xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantFold.cpp (revision f9fd7337f63698f33239c58c07bf430198235a22)
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM.  This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 //===----------------------------------------------------------------------===//
39 //                ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
41 
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
46 
47   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49 
50   // Do not iterate on scalable vector. The num of elements is unknown at
51   // compile-time.
52   if (isa<ScalableVectorType>(DstTy))
53     return nullptr;
54 
55   // If this cast changes element count then we can't handle it here:
56   // doing so requires endianness information.  This should be handled by
57   // Analysis/ConstantFolding.cpp
58   unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements();
59   if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements())
60     return nullptr;
61 
62   Type *DstEltTy = DstTy->getElementType();
63   // Fast path for splatted constants.
64   if (Constant *Splat = CV->getSplatValue()) {
65     return ConstantVector::getSplat(DstTy->getElementCount(),
66                                     ConstantExpr::getBitCast(Splat, DstEltTy));
67   }
68 
69   SmallVector<Constant*, 16> Result;
70   Type *Ty = IntegerType::get(CV->getContext(), 32);
71   for (unsigned i = 0; i != NumElts; ++i) {
72     Constant *C =
73       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
74     C = ConstantExpr::getBitCast(C, DstEltTy);
75     Result.push_back(C);
76   }
77 
78   return ConstantVector::get(Result);
79 }
80 
81 /// This function determines which opcode to use to fold two constant cast
82 /// expressions together. It uses CastInst::isEliminableCastPair to determine
83 /// the opcode. Consequently its just a wrapper around that function.
84 /// Determine if it is valid to fold a cast of a cast
85 static unsigned
86 foldConstantCastPair(
87   unsigned opc,          ///< opcode of the second cast constant expression
88   ConstantExpr *Op,      ///< the first cast constant expression
89   Type *DstTy            ///< destination type of the first cast
90 ) {
91   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
92   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
93   assert(CastInst::isCast(opc) && "Invalid cast opcode");
94 
95   // The types and opcodes for the two Cast constant expressions
96   Type *SrcTy = Op->getOperand(0)->getType();
97   Type *MidTy = Op->getType();
98   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
99   Instruction::CastOps secondOp = Instruction::CastOps(opc);
100 
101   // Assume that pointers are never more than 64 bits wide, and only use this
102   // for the middle type. Otherwise we could end up folding away illegal
103   // bitcasts between address spaces with different sizes.
104   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
105 
106   // Let CastInst::isEliminableCastPair do the heavy lifting.
107   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
108                                         nullptr, FakeIntPtrTy, nullptr);
109 }
110 
111 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
112   Type *SrcTy = V->getType();
113   if (SrcTy == DestTy)
114     return V; // no-op cast
115 
116   // Check to see if we are casting a pointer to an aggregate to a pointer to
117   // the first element.  If so, return the appropriate GEP instruction.
118   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
119     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
120       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
121           && PTy->getElementType()->isSized()) {
122         SmallVector<Value*, 8> IdxList;
123         Value *Zero =
124           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
125         IdxList.push_back(Zero);
126         Type *ElTy = PTy->getElementType();
127         while (ElTy && ElTy != DPTy->getElementType()) {
128           ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0);
129           IdxList.push_back(Zero);
130         }
131 
132         if (ElTy == DPTy->getElementType())
133           // This GEP is inbounds because all indices are zero.
134           return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
135                                                         V, IdxList);
136       }
137 
138   // Handle casts from one vector constant to another.  We know that the src
139   // and dest type have the same size (otherwise its an illegal cast).
140   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
141     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
142       assert(DestPTy->getPrimitiveSizeInBits() ==
143                  SrcTy->getPrimitiveSizeInBits() &&
144              "Not cast between same sized vectors!");
145       SrcTy = nullptr;
146       // First, check for null.  Undef is already handled.
147       if (isa<ConstantAggregateZero>(V))
148         return Constant::getNullValue(DestTy);
149 
150       // Handle ConstantVector and ConstantAggregateVector.
151       return BitCastConstantVector(V, DestPTy);
152     }
153 
154     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
155     // This allows for other simplifications (although some of them
156     // can only be handled by Analysis/ConstantFolding.cpp).
157     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
158       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
159   }
160 
161   // Finally, implement bitcast folding now.   The code below doesn't handle
162   // bitcast right.
163   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
164     return ConstantPointerNull::get(cast<PointerType>(DestTy));
165 
166   // Handle integral constant input.
167   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
168     if (DestTy->isIntegerTy())
169       // Integral -> Integral. This is a no-op because the bit widths must
170       // be the same. Consequently, we just fold to V.
171       return V;
172 
173     // See note below regarding the PPC_FP128 restriction.
174     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
175       return ConstantFP::get(DestTy->getContext(),
176                              APFloat(DestTy->getFltSemantics(),
177                                      CI->getValue()));
178 
179     // Otherwise, can't fold this (vector?)
180     return nullptr;
181   }
182 
183   // Handle ConstantFP input: FP -> Integral.
184   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
185     // PPC_FP128 is really the sum of two consecutive doubles, where the first
186     // double is always stored first in memory, regardless of the target
187     // endianness. The memory layout of i128, however, depends on the target
188     // endianness, and so we can't fold this without target endianness
189     // information. This should instead be handled by
190     // Analysis/ConstantFolding.cpp
191     if (FP->getType()->isPPC_FP128Ty())
192       return nullptr;
193 
194     // Make sure dest type is compatible with the folded integer constant.
195     if (!DestTy->isIntegerTy())
196       return nullptr;
197 
198     return ConstantInt::get(FP->getContext(),
199                             FP->getValueAPF().bitcastToAPInt());
200   }
201 
202   return nullptr;
203 }
204 
205 
206 /// V is an integer constant which only has a subset of its bytes used.
207 /// The bytes used are indicated by ByteStart (which is the first byte used,
208 /// counting from the least significant byte) and ByteSize, which is the number
209 /// of bytes used.
210 ///
211 /// This function analyzes the specified constant to see if the specified byte
212 /// range can be returned as a simplified constant.  If so, the constant is
213 /// returned, otherwise null is returned.
214 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
215                                       unsigned ByteSize) {
216   assert(C->getType()->isIntegerTy() &&
217          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
218          "Non-byte sized integer input");
219   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
220   assert(ByteSize && "Must be accessing some piece");
221   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
222   assert(ByteSize != CSize && "Should not extract everything");
223 
224   // Constant Integers are simple.
225   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
226     APInt V = CI->getValue();
227     if (ByteStart)
228       V.lshrInPlace(ByteStart*8);
229     V = V.trunc(ByteSize*8);
230     return ConstantInt::get(CI->getContext(), V);
231   }
232 
233   // In the input is a constant expr, we might be able to recursively simplify.
234   // If not, we definitely can't do anything.
235   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
236   if (!CE) return nullptr;
237 
238   switch (CE->getOpcode()) {
239   default: return nullptr;
240   case Instruction::Or: {
241     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
242     if (!RHS)
243       return nullptr;
244 
245     // X | -1 -> -1.
246     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
247       if (RHSC->isMinusOne())
248         return RHSC;
249 
250     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
251     if (!LHS)
252       return nullptr;
253     return ConstantExpr::getOr(LHS, RHS);
254   }
255   case Instruction::And: {
256     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
257     if (!RHS)
258       return nullptr;
259 
260     // X & 0 -> 0.
261     if (RHS->isNullValue())
262       return RHS;
263 
264     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
265     if (!LHS)
266       return nullptr;
267     return ConstantExpr::getAnd(LHS, RHS);
268   }
269   case Instruction::LShr: {
270     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
271     if (!Amt)
272       return nullptr;
273     APInt ShAmt = Amt->getValue();
274     // Cannot analyze non-byte shifts.
275     if ((ShAmt & 7) != 0)
276       return nullptr;
277     ShAmt.lshrInPlace(3);
278 
279     // If the extract is known to be all zeros, return zero.
280     if (ShAmt.uge(CSize - ByteStart))
281       return Constant::getNullValue(
282           IntegerType::get(CE->getContext(), ByteSize * 8));
283     // If the extract is known to be fully in the input, extract it.
284     if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
285       return ExtractConstantBytes(CE->getOperand(0),
286                                   ByteStart + ShAmt.getZExtValue(), ByteSize);
287 
288     // TODO: Handle the 'partially zero' case.
289     return nullptr;
290   }
291 
292   case Instruction::Shl: {
293     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
294     if (!Amt)
295       return nullptr;
296     APInt ShAmt = Amt->getValue();
297     // Cannot analyze non-byte shifts.
298     if ((ShAmt & 7) != 0)
299       return nullptr;
300     ShAmt.lshrInPlace(3);
301 
302     // If the extract is known to be all zeros, return zero.
303     if (ShAmt.uge(ByteStart + ByteSize))
304       return Constant::getNullValue(
305           IntegerType::get(CE->getContext(), ByteSize * 8));
306     // If the extract is known to be fully in the input, extract it.
307     if (ShAmt.ule(ByteStart))
308       return ExtractConstantBytes(CE->getOperand(0),
309                                   ByteStart - ShAmt.getZExtValue(), ByteSize);
310 
311     // TODO: Handle the 'partially zero' case.
312     return nullptr;
313   }
314 
315   case Instruction::ZExt: {
316     unsigned SrcBitSize =
317       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
318 
319     // If extracting something that is completely zero, return 0.
320     if (ByteStart*8 >= SrcBitSize)
321       return Constant::getNullValue(IntegerType::get(CE->getContext(),
322                                                      ByteSize*8));
323 
324     // If exactly extracting the input, return it.
325     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
326       return CE->getOperand(0);
327 
328     // If extracting something completely in the input, if the input is a
329     // multiple of 8 bits, recurse.
330     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
331       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
332 
333     // Otherwise, if extracting a subset of the input, which is not multiple of
334     // 8 bits, do a shift and trunc to get the bits.
335     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
336       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
337       Constant *Res = CE->getOperand(0);
338       if (ByteStart)
339         Res = ConstantExpr::getLShr(Res,
340                                  ConstantInt::get(Res->getType(), ByteStart*8));
341       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
342                                                           ByteSize*8));
343     }
344 
345     // TODO: Handle the 'partially zero' case.
346     return nullptr;
347   }
348   }
349 }
350 
351 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
352 /// factors factored out. If Folded is false, return null if no factoring was
353 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
354 /// top-level folder.
355 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) {
356   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
357     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
358     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
359     return ConstantExpr::getNUWMul(E, N);
360   }
361 
362   if (StructType *STy = dyn_cast<StructType>(Ty))
363     if (!STy->isPacked()) {
364       unsigned NumElems = STy->getNumElements();
365       // An empty struct has size zero.
