1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Represent a range of possible values that may occur when the program is run 10 // for an integral value. This keeps track of a lower and upper bound for the 11 // constant, which MAY wrap around the end of the numeric range. To do this, it 12 // keeps track of a [lower, upper) bound, which specifies an interval just like 13 // STL iterators. When used with boolean values, the following are important 14 // ranges (other integral ranges use min/max values for special range values): 15 // 16 // [F, F) = {} = Empty set 17 // [T, F) = {T} 18 // [F, T) = {F} 19 // [T, T) = {F, T} = Full set 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <optional> 41 42 using namespace llvm; 43 44 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) 45 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), 46 Upper(Lower) {} 47 48 ConstantRange::ConstantRange(APInt V) 49 : Lower(std::move(V)), Upper(Lower + 1) {} 50 51 ConstantRange::ConstantRange(APInt L, APInt U) 52 : Lower(std::move(L)), Upper(std::move(U)) { 53 assert(Lower.getBitWidth() == Upper.getBitWidth() && 54 "ConstantRange with unequal bit widths"); 55 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && 56 "Lower == Upper, but they aren't min or max value!"); 57 } 58 59 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known, 60 bool IsSigned) { 61 assert(!Known.hasConflict() && "Expected valid KnownBits"); 62 63 if (Known.isUnknown()) 64 return getFull(Known.getBitWidth()); 65 66 // For unsigned ranges, or signed ranges with known sign bit, create a simple 67 // range between the smallest and largest possible value. 68 if (!IsSigned || Known.isNegative() || Known.isNonNegative()) 69 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1); 70 71 // If we don't know the sign bit, pick the lower bound as a negative number 72 // and the upper bound as a non-negative one. 73 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue(); 74 Lower.setSignBit(); 75 Upper.clearSignBit(); 76 return ConstantRange(Lower, Upper + 1); 77 } 78 79 KnownBits ConstantRange::toKnownBits() const { 80 // TODO: We could return conflicting known bits here, but consumers are 81 // likely not prepared for that. 82 if (isEmptySet()) 83 return KnownBits(getBitWidth()); 84 85 // We can only retain the top bits that are the same between min and max. 86 APInt Min = getUnsignedMin(); 87 APInt Max = getUnsignedMax(); 88 KnownBits Known = KnownBits::makeConstant(Min); 89 if (std::optional<unsigned> DifferentBit = 90 APIntOps::GetMostSignificantDifferentBit(Min, Max)) { 91 Known.Zero.clearLowBits(*DifferentBit + 1); 92 Known.One.clearLowBits(*DifferentBit + 1); 93 } 94 return Known; 95 } 96 97 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, 98 const ConstantRange &CR) { 99 if (CR.isEmptySet()) 100 return CR; 101 102 uint32_t W = CR.getBitWidth(); 103 switch (Pred) { 104 default: 105 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); 106 case CmpInst::ICMP_EQ: 107 return CR; 108 case CmpInst::ICMP_NE: 109 if (CR.isSingleElement()) 110 return ConstantRange(CR.getUpper(), CR.getLower()); 111 return getFull(W); 112 case CmpInst::ICMP_ULT: { 113 APInt UMax(CR.getUnsignedMax()); 114 if (UMax.isMinValue()) 115 return getEmpty(W); 116 return ConstantRange(APInt::getMinValue(W), std::move(UMax)); 117 } 118 case CmpInst::ICMP_SLT: { 119 APInt SMax(CR.getSignedMax()); 120 if (SMax.isMinSignedValue()) 121 return getEmpty(W); 122 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); 123 } 124 case CmpInst::ICMP_ULE: 125 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1); 126 case CmpInst::ICMP_SLE: 127 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1); 128 case CmpInst::ICMP_UGT: { 129 APInt UMin(CR.getUnsignedMin()); 130 if (UMin.isMaxValue()) 131 return getEmpty(W); 132 return ConstantRange(std::move(UMin) + 1, APInt::getZero(W)); 133 } 134 case CmpInst::ICMP_SGT: { 135 APInt SMin(CR.getSignedMin()); 136 if (SMin.isMaxSignedValue()) 137 return getEmpty(W); 138 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); 139 } 140 case CmpInst::ICMP_UGE: 141 return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W)); 142 case CmpInst::ICMP_SGE: 143 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W)); 144 } 145 } 146 147 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 148 const ConstantRange &CR) { 149 // Follows from De-Morgan's laws: 150 // 151 // ~(~A union ~B) == A intersect B. 152 // 153 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) 154 .inverse(); 155 } 156 157 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, 158 const APInt &C) { 159 // Computes the exact range that is equal to both the constant ranges returned 160 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true 161 // when RHS is a singleton such as an APInt and so the assert is valid. 162 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion 163 // returns [0,4) but makeSatisfyICmpRegion returns [0,2). 164 // 165 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); 166 return makeAllowedICmpRegion(Pred, C); 167 } 168 169 bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate( 170 const ConstantRange &CR1, const ConstantRange &CR2) { 171 if (CR1.isEmptySet() || CR2.isEmptySet()) 172 return true; 173 174 return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) || 175 (CR1.isAllNegative() && CR2.isAllNegative()); 176 } 177 178 bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate( 179 const ConstantRange &CR1, const ConstantRange &CR2) { 180 if (CR1.isEmptySet() || CR2.isEmptySet()) 181 return true; 182 183 return (CR1.isAllNonNegative() && CR2.isAllNegative()) || 184 (CR1.isAllNegative() && CR2.isAllNonNegative()); 185 } 186 187 CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness( 188 CmpInst::Predicate Pred, const ConstantRange &CR1, 189 const ConstantRange &CR2) { 190 assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) && 191 "Only for relational integer predicates!"); 192 193 CmpInst::Predicate FlippedSignednessPred = 194 CmpInst::getFlippedSignednessPredicate(Pred); 195 196 if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2)) 197 return FlippedSignednessPred; 198 199 if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2)) 200 return CmpInst::getInversePredicate(FlippedSignednessPred); 201 202 return CmpInst::Predicate::BAD_ICMP_PREDICATE; 203 } 204 205 void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 206 APInt &RHS, APInt &Offset) const { 207 Offset = APInt(getBitWidth(), 0); 208 if (isFullSet() || isEmptySet()) { 209 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 210 RHS = APInt(getBitWidth(), 0); 211 } else if (auto *OnlyElt = getSingleElement()) { 212 Pred = CmpInst::ICMP_EQ; 213 RHS = *OnlyElt; 214 } else if (auto *OnlyMissingElt = getSingleMissingElement()) { 215 Pred = CmpInst::ICMP_NE; 216 RHS = *OnlyMissingElt; 217 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { 218 Pred = 219 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 220 RHS = getUpper(); 221 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { 222 Pred = 223 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; 224 RHS = getLower(); 225 } else { 226 Pred = CmpInst::ICMP_ULT; 227 RHS = getUpper() - getLower(); 228 Offset = -getLower(); 229 } 230 231 assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) && 232 "Bad result!"); 233 } 234 235 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, 236 APInt &RHS) const { 237 APInt Offset; 238 getEquivalentICmp(Pred, RHS, Offset); 239 return Offset.isZero(); 240 } 241 242 bool ConstantRange::icmp(CmpInst::Predicate Pred, 243 const ConstantRange &Other) const { 244 return makeSatisfyingICmpRegion(Pred, Other).contains(*this); 245 } 246 247 /// Exact mul nuw region for single element RHS. 248 static ConstantRange makeExactMulNUWRegion(const APInt &V) { 249 unsigned BitWidth = V.getBitWidth(); 250 if (V == 0) 251 return ConstantRange::getFull(V.getBitWidth()); 252 253 return ConstantRange::getNonEmpty( 254 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V, 255 APInt::Rounding::UP), 256 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V, 257 APInt::Rounding::DOWN) + 1); 258 } 259 260 /// Exact mul nsw region for single element RHS. 261 static ConstantRange makeExactMulNSWRegion(const APInt &V) { 262 // Handle 0 and -1 separately to avoid division by zero or overflow. 263 unsigned BitWidth = V.getBitWidth(); 264 if (V == 0) 265 return ConstantRange::getFull(BitWidth); 266 267 APInt MinValue = APInt::getSignedMinValue(BitWidth); 268 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 269 // e.g. Returning [-127, 127], represented as [-127, -128). 