xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantRange.cpp (revision 0b37c1590418417c894529d371800dfac71ef887)
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 
40 using namespace llvm;
41 
42 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
43     : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
44       Upper(Lower) {}
45 
46 ConstantRange::ConstantRange(APInt V)
47     : Lower(std::move(V)), Upper(Lower + 1) {}
48 
49 ConstantRange::ConstantRange(APInt L, APInt U)
50     : Lower(std::move(L)), Upper(std::move(U)) {
51   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
52          "ConstantRange with unequal bit widths");
53   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
54          "Lower == Upper, but they aren't min or max value!");
55 }
56 
57 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
58                                            bool IsSigned) {
59   assert(!Known.hasConflict() && "Expected valid KnownBits");
60 
61   if (Known.isUnknown())
62     return getFull(Known.getBitWidth());
63 
64   // For unsigned ranges, or signed ranges with known sign bit, create a simple
65   // range between the smallest and largest possible value.
66   if (!IsSigned || Known.isNegative() || Known.isNonNegative())
67     return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
68 
69   // If we don't know the sign bit, pick the lower bound as a negative number
70   // and the upper bound as a non-negative one.
71   APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
72   Lower.setSignBit();
73   Upper.clearSignBit();
74   return ConstantRange(Lower, Upper + 1);
75 }
76 
77 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
78                                                    const ConstantRange &CR) {
79   if (CR.isEmptySet())
80     return CR;
81 
82   uint32_t W = CR.getBitWidth();
83   switch (Pred) {
84   default:
85     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
86   case CmpInst::ICMP_EQ:
87     return CR;
88   case CmpInst::ICMP_NE:
89     if (CR.isSingleElement())
90       return ConstantRange(CR.getUpper(), CR.getLower());
91     return getFull(W);
92   case CmpInst::ICMP_ULT: {
93     APInt UMax(CR.getUnsignedMax());
94     if (UMax.isMinValue())
95       return getEmpty(W);
96     return ConstantRange(APInt::getMinValue(W), std::move(UMax));
97   }
98   case CmpInst::ICMP_SLT: {
99     APInt SMax(CR.getSignedMax());
100     if (SMax.isMinSignedValue())
101       return getEmpty(W);
102     return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
103   }
104   case CmpInst::ICMP_ULE:
105     return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
106   case CmpInst::ICMP_SLE:
107     return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
108   case CmpInst::ICMP_UGT: {
109     APInt UMin(CR.getUnsignedMin());
110     if (UMin.isMaxValue())
111       return getEmpty(W);
112     return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
113   }
114   case CmpInst::ICMP_SGT: {
115     APInt SMin(CR.getSignedMin());
116     if (SMin.isMaxSignedValue())
117       return getEmpty(W);
118     return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
119   }
120   case CmpInst::ICMP_UGE:
121     return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
122   case CmpInst::ICMP_SGE:
123     return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
124   }
125 }
126 
127 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
128                                                       const ConstantRange &CR) {
129   // Follows from De-Morgan's laws:
130   //
131   // ~(~A union ~B) == A intersect B.
132   //
133   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
134       .inverse();
135 }
136 
137 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
138                                                  const APInt &C) {
139   // Computes the exact range that is equal to both the constant ranges returned
140   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
141   // when RHS is a singleton such as an APInt and so the assert is valid.
142   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
143   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
144   //
145   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
146   return makeAllowedICmpRegion(Pred, C);
147 }
148 
149 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
150                                       APInt &RHS) const {
151   bool Success = false;
152 
153   if (isFullSet() || isEmptySet()) {
154     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
155     RHS = APInt(getBitWidth(), 0);
156     Success = true;
157   } else if (auto *OnlyElt = getSingleElement()) {
158     Pred = CmpInst::ICMP_EQ;
159     RHS = *OnlyElt;
160     Success = true;
161   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
162     Pred = CmpInst::ICMP_NE;
163     RHS = *OnlyMissingElt;
164     Success = true;
165   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
166     Pred =
167         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
168     RHS = getUpper();
169     Success = true;
170   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
171     Pred =
172         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
173     RHS = getLower();
174     Success = true;
175   }
176 
177   assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
178          "Bad result!");
179 
180   return Success;
181 }
182 
183 /// Exact mul nuw region for single element RHS.
184 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
185   unsigned BitWidth = V.getBitWidth();
186   if (V == 0)
187     return ConstantRange::getFull(V.getBitWidth());
188 
189   return ConstantRange::getNonEmpty(
190       APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
191                              APInt::Rounding::UP),
192       APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
193                              APInt::Rounding::DOWN) + 1);
194 }
195 
196 /// Exact mul nsw region for single element RHS.
197 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
198   // Handle special case for 0, -1 and 1. See the last for reason why we
199   // specialize -1 and 1.
200   unsigned BitWidth = V.getBitWidth();
201   if (V == 0 || V.isOneValue())
202     return ConstantRange::getFull(BitWidth);
203 
204   APInt MinValue = APInt::getSignedMinValue(BitWidth);
205   APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
206   // e.g. Returning [-127, 127], represented as [-127, -128).
207   if (V.isAllOnesValue())
208     return ConstantRange(-MaxValue, MinValue);
209 
210   APInt Lower, Upper;
211   if (V.isNegative()) {
212     Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
213     Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
214   } else {
215     Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
216     Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
217   }
218   // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
219   // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
220   // and 1 are already handled as special cases.