366       if (NumElems == 0)
367         return ConstantExpr::getNullValue(DestTy);
368       // Check for a struct with all members having the same size.
369       Constant *MemberSize =
370         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
371       bool AllSame = true;
372       for (unsigned i = 1; i != NumElems; ++i)
373         if (MemberSize !=
374             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
375           AllSame = false;
376           break;
377         }
378       if (AllSame) {
379         Constant *N = ConstantInt::get(DestTy, NumElems);
380         return ConstantExpr::getNUWMul(MemberSize, N);
381       }
382     }
383 
384   // Pointer size doesn't depend on the pointee type, so canonicalize them
385   // to an arbitrary pointee.
386   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
387     if (!PTy->getElementType()->isIntegerTy(1))
388       return
389         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
390                                          PTy->getAddressSpace()),
391                         DestTy, true);
392 
393   // If there's no interesting folding happening, bail so that we don't create
394   // a constant that looks like it needs folding but really doesn't.
395   if (!Folded)
396     return nullptr;
397 
398   // Base case: Get a regular sizeof expression.
399   Constant *C = ConstantExpr::getSizeOf(Ty);
400   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
401                                                     DestTy, false),
402                             C, DestTy);
403   return C;
404 }
405 
406 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
407 /// factors factored out. If Folded is false, return null if no factoring was
408 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
409 /// top-level folder.
410 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) {
411   // The alignment of an array is equal to the alignment of the
412   // array element. Note that this is not always true for vectors.
413   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
414     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
415     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
416                                                       DestTy,
417                                                       false),
418                               C, DestTy);
419     return C;
420   }
421 
422   if (StructType *STy = dyn_cast<StructType>(Ty)) {
423     // Packed structs always have an alignment of 1.
424     if (STy->isPacked())
425       return ConstantInt::get(DestTy, 1);
426 
427     // Otherwise, struct alignment is the maximum alignment of any member.
428     // Without target data, we can't compare much, but we can check to see
429     // if all the members have the same alignment.
430     unsigned NumElems = STy->getNumElements();
431     // An empty struct has minimal alignment.
432     if (NumElems == 0)
433       return ConstantInt::get(DestTy, 1);
434     // Check for a struct with all members having the same alignment.
435     Constant *MemberAlign =
436       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
437     bool AllSame = true;
438     for (unsigned i = 1; i != NumElems; ++i)
439       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
440         AllSame = false;
441         break;
442       }
443     if (AllSame)
444       return MemberAlign;
445   }
446 
447   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
448   // to an arbitrary pointee.
449   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
450     if (!PTy->getElementType()->isIntegerTy(1))
451       return
452         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
453                                                            1),
454                                           PTy->getAddressSpace()),
455                          DestTy, true);
456 
457   // If there's no interesting folding happening, bail so that we don't create
458   // a constant that looks like it needs folding but really doesn't.
459   if (!Folded)
460     return nullptr;
461 
462   // Base case: Get a regular alignof expression.
463   Constant *C = ConstantExpr::getAlignOf(Ty);
464   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
465                                                     DestTy, false),
466                             C, DestTy);
467   return C;
468 }
469 
470 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
471 /// any known factors factored out. If Folded is false, return null if no
472 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
473 /// back into the top-level folder.
474 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy,
475                                    bool Folded) {
476   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
477     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
478                                                                 DestTy, false),
479                                         FieldNo, DestTy);
480     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
481     return ConstantExpr::getNUWMul(E, N);
482   }
483 
484   if (StructType *STy = dyn_cast<StructType>(Ty))
485     if (!STy->isPacked()) {
486       unsigned NumElems = STy->getNumElements();
487       // An empty struct has no members.
488       if (NumElems == 0)
489         return nullptr;
490       // Check for a struct with all members having the same size.
491       Constant *MemberSize =
492         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
493       bool AllSame = true;
494       for (unsigned i = 1; i != NumElems; ++i)
495         if (MemberSize !=
496             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
497           AllSame = false;
498           break;
499         }
500       if (AllSame) {
501         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
502                                                                     false,
503                                                                     DestTy,
504                                                                     false),
505                                             FieldNo, DestTy);
506         return ConstantExpr::getNUWMul(MemberSize, N);
507       }
508     }
509 
510   // If there's no interesting folding happening, bail so that we don't create
511   // a constant that looks like it needs folding but really doesn't.
512   if (!Folded)
513     return nullptr;
514 
515   // Base case: Get a regular offsetof expression.
516   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
517   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
518                                                     DestTy, false),
519                             C, DestTy);
520   return C;
521 }
522 
523 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
524                                             Type *DestTy) {
525   if (isa<UndefValue>(V)) {
526     // zext(undef) = 0, because the top bits will be zero.
527     // sext(undef) = 0, because the top bits will all be the same.
528     // [us]itofp(undef) = 0, because the result value is bounded.
529     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
530         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
531       return Constant::getNullValue(DestTy);
532     return UndefValue::get(DestTy);
533   }
534 
535   if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
536       opc != Instruction::AddrSpaceCast)
537     return Constant::getNullValue(DestTy);
538 
539   // If the cast operand is a constant expression, there's a few things we can
540   // do to try to simplify it.
541   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
542     if (CE->isCast()) {
543       // Try hard to fold cast of cast because they are often eliminable.
544       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
545         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
546     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
547                // Do not fold addrspacecast (gep 0, .., 0). It might make the
548                // addrspacecast uncanonicalized.
549                opc != Instruction::AddrSpaceCast &&
550                // Do not fold bitcast (gep) with inrange index, as this loses
551                // information.
552                !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
553                // Do not fold if the gep type is a vector, as bitcasting
554                // operand 0 of a vector gep will result in a bitcast between
555                // different sizes.
556                !CE->getType()->isVectorTy()) {
557       // If all of the indexes in the GEP are null values, there is no pointer
558       // adjustment going on.  We might as well cast the source pointer.
559       bool isAllNull = true;
560       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
561         if (!CE->getOperand(i)->isNullValue()) {
562           isAllNull = false;
563           break;
564         }
565       if (isAllNull)
566         // This is casting one pointer type to another, always BitCast
567         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
568     }
569   }
570 
571   // If the cast operand is a constant vector, perform the cast by
572   // operating on each element. In the cast of bitcasts, the element
573   // count may be mismatched; don't attempt to handle that here.
574   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
575       DestTy->isVectorTy() &&
576       cast<FixedVectorType>(DestTy)->getNumElements() ==
577           cast<FixedVectorType>(V->getType())->getNumElements()) {
578     VectorType *DestVecTy = cast<VectorType>(DestTy);
579     Type *DstEltTy = DestVecTy->getElementType();
580     // Fast path for splatted constants.
581     if (Constant *Splat = V->getSplatValue()) {
582       return ConstantVector::getSplat(
583           cast<VectorType>(DestTy)->getElementCount(),
584           ConstantExpr::getCast(opc, Splat, DstEltTy));
585     }
586     SmallVector<Constant *, 16> res;
587     Type *Ty = IntegerType::get(V->getContext(), 32);
588     for (unsigned i = 0,
589                   e = cast<FixedVectorType>(V->getType())->getNumElements();
590          i != e; ++i) {
591       Constant *C =
592         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
593       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
594     }
595     return ConstantVector::get(res);
596   }
597 
598   // We actually have to do a cast now. Perform the cast according to the
599   // opcode specified.
600   switch (opc) {
601   default:
602     llvm_unreachable("Failed to cast constant expression");
603   case Instruction::FPTrunc:
604   case Instruction::FPExt:
605     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
606       bool ignored;
607       APFloat Val = FPC->getValueAPF();
608       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
609                   DestTy->isFloatTy() ? APFloat::IEEEsingle() :
610                   DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
611                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
612                   DestTy->isFP128Ty() ? APFloat::IEEEquad() :
613                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
614                   APFloat::Bogus(),
615                   APFloat::rmNearestTiesToEven, &ignored);
616       return ConstantFP::get(V->getContext(), Val);
617     }
618     return nullptr; // Can't fold.
619   case Instruction::FPToUI:
620   case Instruction::FPToSI:
621     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
622       const APFloat &V = FPC->getValueAPF();
623       bool ignored;
624       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
625       APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
626       if (APFloat::opInvalidOp ==
627           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
628         // Undefined behavior invoked - the destination type can't represent
629         // the input constant.
630         return UndefValue::get(DestTy);
631       }
632       return ConstantInt::get(FPC->getContext(), IntVal);
633     }
634     return nullptr; // Can't fold.
635   case Instruction::IntToPtr:   //always treated as unsigned
636     if (V->isNullValue())       // Is it an integral null value?
637       return ConstantPointerNull::get(cast<PointerType>(DestTy));
638     return nullptr;                   // Other pointer types cannot be casted
639   case Instruction::PtrToInt:   // always treated as unsigned
640     // Is it a null pointer value?
641     if (V->isNullValue())
642       return ConstantInt::get(DestTy, 0);
643     // If this is a sizeof-like expression, pull out multiplications by
644     // known factors to expose them to subsequent folding. If it's an
645     // alignof-like expression, factor out known factors.
646     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
647       if (CE->getOpcode() == Instruction::GetElementPtr &&
648           CE->getOperand(0)->isNullValue()) {
649         // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
650         // getFoldedAlignOf() don't handle the case when DestTy is a vector of
651         // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
652         // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
653         // happen in one "real" C-code test case, so it does not seem to be an
654         // important optimization to handle vectors here. For now, simply bail
655         // out.
656         if (DestTy->isVectorTy())
657           return nullptr;
658         GEPOperator *GEPO = cast<GEPOperator>(CE);
659         Type *Ty = GEPO->getSourceElementType();
660         if (CE->getNumOperands() == 2) {
661           // Handle a sizeof-like expression.
662           Constant *Idx = CE->getOperand(1);
663           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
664           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
665             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
666                                                                 DestTy, false),
667                                         Idx, DestTy);
668             return ConstantExpr::getMul(C, Idx);
669           }
670         } else if (CE->getNumOperands() == 3 &&
671                    CE->getOperand(1)->isNullValue()) {
672           // Handle an alignof-like expression.
673           if (StructType *STy = dyn_cast<StructType>(Ty))
674             if (!STy->isPacked()) {
675               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
676               if (CI->isOne() &&
677                   STy->getNumElements() == 2 &&
678                   STy->getElementType(0)->isIntegerTy(1)) {
679                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
680               }
681             }
682           // Handle an offsetof-like expression.