270 if (V.isAllOnes()) 271 return ConstantRange(-MaxValue, MinValue); 272 273 APInt Lower, Upper; 274 if (V.isNegative()) { 275 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); 276 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); 277 } else { 278 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); 279 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); 280 } 281 return ConstantRange::getNonEmpty(Lower, Upper + 1); 282 } 283 284 ConstantRange 285 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, 286 const ConstantRange &Other, 287 unsigned NoWrapKind) { 288 using OBO = OverflowingBinaryOperator; 289 290 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 291 292 assert((NoWrapKind == OBO::NoSignedWrap || 293 NoWrapKind == OBO::NoUnsignedWrap) && 294 "NoWrapKind invalid!"); 295 296 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; 297 unsigned BitWidth = Other.getBitWidth(); 298 299 switch (BinOp) { 300 default: 301 llvm_unreachable("Unsupported binary op"); 302 303 case Instruction::Add: { 304 if (Unsigned) 305 return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax()); 306 307 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 308 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 309 return getNonEmpty( 310 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal, 311 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal); 312 } 313 314 case Instruction::Sub: { 315 if (Unsigned) 316 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth)); 317 318 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); 319 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); 320 return getNonEmpty( 321 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal, 322 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal); 323 } 324 325 case Instruction::Mul: 326 if (Unsigned) 327 return makeExactMulNUWRegion(Other.getUnsignedMax()); 328 329 // Avoid one makeExactMulNSWRegion() call for the common case of constants. 330 if (const APInt *C = Other.getSingleElement()) 331 return makeExactMulNSWRegion(*C); 332 333 return makeExactMulNSWRegion(Other.getSignedMin()) 334 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax())); 335 336 case Instruction::Shl: { 337 // For given range of shift amounts, if we ignore all illegal shift amounts 338 // (that always produce poison), what shift amount range is left? 339 ConstantRange ShAmt = Other.intersectWith( 340 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1))); 341 if (ShAmt.isEmptySet()) { 342 // If the entire range of shift amounts is already poison-producing, 343 // then we can freely add more poison-producing flags ontop of that. 344 return getFull(BitWidth); 345 } 346 // There are some legal shift amounts, we can compute conservatively-correct 347 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax 348 // to be at most bitwidth-1, which results in most conservative range. 349 APInt ShAmtUMax = ShAmt.getUnsignedMax(); 350 if (Unsigned) 351 return getNonEmpty(APInt::getZero(BitWidth), 352 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1); 353 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax), 354 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1); 355 } 356 } 357 } 358 359 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp, 360 const APInt &Other, 361 unsigned NoWrapKind) { 362 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as 363 // "for all" and "for any" coincide in this case. 364 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind); 365 } 366 367 bool ConstantRange::isFullSet() const { 368 return Lower == Upper && Lower.isMaxValue(); 369 } 370 371 bool ConstantRange::isEmptySet() const { 372 return Lower == Upper && Lower.isMinValue(); 373 } 374 375 bool ConstantRange::isWrappedSet() const { 376 return Lower.ugt(Upper) && !Upper.isZero(); 377 } 378 379 bool ConstantRange::isUpperWrapped() const { 380 return Lower.ugt(Upper); 381 } 382 383 bool ConstantRange::isSignWrappedSet() const { 384 return Lower.sgt(Upper) && !Upper.isMinSignedValue(); 385 } 386 387 bool ConstantRange::isUpperSignWrapped() const { 388 return Lower.sgt(Upper); 389 } 390 391 bool 392 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { 393 assert(getBitWidth() == Other.getBitWidth()); 394 if (isFullSet()) 395 return false; 396 if (Other.isFullSet()) 397 return true; 398 return (Upper - Lower).ult(Other.Upper - Other.Lower); 399 } 400 401 bool 402 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { 403 // If this a full set, we need special handling to avoid needing an extra bit 404 // to represent the size. 405 if (isFullSet()) 406 return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); 407 408 return (Upper - Lower).ugt(MaxSize); 409 } 410 411 bool ConstantRange::isAllNegative() const { 412 // Empty set is all negative, full set is not. 413 if (isEmptySet()) 414 return true; 415 if (isFullSet()) 416 return false; 417 418 return !isUpperSignWrapped() && !Upper.isStrictlyPositive(); 419 } 420 421 bool ConstantRange::isAllNonNegative() const { 422 // Empty and full set are automatically treated correctly. 423 return !isSignWrappedSet() && Lower.isNonNegative(); 424 } 425 426 APInt ConstantRange::getUnsignedMax() const { 427 if (isFullSet() || isUpperWrapped()) 428 return APInt::getMaxValue(getBitWidth()); 429 return getUpper() - 1; 430 } 431 432 APInt ConstantRange::getUnsignedMin() const { 433 if (isFullSet() || isWrappedSet()) 434 return APInt::getMinValue(getBitWidth()); 435 return getLower(); 436 } 437 438 APInt ConstantRange::getSignedMax() const { 439 if (isFullSet() || isUpperSignWrapped()) 440 return APInt::getSignedMaxValue(getBitWidth()); 441 return getUpper() - 1; 442 } 443 444 APInt ConstantRange::getSignedMin() const { 445 if (isFullSet() || isSignWrappedSet()) 446 return APInt::getSignedMinValue(getBitWidth()); 447 return getLower(); 448 } 449 450 bool ConstantRange::contains(const APInt &V) const { 451 if (Lower == Upper) 452 return isFullSet(); 453 454 if (!isUpperWrapped()) 455 return Lower.ule(V) && V.ult(Upper); 456 return Lower.ule(V) || V.ult(Upper); 457 } 458 459 bool ConstantRange::contains(const ConstantRange &Other) const { 460 if (isFullSet() || Other.isEmptySet()) return true; 461 if (isEmptySet() || Other.isFullSet()) return false; 462 463 if (!isUpperWrapped()) { 464 if (Other.isUpperWrapped()) 465 return false; 466 467 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); 468 } 469 470 if (!Other.isUpperWrapped()) 471 return Other.getUpper().ule(Upper) || 472 Lower.ule(Other.getLower()); 473 474 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); 475 } 476 477 unsigned ConstantRange::getActiveBits() const { 478 if (isEmptySet()) 479 return 0; 480 481 return getUnsignedMax().getActiveBits(); 482 } 483 484 unsigned ConstantRange::getMinSignedBits() const { 485 if (isEmptySet()) 486 return 0; 487 488 return std::max(getSignedMin().getSignificantBits(), 489 getSignedMax().getSignificantBits()); 490 } 491 492 ConstantRange ConstantRange::subtract(const APInt &Val) const { 493 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); 494 // If the set is empty or full, don't modify the endpoints. 495 if (Lower == Upper) 496 return *this; 497 return ConstantRange(Lower - Val, Upper - Val); 498 } 499 500 ConstantRange ConstantRange::difference(const ConstantRange &CR) const { 501 return intersectWith(CR.inverse()); 502 } 503 504 static ConstantRange getPreferredRange( 505 const ConstantRange &CR1, const ConstantRange &CR2, 506 ConstantRange::PreferredRangeType Type) { 507 if (Type == ConstantRange::Unsigned) { 508 if (!CR1.isWrappedSet() && CR2.isWrappedSet()) 509 return CR1; 510 if (CR1.isWrappedSet() && !CR2.isWrappedSet()) 511 return CR2; 512 } else if (Type == ConstantRange::Signed) { 513 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet()) 514 return CR1; 515 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet()) 516 return CR2; 517 } 518 519 if (CR1.isSizeStrictlySmallerThan(CR2)) 520 return CR1; 521 return CR2; 522 } 523 524 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, 525 PreferredRangeType Type) const { 526 assert(getBitWidth() == CR.getBitWidth() && 527 "ConstantRange types don't agree!"); 528 529 // Handle common cases. 