221   return ConstantRange(Lower, Upper + 1);
222 }
223 
224 ConstantRange
225 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
226                                           const ConstantRange &Other,
227                                           unsigned NoWrapKind) {
228   using OBO = OverflowingBinaryOperator;
229 
230   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
231 
232   assert((NoWrapKind == OBO::NoSignedWrap ||
233           NoWrapKind == OBO::NoUnsignedWrap) &&
234          "NoWrapKind invalid!");
235 
236   bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
237   unsigned BitWidth = Other.getBitWidth();
238 
239   switch (BinOp) {
240   default:
241     llvm_unreachable("Unsupported binary op");
242 
243   case Instruction::Add: {
244     if (Unsigned)
245       return getNonEmpty(APInt::getNullValue(BitWidth),
246                          -Other.getUnsignedMax());
247 
248     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
249     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
250     return getNonEmpty(
251         SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
252         SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
253   }
254 
255   case Instruction::Sub: {
256     if (Unsigned)
257       return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
258 
259     APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
260     APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
261     return getNonEmpty(
262         SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
263         SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
264   }
265 
266   case Instruction::Mul:
267     if (Unsigned)
268       return makeExactMulNUWRegion(Other.getUnsignedMax());
269 
270     return makeExactMulNSWRegion(Other.getSignedMin())
271         .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
272 
273   case Instruction::Shl: {
274     // For given range of shift amounts, if we ignore all illegal shift amounts
275     // (that always produce poison), what shift amount range is left?
276     ConstantRange ShAmt = Other.intersectWith(
277         ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
278     if (ShAmt.isEmptySet()) {
279       // If the entire range of shift amounts is already poison-producing,
280       // then we can freely add more poison-producing flags ontop of that.
281       return getFull(BitWidth);
282     }
283     // There are some legal shift amounts, we can compute conservatively-correct
284     // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
285     // to be at most bitwidth-1, which results in most conservative range.
286     APInt ShAmtUMax = ShAmt.getUnsignedMax();
287     if (Unsigned)
288       return getNonEmpty(APInt::getNullValue(BitWidth),
289                          APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
290     return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
291                        APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
292   }
293   }
294 }
295 
296 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
297                                                    const APInt &Other,
298                                                    unsigned NoWrapKind) {
299   // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
300   // "for all" and "for any" coincide in this case.
301   return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
302 }
303 
304 bool ConstantRange::isFullSet() const {
305   return Lower == Upper && Lower.isMaxValue();
306 }
307 
308 bool ConstantRange::isEmptySet() const {
309   return Lower == Upper && Lower.isMinValue();
310 }
311 
312 bool ConstantRange::isWrappedSet() const {
313   return Lower.ugt(Upper) && !Upper.isNullValue();
314 }
315 
316 bool ConstantRange::isUpperWrapped() const {
317   return Lower.ugt(Upper);
318 }
319 
320 bool ConstantRange::isSignWrappedSet() const {
321   return Lower.sgt(Upper) && !Upper.isMinSignedValue();
322 }
323 
324 bool ConstantRange::isUpperSignWrapped() const {
325   return Lower.sgt(Upper);
326 }
327 
328 bool
329 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
330   assert(getBitWidth() == Other.getBitWidth());
331   if (isFullSet())
332     return false;
333   if (Other.isFullSet())
334     return true;
335   return (Upper - Lower).ult(Other.Upper - Other.Lower);
336 }
337 
338 bool
339 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
340   assert(MaxSize && "MaxSize can't be 0.");
341   // If this a full set, we need special handling to avoid needing an extra bit
342   // to represent the size.
343   if (isFullSet())
344     return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
345 
346   return (Upper - Lower).ugt(MaxSize);
347 }
348 
349 bool ConstantRange::isAllNegative() const {
350   // Empty set is all negative, full set is not.
351   if (isEmptySet())
352     return true;
353   if (isFullSet())
354     return false;
355 
356   return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
357 }
358 
359 bool ConstantRange::isAllNonNegative() const {
360   // Empty and full set are automatically treated correctly.
361   return !isSignWrappedSet() && Lower.isNonNegative();
362 }
363 
364 APInt ConstantRange::getUnsignedMax() const {
365   if (isFullSet() || isUpperWrapped())
366     return APInt::getMaxValue(getBitWidth());
367   return getUpper() - 1;
368 }
369 
370 APInt ConstantRange::getUnsignedMin() const {
371   if (isFullSet() || isWrappedSet())
372     return APInt::getMinValue(getBitWidth());
373   return getLower();
374 }
375 
376 APInt ConstantRange::getSignedMax() const {
377   if (isFullSet() || isUpperSignWrapped())
378     return APInt::getSignedMaxValue(getBitWidth());
379   return getUpper() - 1;
380 }
381 
382 APInt ConstantRange::getSignedMin() const {
383   if (isFullSet() || isSignWrappedSet())
384     return APInt::getSignedMinValue(getBitWidth());
385   return getLower();
386 }
387 
388 bool ConstantRange::contains(const APInt &V) const {
389   if (Lower == Upper)
390     return isFullSet();
391 
392   if (!isUpperWrapped())
393     return Lower.ule(V) && V.ult(Upper);
394   return Lower.ule(V) || V.ult(Upper);
395 }
396 
397 bool ConstantRange::contains(const ConstantRange &Other) const {
398   if (isFullSet() || Other.isEmptySet()) return true;
399   if (isEmptySet() || Other.isFullSet()) return false;
400 
401   if (!isUpperWrapped()) {
402     if (Other.isUpperWrapped())
403       return false;
404 
405     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
406   }
407 
408   if (!Other.isUpperWrapped())
409     return Other.getUpper().ule(Upper) ||
410            Lower.ule(Other.getLower());
411 
412   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
413 }
414 
415 ConstantRange ConstantRange::subtract(const APInt &Val) const {
416   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
417   // If the set is empty or full, don't modify the endpoints.
418   if (Lower == Upper)
419     return *this;
420   return ConstantRange(Lower - Val, Upper - Val);
421 }
422 
423 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
424   return intersectWith(CR.inverse());
425 }
426 
427 static ConstantRange getPreferredRange(
428     const ConstantRange &CR1, const ConstantRange &CR2,
429     ConstantRange::PreferredRangeType Type) {
430   if (Type == ConstantRange::Unsigned) {
431     if (!CR1.isWrappedSet() && CR2.isWrappedSet())
432       return CR1;
433     if (CR1.isWrappedSet() && !CR2.isWrappedSet())
434       return CR2;
435   } else if (Type == ConstantRange::Signed) {
436     if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
437       return CR1;
438     if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
439       return CR2;
440   }
441 
442   if (CR1.isSizeStrictlySmallerThan(CR2))
443     return CR1;
444   return CR2;
445 }
446 
447 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
448                                            PreferredRangeType Type) const {
449   assert(getBitWidth() == CR.getBitWidth() &&
450          "ConstantRange types don't agree!");
451 
452   // Handle common cases.