683           if (Ty->isStructTy() || Ty->isArrayTy()) {
684             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
685                                                 DestTy, false))
686               return C;
687           }
688         }
689       }
690     // Other pointer types cannot be casted
691     return nullptr;
692   case Instruction::UIToFP:
693   case Instruction::SIToFP:
694     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
695       const APInt &api = CI->getValue();
696       APFloat apf(DestTy->getFltSemantics(),
697                   APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
698       apf.convertFromAPInt(api, opc==Instruction::SIToFP,
699                            APFloat::rmNearestTiesToEven);
700       return ConstantFP::get(V->getContext(), apf);
701     }
702     return nullptr;
703   case Instruction::ZExt:
704     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
705       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
706       return ConstantInt::get(V->getContext(),
707                               CI->getValue().zext(BitWidth));
708     }
709     return nullptr;
710   case Instruction::SExt:
711     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
712       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
713       return ConstantInt::get(V->getContext(),
714                               CI->getValue().sext(BitWidth));
715     }
716     return nullptr;
717   case Instruction::Trunc: {
718     if (V->getType()->isVectorTy())
719       return nullptr;
720 
721     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
722     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
723       return ConstantInt::get(V->getContext(),
724                               CI->getValue().trunc(DestBitWidth));
725     }
726 
727     // The input must be a constantexpr.  See if we can simplify this based on
728     // the bytes we are demanding.  Only do this if the source and dest are an
729     // even multiple of a byte.
730     if ((DestBitWidth & 7) == 0 &&
731         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
732       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
733         return Res;
734 
735     return nullptr;
736   }
737   case Instruction::BitCast:
738     return FoldBitCast(V, DestTy);
739   case Instruction::AddrSpaceCast:
740     return nullptr;
741   }
742 }
743 
744 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
745                                               Constant *V1, Constant *V2) {
746   // Check for i1 and vector true/false conditions.
747   if (Cond->isNullValue()) return V2;
748   if (Cond->isAllOnesValue()) return V1;
749 
750   // If the condition is a vector constant, fold the result elementwise.
751   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
752     auto *V1VTy = CondV->getType();
753     SmallVector<Constant*, 16> Result;
754     Type *Ty = IntegerType::get(CondV->getContext(), 32);
755     for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
756       Constant *V;
757       Constant *V1Element = ConstantExpr::getExtractElement(V1,
758                                                     ConstantInt::get(Ty, i));
759       Constant *V2Element = ConstantExpr::getExtractElement(V2,
760                                                     ConstantInt::get(Ty, i));
761       auto *Cond = cast<Constant>(CondV->getOperand(i));
762       if (V1Element == V2Element) {
763         V = V1Element;
764       } else if (isa<UndefValue>(Cond)) {
765         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
766       } else {
767         if (!isa<ConstantInt>(Cond)) break;
768         V = Cond->isNullValue() ? V2Element : V1Element;
769       }
770       Result.push_back(V);
771     }
772 
773     // If we were able to build the vector, return it.
774     if (Result.size() == V1VTy->getNumElements())
775       return ConstantVector::get(Result);
776   }
777 
778   if (isa<UndefValue>(Cond)) {
779     if (isa<UndefValue>(V1)) return V1;
780     return V2;
781   }
782   if (isa<UndefValue>(V1)) return V2;
783   if (isa<UndefValue>(V2)) return V1;
784   if (V1 == V2) return V1;
785 
786   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
787     if (TrueVal->getOpcode() == Instruction::Select)
788       if (TrueVal->getOperand(0) == Cond)
789         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
790   }
791   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
792     if (FalseVal->getOpcode() == Instruction::Select)
793       if (FalseVal->getOperand(0) == Cond)
794         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
795   }
796 
797   return nullptr;
798 }
799 
800 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
801                                                       Constant *Idx) {
802   auto *ValVTy = cast<VectorType>(Val->getType());
803 
804   // extractelt undef, C -> undef
805   // extractelt C, undef -> undef
806   if (isa<UndefValue>(Val) || isa<UndefValue>(Idx))
807     return UndefValue::get(ValVTy->getElementType());
808 
809   auto *CIdx = dyn_cast<ConstantInt>(Idx);
810   if (!CIdx)
811     return nullptr;
812 
813   if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
814     // ee({w,x,y,z}, wrong_value) -> undef
815     if (CIdx->uge(ValFVTy->getNumElements()))
816       return UndefValue::get(ValFVTy->getElementType());
817   }
818 
819   // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
820   if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
821     if (CE->getOpcode() == Instruction::GetElementPtr) {
822       SmallVector<Constant *, 8> Ops;
823       Ops.reserve(CE->getNumOperands());
824       for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
825         Constant *Op = CE->getOperand(i);
826         if (Op->getType()->isVectorTy()) {
827           Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
828           if (!ScalarOp)
829             return nullptr;
830           Ops.push_back(ScalarOp);
831         } else
832           Ops.push_back(Op);
833       }
834       return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
835                                  Ops[0]->getType()->getPointerElementType());
836     }
837   }
838 
839   // CAZ of type ScalableVectorType and n < CAZ->getMinNumElements() =>
840   //   extractelt CAZ, n -> 0
841   if (auto *ValSVTy = dyn_cast<ScalableVectorType>(Val->getType())) {
842     if (!CIdx->uge(ValSVTy->getMinNumElements())) {
843       if (auto *CAZ = dyn_cast<ConstantAggregateZero>(Val))
844         return CAZ->getElementValue(CIdx->getZExtValue());
845     }
846     return nullptr;
847   }
848 
849   return Val->getAggregateElement(CIdx);
850 }
851 
852 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
853                                                      Constant *Elt,
854                                                      Constant *Idx) {
855   if (isa<UndefValue>(Idx))
856     return UndefValue::get(Val->getType());
857 
858   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
859   if (!CIdx) return nullptr;
860 
861   // Do not iterate on scalable vector. The num of elements is unknown at
862   // compile-time.
863   if (isa<ScalableVectorType>(Val->getType()))
864     return nullptr;
865 
866   auto *ValTy = cast<FixedVectorType>(Val->getType());
867 
868   unsigned NumElts = ValTy->getNumElements();
869   if (CIdx->uge(NumElts))
870     return UndefValue::get(Val->getType());
871 
872   SmallVector<Constant*, 16> Result;
873   Result.reserve(NumElts);
874   auto *Ty = Type::getInt32Ty(Val->getContext());
875   uint64_t IdxVal = CIdx->getZExtValue();
876   for (unsigned i = 0; i != NumElts; ++i) {
877     if (i == IdxVal) {
878       Result.push_back(Elt);
879       continue;
880     }
881 
882     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
883     Result.push_back(C);
884   }
885 
886   return ConstantVector::get(Result);
887 }
888 
889 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
890                                                      ArrayRef<int> Mask) {
891   auto *V1VTy = cast<VectorType>(V1->getType());
892   unsigned MaskNumElts = Mask.size();
893   ElementCount MaskEltCount = {MaskNumElts, isa<ScalableVectorType>(V1VTy)};
894   Type *EltTy = V1VTy->getElementType();
895 
896   // Undefined shuffle mask -> undefined value.
897   if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
898     return UndefValue::get(FixedVectorType::get(EltTy, MaskNumElts));
899   }
900 
901   // If the mask is all zeros this is a splat, no need to go through all
902   // elements.
903   if (all_of(Mask, [](int Elt) { return Elt == 0; }) &&
904       !MaskEltCount.Scalable) {
905     Type *Ty = IntegerType::get(V1->getContext(), 32);
906     Constant *Elt =
907         ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
908     return ConstantVector::getSplat(MaskEltCount, Elt);
909   }
910   // Do not iterate on scalable vector. The num of elements is unknown at
911   // compile-time.
912   if (isa<ScalableVectorType>(V1VTy))
913     return nullptr;
914 
915   unsigned SrcNumElts = V1VTy->getElementCount().Min;
916 
917   // Loop over the shuffle mask, evaluating each element.
918   SmallVector<Constant*, 32> Result;
919   for (unsigned i = 0; i != MaskNumElts; ++i) {
920     int Elt = Mask[i];
921     if (Elt == -1) {
922       Result.push_back(UndefValue::get(EltTy));
923       continue;
924     }
925     Constant *InElt;
926     if (unsigned(Elt) >= SrcNumElts*2)
927       InElt = UndefValue::get(EltTy);
928     else if (unsigned(Elt) >= SrcNumElts) {
929       Type *Ty = IntegerType::get(V2->getContext(), 32);
930       InElt =
931         ConstantExpr::getExtractElement(V2,
932                                         ConstantInt::get(Ty, Elt - SrcNumElts));
933     } else {
934       Type *Ty = IntegerType::get(V1->getContext(), 32);
935       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
936     }
937     Result.push_back(InElt);
938   }
939 
940   return ConstantVector::get(Result);
941 }
942 
943 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
944                                                     ArrayRef<unsigned> Idxs) {
945   // Base case: no indices, so return the entire value.
946   if (Idxs.empty())
947     return Agg;
948 
949   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
950     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
951 
952   return nullptr;
953 }
954 
955 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
956                                                    Constant *Val,
957                                                    ArrayRef<unsigned> Idxs) {
958   // Base case: no indices, so replace the entire value.
959   if (Idxs.empty())
960     return Val;
961 
962   unsigned NumElts;
963   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
964     NumElts = ST->getNumElements();
965   else
966     NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
967 
968   SmallVector<Constant*, 32> Result;
969   for (unsigned i = 0; i != NumElts; ++i) {
970     Constant *C = Agg->getAggregateElement(i);
971     if (!C) return nullptr;
972 
973     if (Idxs[0] == i)
974       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
975 
976     Result.push_back(C);
977   }
978 
979   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
980     return ConstantStruct::get(ST, Result);
981   return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
982 }
983 
984 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
985   assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
986 
987   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
988   // vectors are always evaluated per element.
989   bool IsScalableVector = isa<ScalableVectorType>(C->getType());
990   bool HasScalarUndefOrScalableVectorUndef =
991       (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
992 
993   if (HasScalarUndefOrScalableVectorUndef) {
994     switch (static_cast<Instruction::UnaryOps>(Opcode)) {
995     case Instruction::FNeg:
996       return C; // -undef -> undef
997     case Instruction::UnaryOpsEnd:
998       llvm_unreachable("Invalid UnaryOp");
999     }
1000   }
1001 
1002   // Constant should not be UndefValue, unless these are vector constants.
1003   assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
1004   // We only have FP UnaryOps right now.
1005   assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
1006 
1007   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1008     const APFloat &CV = CFP->getValueAPF();
1009     switch (Opcode) {
1010     default:
1011       break;
1012     case Instruction::FNeg:
1013       return ConstantFP::get(C->getContext(), neg(CV));
1014     }
1015   } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) {
1016 
1017     Type *Ty = IntegerType::get(VTy->getContext(), 32);
1018     // Fast path for splatted constants.