530 if ( isEmptySet() || CR.isFullSet()) return *this; 531 if (CR.isEmptySet() || isFullSet()) return CR; 532 533 if (!isUpperWrapped() && CR.isUpperWrapped()) 534 return CR.intersectWith(*this, Type); 535 536 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 537 if (Lower.ult(CR.Lower)) { 538 // L---U : this 539 // L---U : CR 540 if (Upper.ule(CR.Lower)) 541 return getEmpty(); 542 543 // L---U : this 544 // L---U : CR 545 if (Upper.ult(CR.Upper)) 546 return ConstantRange(CR.Lower, Upper); 547 548 // L-------U : this 549 // L---U : CR 550 return CR; 551 } 552 // L---U : this 553 // L-------U : CR 554 if (Upper.ult(CR.Upper)) 555 return *this; 556 557 // L-----U : this 558 // L-----U : CR 559 if (Lower.ult(CR.Upper)) 560 return ConstantRange(Lower, CR.Upper); 561 562 // L---U : this 563 // L---U : CR 564 return getEmpty(); 565 } 566 567 if (isUpperWrapped() && !CR.isUpperWrapped()) { 568 if (CR.Lower.ult(Upper)) { 569 // ------U L--- : this 570 // L--U : CR 571 if (CR.Upper.ult(Upper)) 572 return CR; 573 574 // ------U L--- : this 575 // L------U : CR 576 if (CR.Upper.ule(Lower)) 577 return ConstantRange(CR.Lower, Upper); 578 579 // ------U L--- : this 580 // L----------U : CR 581 return getPreferredRange(*this, CR, Type); 582 } 583 if (CR.Lower.ult(Lower)) { 584 // --U L---- : this 585 // L--U : CR 586 if (CR.Upper.ule(Lower)) 587 return getEmpty(); 588 589 // --U L---- : this 590 // L------U : CR 591 return ConstantRange(Lower, CR.Upper); 592 } 593 594 // --U L------ : this 595 // L--U : CR 596 return CR; 597 } 598 599 if (CR.Upper.ult(Upper)) { 600 // ------U L-- : this 601 // --U L------ : CR 602 if (CR.Lower.ult(Upper)) 603 return getPreferredRange(*this, CR, Type); 604 605 // ----U L-- : this 606 // --U L---- : CR 607 if (CR.Lower.ult(Lower)) 608 return ConstantRange(Lower, CR.Upper); 609 610 // ----U L---- : this 611 // --U L-- : CR 612 return CR; 613 } 614 if (CR.Upper.ule(Lower)) { 615 // --U L-- : this 616 // ----U L---- : CR 617 if (CR.Lower.ult(Lower)) 618 return *this; 619 620 // --U L---- : this 621 // ----U L-- : CR 622 return ConstantRange(CR.Lower, Upper); 623 } 624 625 // --U L------ : this 626 // ------U L-- : CR 627 return getPreferredRange(*this, CR, Type); 628 } 629 630 ConstantRange ConstantRange::unionWith(const ConstantRange &CR, 631 PreferredRangeType Type) const { 632 assert(getBitWidth() == CR.getBitWidth() && 633 "ConstantRange types don't agree!"); 634 635 if ( isFullSet() || CR.isEmptySet()) return *this; 636 if (CR.isFullSet() || isEmptySet()) return CR; 637 638 if (!isUpperWrapped() && CR.isUpperWrapped()) 639 return CR.unionWith(*this, Type); 640 641 if (!isUpperWrapped() && !CR.isUpperWrapped()) { 642 // L---U and L---U : this 643 // L---U L---U : CR 644 // result in one of 645 // L---------U 646 // -----U L----- 647 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) 648 return getPreferredRange( 649 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 650 651 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 652 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; 653 654 if (L.isZero() && U.isZero()) 655 return getFull(); 656 657 return ConstantRange(std::move(L), std::move(U)); 658 } 659 660 if (!CR.isUpperWrapped()) { 661 // ------U L----- and ------U L----- : this 662 // L--U L--U : CR 663 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) 664 return *this; 665 666 // ------U L----- : this 667 // L---------U : CR 668 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) 669 return getFull(); 670 671 // ----U L---- : this 672 // L---U : CR 673 // results in one of 674 // ----------U L---- 675 // ----U L---------- 676 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) 677 return getPreferredRange( 678 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); 679 680 // ----U L----- : this 681 // L----U : CR 682 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper)) 683 return ConstantRange(CR.Lower, Upper); 684 685 // ------U L---- : this 686 // L-----U : CR 687 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) && 688 "ConstantRange::unionWith missed a case with one range wrapped"); 689 return ConstantRange(Lower, CR.Upper); 690 } 691 692 // ------U L---- and ------U L---- : this 693 // -U L----------- and ------------U L : CR 694 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) 695 return getFull(); 696 697 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; 698 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; 699 700 return ConstantRange(std::move(L), std::move(U)); 701 } 702 703 std::optional<ConstantRange> 704 ConstantRange::exactIntersectWith(const ConstantRange &CR) const { 705 // TODO: This can be implemented more efficiently. 706 ConstantRange Result = intersectWith(CR); 707 if (Result == inverse().unionWith(CR.inverse()).inverse()) 708 return Result; 709 return std::nullopt; 710 } 711 712 std::optional<ConstantRange> 713 ConstantRange::exactUnionWith(const ConstantRange &CR) const { 714 // TODO: This can be implemented more efficiently. 715 ConstantRange Result = unionWith(CR); 716 if (Result == inverse().intersectWith(CR.inverse()).inverse()) 717 return Result; 718 return std::nullopt; 719 } 720 721 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, 722 uint32_t ResultBitWidth) const { 723 switch (CastOp) { 724 default: 725 llvm_unreachable("unsupported cast type"); 726 case Instruction::Trunc: 727 return truncate(ResultBitWidth); 728 case Instruction::SExt: 729 return signExtend(ResultBitWidth); 730 case Instruction::ZExt: 731 return zeroExtend(ResultBitWidth); 732 case Instruction::BitCast: 733 return *this; 734 case Instruction::FPToUI: 735 case Instruction::FPToSI: 736 if (getBitWidth() == ResultBitWidth) 737 return *this; 738 else 739 return getFull(ResultBitWidth); 740 case Instruction::UIToFP: { 741 // TODO: use input range if available 742 auto BW = getBitWidth(); 743 APInt Min = APInt::getMinValue(BW); 744 APInt Max = APInt::getMaxValue(BW); 745 if (ResultBitWidth > BW) { 746 Min = Min.zext(ResultBitWidth); 747 Max = Max.zext(ResultBitWidth); 748 } 749 return getNonEmpty(std::move(Min), std::move(Max) + 1); 750 } 751 case Instruction::SIToFP: { 752 // TODO: use input range if available 753 auto BW = getBitWidth(); 754 APInt SMin = APInt::getSignedMinValue(BW); 755 APInt SMax = APInt::getSignedMaxValue(BW); 756 if (ResultBitWidth > BW) { 757 SMin = SMin.sext(ResultBitWidth); 758 SMax = SMax.sext(ResultBitWidth); 759 } 760 return getNonEmpty(std::move(SMin), std::move(SMax) + 1); 761 } 762 case Instruction::FPTrunc: 763 case Instruction::FPExt: 764 case Instruction::IntToPtr: 765 case Instruction::PtrToInt: 766 case Instruction::AddrSpaceCast: 767 // Conservatively return getFull set. 768 return getFull(ResultBitWidth); 769 }; 770 } 771 772 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { 773 if (isEmptySet()) return getEmpty(DstTySize); 774 775 unsigned SrcTySize = getBitWidth(); 776 assert(SrcTySize < DstTySize && "Not a value extension"); 777 if (isFullSet() || isUpperWrapped()) { 778 // Change into [0, 1 << src bit width) 779 APInt LowerExt(DstTySize, 0); 780 if (!Upper) // special case: [X, 0) -- not really wrapping around 781 LowerExt = Lower.zext(DstTySize); 782 return ConstantRange(std::move(LowerExt), 783 APInt::getOneBitSet(DstTySize, SrcTySize)); 784 } 785 786 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); 787 } 788 789 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { 790 if (isEmptySet()) return getEmpty(DstTySize); 791 792 unsigned SrcTySize = getBitWidth(); 793 assert(SrcTySize < DstTySize && "Not a value extension"); 794 795 // special case: [X, INT_MIN) -- not really wrapping around 796 if (Upper.isMinSignedValue()) 797 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); 798 799 if (isFullSet() || isSignWrappedSet()) { 800 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), 801 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); 802 } 803 804 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); 805 } 806 807 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { 808 assert(getBitWidth() > DstTySize && "Not a value truncation"); 809 if (isEmptySet()) 810 return getEmpty(DstTySize); 811 if (isFullSet()) 812 return getFull(DstTySize); 813 814 APInt LowerDiv(Lower), UpperDiv(Upper); 815 ConstantRange Union(DstTySize, /*isFullSet=*/false); 816 817 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] 818 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and 819 // then we do the union with [MaxValue, Upper) 820 if (isUpperWrapped()) { 821 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole 822 // truncated range. 823 if (Upper.getActiveBits() > DstTySize || Upper.countr_one() == DstTySize) 824 return getFull(DstTySize); 825 826 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); 827 UpperDiv.setAllBits(); 828 829 // Union covers the MaxValue case, so return if the remaining range is just 830 // MaxValue(DstTy). 831 if (LowerDiv == UpperDiv) 832 return Union; 833 } 834 835 // Chop off the most significant bits that are past the destination bitwidth. 