1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 //===----------------------------------------------------------------------===// 39 // ConstantFold*Instruction Implementations 40 //===----------------------------------------------------------------------===// 41 42 /// Convert the specified vector Constant node to the specified vector type. 43 /// At this point, we know that the elements of the input vector constant are 44 /// all simple integer or FP values. 45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { 46 47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); 48 if (CV->isNullValue()) return Constant::getNullValue(DstTy); 49 50 // Do not iterate on scalable vector. The num of elements is unknown at 51 // compile-time. 52 if (isa<ScalableVectorType>(DstTy)) 53 return nullptr; 54 55 // If this cast changes element count then we can't handle it here: 56 // doing so requires endianness information. This should be handled by 57 // Analysis/ConstantFolding.cpp 58 unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements(); 59 if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements()) 60 return nullptr; 61 62 Type *DstEltTy = DstTy->getElementType(); 63 // Fast path for splatted constants. 64 if (Constant *Splat = CV->getSplatValue()) { 65 return ConstantVector::getSplat(DstTy->getElementCount(), 66 ConstantExpr::getBitCast(Splat, DstEltTy)); 67 } 68 69 SmallVector<Constant*, 16> Result; 70 Type *Ty = IntegerType::get(CV->getContext(), 32); 71 for (unsigned i = 0; i != NumElts; ++i) { 72 Constant *C = 73 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); 74 C = ConstantExpr::getBitCast(C, DstEltTy); 75 Result.push_back(C); 76 } 77 78 return ConstantVector::get(Result); 79 } 80 81 /// This function determines which opcode to use to fold two constant cast 82 /// expressions together. It uses CastInst::isEliminableCastPair to determine 83 /// the opcode. Consequently its just a wrapper around that function. 84 /// Determine if it is valid to fold a cast of a cast 85 static unsigned 86 foldConstantCastPair( 87 unsigned opc, ///< opcode of the second cast constant expression 88 ConstantExpr *Op, ///< the first cast constant expression 89 Type *DstTy ///< destination type of the first cast 90 ) { 91 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 92 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 93 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 94 95 // The types and opcodes for the two Cast constant expressions 96 Type *SrcTy = Op->getOperand(0)->getType(); 97 Type *MidTy = Op->getType(); 98 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 99 Instruction::CastOps secondOp = Instruction::CastOps(opc); 100 101 // Assume that pointers are never more than 64 bits wide, and only use this 102 // for the middle type. Otherwise we could end up folding away illegal 103 // bitcasts between address spaces with different sizes. 104 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 105 106 // Let CastInst::isEliminableCastPair do the heavy lifting. 107 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 108 nullptr, FakeIntPtrTy, nullptr); 109 } 110 111 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 112 Type *SrcTy = V->getType(); 113 if (SrcTy == DestTy) 114 return V; // no-op cast 115 116 // Check to see if we are casting a pointer to an aggregate to a pointer to 117 // the first element. If so, return the appropriate GEP instruction. 118 if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) 119 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) 120 if (PTy->getAddressSpace() == DPTy->getAddressSpace() 121 && PTy->getElementType()->isSized()) { 122 SmallVector<Value*, 8> IdxList; 123 Value *Zero = 124 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); 125 IdxList.push_back(Zero); 126 Type *ElTy = PTy->getElementType(); 127 while (ElTy && ElTy != DPTy->getElementType()) { 128 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0); 129 IdxList.push_back(Zero); 130 } 131 132 if (ElTy == DPTy->getElementType()) 133 // This GEP is inbounds because all indices are zero. 134 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(), 135 V, IdxList); 136 } 137 138 // Handle casts from one vector constant to another. We know that the src 139 // and dest type have the same size (otherwise its an illegal cast). 140 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 141 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { 142 assert(DestPTy->getPrimitiveSizeInBits() == 143 SrcTy->getPrimitiveSizeInBits() && 144 "Not cast between same sized vectors!"); 145 SrcTy = nullptr; 146 // First, check for null. Undef is already handled. 147 if (isa<ConstantAggregateZero>(V)) 148 return Constant::getNullValue(DestTy); 149 150 // Handle ConstantVector and ConstantAggregateVector. 