1019     if (Constant *Splat = C->getSplatValue()) {
1020       Constant *Elt = ConstantExpr::get(Opcode, Splat);
1021       return ConstantVector::getSplat(VTy->getElementCount(), Elt);
1022     }
1023 
1024     // Fold each element and create a vector constant from those constants.
1025     SmallVector<Constant *, 16> Result;
1026     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1027       Constant *ExtractIdx = ConstantInt::get(Ty, i);
1028       Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
1029 
1030       Result.push_back(ConstantExpr::get(Opcode, Elt));
1031     }
1032 
1033     return ConstantVector::get(Result);
1034   }
1035 
1036   // We don't know how to fold this.
1037   return nullptr;
1038 }
1039 
1040 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
1041                                               Constant *C2) {
1042   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
1043 
1044   // Simplify BinOps with their identity values first. They are no-ops and we
1045   // can always return the other value, including undef or poison values.
1046   // FIXME: remove unnecessary duplicated identity patterns below.
1047   // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops,
1048   //        like X << 0 = X.
1049   Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType());
1050   if (Identity) {
1051     if (C1 == Identity)
1052       return C2;
1053     if (C2 == Identity)
1054       return C1;
1055   }
1056 
1057   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
1058   // vectors are always evaluated per element.
1059   bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
1060   bool HasScalarUndefOrScalableVectorUndef =
1061       (!C1->getType()->isVectorTy() || IsScalableVector) &&
1062       (isa<UndefValue>(C1) || isa<UndefValue>(C2));
1063   if (HasScalarUndefOrScalableVectorUndef) {
1064     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
1065     case Instruction::Xor:
1066       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1067         // Handle undef ^ undef -> 0 special case. This is a common
1068         // idiom (misuse).
1069         return Constant::getNullValue(C1->getType());
1070       LLVM_FALLTHROUGH;
1071     case Instruction::Add:
1072     case Instruction::Sub:
1073       return UndefValue::get(C1->getType());
1074     case Instruction::And:
1075       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
1076         return C1;
1077       return Constant::getNullValue(C1->getType());   // undef & X -> 0
1078     case Instruction::Mul: {
1079       // undef * undef -> undef
1080       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1081         return C1;
1082       const APInt *CV;
1083       // X * undef -> undef   if X is odd
1084       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
1085         if ((*CV)[0])
1086           return UndefValue::get(C1->getType());
1087 
1088       // X * undef -> 0       otherwise
1089       return Constant::getNullValue(C1->getType());
1090     }
1091     case Instruction::SDiv:
1092     case Instruction::UDiv:
1093       // X / undef -> undef
1094       if (isa<UndefValue>(C2))
1095         return C2;
1096       // undef / 0 -> undef
1097       // undef / 1 -> undef
1098       if (match(C2, m_Zero()) || match(C2, m_One()))
1099         return C1;
1100       // undef / X -> 0       otherwise
1101       return Constant::getNullValue(C1->getType());
1102     case Instruction::URem:
1103     case Instruction::SRem:
1104       // X % undef -> undef
1105       if (match(C2, m_Undef()))
1106         return C2;
1107       // undef % 0 -> undef
1108       if (match(C2, m_Zero()))
1109         return C1;
1110       // undef % X -> 0       otherwise
1111       return Constant::getNullValue(C1->getType());
1112     case Instruction::Or:                          // X | undef -> -1
1113       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1114         return C1;
1115       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1116     case Instruction::LShr:
1117       // X >>l undef -> undef
1118       if (isa<UndefValue>(C2))
1119         return C2;
1120       // undef >>l 0 -> undef
1121       if (match(C2, m_Zero()))
1122         return C1;
1123       // undef >>l X -> 0
1124       return Constant::getNullValue(C1->getType());
1125     case Instruction::AShr:
1126       // X >>a undef -> undef
1127       if (isa<UndefValue>(C2))
1128         return C2;
1129       // undef >>a 0 -> undef
1130       if (match(C2, m_Zero()))
1131         return C1;
1132       // TODO: undef >>a X -> undef if the shift is exact
1133       // undef >>a X -> 0
1134       return Constant::getNullValue(C1->getType());
1135     case Instruction::Shl:
1136       // X << undef -> undef
1137       if (isa<UndefValue>(C2))
1138         return C2;
1139       // undef << 0 -> undef
1140       if (match(C2, m_Zero()))
1141         return C1;
1142       // undef << X -> 0
1143       return Constant::getNullValue(C1->getType());
1144     case Instruction::FSub:
1145       // -0.0 - undef --> undef (consistent with "fneg undef")
1146       if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
1147         return C2;
1148       LLVM_FALLTHROUGH;
1149     case Instruction::FAdd:
1150     case Instruction::FMul:
1151     case Instruction::FDiv:
1152     case Instruction::FRem:
1153       // [any flop] undef, undef -> undef
1154       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1155         return C1;
1156       // [any flop] C, undef -> NaN
1157       // [any flop] undef, C -> NaN
1158       // We could potentially specialize NaN/Inf constants vs. 'normal'
1159       // constants (possibly differently depending on opcode and operand). This
1160       // would allow returning undef sometimes. But it is always safe to fold to
1161       // NaN because we can choose the undef operand as NaN, and any FP opcode
1162       // with a NaN operand will propagate NaN.
1163       return ConstantFP::getNaN(C1->getType());
1164     case Instruction::BinaryOpsEnd:
1165       llvm_unreachable("Invalid BinaryOp");
1166     }
1167   }
1168 
1169   // Neither constant should be UndefValue, unless these are vector constants.
1170   assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
1171 
1172   // Handle simplifications when the RHS is a constant int.
1173   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1174     switch (Opcode) {
1175     case Instruction::Add:
1176       if (CI2->isZero()) return C1;                             // X + 0 == X
1177       break;
1178     case Instruction::Sub:
1179       if (CI2->isZero()) return C1;                             // X - 0 == X
1180       break;
1181     case Instruction::Mul:
1182       if (CI2->isZero()) return C2;                             // X * 0 == 0
1183       if (CI2->isOne())
1184         return C1;                                              // X * 1 == X
1185       break;
1186     case Instruction::UDiv:
1187     case Instruction::SDiv:
1188       if (CI2->isOne())
1189         return C1;                                            // X / 1 == X
1190       if (CI2->isZero())
1191         return UndefValue::get(CI2->getType());               // X / 0 == undef
1192       break;
1193     case Instruction::URem:
1194     case Instruction::SRem:
1195       if (CI2->isOne())
1196         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1197       if (CI2->isZero())
1198         return UndefValue::get(CI2->getType());               // X % 0 == undef
1199       break;
1200     case Instruction::And:
1201       if (CI2->isZero()) return C2;                           // X & 0 == 0
1202       if (CI2->isMinusOne())
1203         return C1;                                            // X & -1 == X
1204 
1205       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1206         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1207         if (CE1->getOpcode() == Instruction::ZExt) {
1208           unsigned DstWidth = CI2->getType()->getBitWidth();
1209           unsigned SrcWidth =
1210             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1211           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1212           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1213             return C1;
1214         }
1215 
1216         // If and'ing the address of a global with a constant, fold it.
1217         if (CE1->getOpcode() == Instruction::PtrToInt &&
1218             isa<GlobalValue>(CE1->getOperand(0))) {
1219           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1220 
1221           MaybeAlign GVAlign;
1222 
1223           if (Module *TheModule = GV->getParent()) {
1224             const DataLayout &DL = TheModule->getDataLayout();
1225             GVAlign = GV->getPointerAlignment(DL);
1226 
1227             // If the function alignment is not specified then assume that it
1228             // is 4.
1229             // This is dangerous; on x86, the alignment of the pointer
1230             // corresponds to the alignment of the function, but might be less
1231             // than 4 if it isn't explicitly specified.
1232             // However, a fix for this behaviour was reverted because it
1233             // increased code size (see https://reviews.llvm.org/D55115)
1234             // FIXME: This code should be deleted once existing targets have
1235             // appropriate defaults
1236             if (isa<Function>(GV) && !DL.getFunctionPtrAlign())
1237               GVAlign = Align(4);
1238           } else if (isa<Function>(GV)) {
1239             // Without a datalayout we have to assume the worst case: that the
1240             // function pointer isn't aligned at all.
1241             GVAlign = llvm::None;
1242           } else if (isa<GlobalVariable>(GV)) {
1243             GVAlign = cast<GlobalVariable>(GV)->getAlign();
1244           }
1245 
1246           if (GVAlign && *GVAlign > 1) {
1247             unsigned DstWidth = CI2->getType()->getBitWidth();
1248             unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
1249             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1250 
1251             // If checking bits we know are clear, return zero.
1252             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1253               return Constant::getNullValue(CI2->getType());
1254           }
1255         }
1256       }
1257       break;
1258     case Instruction::Or:
1259       if (CI2->isZero()) return C1;        // X | 0 == X
1260       if (CI2->isMinusOne())
1261         return C2;                         // X | -1 == -1
1262       break;
1263     case Instruction::Xor:
1264       if (CI2->isZero()) return C1;        // X ^ 0 == X
1265 
1266       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1267         switch (CE1->getOpcode()) {
1268         default: break;
1269         case Instruction::ICmp:
1270         case Instruction::FCmp:
1271           // cmp pred ^ true -> cmp !pred
1272           assert(CI2->isOne());
1273           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1274           pred = CmpInst::getInversePredicate(pred);
1275           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1276                                           CE1->getOperand(1));
1277         }
1278       }
1279       break;
1280     case Instruction::AShr:
1281       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1282       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1283         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1284           return ConstantExpr::getLShr(C1, C2);
1285       break;
1286     }
1287   } else if (isa<ConstantInt>(C1)) {
1288     // If C1 is a ConstantInt and C2 is not, swap the operands.