836 if (LowerDiv.getActiveBits() > DstTySize) { 837 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. 838 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); 839 LowerDiv -= Adjust; 840 UpperDiv -= Adjust; 841 } 842 843 unsigned UpperDivWidth = UpperDiv.getActiveBits(); 844 if (UpperDivWidth <= DstTySize) 845 return ConstantRange(LowerDiv.trunc(DstTySize), 846 UpperDiv.trunc(DstTySize)).unionWith(Union); 847 848 // The truncated value wraps around. Check if we can do better than fullset. 849 if (UpperDivWidth == DstTySize + 1) { 850 // Clear the MSB so that UpperDiv wraps around. 851 UpperDiv.clearBit(DstTySize); 852 if (UpperDiv.ult(LowerDiv)) 853 return ConstantRange(LowerDiv.trunc(DstTySize), 854 UpperDiv.trunc(DstTySize)).unionWith(Union); 855 } 856 857 return getFull(DstTySize); 858 } 859 860 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { 861 unsigned SrcTySize = getBitWidth(); 862 if (SrcTySize > DstTySize) 863 return truncate(DstTySize); 864 if (SrcTySize < DstTySize) 865 return zeroExtend(DstTySize); 866 return *this; 867 } 868 869 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { 870 unsigned SrcTySize = getBitWidth(); 871 if (SrcTySize > DstTySize) 872 return truncate(DstTySize); 873 if (SrcTySize < DstTySize) 874 return signExtend(DstTySize); 875 return *this; 876 } 877 878 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, 879 const ConstantRange &Other) const { 880 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 881 882 switch (BinOp) { 883 case Instruction::Add: 884 return add(Other); 885 case Instruction::Sub: 886 return sub(Other); 887 case Instruction::Mul: 888 return multiply(Other); 889 case Instruction::UDiv: 890 return udiv(Other); 891 case Instruction::SDiv: 892 return sdiv(Other); 893 case Instruction::URem: 894 return urem(Other); 895 case Instruction::SRem: 896 return srem(Other); 897 case Instruction::Shl: 898 return shl(Other); 899 case Instruction::LShr: 900 return lshr(Other); 901 case Instruction::AShr: 902 return ashr(Other); 903 case Instruction::And: 904 return binaryAnd(Other); 905 case Instruction::Or: 906 return binaryOr(Other); 907 case Instruction::Xor: 908 return binaryXor(Other); 909 // Note: floating point operations applied to abstract ranges are just 910 // ideal integer operations with a lossy representation 911 case Instruction::FAdd: 912 return add(Other); 913 case Instruction::FSub: 914 return sub(Other); 915 case Instruction::FMul: 916 return multiply(Other); 917 default: 918 // Conservatively return getFull set. 919 return getFull(); 920 } 921 } 922 923 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp, 924 const ConstantRange &Other, 925 unsigned NoWrapKind) const { 926 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); 927 928 switch (BinOp) { 929 case Instruction::Add: 930 return addWithNoWrap(Other, NoWrapKind); 931 case Instruction::Sub: 932 return subWithNoWrap(Other, NoWrapKind); 933 default: 934 // Don't know about this Overflowing Binary Operation. 935 // Conservatively fallback to plain binop handling. 936 return binaryOp(BinOp, Other); 937 } 938 } 939 940 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) { 941 switch (IntrinsicID) { 942 case Intrinsic::uadd_sat: 943 case Intrinsic::usub_sat: 944 case Intrinsic::sadd_sat: 945 case Intrinsic::ssub_sat: 946 case Intrinsic::umin: 947 case Intrinsic::umax: 948 case Intrinsic::smin: 949 case Intrinsic::smax: 950 case Intrinsic::abs: 951 case Intrinsic::ctlz: 952 case Intrinsic::cttz: 953 case Intrinsic::ctpop: 954 return true; 955 default: 956 return false; 957 } 958 } 959 960 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID, 961 ArrayRef<ConstantRange> Ops) { 962 switch (IntrinsicID) { 963 case Intrinsic::uadd_sat: 964 return Ops[0].uadd_sat(Ops[1]); 965 case Intrinsic::usub_sat: 966 return Ops[0].usub_sat(Ops[1]); 967 case Intrinsic::sadd_sat: 968 return Ops[0].sadd_sat(Ops[1]); 969 case Intrinsic::ssub_sat: 970 return Ops[0].ssub_sat(Ops[1]); 971 case Intrinsic::umin: 972 return Ops[0].umin(Ops[1]); 973 case Intrinsic::umax: 974 return Ops[0].umax(Ops[1]); 975 case Intrinsic::smin: 976 return Ops[0].smin(Ops[1]); 977 case Intrinsic::smax: 978 return Ops[0].smax(Ops[1]); 979 case Intrinsic::abs: { 980 const APInt *IntMinIsPoison = Ops[1].getSingleElement(); 981 assert(IntMinIsPoison && "Must be known (immarg)"); 982 assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean"); 983 return Ops[0].abs(IntMinIsPoison->getBoolValue()); 984 } 985 case Intrinsic::ctlz: { 986 const APInt *ZeroIsPoison = Ops[1].getSingleElement(); 987 assert(ZeroIsPoison && "Must be known (immarg)"); 988 assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean"); 989 return Ops[0].ctlz(ZeroIsPoison->getBoolValue()); 990 } 991 case Intrinsic::cttz: { 992 const APInt *ZeroIsPoison = Ops[1].getSingleElement(); 993 assert(ZeroIsPoison && "Must be known (immarg)"); 994 assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean"); 995 return Ops[0].cttz(ZeroIsPoison->getBoolValue()); 996 } 997 case Intrinsic::ctpop: 998 return Ops[0].ctpop(); 999 default: 1000 assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported"); 1001 llvm_unreachable("Unsupported intrinsic"); 1002 } 1003 } 1004 1005 ConstantRange 1006 ConstantRange::add(const ConstantRange &Other) const { 1007 if (isEmptySet() || Other.isEmptySet()) 1008 return getEmpty(); 1009 if (isFullSet() || Other.isFullSet()) 1010 return getFull(); 1011 1012 APInt NewLower = getLower() + Other.getLower(); 1013 APInt NewUpper = getUpper() + Other.getUpper() - 1; 1014 if (NewLower == NewUpper) 1015 return getFull(); 1016 1017 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 1018 if (X.isSizeStrictlySmallerThan(*this) || 1019 X.isSizeStrictlySmallerThan(Other)) 1020 // We've wrapped, therefore, full set. 1021 return getFull(); 1022 return X; 1023 } 1024 1025 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other, 1026 unsigned NoWrapKind, 1027 PreferredRangeType RangeType) const { 1028 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow). 1029 // (X is from this, and Y is from Other) 1030 if (isEmptySet() || Other.isEmptySet()) 1031 return getEmpty(); 1032 if (isFullSet() && Other.isFullSet()) 1033 return getFull(); 1034 1035 using OBO = OverflowingBinaryOperator; 1036 ConstantRange Result = add(Other); 1037 1038 // If an overflow happens for every value pair in these two constant ranges, 1039 // we must return Empty set. In this case, we get that for free, because we 1040 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results 1041 // in an empty set. 1042 1043 if (NoWrapKind & OBO::NoSignedWrap) 1044 Result = Result.intersectWith(sadd_sat(Other), RangeType); 1045 1046 if (NoWrapKind & OBO::NoUnsignedWrap) 1047 Result = Result.intersectWith(uadd_sat(Other), RangeType); 1048 1049 return Result; 1050 } 1051 1052 ConstantRange 1053 ConstantRange::sub(const ConstantRange &Other) const { 1054 if (isEmptySet() || Other.isEmptySet()) 1055 return getEmpty(); 1056 if (isFullSet() || Other.isFullSet()) 1057 return getFull(); 1058 1059 APInt NewLower = getLower() - Other.getUpper() + 1; 1060 APInt NewUpper = getUpper() - Other.getLower(); 1061 if (NewLower == NewUpper) 1062 return getFull(); 1063 1064 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); 1065 if (X.isSizeStrictlySmallerThan(*this) || 1066 X.isSizeStrictlySmallerThan(Other)) 1067 // We've wrapped, therefore, full set. 1068 return getFull(); 1069 return X; 1070 } 1071 1072 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other, 1073 unsigned NoWrapKind, 1074 PreferredRangeType RangeType) const { 1075 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow). 1076 // (X is from this, and Y is from Other) 1077 if (isEmptySet() || Other.isEmptySet()) 1078 return getEmpty(); 1079 if (isFullSet() && Other.isFullSet()) 1080 return getFull(); 1081 1082 using OBO = OverflowingBinaryOperator; 1083 ConstantRange Result = sub(Other); 1084 1085 // If an overflow happens for every value pair in these two constant ranges, 1086 // we must return Empty set. In signed case, we get that for free, because we 1087 // get lucky that intersection of sub() with ssub_sat() results in an 1088 // empty set. But for unsigned we must perform the overflow check manually. 1089 1090 if (NoWrapKind & OBO::NoSignedWrap) 1091 Result = Result.intersectWith(ssub_sat(Other), RangeType); 1092 1093 if (NoWrapKind & OBO::NoUnsignedWrap) { 1094 if (getUnsignedMax().ult(Other.getUnsignedMin())) 1095 return getEmpty(); // Always overflows. 