453   if (   isEmptySet() || CR.isFullSet()) return *this;
454   if (CR.isEmptySet() ||    isFullSet()) return CR;
455 
456   if (!isUpperWrapped() && CR.isUpperWrapped())
457     return CR.intersectWith(*this, Type);
458 
459   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
460     if (Lower.ult(CR.Lower)) {
461       // L---U       : this
462       //       L---U : CR
463       if (Upper.ule(CR.Lower))
464         return getEmpty();
465 
466       // L---U       : this
467       //   L---U     : CR
468       if (Upper.ult(CR.Upper))
469         return ConstantRange(CR.Lower, Upper);
470 
471       // L-------U   : this
472       //   L---U     : CR
473       return CR;
474     }
475     //   L---U     : this
476     // L-------U   : CR
477     if (Upper.ult(CR.Upper))
478       return *this;
479 
480     //   L-----U   : this
481     // L-----U     : CR
482     if (Lower.ult(CR.Upper))
483       return ConstantRange(Lower, CR.Upper);
484 
485     //       L---U : this
486     // L---U       : CR
487     return getEmpty();
488   }
489 
490   if (isUpperWrapped() && !CR.isUpperWrapped()) {
491     if (CR.Lower.ult(Upper)) {
492       // ------U   L--- : this
493       //  L--U          : CR
494       if (CR.Upper.ult(Upper))
495         return CR;
496 
497       // ------U   L--- : this
498       //  L------U      : CR
499       if (CR.Upper.ule(Lower))
500         return ConstantRange(CR.Lower, Upper);
501 
502       // ------U   L--- : this
503       //  L----------U  : CR
504       return getPreferredRange(*this, CR, Type);
505     }
506     if (CR.Lower.ult(Lower)) {
507       // --U      L---- : this
508       //     L--U       : CR
509       if (CR.Upper.ule(Lower))
510         return getEmpty();
511 
512       // --U      L---- : this
513       //     L------U   : CR
514       return ConstantRange(Lower, CR.Upper);
515     }
516 
517     // --U  L------ : this
518     //        L--U  : CR
519     return CR;
520   }
521 
522   if (CR.Upper.ult(Upper)) {
523     // ------U L-- : this
524     // --U L------ : CR
525     if (CR.Lower.ult(Upper))
526       return getPreferredRange(*this, CR, Type);
527 
528     // ----U   L-- : this
529     // --U   L---- : CR
530     if (CR.Lower.ult(Lower))
531       return ConstantRange(Lower, CR.Upper);
532 
533     // ----U L---- : this
534     // --U     L-- : CR
535     return CR;
536   }
537   if (CR.Upper.ule(Lower)) {
538     // --U     L-- : this
539     // ----U L---- : CR
540     if (CR.Lower.ult(Lower))
541       return *this;
542 
543     // --U   L---- : this
544     // ----U   L-- : CR
545     return ConstantRange(CR.Lower, Upper);
546   }
547 
548   // --U L------ : this
549   // ------U L-- : CR
550   return getPreferredRange(*this, CR, Type);
551 }
552 
553 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
554                                        PreferredRangeType Type) const {
555   assert(getBitWidth() == CR.getBitWidth() &&
556          "ConstantRange types don't agree!");
557 
558   if (   isFullSet() || CR.isEmptySet()) return *this;
559   if (CR.isFullSet() ||    isEmptySet()) return CR;
560 
561   if (!isUpperWrapped() && CR.isUpperWrapped())
562     return CR.unionWith(*this, Type);
563 
564   if (!isUpperWrapped() && !CR.isUpperWrapped()) {
565     //        L---U  and  L---U        : this
566     //  L---U                   L---U  : CR
567     // result in one of
568     //  L---------U
569     // -----U L-----
570     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
571       return getPreferredRange(
572           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
573 
574     APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
575     APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
576 
577     if (L.isNullValue() && U.isNullValue())
578       return getFull();
579 
580     return ConstantRange(std::move(L), std::move(U));
581   }
582 
583   if (!CR.isUpperWrapped()) {
584     // ------U   L-----  and  ------U   L----- : this
585     //   L--U                            L--U  : CR
586     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
587       return *this;
588 
589     // ------U   L----- : this
590     //    L---------U   : CR
591     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
592       return getFull();
593 
594     // ----U       L---- : this
595     //       L---U       : CR
596     // results in one of
597     // ----------U L----
598     // ----U L----------
599     if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
600       return getPreferredRange(
601           ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
602 
603     // ----U     L----- : this
604     //        L----U    : CR
605     if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
606       return ConstantRange(CR.Lower, Upper);
607 
608     // ------U    L---- : this
609     //    L-----U       : CR
610     assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
611            "ConstantRange::unionWith missed a case with one range wrapped");
612     return ConstantRange(Lower, CR.Upper);
613   }
614 
615   // ------U    L----  and  ------U    L---- : this
616   // -U  L-----------  and  ------------U  L : CR
617   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
618     return getFull();
619 
620   APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
621   APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
622 
623   return ConstantRange(std::move(L), std::move(U));
624 }
625 
626 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
627                                     uint32_t ResultBitWidth) const {
628   switch (CastOp) {
629   default:
630     llvm_unreachable("unsupported cast type");
631   case Instruction::Trunc:
632     return truncate(ResultBitWidth);
633   case Instruction::SExt:
634     return signExtend(ResultBitWidth);
635   case Instruction::ZExt:
636     return zeroExtend(ResultBitWidth);
637   case Instruction::BitCast:
638     return *this;
639   case Instruction::FPToUI:
640   case Instruction::FPToSI:
641     if (getBitWidth() == ResultBitWidth)
642       return *this;
643     else
644       return getFull(ResultBitWidth);
645   case Instruction::UIToFP: {
646     // TODO: use input range if available
647     auto BW = getBitWidth();
648     APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
649     APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
650     return ConstantRange(std::move(Min), std::move(Max));
651   }
652   case Instruction::SIToFP: {
653     // TODO: use input range if available
654     auto BW = getBitWidth();
655     APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
656     APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
657     return ConstantRange(std::move(SMin), std::move(SMax));
658   }
659   case Instruction::FPTrunc:
660   case Instruction::FPExt:
661   case Instruction::IntToPtr:
662   case Instruction::PtrToInt:
663   case Instruction::AddrSpaceCast:
664     // Conservatively return getFull set.