1289     if (Instruction::isCommutative(Opcode))
1290       return ConstantExpr::get(Opcode, C2, C1);
1291   }
1292 
1293   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1294     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1295       const APInt &C1V = CI1->getValue();
1296       const APInt &C2V = CI2->getValue();
1297       switch (Opcode) {
1298       default:
1299         break;
1300       case Instruction::Add:
1301         return ConstantInt::get(CI1->getContext(), C1V + C2V);
1302       case Instruction::Sub:
1303         return ConstantInt::get(CI1->getContext(), C1V - C2V);
1304       case Instruction::Mul:
1305         return ConstantInt::get(CI1->getContext(), C1V * C2V);
1306       case Instruction::UDiv:
1307         assert(!CI2->isZero() && "Div by zero handled above");
1308         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1309       case Instruction::SDiv:
1310         assert(!CI2->isZero() && "Div by zero handled above");
1311         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1312           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1313         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1314       case Instruction::URem:
1315         assert(!CI2->isZero() && "Div by zero handled above");
1316         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1317       case Instruction::SRem:
1318         assert(!CI2->isZero() && "Div by zero handled above");
1319         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1320           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1321         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1322       case Instruction::And:
1323         return ConstantInt::get(CI1->getContext(), C1V & C2V);
1324       case Instruction::Or:
1325         return ConstantInt::get(CI1->getContext(), C1V | C2V);
1326       case Instruction::Xor:
1327         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1328       case Instruction::Shl:
1329         if (C2V.ult(C1V.getBitWidth()))
1330           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1331         return UndefValue::get(C1->getType()); // too big shift is undef
1332       case Instruction::LShr:
1333         if (C2V.ult(C1V.getBitWidth()))
1334           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1335         return UndefValue::get(C1->getType()); // too big shift is undef
1336       case Instruction::AShr:
1337         if (C2V.ult(C1V.getBitWidth()))
1338           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1339         return UndefValue::get(C1->getType()); // too big shift is undef
1340       }
1341     }
1342 
1343     switch (Opcode) {
1344     case Instruction::SDiv:
1345     case Instruction::UDiv:
1346     case Instruction::URem:
1347     case Instruction::SRem:
1348     case Instruction::LShr:
1349     case Instruction::AShr:
1350     case Instruction::Shl:
1351       if (CI1->isZero()) return C1;
1352       break;
1353     default:
1354       break;
1355     }
1356   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1357     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1358       const APFloat &C1V = CFP1->getValueAPF();
1359       const APFloat &C2V = CFP2->getValueAPF();
1360       APFloat C3V = C1V;  // copy for modification
1361       switch (Opcode) {
1362       default:
1363         break;
1364       case Instruction::FAdd:
1365         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1366         return ConstantFP::get(C1->getContext(), C3V);
1367       case Instruction::FSub:
1368         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1369         return ConstantFP::get(C1->getContext(), C3V);
1370       case Instruction::FMul:
1371         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1372         return ConstantFP::get(C1->getContext(), C3V);
1373       case Instruction::FDiv:
1374         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1375         return ConstantFP::get(C1->getContext(), C3V);
1376       case Instruction::FRem:
1377         (void)C3V.mod(C2V);
1378         return ConstantFP::get(C1->getContext(), C3V);
1379       }
1380     }
1381   } else if (IsScalableVector) {
1382     // Do not iterate on scalable vector. The number of elements is unknown at
1383     // compile-time.
1384     // FIXME: this branch can potentially be removed
1385     return nullptr;
1386   } else if (auto *VTy = dyn_cast<FixedVectorType>(C1->getType())) {
1387     // Fast path for splatted constants.
1388     if (Constant *C2Splat = C2->getSplatValue()) {
1389       if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
1390         return UndefValue::get(VTy);
1391       if (Constant *C1Splat = C1->getSplatValue()) {
1392         return ConstantVector::getSplat(
1393             VTy->getElementCount(),
1394             ConstantExpr::get(Opcode, C1Splat, C2Splat));
1395       }
1396     }
1397 
1398     // Fold each element and create a vector constant from those constants.
1399     SmallVector<Constant*, 16> Result;
1400     Type *Ty = IntegerType::get(VTy->getContext(), 32);
1401     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1402       Constant *ExtractIdx = ConstantInt::get(Ty, i);
1403       Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1404       Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1405 
1406       // If any element of a divisor vector is zero, the whole op is undef.
1407       if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1408         return UndefValue::get(VTy);
1409 
1410       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1411     }
1412 
1413     return ConstantVector::get(Result);
1414   }
1415 
1416   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1417     // There are many possible foldings we could do here.  We should probably
1418     // at least fold add of a pointer with an integer into the appropriate
1419     // getelementptr.  This will improve alias analysis a bit.
1420 
1421     // Given ((a + b) + c), if (b + c) folds to something interesting, return
1422     // (a + (b + c)).
1423     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1424       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1425       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1426         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1427     }
1428   } else if (isa<ConstantExpr>(C2)) {
1429     // If C2 is a constant expr and C1 isn't, flop them around and fold the
1430     // other way if possible.
1431     if (Instruction::isCommutative(Opcode))
1432       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1433   }
1434 
1435   // i1 can be simplified in many cases.
1436   if (C1->getType()->isIntegerTy(1)) {
1437     switch (Opcode) {
1438     case Instruction::Add:
1439     case Instruction::Sub:
1440       return ConstantExpr::getXor(C1, C2);
1441     case Instruction::Mul:
1442       return ConstantExpr::getAnd(C1, C2);
1443     case Instruction::Shl:
1444     case Instruction::LShr:
1445     case Instruction::AShr:
1446       // We can assume that C2 == 0.  If it were one the result would be
1447       // undefined because the shift value is as large as the bitwidth.
1448       return C1;
1449     case Instruction::SDiv:
1450     case Instruction::UDiv:
1451       // We can assume that C2 == 1.  If it were zero the result would be
1452       // undefined through division by zero.
1453       return C1;
1454     case Instruction::URem:
1455     case Instruction::SRem:
1456       // We can assume that C2 == 1.  If it were zero the result would be
1457       // undefined through division by zero.
1458       return ConstantInt::getFalse(C1->getContext());
1459     default:
1460       break;
1461     }
1462   }
1463 
1464   // We don't know how to fold this.
1465   return nullptr;
1466 }
1467 
1468 /// This type is zero-sized if it's an array or structure of zero-sized types.
1469 /// The only leaf zero-sized type is an empty structure.
1470 static bool isMaybeZeroSizedType(Type *Ty) {
1471   if (StructType *STy = dyn_cast<StructType>(Ty)) {
1472     if (STy->isOpaque()) return true;  // Can't say.
1473 
1474     // If all of elements have zero size, this does too.
1475     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1476       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1477     return true;
1478 
1479   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1480     return isMaybeZeroSizedType(ATy->getElementType());
1481   }
1482   return false;
1483 }
1484 
1485 /// Compare the two constants as though they were getelementptr indices.
1486 /// This allows coercion of the types to be the same thing.
1487 ///
1488 /// If the two constants are the "same" (after coercion), return 0.  If the
1489 /// first is less than the second, return -1, if the second is less than the
1490 /// first, return 1.  If the constants are not integral, return -2.
1491 ///
1492 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1493   if (C1 == C2) return 0;
1494 
1495   // Ok, we found a different index.  If they are not ConstantInt, we can't do
1496   // anything with them.
1497   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1498     return -2; // don't know!
1499 
1500   // We cannot compare the indices if they don't fit in an int64_t.
1501   if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1502       cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1503     return -2; // don't know!
1504 
1505   // Ok, we have two differing integer indices.  Sign extend them to be the same
1506   // type.
1507   int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1508   int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1509 
1510   if (C1Val == C2Val) return 0;  // They are equal
1511 
1512   // If the type being indexed over is really just a zero sized type, there is
1513   // no pointer difference being made here.
1514   if (isMaybeZeroSizedType(ElTy))
1515     return -2; // dunno.
1516 
1517   // If they are really different, now that they are the same type, then we
1518   // found a difference!
1519   if (C1Val < C2Val)
1520     return -1;
1521   else
1522     return 1;
1523 }
1524 
1525 /// This function determines if there is anything we can decide about the two
1526 /// constants provided. This doesn't need to handle simple things like
1527 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1528 /// If we can determine that the two constants have a particular relation to
1529 /// each other, we should return the corresponding FCmpInst predicate,
1530 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1531 /// ConstantFoldCompareInstruction.
1532 ///
1533 /// To simplify this code we canonicalize the relation so that the first
1534 /// operand is always the most "complex" of the two.  We consider ConstantFP
1535 /// to be the simplest, and ConstantExprs to be the most complex.
1536 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1537   assert(V1->getType() == V2->getType() &&
1538          "Cannot compare values of different types!");
1539 
1540   // We do not know if a constant expression will evaluate to a number or NaN.
1541   // Therefore, we can only say that the relation is unordered or equal.
1542   if (V1 == V2) return FCmpInst::FCMP_UEQ;
1543 
1544   if (!isa<ConstantExpr>(V1)) {
1545     if (!isa<ConstantExpr>(V2)) {
1546       // Simple case, use the standard constant folder.
1547       ConstantInt *R = nullptr;
1548       R = dyn_cast<ConstantInt>(
1549                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1550       if (R && !R->isZero())
1551         return FCmpInst::FCMP_OEQ;
1552       R = dyn_cast<ConstantInt>(
1553                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1554       if (R && !R->isZero())
1555         return FCmpInst::FCMP_OLT;
1556       R = dyn_cast<ConstantInt>(
1557                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1558       if (R && !R->isZero())
1559         return FCmpInst::FCMP_OGT;
1560 
1561       // Nothing more we can do
1562       return FCmpInst::BAD_FCMP_PREDICATE;
1563     }
1564 
1565     // If the first operand is simple and second is ConstantExpr, swap operands.
1566     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1567     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1568       return FCmpInst::getSwappedPredicate(SwappedRelation);
1569   } else {
1570     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1571     // constantexpr or a simple constant.
1572     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1573     switch (CE1->getOpcode()) {
1574     case Instruction::FPTrunc:
1575     case Instruction::FPExt:
1576     case Instruction::UIToFP:
1577     case Instruction::SIToFP:
1578       // We might be able to do something with these but we don't right now.
1579       break;
1580     default:
1581       break;
1582     }
1583   }
1584   // There are MANY other foldings that we could perform here.  They will
1585   // probably be added on demand, as they seem needed.
1586   return FCmpInst::BAD_FCMP_PREDICATE;
1587 }
1588 
1589 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1590                                                       const GlobalValue *GV2) {
1591   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1592     if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1593       return true;
1594     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1595       Type *Ty = GVar->getValueType();
1596       // A global with opaque type might end up being zero sized.
1597       if (!Ty->isSized())
1598         return true;
1599       // A global with an empty type might lie at the address of any other
1600       // global.
1601       if (Ty->isEmptyTy())
1602         return true;
1603     }
1604     return false;
1605   };
1606   // Don't try to decide equality of aliases.
1607   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1608     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1609       return ICmpInst::ICMP_NE;
1610   return ICmpInst::BAD_ICMP_PREDICATE;
1611 }
1612 
1613 /// This function determines if there is anything we can decide about the two
1614 /// constants provided. This doesn't need to handle simple things like integer
1615 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1616 /// If we can determine that the two constants have a particular relation to
1617 /// each other, we should return the corresponding ICmp predicate, otherwise
1618 /// return ICmpInst::BAD_ICMP_PREDICATE.