1096 Result = Result.intersectWith(usub_sat(Other), RangeType); 1097 } 1098 1099 return Result; 1100 } 1101 1102 ConstantRange 1103 ConstantRange::multiply(const ConstantRange &Other) const { 1104 // TODO: If either operand is a single element and the multiply is known to 1105 // be non-wrapping, round the result min and max value to the appropriate 1106 // multiple of that element. If wrapping is possible, at least adjust the 1107 // range according to the greatest power-of-two factor of the single element. 1108 1109 if (isEmptySet() || Other.isEmptySet()) 1110 return getEmpty(); 1111 1112 if (const APInt *C = getSingleElement()) { 1113 if (C->isOne()) 1114 return Other; 1115 if (C->isAllOnes()) 1116 return ConstantRange(APInt::getZero(getBitWidth())).sub(Other); 1117 } 1118 1119 if (const APInt *C = Other.getSingleElement()) { 1120 if (C->isOne()) 1121 return *this; 1122 if (C->isAllOnes()) 1123 return ConstantRange(APInt::getZero(getBitWidth())).sub(*this); 1124 } 1125 1126 // Multiplication is signedness-independent. However different ranges can be 1127 // obtained depending on how the input ranges are treated. These different 1128 // ranges are all conservatively correct, but one might be better than the 1129 // other. We calculate two ranges; one treating the inputs as unsigned 1130 // and the other signed, then return the smallest of these ranges. 1131 1132 // Unsigned range first. 1133 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); 1134 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); 1135 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); 1136 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); 1137 1138 ConstantRange Result_zext = ConstantRange(this_min * Other_min, 1139 this_max * Other_max + 1); 1140 ConstantRange UR = Result_zext.truncate(getBitWidth()); 1141 1142 // If the unsigned range doesn't wrap, and isn't negative then it's a range 1143 // from one positive number to another which is as good as we can generate. 1144 // In this case, skip the extra work of generating signed ranges which aren't 1145 // going to be better than this range. 1146 if (!UR.isUpperWrapped() && 1147 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) 1148 return UR; 1149 1150 // Now the signed range. Because we could be dealing with negative numbers 1151 // here, the lower bound is the smallest of the cartesian product of the 1152 // lower and upper ranges; for example: 1153 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1154 // Similarly for the upper bound, swapping min for max. 1155 1156 this_min = getSignedMin().sext(getBitWidth() * 2); 1157 this_max = getSignedMax().sext(getBitWidth() * 2); 1158 Other_min = Other.getSignedMin().sext(getBitWidth() * 2); 1159 Other_max = Other.getSignedMax().sext(getBitWidth() * 2); 1160 1161 auto L = {this_min * Other_min, this_min * Other_max, 1162 this_max * Other_min, this_max * Other_max}; 1163 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1164 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); 1165 ConstantRange SR = Result_sext.truncate(getBitWidth()); 1166 1167 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; 1168 } 1169 1170 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const { 1171 if (isEmptySet() || Other.isEmptySet()) 1172 return getEmpty(); 1173 1174 APInt Min = getSignedMin(); 1175 APInt Max = getSignedMax(); 1176 APInt OtherMin = Other.getSignedMin(); 1177 APInt OtherMax = Other.getSignedMax(); 1178 1179 bool O1, O2, O3, O4; 1180 auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2), 1181 Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)}; 1182 if (O1 || O2 || O3 || O4) 1183 return getFull(); 1184 1185 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1186 return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1); 1187 } 1188 1189 ConstantRange 1190 ConstantRange::smax(const ConstantRange &Other) const { 1191 // X smax Y is: range(smax(X_smin, Y_smin), 1192 // smax(X_smax, Y_smax)) 1193 if (isEmptySet() || Other.isEmptySet()) 1194 return getEmpty(); 1195 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); 1196 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; 1197 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1198 if (isSignWrappedSet() || Other.isSignWrappedSet()) 1199 return Res.intersectWith(unionWith(Other, Signed), Signed); 1200 return Res; 1201 } 1202 1203 ConstantRange 1204 ConstantRange::umax(const ConstantRange &Other) const { 1205 // X umax Y is: range(umax(X_umin, Y_umin), 1206 // umax(X_umax, Y_umax)) 1207 if (isEmptySet() || Other.isEmptySet()) 1208 return getEmpty(); 1209 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 1210 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1211 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1212 if (isWrappedSet() || Other.isWrappedSet()) 1213 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned); 1214 return Res; 1215 } 1216 1217 ConstantRange 1218 ConstantRange::smin(const ConstantRange &Other) const { 1219 // X smin Y is: range(smin(X_smin, Y_smin), 1220 // smin(X_smax, Y_smax)) 1221 if (isEmptySet() || Other.isEmptySet()) 1222 return getEmpty(); 1223 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); 1224 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; 1225 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1226 if (isSignWrappedSet() || Other.isSignWrappedSet()) 1227 return Res.intersectWith(unionWith(Other, Signed), Signed); 1228 return Res; 1229 } 1230 1231 ConstantRange 1232 ConstantRange::umin(const ConstantRange &Other) const { 1233 // X umin Y is: range(umin(X_umin, Y_umin), 1234 // umin(X_umax, Y_umax)) 1235 if (isEmptySet() || Other.isEmptySet()) 1236 return getEmpty(); 1237 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); 1238 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; 1239 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU)); 1240 if (isWrappedSet() || Other.isWrappedSet()) 1241 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned); 1242 return Res; 1243 } 1244 1245 ConstantRange 1246 ConstantRange::udiv(const ConstantRange &RHS) const { 1247 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) 1248 return getEmpty(); 1249 1250 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); 1251 1252 APInt RHS_umin = RHS.getUnsignedMin(); 1253 if (RHS_umin.isZero()) { 1254 // We want the lowest value in RHS excluding zero. Usually that would be 1 1255 // except for a range in the form of [X, 1) in which case it would be X. 1256 if (RHS.getUpper() == 1) 1257 RHS_umin = RHS.getLower(); 1258 else 1259 RHS_umin = 1; 1260 } 1261 1262 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; 1263 return getNonEmpty(std::move(Lower), std::move(Upper)); 1264 } 1265 1266 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const { 1267 // We split up the LHS and RHS into positive and negative components 1268 // and then also compute the positive and negative components of the result 1269 // separately by combining division results with the appropriate signs. 1270 APInt Zero = APInt::getZero(getBitWidth()); 1271 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1272 // There are no positive 1-bit values. The 1 would get interpreted as -1. 1273 ConstantRange PosFilter = 1274 getBitWidth() == 1 ? getEmpty() 1275 : ConstantRange(APInt(getBitWidth(), 1), SignedMin); 1276 ConstantRange NegFilter(SignedMin, Zero); 1277 ConstantRange PosL = intersectWith(PosFilter); 1278 ConstantRange NegL = intersectWith(NegFilter); 1279 ConstantRange PosR = RHS.intersectWith(PosFilter); 1280 ConstantRange NegR = RHS.intersectWith(NegFilter); 1281 1282 ConstantRange PosRes = getEmpty(); 1283 if (!PosL.isEmptySet() && !PosR.isEmptySet()) 1284 // pos / pos = pos. 1285 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1), 1286 (PosL.Upper - 1).sdiv(PosR.Lower) + 1); 1287 1288 if (!NegL.isEmptySet() && !NegR.isEmptySet()) { 1289 // neg / neg = pos. 1290 // 1291 // We need to deal with one tricky case here: SignedMin / -1 is UB on the 1292 // IR level, so we'll want to exclude this case when calculating bounds. 1293 // (For APInts the operation is well-defined and yields SignedMin.) We 1294 // handle this by dropping either SignedMin from the LHS or -1 from the RHS. 1295 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower); 1296 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) { 1297 // Remove -1 from the LHS. Skip if it's the only element, as this would 1298 // leave us with an empty set. 1299 if (!NegR.Lower.isAllOnes()) { 1300 APInt AdjNegRUpper; 1301 if (RHS.Lower.isAllOnes()) 1302 // Negative part of [-1, X] without -1 is [SignedMin, X]. 1303 AdjNegRUpper = RHS.Upper; 1304 else 1305 // [X, -1] without -1 is [X, -2]. 