665     return getFull(ResultBitWidth);
666   };
667 }
668 
669 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
670   if (isEmptySet()) return getEmpty(DstTySize);
671 
672   unsigned SrcTySize = getBitWidth();
673   assert(SrcTySize < DstTySize && "Not a value extension");
674   if (isFullSet() || isUpperWrapped()) {
675     // Change into [0, 1 << src bit width)
676     APInt LowerExt(DstTySize, 0);
677     if (!Upper) // special case: [X, 0) -- not really wrapping around
678       LowerExt = Lower.zext(DstTySize);
679     return ConstantRange(std::move(LowerExt),
680                          APInt::getOneBitSet(DstTySize, SrcTySize));
681   }
682 
683   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
684 }
685 
686 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
687   if (isEmptySet()) return getEmpty(DstTySize);
688 
689   unsigned SrcTySize = getBitWidth();
690   assert(SrcTySize < DstTySize && "Not a value extension");
691 
692   // special case: [X, INT_MIN) -- not really wrapping around
693   if (Upper.isMinSignedValue())
694     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
695 
696   if (isFullSet() || isSignWrappedSet()) {
697     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
698                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
699   }
700 
701   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
702 }
703 
704 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
705   assert(getBitWidth() > DstTySize && "Not a value truncation");
706   if (isEmptySet())
707     return getEmpty(DstTySize);
708   if (isFullSet())
709     return getFull(DstTySize);
710 
711   APInt LowerDiv(Lower), UpperDiv(Upper);
712   ConstantRange Union(DstTySize, /*isFullSet=*/false);
713 
714   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
715   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
716   // then we do the union with [MaxValue, Upper)
717   if (isUpperWrapped()) {
718     // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
719     // truncated range.
720     if (Upper.getActiveBits() > DstTySize ||
721         Upper.countTrailingOnes() == DstTySize)
722       return getFull(DstTySize);
723 
724     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
725     UpperDiv.setAllBits();
726 
727     // Union covers the MaxValue case, so return if the remaining range is just
728     // MaxValue(DstTy).
729     if (LowerDiv == UpperDiv)
730       return Union;
731   }
732 
733   // Chop off the most significant bits that are past the destination bitwidth.
734   if (LowerDiv.getActiveBits() > DstTySize) {
735     // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
736     APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
737     LowerDiv -= Adjust;
738     UpperDiv -= Adjust;
739   }
740 
741   unsigned UpperDivWidth = UpperDiv.getActiveBits();
742   if (UpperDivWidth <= DstTySize)
743     return ConstantRange(LowerDiv.trunc(DstTySize),
744                          UpperDiv.trunc(DstTySize)).unionWith(Union);
745 
746   // The truncated value wraps around. Check if we can do better than fullset.
747   if (UpperDivWidth == DstTySize + 1) {
748     // Clear the MSB so that UpperDiv wraps around.
749     UpperDiv.clearBit(DstTySize);
750     if (UpperDiv.ult(LowerDiv))
751       return ConstantRange(LowerDiv.trunc(DstTySize),
752                            UpperDiv.trunc(DstTySize)).unionWith(Union);
753   }
754 
755   return getFull(DstTySize);
756 }
757 
758 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
759   unsigned SrcTySize = getBitWidth();
760   if (SrcTySize > DstTySize)
761     return truncate(DstTySize);
762   if (SrcTySize < DstTySize)
763     return zeroExtend(DstTySize);
764   return *this;
765 }
766 
767 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
768   unsigned SrcTySize = getBitWidth();
769   if (SrcTySize > DstTySize)
770     return truncate(DstTySize);
771   if (SrcTySize < DstTySize)
772     return signExtend(DstTySize);
773   return *this;
774 }
775 
776 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
777                                       const ConstantRange &Other) const {
778   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
779 
780   switch (BinOp) {
781   case Instruction::Add:
782     return add(Other);
783   case Instruction::Sub:
784     return sub(Other);
785   case Instruction::Mul:
786     return multiply(Other);
787   case Instruction::UDiv:
788     return udiv(Other);
789   case Instruction::SDiv:
790     return sdiv(Other);
791   case Instruction::URem:
792     return urem(Other);
793   case Instruction::SRem:
794     return srem(Other);
795   case Instruction::Shl:
796     return shl(Other);
797   case Instruction::LShr:
798     return lshr(Other);
799   case Instruction::AShr:
800     return ashr(Other);
801   case Instruction::And:
802     return binaryAnd(Other);
803   case Instruction::Or:
804     return binaryOr(Other);
805   // Note: floating point operations applied to abstract ranges are just
806   // ideal integer operations with a lossy representation
807   case Instruction::FAdd:
808     return add(Other);
809   case Instruction::FSub:
810     return sub(Other);
811   case Instruction::FMul:
812     return multiply(Other);
813   default:
814     // Conservatively return getFull set.
815     return getFull();
816   }
817 }
818 
819 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
820                                                  const ConstantRange &Other,
821                                                  unsigned NoWrapKind) const {
822   assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
823 
824   switch (BinOp) {
825   case Instruction::Add:
826     return addWithNoWrap(Other, NoWrapKind);
827   case Instruction::Sub:
828     return subWithNoWrap(Other, NoWrapKind);
829   default:
830     // Don't know about this Overflowing Binary Operation.
831     // Conservatively fallback to plain binop handling.