1619 ///
1620 /// To simplify this code we canonicalize the relation so that the first
1621 /// operand is always the most "complex" of the two.  We consider simple
1622 /// constants (like ConstantInt) to be the simplest, followed by
1623 /// GlobalValues, followed by ConstantExpr's (the most complex).
1624 ///
1625 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1626                                                 bool isSigned) {
1627   assert(V1->getType() == V2->getType() &&
1628          "Cannot compare different types of values!");
1629   if (V1 == V2) return ICmpInst::ICMP_EQ;
1630 
1631   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1632       !isa<BlockAddress>(V1)) {
1633     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1634         !isa<BlockAddress>(V2)) {
1635       // We distilled this down to a simple case, use the standard constant
1636       // folder.
1637       ConstantInt *R = nullptr;
1638       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1639       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1640       if (R && !R->isZero())
1641         return pred;
1642       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1643       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1644       if (R && !R->isZero())
1645         return pred;
1646       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1647       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1648       if (R && !R->isZero())
1649         return pred;
1650 
1651       // If we couldn't figure it out, bail.
1652       return ICmpInst::BAD_ICMP_PREDICATE;
1653     }
1654 
1655     // If the first operand is simple, swap operands.
1656     ICmpInst::Predicate SwappedRelation =
1657       evaluateICmpRelation(V2, V1, isSigned);
1658     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1659       return ICmpInst::getSwappedPredicate(SwappedRelation);
1660 
1661   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1662     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1663       ICmpInst::Predicate SwappedRelation =
1664         evaluateICmpRelation(V2, V1, isSigned);
1665       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1666         return ICmpInst::getSwappedPredicate(SwappedRelation);
1667       return ICmpInst::BAD_ICMP_PREDICATE;
1668     }
1669 
1670     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1671     // constant (which, since the types must match, means that it's a
1672     // ConstantPointerNull).
1673     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1674       return areGlobalsPotentiallyEqual(GV, GV2);
1675     } else if (isa<BlockAddress>(V2)) {
1676       return ICmpInst::ICMP_NE; // Globals never equal labels.
1677     } else {
1678       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1679       // GlobalVals can never be null unless they have external weak linkage.
1680       // We don't try to evaluate aliases here.
1681       // NOTE: We should not be doing this constant folding if null pointer
1682       // is considered valid for the function. But currently there is no way to
1683       // query it from the Constant type.
1684       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1685           !NullPointerIsDefined(nullptr /* F */,
1686                                 GV->getType()->getAddressSpace()))
1687         return ICmpInst::ICMP_NE;
1688     }
1689   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1690     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1691       ICmpInst::Predicate SwappedRelation =
1692         evaluateICmpRelation(V2, V1, isSigned);
1693       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1694         return ICmpInst::getSwappedPredicate(SwappedRelation);
1695       return ICmpInst::BAD_ICMP_PREDICATE;
1696     }
1697 
1698     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1699     // constant (which, since the types must match, means that it is a
1700     // ConstantPointerNull).
1701     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1702       // Block address in another function can't equal this one, but block
1703       // addresses in the current function might be the same if blocks are
1704       // empty.
1705       if (BA2->getFunction() != BA->getFunction())
1706         return ICmpInst::ICMP_NE;
1707     } else {
1708       // Block addresses aren't null, don't equal the address of globals.
1709       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1710              "Canonicalization guarantee!");
1711       return ICmpInst::ICMP_NE;
1712     }
1713   } else {
1714     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1715     // constantexpr, a global, block address, or a simple constant.
1716     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1717     Constant *CE1Op0 = CE1->getOperand(0);
1718 
1719     switch (CE1->getOpcode()) {
1720     case Instruction::Trunc:
1721     case Instruction::FPTrunc:
1722     case Instruction::FPExt:
1723     case Instruction::FPToUI:
1724     case Instruction::FPToSI:
1725       break; // We can't evaluate floating point casts or truncations.
1726 
1727     case Instruction::UIToFP:
1728     case Instruction::SIToFP:
1729     case Instruction::BitCast:
1730     case Instruction::ZExt:
1731     case Instruction::SExt:
1732       // We can't evaluate floating point casts or truncations.
1733       if (CE1Op0->getType()->isFPOrFPVectorTy())
1734         break;
1735 
1736       // If the cast is not actually changing bits, and the second operand is a
1737       // null pointer, do the comparison with the pre-casted value.
1738       if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1739         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1740         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1741         return evaluateICmpRelation(CE1Op0,
1742                                     Constant::getNullValue(CE1Op0->getType()),
1743                                     isSigned);
1744       }
1745       break;
1746 
1747     case Instruction::GetElementPtr: {
1748       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1749       // Ok, since this is a getelementptr, we know that the constant has a
1750       // pointer type.  Check the various cases.
1751       if (isa<ConstantPointerNull>(V2)) {
1752         // If we are comparing a GEP to a null pointer, check to see if the base
1753         // of the GEP equals the null pointer.
1754         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1755           if (GV->hasExternalWeakLinkage())
1756             // Weak linkage GVals could be zero or not. We're comparing that
1757             // to null pointer so its greater-or-equal
1758             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1759           else
1760             // If its not weak linkage, the GVal must have a non-zero address
1761             // so the result is greater-than
1762             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1763         } else if (isa<ConstantPointerNull>(CE1Op0)) {
1764           // If we are indexing from a null pointer, check to see if we have any
1765           // non-zero indices.
1766           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1767             if (!CE1->getOperand(i)->isNullValue())
1768               // Offsetting from null, must not be equal.
1769               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1770           // Only zero indexes from null, must still be zero.
1771           return ICmpInst::ICMP_EQ;
1772         }
1773         // Otherwise, we can't really say if the first operand is null or not.
1774       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1775         if (isa<ConstantPointerNull>(CE1Op0)) {
1776           if (GV2->hasExternalWeakLinkage())
1777             // Weak linkage GVals could be zero or not. We're comparing it to
1778             // a null pointer, so its less-or-equal
1779             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1780           else
1781             // If its not weak linkage, the GVal must have a non-zero address
1782             // so the result is less-than
1783             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1784         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1785           if (GV == GV2) {
1786             // If this is a getelementptr of the same global, then it must be
1787             // different.  Because the types must match, the getelementptr could
1788             // only have at most one index, and because we fold getelementptr's
1789             // with a single zero index, it must be nonzero.
1790             assert(CE1->getNumOperands() == 2 &&
1791                    !CE1->getOperand(1)->isNullValue() &&
1792                    "Surprising getelementptr!");
1793             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1794           } else {
1795             if (CE1GEP->hasAllZeroIndices())
1796               return areGlobalsPotentiallyEqual(GV, GV2);
1797             return ICmpInst::BAD_ICMP_PREDICATE;
1798           }
1799         }
1800       } else {
1801         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1802         Constant *CE2Op0 = CE2->getOperand(0);
1803 
1804         // There are MANY other foldings that we could perform here.  They will
1805         // probably be added on demand, as they seem needed.
1806         switch (CE2->getOpcode()) {
1807         default: break;
1808         case Instruction::GetElementPtr:
1809           // By far the most common case to handle is when the base pointers are
1810           // obviously to the same global.
1811           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1812             // Don't know relative ordering, but check for inequality.
1813             if (CE1Op0 != CE2Op0) {
1814               GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1815               if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1816                 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1817                                                   cast<GlobalValue>(CE2Op0));
1818               return ICmpInst::BAD_ICMP_PREDICATE;
1819             }
1820             // Ok, we know that both getelementptr instructions are based on the
1821             // same global.  From this, we can precisely determine the relative
1822             // ordering of the resultant pointers.
1823             unsigned i = 1;
1824 
1825             // The logic below assumes that the result of the comparison
1826             // can be determined by finding the first index that differs.
1827             // This doesn't work if there is over-indexing in any
1828             // subsequent indices, so check for that case first.
1829             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1830                 !CE2->isGEPWithNoNotionalOverIndexing())
1831                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1832 
1833             // Compare all of the operands the GEP's have in common.
1834             gep_type_iterator GTI = gep_type_begin(CE1);
1835             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1836                  ++i, ++GTI)
1837               switch (IdxCompare(CE1->getOperand(i),
1838                                  CE2->getOperand(i), GTI.getIndexedType())) {
1839               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1840               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1841               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1842               }
1843 
1844             // Ok, we ran out of things they have in common.  If any leftovers
1845             // are non-zero then we have a difference, otherwise we are equal.
1846             for (; i < CE1->getNumOperands(); ++i)
1847               if (!CE1->getOperand(i)->isNullValue()) {
1848                 if (isa<ConstantInt>(CE1->getOperand(i)))
1849                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1850                 else
1851                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1852               }
1853 
1854             for (; i < CE2->getNumOperands(); ++i)
1855               if (!CE2->getOperand(i)->isNullValue()) {
1856                 if (isa<ConstantInt>(CE2->getOperand(i)))
1857                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1858                 else
1859                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1860               }
1861             return ICmpInst::ICMP_EQ;
1862           }
1863         }
1864       }
1865       break;
1866     }
1867     default:
1868       break;
1869     }
1870   }
1871 
1872   return ICmpInst::BAD_ICMP_PREDICATE;
1873 }
1874 
1875 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1876                                                Constant *C1, Constant *C2) {
1877   Type *ResultTy;
1878   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1879     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1880                                VT->getElementCount());
1881   else
1882     ResultTy = Type::getInt1Ty(C1->getContext());
1883 
1884   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1885   if (pred == FCmpInst::FCMP_FALSE)
1886     return Constant::getNullValue(ResultTy);
1887 
1888   if (pred == FCmpInst::FCMP_TRUE)
1889     return Constant::getAllOnesValue(ResultTy);
1890 
1891   // Handle some degenerate cases first
1892   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1893     CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1894     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1895     // For EQ and NE, we can always pick a value for the undef to make the
1896     // predicate pass or fail, so we can return undef.
1897     // Also, if both operands are undef, we can return undef for int comparison.
1898     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1899       return UndefValue::get(ResultTy);
1900 
1901     // Otherwise, for integer compare, pick the same value as the non-undef
1902     // operand, and fold it to true or false.
1903     if (isIntegerPredicate)
1904       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1905 
1906     // Choosing NaN for the undef will always make unordered comparison succeed
1907     // and ordered comparison fails.
1908     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1909   }
1910 
1911   // icmp eq/ne(null,GV) -> false/true
1912   if (C1->isNullValue()) {
1913     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1914       // Don't try to evaluate aliases.  External weak GV can be null.