1306 AdjNegRUpper = NegR.Upper - 1; 1307 1308 PosRes = PosRes.unionWith( 1309 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1)); 1310 } 1311 1312 // Remove SignedMin from the RHS. Skip if it's the only element, as this 1313 // would leave us with an empty set. 1314 if (NegL.Upper != SignedMin + 1) { 1315 APInt AdjNegLLower; 1316 if (Upper == SignedMin + 1) 1317 // Negative part of [X, SignedMin] without SignedMin is [X, -1]. 1318 AdjNegLLower = Lower; 1319 else 1320 // [SignedMin, X] without SignedMin is [SignedMin + 1, X]. 1321 AdjNegLLower = NegL.Lower + 1; 1322 1323 PosRes = PosRes.unionWith( 1324 ConstantRange(std::move(Lo), 1325 AdjNegLLower.sdiv(NegR.Upper - 1) + 1)); 1326 } 1327 } else { 1328 PosRes = PosRes.unionWith( 1329 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1)); 1330 } 1331 } 1332 1333 ConstantRange NegRes = getEmpty(); 1334 if (!PosL.isEmptySet() && !NegR.isEmptySet()) 1335 // pos / neg = neg. 1336 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1), 1337 PosL.Lower.sdiv(NegR.Lower) + 1); 1338 1339 if (!NegL.isEmptySet() && !PosR.isEmptySet()) 1340 // neg / pos = neg. 1341 NegRes = NegRes.unionWith( 1342 ConstantRange(NegL.Lower.sdiv(PosR.Lower), 1343 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1)); 1344 1345 // Prefer a non-wrapping signed range here. 1346 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed); 1347 1348 // Preserve the zero that we dropped when splitting the LHS by sign. 1349 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet())) 1350 Res = Res.unionWith(ConstantRange(Zero)); 1351 return Res; 1352 } 1353 1354 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const { 1355 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) 1356 return getEmpty(); 1357 1358 if (const APInt *RHSInt = RHS.getSingleElement()) { 1359 // UREM by null is UB. 1360 if (RHSInt->isZero()) 1361 return getEmpty(); 1362 // Use APInt's implementation of UREM for single element ranges. 1363 if (const APInt *LHSInt = getSingleElement()) 1364 return {LHSInt->urem(*RHSInt)}; 1365 } 1366 1367 // L % R for L < R is L. 1368 if (getUnsignedMax().ult(RHS.getUnsignedMin())) 1369 return *this; 1370 1371 // L % R is <= L and < R. 1372 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1; 1373 return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper)); 1374 } 1375 1376 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const { 1377 if (isEmptySet() || RHS.isEmptySet()) 1378 return getEmpty(); 1379 1380 if (const APInt *RHSInt = RHS.getSingleElement()) { 1381 // SREM by null is UB. 1382 if (RHSInt->isZero()) 1383 return getEmpty(); 1384 // Use APInt's implementation of SREM for single element ranges. 1385 if (const APInt *LHSInt = getSingleElement()) 1386 return {LHSInt->srem(*RHSInt)}; 1387 } 1388 1389 ConstantRange AbsRHS = RHS.abs(); 1390 APInt MinAbsRHS = AbsRHS.getUnsignedMin(); 1391 APInt MaxAbsRHS = AbsRHS.getUnsignedMax(); 1392 1393 // Modulus by zero is UB. 1394 if (MaxAbsRHS.isZero()) 1395 return getEmpty(); 1396 1397 if (MinAbsRHS.isZero()) 1398 ++MinAbsRHS; 1399 1400 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax(); 1401 1402 if (MinLHS.isNonNegative()) { 1403 // L % R for L < R is L. 1404 if (MaxLHS.ult(MinAbsRHS)) 1405 return *this; 1406 1407 // L % R is <= L and < R. 1408 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1409 return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper)); 1410 } 1411 1412 // Same basic logic as above, but the result is negative. 1413 if (MaxLHS.isNegative()) { 1414 if (MinLHS.ugt(-MinAbsRHS)) 1415 return *this; 1416 1417 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1418 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1)); 1419 } 1420 1421 // LHS range crosses zero. 1422 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); 1423 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; 1424 return ConstantRange(std::move(Lower), std::move(Upper)); 1425 } 1426 1427 ConstantRange ConstantRange::binaryNot() const { 1428 return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this); 1429 } 1430 1431 ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const { 1432 if (isEmptySet() || Other.isEmptySet()) 1433 return getEmpty(); 1434 1435 ConstantRange KnownBitsRange = 1436 fromKnownBits(toKnownBits() & Other.toKnownBits(), false); 1437 ConstantRange UMinUMaxRange = 1438 getNonEmpty(APInt::getZero(getBitWidth()), 1439 APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()) + 1); 1440 return KnownBitsRange.intersectWith(UMinUMaxRange); 1441 } 1442 1443 ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const { 1444 if (isEmptySet() || Other.isEmptySet()) 1445 return getEmpty(); 1446 1447 ConstantRange KnownBitsRange = 1448 fromKnownBits(toKnownBits() | Other.toKnownBits(), false); 1449 // Upper wrapped range. 1450 ConstantRange UMaxUMinRange = 1451 getNonEmpty(APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()), 1452 APInt::getZero(getBitWidth())); 1453 return KnownBitsRange.intersectWith(UMaxUMinRange); 1454 } 1455 1456 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const { 1457 if (isEmptySet() || Other.isEmptySet()) 1458 return getEmpty(); 1459 1460 // Use APInt's implementation of XOR for single element ranges. 1461 if (isSingleElement() && Other.isSingleElement()) 1462 return {*getSingleElement() ^ *Other.getSingleElement()}; 1463 1464 // Special-case binary complement, since we can give a precise answer. 1465 if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes()) 1466 return binaryNot(); 1467 if (isSingleElement() && getSingleElement()->isAllOnes()) 1468 return Other.binaryNot(); 1469 1470 return fromKnownBits(toKnownBits() ^ Other.toKnownBits(), /*IsSigned*/false); 1471 } 1472 1473 ConstantRange 1474 ConstantRange::shl(const ConstantRange &Other) const { 1475 if (isEmptySet() || Other.isEmptySet()) 1476 return getEmpty(); 1477 1478 APInt Min = getUnsignedMin(); 1479 APInt Max = getUnsignedMax(); 1480 if (const APInt *RHS = Other.getSingleElement()) { 1481 unsigned BW = getBitWidth(); 1482 if (RHS->uge(BW)) 1483 return getEmpty(); 1484 1485 unsigned EqualLeadingBits = (Min ^ Max).countl_zero(); 1486 if (RHS->ule(EqualLeadingBits)) 1487 return getNonEmpty(Min << *RHS, (Max << *RHS) + 1); 1488 1489 return getNonEmpty(APInt::getZero(BW), 1490 APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1); 1491 } 1492 1493 APInt OtherMax = Other.getUnsignedMax(); 1494 if (isAllNegative() && OtherMax.ule(Min.countl_one())) { 1495 // For negative numbers, if the shift does not overflow in a signed sense, 1496 // a larger shift will make the number smaller. 1497 Max <<= Other.getUnsignedMin(); 1498 Min <<= OtherMax; 1499 return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1); 1500 } 1501 1502 // There's overflow! 1503 if (OtherMax.ugt(Max.countl_zero())) 1504 return getFull(); 1505 1506 // FIXME: implement the other tricky cases 1507 1508 Min <<= Other.getUnsignedMin(); 1509 Max <<= OtherMax; 1510 1511 return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1); 1512 } 1513 1514 ConstantRange 1515 ConstantRange::lshr(const ConstantRange &Other) const { 1516 if (isEmptySet() || Other.isEmptySet()) 1517 return getEmpty(); 1518 1519 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; 1520 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); 1521 return getNonEmpty(std::move(min), std::move(max)); 1522 } 1523 1524 ConstantRange 1525 ConstantRange::ashr(const ConstantRange &Other) const { 1526 if (isEmptySet() || Other.isEmptySet()) 1527 return getEmpty(); 1528 1529 // May straddle zero, so handle both positive and negative cases. 1530 // 'PosMax' is the upper bound of the result of the ashr 1531 // operation, when Upper of the LHS of ashr is a non-negative. 1532 // number. Since ashr of a non-negative number will result in a 1533 // smaller number, the Upper value of LHS is shifted right with 1534 // the minimum value of 'Other' instead of the maximum value. 1535 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; 1536 1537 // 'PosMin' is the lower bound of the result of the ashr 1538 // operation, when Lower of the LHS is a non-negative number. 1539 // Since ashr of a non-negative number will result in a smaller 1540 // number, the Lower value of LHS is shifted right with the 1541 // maximum value of 'Other'. 1542 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); 1543 1544 // 'NegMax' is the upper bound of the result of the ashr 1545 // operation, when Upper of the LHS of ashr is a negative number. 1546 // Since 'ashr' of a negative number will result in a bigger 1547 // number, the Upper value of LHS is shifted right with the 1548 // maximum value of 'Other'. 