832     return binaryOp(BinOp, Other);
833   }
834 }
835 
836 ConstantRange
837 ConstantRange::add(const ConstantRange &Other) const {
838   if (isEmptySet() || Other.isEmptySet())
839     return getEmpty();
840   if (isFullSet() || Other.isFullSet())
841     return getFull();
842 
843   APInt NewLower = getLower() + Other.getLower();
844   APInt NewUpper = getUpper() + Other.getUpper() - 1;
845   if (NewLower == NewUpper)
846     return getFull();
847 
848   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
849   if (X.isSizeStrictlySmallerThan(*this) ||
850       X.isSizeStrictlySmallerThan(Other))
851     // We've wrapped, therefore, full set.
852     return getFull();
853   return X;
854 }
855 
856 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
857                                            unsigned NoWrapKind,
858                                            PreferredRangeType RangeType) const {
859   // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
860   // (X is from this, and Y is from Other)
861   if (isEmptySet() || Other.isEmptySet())
862     return getEmpty();
863   if (isFullSet() && Other.isFullSet())
864     return getFull();
865 
866   using OBO = OverflowingBinaryOperator;
867   ConstantRange Result = add(Other);
868 
869   // If an overflow happens for every value pair in these two constant ranges,
870   // we must return Empty set. In this case, we get that for free, because we
871   // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
872   // in an empty set.
873 
874   if (NoWrapKind & OBO::NoSignedWrap)
875     Result = Result.intersectWith(sadd_sat(Other), RangeType);
876 
877   if (NoWrapKind & OBO::NoUnsignedWrap)
878     Result = Result.intersectWith(uadd_sat(Other), RangeType);
879 
880   return Result;
881 }
882 
883 ConstantRange
884 ConstantRange::sub(const ConstantRange &Other) const {
885   if (isEmptySet() || Other.isEmptySet())
886     return getEmpty();
887   if (isFullSet() || Other.isFullSet())
888     return getFull();
889 
890   APInt NewLower = getLower() - Other.getUpper() + 1;
891   APInt NewUpper = getUpper() - Other.getLower();
892   if (NewLower == NewUpper)
893     return getFull();
894 
895   ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
896   if (X.isSizeStrictlySmallerThan(*this) ||
897       X.isSizeStrictlySmallerThan(Other))
898     // We've wrapped, therefore, full set.
899     return getFull();
900   return X;
901 }
902 
903 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
904                                            unsigned NoWrapKind,
905                                            PreferredRangeType RangeType) const {
906   // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
907   // (X is from this, and Y is from Other)
908   if (isEmptySet() || Other.isEmptySet())
909     return getEmpty();
910   if (isFullSet() && Other.isFullSet())
911     return getFull();
912 
913   using OBO = OverflowingBinaryOperator;
914   ConstantRange Result = sub(Other);
915 
916   // If an overflow happens for every value pair in these two constant ranges,
917   // we must return Empty set. In signed case, we get that for free, because we
918   // get lucky that intersection of sub() with ssub_sat() results in an
919   // empty set. But for unsigned we must perform the overflow check manually.
920 
921   if (NoWrapKind & OBO::NoSignedWrap)
922     Result = Result.intersectWith(ssub_sat(Other), RangeType);
923 
924   if (NoWrapKind & OBO::NoUnsignedWrap) {
925     if (getUnsignedMax().ult(Other.getUnsignedMin()))
926       return getEmpty(); // Always overflows.
927     Result = Result.intersectWith(usub_sat(Other), RangeType);
928   }
929 
930   return Result;
931 }
932 
933 ConstantRange
934 ConstantRange::multiply(const ConstantRange &Other) const {
935   // TODO: If either operand is a single element and the multiply is known to
936   // be non-wrapping, round the result min and max value to the appropriate
937   // multiple of that element. If wrapping is possible, at least adjust the
938   // range according to the greatest power-of-two factor of the single element.
939 
940   if (isEmptySet() || Other.isEmptySet())
941     return getEmpty();
942 
943   // Multiplication is signedness-independent. However different ranges can be
944   // obtained depending on how the input ranges are treated. These different
945   // ranges are all conservatively correct, but one might be better than the
946   // other. We calculate two ranges; one treating the inputs as unsigned
947   // and the other signed, then return the smallest of these ranges.
948 
949   // Unsigned range first.
950   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
951   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
952   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
953   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
954 
955   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
956                                             this_max * Other_max + 1);
957   ConstantRange UR = Result_zext.truncate(getBitWidth());
958 
959   // If the unsigned range doesn't wrap, and isn't negative then it's a range
960   // from one positive number to another which is as good as we can generate.
961   // In this case, skip the extra work of generating signed ranges which aren't
962   // going to be better than this range.
963   if (!UR.isUpperWrapped() &&
964       (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
965     return UR;
966 
967   // Now the signed range. Because we could be dealing with negative numbers
968   // here, the lower bound is the smallest of the cartesian product of the
969   // lower and upper ranges; for example:
970   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
971   // Similarly for the upper bound, swapping min for max.
972 
973   this_min = getSignedMin().sext(getBitWidth() * 2);
974   this_max = getSignedMax().sext(getBitWidth() * 2);
975   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
976   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
977 
978   auto L = {this_min * Other_min, this_min * Other_max,
979             this_max * Other_min, this_max * Other_max};
980   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
981   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
982   ConstantRange SR = Result_sext.truncate(getBitWidth());
983 
984   return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
985 }
986 
987 ConstantRange
988 ConstantRange::smax(const ConstantRange &Other) const {
989   // X smax Y is: range(smax(X_smin, Y_smin),
990   //                    smax(X_smax, Y_smax))
991   if (isEmptySet() || Other.isEmptySet())
992     return getEmpty();
993   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
994   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
995   return getNonEmpty(std::move(NewL), std::move(NewU));
996 }
997 
998 ConstantRange
999 ConstantRange::umax(const ConstantRange &Other) const {
1000   // X umax Y is: range(umax(X_umin, Y_umin),
1001   //                    umax(X_umax, Y_umax))
1002   if (isEmptySet() || Other.isEmptySet())
1003     return getEmpty();
1004   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1005   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1006   return getNonEmpty(std::move(NewL), std::move(NewU));
1007 }
1008 
1009 ConstantRange
1010 ConstantRange::smin(const ConstantRange &Other) const {
1011   // X smin Y is: range(smin(X_smin, Y_smin),
1012   //                    smin(X_smax, Y_smax))
1013   if (isEmptySet() || Other.isEmptySet())
1014     return getEmpty();
1015   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1016   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1017   return getNonEmpty(std::move(NewL), std::move(NewU));
1018 }
1019 
1020 ConstantRange
1021 ConstantRange::umin(const ConstantRange &Other) const {
1022   // X umin Y is: range(umin(X_umin, Y_umin),
1023   //                    umin(X_umax, Y_umax))
1024   if (isEmptySet() || Other.isEmptySet())
1025     return getEmpty();
1026   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1027   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1028   return getNonEmpty(std::move(NewL), std::move(NewU));
1029 }
1030 
1031 ConstantRange
1032 ConstantRange::udiv(const ConstantRange &RHS) const {
1033   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1034     return getEmpty();
1035 
1036   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1037 
1038   APInt RHS_umin = RHS.getUnsignedMin();
1039   if (RHS_umin.isNullValue()) {
1040     // We want the lowest value in RHS excluding zero. Usually that would be 1
1041     // except for a range in the form of [X, 1) in which case it would be X.