1915       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1916           !NullPointerIsDefined(nullptr /* F */,
1917                                 GV->getType()->getAddressSpace())) {
1918         if (pred == ICmpInst::ICMP_EQ)
1919           return ConstantInt::getFalse(C1->getContext());
1920         else if (pred == ICmpInst::ICMP_NE)
1921           return ConstantInt::getTrue(C1->getContext());
1922       }
1923   // icmp eq/ne(GV,null) -> false/true
1924   } else if (C2->isNullValue()) {
1925     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1926       // Don't try to evaluate aliases.  External weak GV can be null.
1927       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1928           !NullPointerIsDefined(nullptr /* F */,
1929                                 GV->getType()->getAddressSpace())) {
1930         if (pred == ICmpInst::ICMP_EQ)
1931           return ConstantInt::getFalse(C1->getContext());
1932         else if (pred == ICmpInst::ICMP_NE)
1933           return ConstantInt::getTrue(C1->getContext());
1934       }
1935   }
1936 
1937   // If the comparison is a comparison between two i1's, simplify it.
1938   if (C1->getType()->isIntegerTy(1)) {
1939     switch(pred) {
1940     case ICmpInst::ICMP_EQ:
1941       if (isa<ConstantInt>(C2))
1942         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1943       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1944     case ICmpInst::ICMP_NE:
1945       return ConstantExpr::getXor(C1, C2);
1946     default:
1947       break;
1948     }
1949   }
1950 
1951   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1952     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1953     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1954     switch (pred) {
1955     default: llvm_unreachable("Invalid ICmp Predicate");
1956     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1957     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1958     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1959     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1960     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1961     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1962     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1963     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1964     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1965     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1966     }
1967   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1968     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1969     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1970     APFloat::cmpResult R = C1V.compare(C2V);
1971     switch (pred) {
1972     default: llvm_unreachable("Invalid FCmp Predicate");
1973     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1974     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1975     case FCmpInst::FCMP_UNO:
1976       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1977     case FCmpInst::FCMP_ORD:
1978       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1979     case FCmpInst::FCMP_UEQ:
1980       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1981                                         R==APFloat::cmpEqual);
1982     case FCmpInst::FCMP_OEQ:
1983       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1984     case FCmpInst::FCMP_UNE:
1985       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1986     case FCmpInst::FCMP_ONE:
1987       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1988                                         R==APFloat::cmpGreaterThan);
1989     case FCmpInst::FCMP_ULT:
1990       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1991                                         R==APFloat::cmpLessThan);
1992     case FCmpInst::FCMP_OLT:
1993       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1994     case FCmpInst::FCMP_UGT:
1995       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1996                                         R==APFloat::cmpGreaterThan);
1997     case FCmpInst::FCMP_OGT:
1998       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1999     case FCmpInst::FCMP_ULE:
2000       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
2001     case FCmpInst::FCMP_OLE:
2002       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
2003                                         R==APFloat::cmpEqual);
2004     case FCmpInst::FCMP_UGE:
2005       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
2006     case FCmpInst::FCMP_OGE:
2007       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
2008                                         R==APFloat::cmpEqual);
2009     }
2010   } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
2011 
2012     // Do not iterate on scalable vector. The number of elements is unknown at
2013     // compile-time.
2014     if (isa<ScalableVectorType>(C1VTy))
2015       return nullptr;
2016 
2017     // Fast path for splatted constants.
2018     if (Constant *C1Splat = C1->getSplatValue())
2019       if (Constant *C2Splat = C2->getSplatValue())
2020         return ConstantVector::getSplat(
2021             C1VTy->getElementCount(),
2022             ConstantExpr::getCompare(pred, C1Splat, C2Splat));
2023 
2024     // If we can constant fold the comparison of each element, constant fold
2025     // the whole vector comparison.
2026     SmallVector<Constant*, 4> ResElts;
2027     Type *Ty = IntegerType::get(C1->getContext(), 32);
2028     // Compare the elements, producing an i1 result or constant expr.
2029     for (unsigned i = 0, e = C1VTy->getElementCount().Min; i != e; ++i) {
2030       Constant *C1E =
2031         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
2032       Constant *C2E =
2033         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
2034 
2035       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
2036     }
2037 
2038     return ConstantVector::get(ResElts);
2039   }
2040 
2041   if (C1->getType()->isFloatingPointTy() &&
2042       // Only call evaluateFCmpRelation if we have a constant expr to avoid
2043       // infinite recursive loop
2044       (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
2045     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
2046     switch (evaluateFCmpRelation(C1, C2)) {
2047     default: llvm_unreachable("Unknown relation!");
2048     case FCmpInst::FCMP_UNO:
2049     case FCmpInst::FCMP_ORD:
2050     case FCmpInst::FCMP_UNE:
2051     case FCmpInst::FCMP_ULT:
2052     case FCmpInst::FCMP_UGT:
2053     case FCmpInst::FCMP_ULE:
2054     case FCmpInst::FCMP_UGE:
2055     case FCmpInst::FCMP_TRUE:
2056     case FCmpInst::FCMP_FALSE:
2057     case FCmpInst::BAD_FCMP_PREDICATE:
2058       break; // Couldn't determine anything about these constants.
2059     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
2060       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
2061                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
2062                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2063       break;
2064     case FCmpInst::FCMP_OLT: // We know that C1 < C2
2065       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2066                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
2067                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
2068       break;
2069     case FCmpInst::FCMP_OGT: // We know that C1 > C2
2070       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2071                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
2072                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2073       break;
2074     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
2075       // We can only partially decide this relation.
2076       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2077         Result = 0;
2078       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2079         Result = 1;
2080       break;
2081     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
2082       // We can only partially decide this relation.
2083       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2084         Result = 0;
2085       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2086         Result = 1;
2087       break;
2088     case FCmpInst::FCMP_ONE: // We know that C1 != C2
2089       // We can only partially decide this relation.
2090       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
2091         Result = 0;
2092       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
2093         Result = 1;
2094       break;
2095     case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
2096       // We can only partially decide this relation.
2097       if (pred == FCmpInst::FCMP_ONE)
2098         Result = 0;
2099       else if (pred == FCmpInst::FCMP_UEQ)
2100         Result = 1;
2101       break;
2102     }
2103 
2104     // If we evaluated the result, return it now.
2105     if (Result != -1)
2106       return ConstantInt::get(ResultTy, Result);
2107 
2108   } else {
2109     // Evaluate the relation between the two constants, per the predicate.
2110     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
2111     switch (evaluateICmpRelation(C1, C2,
2112                                  CmpInst::isSigned((CmpInst::Predicate)pred))) {
2113     default: llvm_unreachable("Unknown relational!");
2114     case ICmpInst::BAD_ICMP_PREDICATE:
2115       break;  // Couldn't determine anything about these constants.
2116     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
2117       // If we know the constants are equal, we can decide the result of this
2118       // computation precisely.
2119       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2120       break;
2121     case ICmpInst::ICMP_ULT:
2122       switch (pred) {
2123       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2124         Result = 1; break;
2125       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2126         Result = 0; break;
2127       }
2128       break;
2129     case ICmpInst::ICMP_SLT:
2130       switch (pred) {
2131       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2132         Result = 1; break;
2133       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2134         Result = 0; break;
2135       }
2136       break;
2137     case ICmpInst::ICMP_UGT:
2138       switch (pred) {
2139       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2140         Result = 1; break;
2141       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2142         Result = 0; break;
2143       }
2144       break;
2145     case ICmpInst::ICMP_SGT:
2146       switch (pred) {
2147       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2148         Result = 1; break;
2149       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2150         Result = 0; break;
2151       }
2152       break;
2153     case ICmpInst::ICMP_ULE:
2154       if (pred == ICmpInst::ICMP_UGT) Result = 0;
2155       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2156       break;
2157     case ICmpInst::ICMP_SLE:
2158       if (pred == ICmpInst::ICMP_SGT) Result = 0;
2159       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2160       break;
2161     case ICmpInst::ICMP_UGE:
2162       if (pred == ICmpInst::ICMP_ULT) Result = 0;
2163       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2164       break;
2165     case ICmpInst::ICMP_SGE:
2166       if (pred == ICmpInst::ICMP_SLT) Result = 0;
2167       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2168       break;
2169     case ICmpInst::ICMP_NE:
2170       if (pred == ICmpInst::ICMP_EQ) Result = 0;
2171       if (pred == ICmpInst::ICMP_NE) Result = 1;
2172       break;
2173     }
2174 
2175     // If we evaluated the result, return it now.
2176     if (Result != -1)
2177       return ConstantInt::get(ResultTy, Result);
2178 
2179     // If the right hand side is a bitcast, try using its inverse to simplify
2180     // it by moving it to the left hand side.  We can't do this if it would turn
2181     // a vector compare into a scalar compare or visa versa, or if it would turn
2182     // the operands into FP values.
2183     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2184       Constant *CE2Op0 = CE2->getOperand(0);
2185       if (CE2->getOpcode() == Instruction::BitCast &&
2186           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
2187           !CE2Op0->getType()->isFPOrFPVectorTy()) {
2188         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2189         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2190       }
2191     }
2192 
2193     // If the left hand side is an extension, try eliminating it.
2194     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2195       if ((CE1->getOpcode() == Instruction::SExt &&
2196            ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
2197           (CE1->getOpcode() == Instruction::ZExt &&
2198            !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2199         Constant *CE1Op0 = CE1->getOperand(0);
2200         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2201         if (CE1Inverse == CE1Op0) {
2202           // Check whether we can safely truncate the right hand side.
2203           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2204           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2205                                     C2->getType()) == C2)
2206             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2207         }
2208       }
2209     }
2210 
2211     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2212         (C1->isNullValue() && !C2->isNullValue())) {
2213       // If C2 is a constant expr and C1 isn't, flip them around and fold the
2214       // other way if possible.
2215       // Also, if C1 is null and C2 isn't, flip them around.
2216       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2217       return ConstantExpr::getICmp(pred, C2, C1);
2218     }
2219   }
2220   return nullptr;
2221 }
2222 
2223 /// Test whether the given sequence of *normalized* indices is "inbounds".
2224 template<typename IndexTy>
2225 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2226   // No indices means nothing that could be out of bounds.
2227   if (Idxs.empty()) return true;
2228 
2229   // If the first index is zero, it's in bounds.
2230   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2231 
2232   // If the first index is one and all the rest are zero, it's in bounds,
2233   // by the one-past-the-end rule.
2234   if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2235     if (!CI->isOne())
2236       return false;
2237   } else {
2238     auto *CV = cast<ConstantDataVector>(Idxs[0]);
2239     CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2240     if (!CI || !CI->isOne())
2241       return false;
2242   }
2243 
2244   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2245     if (!cast<Constant>(Idxs[i])->isNullValue())
2246       return false;
2247   return true;
2248 }
2249 
2250 /// Test whether a given ConstantInt is in-range for a SequentialType.