1549 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; 1550 1551 // 'NegMin' is the lower bound of the result of the ashr 1552 // operation, when Lower of the LHS of ashr is a negative number. 1553 // Since 'ashr' of a negative number will result in a bigger 1554 // number, the Lower value of LHS is shifted right with the 1555 // minimum value of 'Other'. 1556 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); 1557 1558 APInt max, min; 1559 if (getSignedMin().isNonNegative()) { 1560 // Upper and Lower of LHS are non-negative. 1561 min = PosMin; 1562 max = PosMax; 1563 } else if (getSignedMax().isNegative()) { 1564 // Upper and Lower of LHS are negative. 1565 min = NegMin; 1566 max = NegMax; 1567 } else { 1568 // Upper is non-negative and Lower is negative. 1569 min = NegMin; 1570 max = PosMax; 1571 } 1572 return getNonEmpty(std::move(min), std::move(max)); 1573 } 1574 1575 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const { 1576 if (isEmptySet() || Other.isEmptySet()) 1577 return getEmpty(); 1578 1579 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin()); 1580 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1; 1581 return getNonEmpty(std::move(NewL), std::move(NewU)); 1582 } 1583 1584 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const { 1585 if (isEmptySet() || Other.isEmptySet()) 1586 return getEmpty(); 1587 1588 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin()); 1589 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1; 1590 return getNonEmpty(std::move(NewL), std::move(NewU)); 1591 } 1592 1593 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const { 1594 if (isEmptySet() || Other.isEmptySet()) 1595 return getEmpty(); 1596 1597 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax()); 1598 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1; 1599 return getNonEmpty(std::move(NewL), std::move(NewU)); 1600 } 1601 1602 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const { 1603 if (isEmptySet() || Other.isEmptySet()) 1604 return getEmpty(); 1605 1606 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax()); 1607 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1; 1608 return getNonEmpty(std::move(NewL), std::move(NewU)); 1609 } 1610 1611 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const { 1612 if (isEmptySet() || Other.isEmptySet()) 1613 return getEmpty(); 1614 1615 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin()); 1616 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1; 1617 return getNonEmpty(std::move(NewL), std::move(NewU)); 1618 } 1619 1620 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const { 1621 if (isEmptySet() || Other.isEmptySet()) 1622 return getEmpty(); 1623 1624 // Because we could be dealing with negative numbers here, the lower bound is 1625 // the smallest of the cartesian product of the lower and upper ranges; 1626 // for example: 1627 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. 1628 // Similarly for the upper bound, swapping min for max. 1629 1630 APInt Min = getSignedMin(); 1631 APInt Max = getSignedMax(); 1632 APInt OtherMin = Other.getSignedMin(); 1633 APInt OtherMax = Other.getSignedMax(); 1634 1635 auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax), 1636 Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)}; 1637 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; 1638 return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1); 1639 } 1640 1641 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const { 1642 if (isEmptySet() || Other.isEmptySet()) 1643 return getEmpty(); 1644 1645 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin()); 1646 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1; 1647 return getNonEmpty(std::move(NewL), std::move(NewU)); 1648 } 1649 1650 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const { 1651 if (isEmptySet() || Other.isEmptySet()) 1652 return getEmpty(); 1653 1654 APInt Min = getSignedMin(), Max = getSignedMax(); 1655 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax(); 1656 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax); 1657 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1; 1658 return getNonEmpty(std::move(NewL), std::move(NewU)); 1659 } 1660 1661 ConstantRange ConstantRange::inverse() const { 1662 if (isFullSet()) 1663 return getEmpty(); 1664 if (isEmptySet()) 1665 return getFull(); 1666 return ConstantRange(Upper, Lower); 1667 } 1668 1669 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const { 1670 if (isEmptySet()) 1671 return getEmpty(); 1672 1673 if (isSignWrappedSet()) { 1674 APInt Lo; 1675 // Check whether the range crosses zero. 1676 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive()) 1677 Lo = APInt::getZero(getBitWidth()); 1678 else 1679 Lo = APIntOps::umin(Lower, -Upper + 1); 1680 1681 // If SignedMin is not poison, then it is included in the result range. 1682 if (IntMinIsPoison) 1683 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth())); 1684 else 1685 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1); 1686 } 1687 1688 APInt SMin = getSignedMin(), SMax = getSignedMax(); 1689 1690 // Skip SignedMin if it is poison. 1691 if (IntMinIsPoison && SMin.isMinSignedValue()) { 1692 // The range may become empty if it *only* contains SignedMin. 1693 if (SMax.isMinSignedValue()) 1694 return getEmpty(); 1695 ++SMin; 1696 } 1697 1698 // All non-negative. 1699 if (SMin.isNonNegative()) 1700 return ConstantRange(SMin, SMax + 1); 1701 1702 // All negative. 1703 if (SMax.isNegative()) 1704 return ConstantRange(-SMax, -SMin + 1); 1705 1706 // Range crosses zero. 1707 return ConstantRange::getNonEmpty(APInt::getZero(getBitWidth()), 1708 APIntOps::umax(-SMin, SMax) + 1); 1709 } 1710 1711 ConstantRange ConstantRange::ctlz(bool ZeroIsPoison) const { 1712 if (isEmptySet()) 1713 return getEmpty(); 1714 1715 APInt Zero = APInt::getZero(getBitWidth()); 1716 if (ZeroIsPoison && contains(Zero)) { 1717 // ZeroIsPoison is set, and zero is contained. We discern three cases, in 1718 // which a zero can appear: 1719 // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc. 1720 // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc. 1721 // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc. 1722 1723 if (getLower().isZero()) { 1724 if ((getUpper() - 1).isZero()) { 1725 // We have in input interval of kind [0, 1). In this case we cannot 1726 // really help but return empty-set. 1727 return getEmpty(); 1728 } 1729 1730 // Compute the resulting range by excluding zero from Lower. 1731 return ConstantRange( 1732 APInt(getBitWidth(), (getUpper() - 1).countl_zero()), 1733 APInt(getBitWidth(), (getLower() + 1).countl_zero() + 1)); 1734 } else if ((getUpper() - 1).isZero()) { 1735 // Compute the resulting range by excluding zero from Upper. 1736 return ConstantRange(Zero, 1737 APInt(getBitWidth(), getLower().countl_zero() + 1)); 1738 } else { 1739 return ConstantRange(Zero, APInt(getBitWidth(), getBitWidth())); 1740 } 1741 } 1742 1743 // Zero is either safe or not in the range. The output range is composed by 1744 // the result of countLeadingZero of the two extremes. 1745 return getNonEmpty(APInt(getBitWidth(), getUnsignedMax().countl_zero()), 1746 APInt(getBitWidth(), getUnsignedMin().countl_zero() + 1)); 1747 } 1748 1749 static ConstantRange getUnsignedCountTrailingZerosRange(const APInt &Lower, 1750 const APInt &Upper) { 1751 assert(!ConstantRange(Lower, Upper).isWrappedSet() && 1752 "Unexpected wrapped set."); 1753 assert(Lower != Upper && "Unexpected empty set."); 1754 unsigned BitWidth = Lower.getBitWidth(); 1755 if (Lower + 1 == Upper) 1756 return ConstantRange(APInt(BitWidth, Lower.countr_zero())); 1757 if (Lower.isZero()) 1758 return ConstantRange(APInt::getZero(BitWidth), 1759 APInt(BitWidth, BitWidth + 1)); 1760 1761 // Calculate longest common prefix. 1762 unsigned LCPLength = (Lower ^ (Upper - 1)).countl_zero(); 1763 // If Lower is {LCP, 000...}, the maximum is Lower.countr_zero(). 1764 // Otherwise, the maximum is BitWidth - LCPLength - 1 ({LCP, 100...}). 1765 return ConstantRange( 1766 APInt::getZero(BitWidth), 1767 APInt(BitWidth, 1768 std::max(BitWidth - LCPLength - 1, Lower.countr_zero()) + 1)); 1769 } 1770 1771 ConstantRange ConstantRange::cttz(bool ZeroIsPoison) const { 1772 if (isEmptySet()) 1773 return getEmpty(); 1774 1775 unsigned BitWidth = getBitWidth(); 1776 APInt Zero = APInt::getZero(BitWidth); 1777 if (ZeroIsPoison && contains(Zero)) { 1778 // ZeroIsPoison is set, and zero is contained. We discern three cases, in 1779 // which a zero can appear: 1780 // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc. 1781 // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc. 1782 // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc. 1783 1784 if (Lower.isZero()) { 1785 if (Upper == 1) { 1786 // We have in input interval of kind [0, 1). In this case we cannot 1787 // really help but return empty-set. 1788 return getEmpty(); 1789 } 1790 1791 // Compute the resulting range by excluding zero from Lower. 