1042     if (RHS.getUpper() == 1)
1043       RHS_umin = RHS.getLower();
1044     else
1045       RHS_umin = 1;
1046   }
1047 
1048   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1049   return getNonEmpty(std::move(Lower), std::move(Upper));
1050 }
1051 
1052 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1053   // We split up the LHS and RHS into positive and negative components
1054   // and then also compute the positive and negative components of the result
1055   // separately by combining division results with the appropriate signs.
1056   APInt Zero = APInt::getNullValue(getBitWidth());
1057   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1058   ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1059   ConstantRange NegFilter(SignedMin, Zero);
1060   ConstantRange PosL = intersectWith(PosFilter);
1061   ConstantRange NegL = intersectWith(NegFilter);
1062   ConstantRange PosR = RHS.intersectWith(PosFilter);
1063   ConstantRange NegR = RHS.intersectWith(NegFilter);
1064 
1065   ConstantRange PosRes = getEmpty();
1066   if (!PosL.isEmptySet() && !PosR.isEmptySet())
1067     // pos / pos = pos.
1068     PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1069                            (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1070 
1071   if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1072     // neg / neg = pos.
1073     //
1074     // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1075     // IR level, so we'll want to exclude this case when calculating bounds.
1076     // (For APInts the operation is well-defined and yields SignedMin.) We
1077     // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1078     APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1079     if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
1080       // Remove -1 from the LHS. Skip if it's the only element, as this would
1081       // leave us with an empty set.
1082       if (!NegR.Lower.isAllOnesValue()) {
1083         APInt AdjNegRUpper;
1084         if (RHS.Lower.isAllOnesValue())
1085           // Negative part of [-1, X] without -1 is [SignedMin, X].
1086           AdjNegRUpper = RHS.Upper;
1087         else
1088           // [X, -1] without -1 is [X, -2].
1089           AdjNegRUpper = NegR.Upper - 1;
1090 
1091         PosRes = PosRes.unionWith(
1092             ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1093       }
1094 
1095       // Remove SignedMin from the RHS. Skip if it's the only element, as this
1096       // would leave us with an empty set.
1097       if (NegL.Upper != SignedMin + 1) {
1098         APInt AdjNegLLower;
1099         if (Upper == SignedMin + 1)
1100           // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1101           AdjNegLLower = Lower;
1102         else
1103           // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1104           AdjNegLLower = NegL.Lower + 1;
1105 
1106         PosRes = PosRes.unionWith(
1107             ConstantRange(std::move(Lo),
1108                           AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1109       }
1110     } else {
1111       PosRes = PosRes.unionWith(
1112           ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1113     }
1114   }
1115 
1116   ConstantRange NegRes = getEmpty();
1117   if (!PosL.isEmptySet() && !NegR.isEmptySet())
1118     // pos / neg = neg.
1119     NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1120                            PosL.Lower.sdiv(NegR.Lower) + 1);
1121 
1122   if (!NegL.isEmptySet() && !PosR.isEmptySet())
1123     // neg / pos = neg.
1124     NegRes = NegRes.unionWith(
1125         ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1126                       (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1127 
1128   // Prefer a non-wrapping signed range here.
1129   ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1130 
1131   // Preserve the zero that we dropped when splitting the LHS by sign.
1132   if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1133     Res = Res.unionWith(ConstantRange(Zero));
1134   return Res;
1135 }
1136 
1137 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1138   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1139     return getEmpty();
1140 
1141   // L % R for L < R is L.
1142   if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1143     return *this;
1144 
1145   // L % R is <= L and < R.
1146   APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1147   return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
1148 }
1149 
1150 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1151   if (isEmptySet() || RHS.isEmptySet())
1152     return getEmpty();
1153 
1154   ConstantRange AbsRHS = RHS.abs();
1155   APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1156   APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1157 
1158   // Modulus by zero is UB.
1159   if (MaxAbsRHS.isNullValue())
1160     return getEmpty();
1161 
1162   if (MinAbsRHS.isNullValue())
1163     ++MinAbsRHS;
1164 
1165   APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1166 
1167   if (MinLHS.isNonNegative()) {
1168     // L % R for L < R is L.
1169     if (MaxLHS.ult(MinAbsRHS))
1170       return *this;
1171 
1172     // L % R is <= L and < R.
1173     APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1174     return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
1175   }
1176 
1177   // Same basic logic as above, but the result is negative.
1178   if (MaxLHS.isNegative()) {
1179     if (MinLHS.ugt(-MinAbsRHS))
1180       return *this;
1181 
1182     APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1183     return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1184   }
1185 
1186   // LHS range crosses zero.