151 return BitCastConstantVector(V, DestPTy); 152 } 153 154 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 155 // This allows for other simplifications (although some of them 156 // can only be handled by Analysis/ConstantFolding.cpp). 157 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 158 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 159 } 160 161 // Finally, implement bitcast folding now. The code below doesn't handle 162 // bitcast right. 163 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. 164 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 165 166 // Handle integral constant input. 167 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 168 if (DestTy->isIntegerTy()) 169 // Integral -> Integral. This is a no-op because the bit widths must 170 // be the same. Consequently, we just fold to V. 171 return V; 172 173 // See note below regarding the PPC_FP128 restriction. 174 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 175 return ConstantFP::get(DestTy->getContext(), 176 APFloat(DestTy->getFltSemantics(), 177 CI->getValue())); 178 179 // Otherwise, can't fold this (vector?) 180 return nullptr; 181 } 182 183 // Handle ConstantFP input: FP -> Integral. 184 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 185 // PPC_FP128 is really the sum of two consecutive doubles, where the first 186 // double is always stored first in memory, regardless of the target 187 // endianness. The memory layout of i128, however, depends on the target 188 // endianness, and so we can't fold this without target endianness 189 // information. This should instead be handled by 190 // Analysis/ConstantFolding.cpp 191 if (FP->getType()->isPPC_FP128Ty()) 192 return nullptr; 193 194 // Make sure dest type is compatible with the folded integer constant. 195 if (!DestTy->isIntegerTy()) 196 return nullptr; 197 198 return ConstantInt::get(FP->getContext(), 199 FP->getValueAPF().bitcastToAPInt()); 200 } 201 202 return nullptr; 203 } 204 205 206 /// V is an integer constant which only has a subset of its bytes used. 207 /// The bytes used are indicated by ByteStart (which is the first byte used, 208 /// counting from the least significant byte) and ByteSize, which is the number 209 /// of bytes used. 210 /// 211 /// This function analyzes the specified constant to see if the specified byte 212 /// range can be returned as a simplified constant. If so, the constant is 213 /// returned, otherwise null is returned. 214 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, 215 unsigned ByteSize) { 216 assert(C->getType()->isIntegerTy() && 217 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && 218 "Non-byte sized integer input"); 219 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; 220 assert(ByteSize && "Must be accessing some piece"); 221 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); 222 assert(ByteSize != CSize && "Should not extract everything"); 223 224 // Constant Integers are simple. 225 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 226 APInt V = CI->getValue(); 227 if (ByteStart) 228 V.lshrInPlace(ByteStart*8); 229 V = V.trunc(ByteSize*8); 230 return ConstantInt::get(CI->getContext(), V); 231 } 232 233 // In the input is a constant expr, we might be able to recursively simplify. 234 // If not, we definitely can't do anything. 235 ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 236 if (!CE) return nullptr; 237 238 switch (CE->getOpcode()) { 239 default: return nullptr; 240 case Instruction::Or: { 241 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 242 if (!RHS) 243 return nullptr; 244 245 // X | -1 -> -1. 246 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) 247 if (RHSC->isMinusOne()) 248 return RHSC; 249 250 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 251 if (!LHS) 252 return nullptr; 253 return ConstantExpr::getOr(LHS, RHS); 254 } 255 case Instruction::And: { 256 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 257 if (!RHS) 258 return nullptr; 259 260 // X & 0 -> 0. 261 if (RHS->isNullValue()) 262 return RHS; 263 264 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 265 if (!LHS) 266 return nullptr; 267 return ConstantExpr::getAnd(LHS, RHS); 268 } 269 case Instruction::LShr: { 270 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 271 if (!Amt) 272 return nullptr; 273 APInt ShAmt = Amt->getValue(); 274 // Cannot analyze non-byte shifts. 275 if ((ShAmt & 7) != 0) 276 return nullptr; 277 ShAmt.lshrInPlace(3); 278 279 // If the extract is known to be all zeros, return zero. 280 if (ShAmt.uge(CSize - ByteStart)) 281 return Constant::getNullValue( 282 IntegerType::get(CE->getContext(), ByteSize * 8)); 283 // If the extract is known to be fully in the input, extract it. 284 if (ShAmt.ule(CSize - (ByteStart + ByteSize))) 285 return ExtractConstantBytes(CE->getOperand(0), 286 ByteStart + ShAmt.getZExtValue(), ByteSize); 287 288 // TODO: Handle the 'partially zero' case. 289 return nullptr; 290 } 291 292 case Instruction::Shl: { 293 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 294 if (!Amt) 295 return nullptr; 296 APInt ShAmt = Amt->getValue(); 297 // Cannot analyze non-byte shifts. 