2251 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2252                                       const ConstantInt *CI) {
2253   // We cannot bounds check the index if it doesn't fit in an int64_t.
2254   if (CI->getValue().getMinSignedBits() > 64)
2255     return false;
2256 
2257   // A negative index or an index past the end of our sequential type is
2258   // considered out-of-range.
2259   int64_t IndexVal = CI->getSExtValue();
2260   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2261     return false;
2262 
2263   // Otherwise, it is in-range.
2264   return true;
2265 }
2266 
2267 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2268                                           bool InBounds,
2269                                           Optional<unsigned> InRangeIndex,
2270                                           ArrayRef<Value *> Idxs) {
2271   if (Idxs.empty()) return C;
2272 
2273   Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2274       PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2275 
2276   if (isa<UndefValue>(C))
2277     return UndefValue::get(GEPTy);
2278 
2279   Constant *Idx0 = cast<Constant>(Idxs[0]);
2280   if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2281     return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2282                ? ConstantVector::getSplat(
2283                      cast<VectorType>(GEPTy)->getElementCount(), C)
2284                : C;
2285 
2286   if (C->isNullValue()) {
2287     bool isNull = true;
2288     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2289       if (!isa<UndefValue>(Idxs[i]) &&
2290           !cast<Constant>(Idxs[i])->isNullValue()) {
2291         isNull = false;
2292         break;
2293       }
2294     if (isNull) {
2295       PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2296       Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2297 
2298       assert(Ty && "Invalid indices for GEP!");
2299       Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2300       Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2301       if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2302         GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2303 
2304       // The GEP returns a vector of pointers when one of more of
2305       // its arguments is a vector.
2306       for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2307         if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2308           assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) ==
2309                                                  isa<ScalableVectorType>(VT)) &&
2310                  "Mismatched GEPTy vector types");
2311           GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2312           break;
2313         }
2314       }
2315 
2316       return Constant::getNullValue(GEPTy);
2317     }
2318   }
2319 
2320   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2321     // Combine Indices - If the source pointer to this getelementptr instruction
2322     // is a getelementptr instruction, combine the indices of the two
2323     // getelementptr instructions into a single instruction.
2324     //
2325     if (CE->getOpcode() == Instruction::GetElementPtr) {
2326       gep_type_iterator LastI = gep_type_end(CE);
2327       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2328            I != E; ++I)
2329         LastI = I;
2330 
2331       // We cannot combine indices if doing so would take us outside of an
2332       // array or vector.  Doing otherwise could trick us if we evaluated such a
2333       // GEP as part of a load.
2334       //
2335       // e.g. Consider if the original GEP was:
2336       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2337       //                    i32 0, i32 0, i64 0)
2338       //
2339       // If we then tried to offset it by '8' to get to the third element,
2340       // an i8, we should *not* get:
2341       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2342       //                    i32 0, i32 0, i64 8)
2343       //
2344       // This GEP tries to index array element '8  which runs out-of-bounds.
2345       // Subsequent evaluation would get confused and produce erroneous results.
2346       //
2347       // The following prohibits such a GEP from being formed by checking to see
2348       // if the index is in-range with respect to an array.
2349       // TODO: This code may be extended to handle vectors as well.
2350       bool PerformFold = false;
2351       if (Idx0->isNullValue())
2352         PerformFold = true;
2353       else if (LastI.isSequential())
2354         if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2355           PerformFold = (!LastI.isBoundedSequential() ||
2356                          isIndexInRangeOfArrayType(
2357                              LastI.getSequentialNumElements(), CI)) &&
2358                         !CE->getOperand(CE->getNumOperands() - 1)
2359                              ->getType()
2360                              ->isVectorTy();
2361 
2362       if (PerformFold) {
2363         SmallVector<Value*, 16> NewIndices;
2364         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2365         NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2366 
2367         // Add the last index of the source with the first index of the new GEP.
2368         // Make sure to handle the case when they are actually different types.
2369         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2370         // Otherwise it must be an array.
2371         if (!Idx0->isNullValue()) {
2372           Type *IdxTy = Combined->getType();
2373           if (IdxTy != Idx0->getType()) {
2374             unsigned CommonExtendedWidth =
2375                 std::max(IdxTy->getIntegerBitWidth(),
2376                          Idx0->getType()->getIntegerBitWidth());
2377             CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2378 
2379             Type *CommonTy =
2380                 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2381             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2382             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2383             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2384           } else {
2385             Combined =
2386               ConstantExpr::get(Instruction::Add, Idx0, Combined);
2387           }
2388         }
2389 
2390         NewIndices.push_back(Combined);
2391         NewIndices.append(Idxs.begin() + 1, Idxs.end());
2392 
2393         // The combined GEP normally inherits its index inrange attribute from
2394         // the inner GEP, but if the inner GEP's last index was adjusted by the
2395         // outer GEP, any inbounds attribute on that index is invalidated.
2396         Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex();
2397         if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue())
2398           IRIndex = None;
2399 
2400         return ConstantExpr::getGetElementPtr(
2401             cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2402             NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(),
2403             IRIndex);
2404       }
2405     }
2406 
2407     // Attempt to fold casts to the same type away.  For example, folding:
2408     //
2409     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2410     //                       i64 0, i64 0)
2411     // into:
2412     //
2413     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2414     //
2415     // Don't fold if the cast is changing address spaces.
2416     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2417       PointerType *SrcPtrTy =
2418         dyn_cast<PointerType>(CE->getOperand(0)->getType());
2419       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2420       if (SrcPtrTy && DstPtrTy) {
2421         ArrayType *SrcArrayTy =
2422           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2423         ArrayType *DstArrayTy =
2424           dyn_cast<ArrayType>(DstPtrTy->getElementType());
2425         if (SrcArrayTy && DstArrayTy
2426             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2427             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2428           return ConstantExpr::getGetElementPtr(SrcArrayTy,
2429                                                 (Constant *)CE->getOperand(0),
2430                                                 Idxs, InBounds, InRangeIndex);
2431       }
2432     }
2433   }
2434 
2435   // Check to see if any array indices are not within the corresponding
2436   // notional array or vector bounds. If so, try to determine if they can be
2437   // factored out into preceding dimensions.
2438   SmallVector<Constant *, 8> NewIdxs;
2439   Type *Ty = PointeeTy;
2440   Type *Prev = C->getType();
2441   auto GEPIter = gep_type_begin(PointeeTy, Idxs);
2442   bool Unknown =
2443       !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2444   for (unsigned i = 1, e = Idxs.size(); i != e;
2445        Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) {
2446     if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2447       // We don't know if it's in range or not.
2448       Unknown = true;
2449       continue;
2450     }
2451     if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2452       // Skip if the type of the previous index is not supported.
2453       continue;
2454     if (InRangeIndex && i == *InRangeIndex + 1) {
2455       // If an index is marked inrange, we cannot apply this canonicalization to
2456       // the following index, as that will cause the inrange index to point to
2457       // the wrong element.
2458       continue;
2459     }
2460     if (isa<StructType>(Ty)) {
2461       // The verify makes sure that GEPs into a struct are in range.
2462       continue;
2463     }
2464     if (isa<VectorType>(Ty)) {
2465       // There can be awkward padding in after a non-power of two vector.
2466       Unknown = true;
2467       continue;
2468     }
2469     auto *STy = cast<ArrayType>(Ty);
2470     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2471       if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2472         // It's in range, skip to the next index.
2473         continue;
2474       if (CI->getSExtValue() < 0) {
2475         // It's out of range and negative, don't try to factor it.
2476         Unknown = true;
2477         continue;
2478       }
2479     } else {
2480       auto *CV = cast<ConstantDataVector>(Idxs[i]);
2481       bool InRange = true;
2482       for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2483         auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2484         InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2485         if (CI->getSExtValue() < 0) {
2486           Unknown = true;
2487           break;
2488         }
2489       }
2490       if (InRange || Unknown)
2491         // It's in range, skip to the next index.
2492         // It's out of range and negative, don't try to factor it.
2493         continue;
2494     }
2495     if (isa<StructType>(Prev)) {
2496       // It's out of range, but the prior dimension is a struct
2497       // so we can't do anything about it.
2498       Unknown = true;
2499       continue;
2500     }
2501     // It's out of range, but we can factor it into the prior
2502     // dimension.
2503     NewIdxs.resize(Idxs.size());
2504     // Determine the number of elements in our sequential type.
2505     uint64_t NumElements = STy->getArrayNumElements();
2506 
2507     // Expand the current index or the previous index to a vector from a scalar
2508     // if necessary.
2509     Constant *CurrIdx = cast<Constant>(Idxs[i]);
2510     auto *PrevIdx =
2511         NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2512     bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2513     bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2514     bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2515 
2516     if (!IsCurrIdxVector && IsPrevIdxVector)
2517       CurrIdx = ConstantDataVector::getSplat(
2518           cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx);
2519 
2520     if (!IsPrevIdxVector && IsCurrIdxVector)
2521       PrevIdx = ConstantDataVector::getSplat(
2522           cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx);
2523 
2524     Constant *Factor =
2525         ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2526     if (UseVector)
2527       Factor = ConstantDataVector::getSplat(
2528           IsPrevIdxVector
2529               ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2530               : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(),
2531           Factor);
2532 
2533     NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2534 
2535     Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2536 
2537     unsigned CommonExtendedWidth =
2538         std::max(PrevIdx->getType()->getScalarSizeInBits(),
2539                  Div->getType()->getScalarSizeInBits());
2540     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2541 
2542     // Before adding, extend both operands to i64 to avoid
2543     // overflow trouble.
2544     Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2545     if (UseVector)
2546       ExtendedTy = FixedVectorType::get(
2547           ExtendedTy,
2548           IsPrevIdxVector
2549               ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2550               : cast<FixedVectorType>(CurrIdx->getType())->getNumElements());
2551 
2552     if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2553       PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2554 
2555     if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2556       Div = ConstantExpr::getSExt(Div, ExtendedTy);
2557 
2558     NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2559   }
2560 
2561   // If we did any factoring, start over with the adjusted indices.
2562   if (!NewIdxs.empty()) {
2563     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2564       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2565     return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2566                                           InRangeIndex);
2567   }
2568 
2569   // If all indices are known integers and normalized, we can do a simple
2570   // check for the "inbounds" property.
2571   if (!Unknown && !InBounds)
2572     if (auto *GV = dyn_cast<GlobalVariable>(C))
2573       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2574         return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2575                                               /*InBounds=*/true, InRangeIndex);
2576 
2577   return nullptr;
2578 }
2579