1187   APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1188   APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1189   return ConstantRange(std::move(Lower), std::move(Upper));
1190 }
1191 
1192 ConstantRange
1193 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1194   if (isEmptySet() || Other.isEmptySet())
1195     return getEmpty();
1196 
1197   // TODO: replace this with something less conservative
1198 
1199   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1200   return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
1201 }
1202 
1203 ConstantRange
1204 ConstantRange::binaryOr(const ConstantRange &Other) const {
1205   if (isEmptySet() || Other.isEmptySet())
1206     return getEmpty();
1207 
1208   // TODO: replace this with something less conservative
1209 
1210   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1211   return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
1212 }
1213 
1214 ConstantRange
1215 ConstantRange::shl(const ConstantRange &Other) const {
1216   if (isEmptySet() || Other.isEmptySet())
1217     return getEmpty();
1218 
1219   APInt max = getUnsignedMax();
1220   APInt Other_umax = Other.getUnsignedMax();
1221 
1222   // If we are shifting by maximum amount of
1223   // zero return return the original range.
1224   if (Other_umax.isNullValue())
1225     return *this;
1226   // there's overflow!
1227   if (Other_umax.ugt(max.countLeadingZeros()))
1228     return getFull();
1229 
1230   // FIXME: implement the other tricky cases
1231 
1232   APInt min = getUnsignedMin();
1233   min <<= Other.getUnsignedMin();
1234   max <<= Other_umax;
1235 
1236   return ConstantRange(std::move(min), std::move(max) + 1);
1237 }
1238 
1239 ConstantRange
1240 ConstantRange::lshr(const ConstantRange &Other) const {
1241   if (isEmptySet() || Other.isEmptySet())
1242     return getEmpty();
1243 
1244   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1245   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1246   return getNonEmpty(std::move(min), std::move(max));
1247 }
1248 
1249 ConstantRange
1250 ConstantRange::ashr(const ConstantRange &Other) const {
1251   if (isEmptySet() || Other.isEmptySet())
1252     return getEmpty();
1253 
1254   // May straddle zero, so handle both positive and negative cases.
1255   // 'PosMax' is the upper bound of the result of the ashr
1256   // operation, when Upper of the LHS of ashr is a non-negative.
1257   // number. Since ashr of a non-negative number will result in a
1258   // smaller number, the Upper value of LHS is shifted right with
1259   // the minimum value of 'Other' instead of the maximum value.
1260   APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1261 
1262   // 'PosMin' is the lower bound of the result of the ashr
1263   // operation, when Lower of the LHS is a non-negative number.
1264   // Since ashr of a non-negative number will result in a smaller
1265   // number, the Lower value of LHS is shifted right with the
1266   // maximum value of 'Other'.
1267   APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1268 
1269   // 'NegMax' is the upper bound of the result of the ashr
1270   // operation, when Upper of the LHS of ashr is a negative number.
1271   // Since 'ashr' of a negative number will result in a bigger
1272   // number, the Upper value of LHS is shifted right with the
1273   // maximum value of 'Other'.
1274   APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1275 
1276   // 'NegMin' is the lower bound of the result of the ashr
1277   // operation, when Lower of the LHS of ashr is a negative number.
1278   // Since 'ashr' of a negative number will result in a bigger
1279   // number, the Lower value of LHS is shifted right with the
1280   // minimum value of 'Other'.
1281   APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1282 
1283   APInt max, min;
1284   if (getSignedMin().isNonNegative()) {
1285     // Upper and Lower of LHS are non-negative.
1286     min = PosMin;
1287     max = PosMax;
1288   } else if (getSignedMax().isNegative()) {
1289     // Upper and Lower of LHS are negative.
1290     min = NegMin;
1291     max = NegMax;
1292   } else {
1293     // Upper is non-negative and Lower is negative.
1294     min = NegMin;
1295     max = PosMax;
1296   }
1297   return getNonEmpty(std::move(min), std::move(max));
1298 }
1299 
1300 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1301   if (isEmptySet() || Other.isEmptySet())
1302     return getEmpty();
1303 
1304   APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1305   APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1306   return getNonEmpty(std::move(NewL), std::move(NewU));
1307 }
1308 
1309 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1310   if (isEmptySet() || Other.isEmptySet())
1311     return getEmpty();
1312 
1313   APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1314   APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1315   return getNonEmpty(std::move(NewL), std::move(NewU));
1316 }
1317 
1318 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1319   if (isEmptySet() || Other.isEmptySet())
1320     return getEmpty();
1321 
1322   APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1323   APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1324   return getNonEmpty(std::move(NewL), std::move(NewU));
1325 }
1326 
1327 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1328   if (isEmptySet() || Other.isEmptySet())
1329     return getEmpty();
1330 
1331   APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1332   APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1333   return getNonEmpty(std::move(NewL), std::move(NewU));
1334 }
1335 
1336 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1337   if (isEmptySet() || Other.isEmptySet())
1338     return getEmpty();
1339 
1340   APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1341   APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1342   return getNonEmpty(std::move(NewL), std::move(NewU));
1343 }
1344 
1345 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1346   if (isEmptySet() || Other.isEmptySet())
1347     return getEmpty();
1348 
1349   // Because we could be dealing with negative numbers here, the lower bound is
1350   // the smallest of the cartesian product of the lower and upper ranges;
1351   // for example:
1352   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1353   // Similarly for the upper bound, swapping min for max.
1354 
1355   APInt this_min = getSignedMin().sext(getBitWidth() * 2);
1356   APInt this_max = getSignedMax().sext(getBitWidth() * 2);
1357   APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1358   APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1359 
1360   auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
1361             this_max * Other_max};
1362   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1363 
1364   // Note that we wanted to perform signed saturating multiplication,
1365   // so since we performed plain multiplication in twice the bitwidth,
1366   // we need to perform signed saturating truncation.
1367   return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
1368                      std::max(L, Compare).truncSSat(getBitWidth()) + 1);
1369 }
1370 
1371 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1372   if (isEmptySet() || Other.isEmptySet())
1373     return getEmpty();
1374 
1375   APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1376   APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1377   return getNonEmpty(std::move(NewL), std::move(NewU));
1378 }
1379 
1380 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1381   if (isEmptySet() || Other.isEmptySet())
1382     return getEmpty();
1383 
1384   APInt Min = getSignedMin(), Max = getSignedMax();
1385   APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1386   APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1387   APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1388   return getNonEmpty(std::move(NewL), std::move(NewU));
1389 }
1390 
1391 ConstantRange ConstantRange::inverse() const {
1392   if (isFullSet())
1393     return getEmpty();
1394   if (isEmptySet())
1395     return getFull();
1396   return ConstantRange(Upper, Lower);
1397 }
1398 
1399 ConstantRange ConstantRange::abs() const {
1400   if (isEmptySet())
1401     return getEmpty();
1402 
1403   if (isSignWrappedSet()) {
1404     APInt Lo;
1405     // Check whether the range crosses zero.