1792 return getUnsignedCountTrailingZerosRange(APInt(BitWidth, 1), Upper); 1793 } else if (Upper == 1) { 1794 // Compute the resulting range by excluding zero from Upper. 1795 return getUnsignedCountTrailingZerosRange(Lower, Zero); 1796 } else { 1797 ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Zero); 1798 ConstantRange CR2 = 1799 getUnsignedCountTrailingZerosRange(APInt(BitWidth, 1), Upper); 1800 return CR1.unionWith(CR2); 1801 } 1802 } 1803 1804 if (isFullSet()) 1805 return getNonEmpty(Zero, APInt(BitWidth, BitWidth + 1)); 1806 if (!isWrappedSet()) 1807 return getUnsignedCountTrailingZerosRange(Lower, Upper); 1808 // The range is wrapped. We decompose it into two ranges, [0, Upper) and 1809 // [Lower, 0). 1810 // Handle [Lower, 0) 1811 ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Zero); 1812 // Handle [0, Upper) 1813 ConstantRange CR2 = getUnsignedCountTrailingZerosRange(Zero, Upper); 1814 return CR1.unionWith(CR2); 1815 } 1816 1817 static ConstantRange getUnsignedPopCountRange(const APInt &Lower, 1818 const APInt &Upper) { 1819 assert(!ConstantRange(Lower, Upper).isWrappedSet() && 1820 "Unexpected wrapped set."); 1821 assert(Lower != Upper && "Unexpected empty set."); 1822 unsigned BitWidth = Lower.getBitWidth(); 1823 if (Lower + 1 == Upper) 1824 return ConstantRange(APInt(BitWidth, Lower.popcount())); 1825 1826 APInt Max = Upper - 1; 1827 // Calculate longest common prefix. 1828 unsigned LCPLength = (Lower ^ Max).countl_zero(); 1829 unsigned LCPPopCount = Lower.getHiBits(LCPLength).popcount(); 1830 // If Lower is {LCP, 000...}, the minimum is the popcount of LCP. 1831 // Otherwise, the minimum is the popcount of LCP + 1. 1832 unsigned MinBits = 1833 LCPPopCount + (Lower.countr_zero() < BitWidth - LCPLength ? 1 : 0); 1834 // If Max is {LCP, 111...}, the maximum is the popcount of LCP + (BitWidth - 1835 // length of LCP). 1836 // Otherwise, the minimum is the popcount of LCP + (BitWidth - 1837 // length of LCP - 1). 1838 unsigned MaxBits = LCPPopCount + (BitWidth - LCPLength) - 1839 (Max.countr_one() < BitWidth - LCPLength ? 1 : 0); 1840 return ConstantRange(APInt(BitWidth, MinBits), APInt(BitWidth, MaxBits + 1)); 1841 } 1842 1843 ConstantRange ConstantRange::ctpop() const { 1844 if (isEmptySet()) 1845 return getEmpty(); 1846 1847 unsigned BitWidth = getBitWidth(); 1848 APInt Zero = APInt::getZero(BitWidth); 1849 if (isFullSet()) 1850 return getNonEmpty(Zero, APInt(BitWidth, BitWidth + 1)); 1851 if (!isWrappedSet()) 1852 return getUnsignedPopCountRange(Lower, Upper); 1853 // The range is wrapped. We decompose it into two ranges, [0, Upper) and 1854 // [Lower, 0). 1855 // Handle [Lower, 0) == [Lower, Max] 1856 ConstantRange CR1 = ConstantRange(APInt(BitWidth, Lower.countl_one()), 1857 APInt(BitWidth, BitWidth + 1)); 1858 // Handle [0, Upper) 1859 ConstantRange CR2 = getUnsignedPopCountRange(Zero, Upper); 1860 return CR1.unionWith(CR2); 1861 } 1862 1863 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow( 1864 const ConstantRange &Other) const { 1865 if (isEmptySet() || Other.isEmptySet()) 1866 return OverflowResult::MayOverflow; 1867 1868 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1869 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1870 1871 // a u+ b overflows high iff a u> ~b. 1872 if (Min.ugt(~OtherMin)) 1873 return OverflowResult::AlwaysOverflowsHigh; 1874 if (Max.ugt(~OtherMax)) 1875 return OverflowResult::MayOverflow; 1876 return OverflowResult::NeverOverflows; 1877 } 1878 1879 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow( 1880 const ConstantRange &Other) const { 1881 if (isEmptySet() || Other.isEmptySet()) 1882 return OverflowResult::MayOverflow; 1883 1884 APInt Min = getSignedMin(), Max = getSignedMax(); 1885 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1886 1887 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1888 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1889 1890 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b. 1891 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b. 1892 if (Min.isNonNegative() && OtherMin.isNonNegative() && 1893 Min.sgt(SignedMax - OtherMin)) 1894 return OverflowResult::AlwaysOverflowsHigh; 1895 if (Max.isNegative() && OtherMax.isNegative() && 1896 Max.slt(SignedMin - OtherMax)) 1897 return OverflowResult::AlwaysOverflowsLow; 1898 1899 if (Max.isNonNegative() && OtherMax.isNonNegative() && 1900 Max.sgt(SignedMax - OtherMax)) 1901 return OverflowResult::MayOverflow; 1902 if (Min.isNegative() && OtherMin.isNegative() && 1903 Min.slt(SignedMin - OtherMin)) 1904 return OverflowResult::MayOverflow; 1905 1906 return OverflowResult::NeverOverflows; 1907 } 1908 1909 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow( 1910 const ConstantRange &Other) const { 1911 if (isEmptySet() || Other.isEmptySet()) 1912 return OverflowResult::MayOverflow; 1913 1914 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1915 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1916 1917 // a u- b overflows low iff a u< b. 1918 if (Max.ult(OtherMin)) 1919 return OverflowResult::AlwaysOverflowsLow; 1920 if (Min.ult(OtherMax)) 1921 return OverflowResult::MayOverflow; 1922 return OverflowResult::NeverOverflows; 1923 } 1924 1925 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow( 1926 const ConstantRange &Other) const { 1927 if (isEmptySet() || Other.isEmptySet()) 1928 return OverflowResult::MayOverflow; 1929 1930 APInt Min = getSignedMin(), Max = getSignedMax(); 1931 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); 1932 1933 APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); 1934 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); 1935 1936 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b. 1937 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b. 1938 if (Min.isNonNegative() && OtherMax.isNegative() && 1939 Min.sgt(SignedMax + OtherMax)) 1940 return OverflowResult::AlwaysOverflowsHigh; 1941 if (Max.isNegative() && OtherMin.isNonNegative() && 1942 Max.slt(SignedMin + OtherMin)) 1943 return OverflowResult::AlwaysOverflowsLow; 1944 1945 if (Max.isNonNegative() && OtherMin.isNegative() && 1946 Max.sgt(SignedMax + OtherMin)) 1947 return OverflowResult::MayOverflow; 1948 if (Min.isNegative() && OtherMax.isNonNegative() && 1949 Min.slt(SignedMin + OtherMax)) 1950 return OverflowResult::MayOverflow; 1951 1952 return OverflowResult::NeverOverflows; 1953 } 1954 1955 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow( 1956 const ConstantRange &Other) const { 1957 if (isEmptySet() || Other.isEmptySet()) 1958 return OverflowResult::MayOverflow; 1959 1960 APInt Min = getUnsignedMin(), Max = getUnsignedMax(); 1961 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); 1962 bool Overflow; 1963 1964 (void) Min.umul_ov(OtherMin, Overflow); 1965 if (Overflow) 1966 return OverflowResult::AlwaysOverflowsHigh; 1967 1968 (void) Max.umul_ov(OtherMax, Overflow); 1969 if (Overflow) 1970 return OverflowResult::MayOverflow; 1971 1972 return OverflowResult::NeverOverflows; 1973 } 1974 1975 void ConstantRange::print(raw_ostream &OS) const { 1976 if (isFullSet()) 1977 OS << "full-set"; 1978 else if (isEmptySet()) 1979 OS << "empty-set"; 1980 else 1981 OS << "[" << Lower << "," << Upper << ")"; 1982 } 1983 1984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1985 LLVM_DUMP_METHOD void ConstantRange::dump() const { 1986 print(dbgs()); 1987 } 1988 #endif 1989 1990 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 1991 const unsigned NumRanges = Ranges.getNumOperands() / 2; 1992 assert(NumRanges >= 1 && "Must have at least one range!"); 1993 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 1994 1995 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 1996 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 1997 1998 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 1999 2000 for (unsigned i = 1; i < NumRanges; ++i) { 2001 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 2002 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 2003 2004 // Note: unionWith will potentially create a range that contains values not 2005 // contained in any of the original N ranges. 2006 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 2007 } 2008 2009 return CR; 2010 } 2011