298 if ((ShAmt & 7) != 0) 299 return nullptr; 300 ShAmt.lshrInPlace(3); 301 302 // If the extract is known to be all zeros, return zero. 303 if (ShAmt.uge(ByteStart + ByteSize)) 304 return Constant::getNullValue( 305 IntegerType::get(CE->getContext(), ByteSize * 8)); 306 // If the extract is known to be fully in the input, extract it. 307 if (ShAmt.ule(ByteStart)) 308 return ExtractConstantBytes(CE->getOperand(0), 309 ByteStart - ShAmt.getZExtValue(), ByteSize); 310 311 // TODO: Handle the 'partially zero' case. 312 return nullptr; 313 } 314 315 case Instruction::ZExt: { 316 unsigned SrcBitSize = 317 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); 318 319 // If extracting something that is completely zero, return 0. 320 if (ByteStart*8 >= SrcBitSize) 321 return Constant::getNullValue(IntegerType::get(CE->getContext(), 322 ByteSize*8)); 323 324 // If exactly extracting the input, return it. 325 if (ByteStart == 0 && ByteSize*8 == SrcBitSize) 326 return CE->getOperand(0); 327 328 // If extracting something completely in the input, if the input is a 329 // multiple of 8 bits, recurse. 330 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) 331 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); 332 333 // Otherwise, if extracting a subset of the input, which is not multiple of 334 // 8 bits, do a shift and trunc to get the bits. 335 if ((ByteStart+ByteSize)*8 < SrcBitSize) { 336 assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); 337 Constant *Res = CE->getOperand(0); 338 if (ByteStart) 339 Res = ConstantExpr::getLShr(Res, 340 ConstantInt::get(Res->getType(), ByteStart*8)); 341 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), 342 ByteSize*8)); 343 } 344 345 // TODO: Handle the 'partially zero' case. 346 return nullptr; 347 } 348 } 349 } 350 351 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known 352 /// factors factored out. If Folded is false, return null if no factoring was 353 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 354 /// top-level folder. 355 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) { 356 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 357 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); 358 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 359 return ConstantExpr::getNUWMul(E, N); 360 } 361 362 if (StructType *STy = dyn_cast<StructType>(Ty)) 363 if (!STy->isPacked()) { 364 unsigned NumElems = STy->getNumElements(); 365 // An empty struct has size zero. 366 if (NumElems == 0) 367 return ConstantExpr::getNullValue(DestTy); 368 // Check for a struct with all members having the same size. 369 Constant *MemberSize = 370 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 371 bool AllSame = true; 372 for (unsigned i = 1; i != NumElems; ++i) 373 if (MemberSize != 374 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 375 AllSame = false; 376 break; 377 } 378 if (AllSame) { 379 Constant *N = ConstantInt::get(DestTy, NumElems); 380 return ConstantExpr::getNUWMul(MemberSize, N); 381 } 382 } 383 384 // Pointer size doesn't depend on the pointee type, so canonicalize them 385 // to an arbitrary pointee. 386 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 387 if (!PTy->getElementType()->isIntegerTy(1)) 388 return 389 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), 390 PTy->getAddressSpace()), 391 DestTy, true); 392 393 // If there's no interesting folding happening, bail so that we don't create 394 // a constant that looks like it needs folding but really doesn't. 395 if (!Folded) 396 return nullptr; 397 398 // Base case: Get a regular sizeof expression. 399 Constant *C = ConstantExpr::getSizeOf(Ty); 400 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 401 DestTy, false), 402 C, DestTy); 403 return C; 404 } 405 406 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known 407 /// factors factored out. If Folded is false, return null if no factoring was 408 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 409 /// top-level folder. 410 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) { 411 // The alignment of an array is equal to the alignment of the 412 // array element. Note that this is not always true for vectors. 413 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 414 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); 415 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 416 DestTy, 417 false), 418 C, DestTy); 419 return C; 420 } 421 422 if (StructType *STy = dyn_cast<StructType>(Ty)) { 423 // Packed structs always have an alignment of 1. 