowResult::MayOverflow; 1729 return OverflowResult::NeverOverflows; 1730 } 1731 1732 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow( 1733 const ConstantRange &Other) const { 1734 if (isEmptySet() || Other.isEmptySet()) 1735 return OverflowResult::MayOverflow; 1736 1737 APInt Min = getSignedMin(), Max = getSignedMax(); 1738 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1739 1740 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1741 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1742 1743 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b. 1744 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b. 1745 if (Min.isNonNegative() && OtherMax.isNegative() && 1746 Min.sgt(SignedMax + OtherMax)) 1747 return OverflowResult::AlwaysOverflowsHigh; 1748 if (Max.isNegative() && OtherMin.isNonNegative() && 1749 Max.slt(SignedMin + OtherMin)) 1750 return OverflowResult::AlwaysOverflowsLow; 1751 1752 if (Max.isNonNegative() && OtherMin.isNegative() && 1753 Max.sgt(SignedMax + OtherMin)) 1754 return OverflowResult::MayOverflow; 1755 if (Min.isNegative() && OtherMax.isNonNegative() && 1756 Min.slt(SignedMin + OtherMax)) 1757 return OverflowResult::MayOverflow; 1758 1759 return OverflowResult::NeverOverflows; 1760 } 1761 1762 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow( 1763 const ConstantRange &Other) const { 1764 if (isEmptySet() || Other.isEmptySet()) 1765 return OverflowResult::MayOverflow; 1766 1767 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1768 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1769 bool Overflow; 1770 1771 (void) Min.umul_ov(OtherMin, Overflow); 1772 if (Overflow) 1773 return OverflowResult::AlwaysOverflowsHigh; 1774 1775 (void) Max.umul_ov(OtherMax, Overflow); 1776 if (Overflow) 1777 return OverflowResult::MayOverflow; 1778 1779 return OverflowResult::NeverOverflows; 1780 } 1781 1782 void ConstantRange::print(raw_ostream &OS) const { 1783 if (isFullSet()) 1784 OS << "full-set"; 1785 else if (isEmptySet()) 1786 OS << "empty-set"; 1787 else 1788 OS << "[" << Lower << "," << Upper << ")"; 1789 } 1790 1791 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1792 LLVM_DUMP_METHOD void ConstantRange::dump() const { 1793 print(dbgs()); 1794 } 1795 #endif 1796 1797 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 1798 const unsigned NumRanges = Ranges.getNumOperands() / 2; 1799 assert(NumRanges >= 1 && "Must have at least one range!"); 1800 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 1801 1802 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 1803 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 1804 1805 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 1806 1807 for (unsigned i = 1; i < NumRanges; ++i) { 1808 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 1809 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 1810 1811 // Note: unionWith will potentially create a range that contains values not 1812 // contained in any of the original N ranges. 1813 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 1814 } 1815 1816 return CR; 1817 } 1818