1406     if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1407       Lo = APInt::getNullValue(getBitWidth());
1408     else
1409       Lo = APIntOps::umin(Lower, -Upper + 1);
1410 
1411     // SignedMin is included in the result range.
1412     return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1413   }
1414 
1415   APInt SMin = getSignedMin(), SMax = getSignedMax();
1416 
1417   // All non-negative.
1418   if (SMin.isNonNegative())
1419     return *this;
1420 
1421   // All negative.
1422   if (SMax.isNegative())
1423     return ConstantRange(-SMax, -SMin + 1);
1424 
1425   // Range crosses zero.
1426   return ConstantRange(APInt::getNullValue(getBitWidth()),
1427                        APIntOps::umax(-SMin, SMax) + 1);
1428 }
1429 
1430 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1431     const ConstantRange &Other) const {
1432   if (isEmptySet() || Other.isEmptySet())
1433     return OverflowResult::MayOverflow;
1434 
1435   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1436   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1437 
1438   // a u+ b overflows high iff a u> ~b.
1439   if (Min.ugt(~OtherMin))
1440     return OverflowResult::AlwaysOverflowsHigh;
1441   if (Max.ugt(~OtherMax))
1442     return OverflowResult::MayOverflow;
1443   return OverflowResult::NeverOverflows;
1444 }
1445 
1446 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1447     const ConstantRange &Other) const {
1448   if (isEmptySet() || Other.isEmptySet())
1449     return OverflowResult::MayOverflow;
1450 
1451   APInt Min = getSignedMin(), Max = getSignedMax();
1452   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1453 
1454   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1455   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1456 
1457   // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1458   // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1459   if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1460       Min.sgt(SignedMax - OtherMin))
1461     return OverflowResult::AlwaysOverflowsHigh;
1462   if (Max.isNegative() && OtherMax.isNegative() &&
1463       Max.slt(SignedMin - OtherMax))
1464     return OverflowResult::AlwaysOverflowsLow;
1465 
1466   if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1467       Max.sgt(SignedMax - OtherMax))
1468     return OverflowResult::MayOverflow;
1469   if (Min.isNegative() && OtherMin.isNegative() &&
1470       Min.slt(SignedMin - OtherMin))
1471     return OverflowResult::MayOverflow;
1472 
1473   return OverflowResult::NeverOverflows;
1474 }
1475 
1476 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1477     const ConstantRange &Other) const {
1478   if (isEmptySet() || Other.isEmptySet())
1479     return OverflowResult::MayOverflow;
1480 
1481   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1482   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1483 
1484   // a u- b overflows low iff a u< b.
1485   if (Max.ult(OtherMin))
1486     return OverflowResult::AlwaysOverflowsLow;
1487   if (Min.ult(OtherMax))
1488     return OverflowResult::MayOverflow;
1489   return OverflowResult::NeverOverflows;
1490 }
1491 
1492 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1493     const ConstantRange &Other) const {
1494   if (isEmptySet() || Other.isEmptySet())
1495     return OverflowResult::MayOverflow;
1496 
1497   APInt Min = getSignedMin(), Max = getSignedMax();
1498   APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1499 
1500   APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1501   APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1502 
1503   // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1504   // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1505   if (Min.isNonNegative() && OtherMax.isNegative() &&
1506       Min.sgt(SignedMax + OtherMax))
1507     return OverflowResult::AlwaysOverflowsHigh;
1508   if (Max.isNegative() && OtherMin.isNonNegative() &&
1509       Max.slt(SignedMin + OtherMin))
1510     return OverflowResult::AlwaysOverflowsLow;
1511 
1512   if (Max.isNonNegative() && OtherMin.isNegative() &&
1513       Max.sgt(SignedMax + OtherMin))
1514     return OverflowResult::MayOverflow;
1515   if (Min.isNegative() && OtherMax.isNonNegative() &&
1516       Min.slt(SignedMin + OtherMax))
1517     return OverflowResult::MayOverflow;
1518 
1519   return OverflowResult::NeverOverflows;
1520 }
1521 
1522 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1523     const ConstantRange &Other) const {
1524   if (isEmptySet() || Other.isEmptySet())
1525     return OverflowResult::MayOverflow;
1526 
1527   APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1528   APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1529   bool Overflow;
1530 
1531   (void) Min.umul_ov(OtherMin, Overflow);
1532   if (Overflow)
1533     return OverflowResult::AlwaysOverflowsHigh;
1534 
1535   (void) Max.umul_ov(OtherMax, Overflow);
1536   if (Overflow)
1537     return OverflowResult::MayOverflow;
1538 
1539   return OverflowResult::NeverOverflows;
1540 }
1541 
1542 void ConstantRange::print(raw_ostream &OS) const {
1543   if (isFullSet())
1544     OS << "full-set";
1545   else if (isEmptySet())
1546     OS << "empty-set";
1547   else
1548     OS << "[" << Lower << "," << Upper << ")";
1549 }
1550 
1551 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1552 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1553   print(dbgs());
1554 }
1555 #endif
1556 
1557 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1558   const unsigned NumRanges = Ranges.getNumOperands() / 2;
1559   assert(NumRanges >= 1 && "Must have at least one range!");
1560   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1561 
1562   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1563   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1564 
1565   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1566 
1567   for (unsigned i = 1; i < NumRanges; ++i) {
1568     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1569     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1570 
1571     // Note: unionWith will potentially create a range that contains values not
1572     // contained in any of the original N ranges.
1573     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1574   }
1575 
1576   return CR;
1577 }
1578