424 if (STy->isPacked()) 425 return ConstantInt::get(DestTy, 1); 426 427 // Otherwise, struct alignment is the maximum alignment of any member. 428 // Without target data, we can't compare much, but we can check to see 429 // if all the members have the same alignment. 430 unsigned NumElems = STy->getNumElements(); 431 // An empty struct has minimal alignment. 432 if (NumElems == 0) 433 return ConstantInt::get(DestTy, 1); 434 // Check for a struct with all members having the same alignment. 435 Constant *MemberAlign = 436 getFoldedAlignOf(STy->getElementType(0), DestTy, true); 437 bool AllSame = true; 438 for (unsigned i = 1; i != NumElems; ++i) 439 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { 440 AllSame = false; 441 break; 442 } 443 if (AllSame) 444 return MemberAlign; 445 } 446 447 // Pointer alignment doesn't depend on the pointee type, so canonicalize them 448 // to an arbitrary pointee. 449 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 450 if (!PTy->getElementType()->isIntegerTy(1)) 451 return 452 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), 453 1), 454 PTy->getAddressSpace()), 455 DestTy, true); 456 457 // If there's no interesting folding happening, bail so that we don't create 458 // a constant that looks like it needs folding but really doesn't. 459 if (!Folded) 460 return nullptr; 461 462 // Base case: Get a regular alignof expression. 463 Constant *C = ConstantExpr::getAlignOf(Ty); 464 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 465 DestTy, false), 466 C, DestTy); 467 return C; 468 } 469 470 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with 471 /// any known factors factored out. If Folded is false, return null if no 472 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression 473 /// back into the top-level folder. 474 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy, 475 bool Folded) { 476 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 477 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, 478 DestTy, false), 479 FieldNo, DestTy); 480 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 481 return ConstantExpr::getNUWMul(E, N); 482 } 483 484 if (StructType *STy = dyn_cast<StructType>(Ty)) 485 if (!STy->isPacked()) { 486 unsigned NumElems = STy->getNumElements(); 487 // An empty struct has no members. 488 if (NumElems == 0) 489 return nullptr; 490 // Check for a struct with all members having the same size. 491 Constant *MemberSize = 492 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 493 bool AllSame = true; 494 for (unsigned i = 1; i != NumElems; ++i) 495 if (MemberSize != 496 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 497 AllSame = false; 498 break; 499 } 500 if (AllSame) { 501 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, 502 false, 503 DestTy, 504 false), 505 FieldNo, DestTy); 506 return ConstantExpr::getNUWMul(MemberSize, N); 507 } 508 } 509 510 // If there's no interesting folding happening, bail so that we don't create 511 // a constant that looks like it needs folding but really doesn't. 512 if (!Folded) 513 return nullptr; 514 515 // Base case: Get a regular offsetof expression. 516 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); 517 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 518 DestTy, false), 519 C, DestTy); 520 return C; 521 } 522 523 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 524 Type *DestTy) { 525 if (isa<UndefValue>(V)) { 526 // zext(undef) = 0, because the top bits will be zero. 527 // sext(undef) = 0, because the top bits will all be the same. 528 // [us]itofp(undef) = 0, because the result value is bounded. 529 if (opc == Instruction::ZExt || opc == Instruction::SExt || 530 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 531 return Constant::getNullValue(DestTy); 532 return UndefValue::get(DestTy); 533 } 534 535 if (V->isNullValue() && !DestTy->isX86_MMXTy() && 536 opc != Instruction::AddrSpaceCast) 537 return Constant::getNullValue(DestTy); 538 539 // If the cast operand is a constant expression, there's a few things we can 540 // do to try to simplify it. 541 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 542 if (CE->isCast()) { 543 // Try hard to fold cast of cast because they are often eliminable. 544 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 545 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); 546 } else if (CE->getOpcode() == Instruction::GetElementPtr && 547 // Do not fold addrspacecast (gep 0, .., 0). It might make the 548 // addrspacecast uncanonicalized. 549 opc != Instruction::AddrSpaceCast && 550 // Do not fold bitcast (gep) with inrange index, as this loses 551 // information. 552 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() && 553 // Do not fold if the gep type is a vector, as bitcasting 554 // operand 0 of a vector gep will result in a bitcast between 555 // different sizes. 556 !CE->getType()->isVectorTy()) { 557 // If all of the indexes in the GEP are null values, there is no pointer 558 // adjustment going on. We might as well cast the source pointer. 559 bool isAllNull = true; 560 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 561 if (!CE->getOperand(i)->isNullValue()) { 562 isAllNull = false; 563 break; 564 } 565 if (isAllNull) 566 // This is casting one pointer type to another, always BitCast 567 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); 568 } 569 } 570 571 // If the cast operand is a constant vector, perform the cast by 572 // operating on each element. In the cast of bitcasts, the element 573 // count may be mismatched; don't attempt to handle that here. 574 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 575 DestTy->isVectorTy() && 576 cast<FixedVectorType>(DestTy)->getNumElements() == 577 cast<FixedVectorType>(V->getType())->getNumElements()) { 578 VectorType *DestVecTy = cast<VectorType>(DestTy); 579 Type *DstEltTy = DestVecTy->getElementType(); 580 // Fast path for splatted constants. 581 if (Constant *Splat = V->getSplatValue()) { 582 return ConstantVector::getSplat( 583 cast<VectorType>(DestTy)->getElementCount(), 584 ConstantExpr::getCast(opc, Splat, DstEltTy)); 585 } 586 SmallVector<Constant *, 16> res; 587 Type *Ty = IntegerType::get(V->getContext(), 32); 588 for (unsigned i = 0, 589 e = cast<FixedVectorType>(V->getType())->getNumElements(); 590 i != e; ++i) { 591 Constant *C = 592 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 593 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); 594 } 595 return ConstantVector::get(res); 596 } 597 598 // We actually have to do a cast now. Perform the cast according to the 599 // opcode specified. 600 switch (opc) { 601 default: 602 llvm_unreachable("Failed to cast constant expression"); 603 case Instruction::FPTrunc: 604 case Instruction::FPExt: 605 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 606 bool ignored; 607 APFloat Val = FPC->getValueAPF(); 608 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() : 609 DestTy->isFloatTy() ? APFloat::IEEEsingle() : 610 DestTy->isDoubleTy() ? APFloat::IEEEdouble() : 611 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() : 612 DestTy->isFP128Ty() ? APFloat::IEEEquad() : 613 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() : 614 APFloat::Bogus(), 615 APFloat::rmNearestTiesToEven, &ignored); 616 return ConstantFP::get(V->getContext(), Val); 617 } 618 return nullptr; // Can't fold. 619 case Instruction::FPToUI: 620 case Instruction::FPToSI: 621 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 622 const APFloat &V = FPC->getValueAPF(); 623 bool ignored; 624 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 625 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 626 if (APFloat::opInvalidOp == 627 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 628 // Undefined behavior invoked - the destination type can't represent 629 // the input constant. 630 return UndefValue::get(DestTy); 631 } 632 return ConstantInt::get(FPC->getContext(), IntVal); 633 } 634 return nullptr; // Can't fold. 635 case Instruction::IntToPtr: //always treated as unsigned 636 if (V->isNullValue()) // Is it an integral null value? 637 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 638 return nullptr; // Other pointer types cannot be casted 639 case Instruction::PtrToInt: // always treated as unsigned 640 // Is it a null pointer value? 641 if (V->isNullValue()) 642 return ConstantInt::get(DestTy, 0); 643 // If this is a sizeof-like expression, pull out multiplications by 644 // known factors to expose them to subsequent folding. If it's an 645 // alignof-like expression, factor out known factors. 646 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 647 if (CE->getOpcode() == Instruction::GetElementPtr && 648 CE->getOperand(0)->isNullValue()) { 649 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and 650 // getFoldedAlignOf() don't handle the case when DestTy is a vector of 651 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see 652 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this 653 // happen in one "real" C-code test case, so it does not seem to be an 654 // important optimization to handle vectors here. For now, simply bail 655 // out. 656 if (DestTy->isVectorTy()) 657 return nullptr; 658 GEPOperator *GEPO = cast<GEPOperator>(CE); 659 Type *Ty = GEPO->getSourceElementType(); 660 if (CE->getNumOperands() == 2) { 661 // Handle a sizeof-like expression. 662 Constant *Idx = CE->getOperand(1); 663 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); 664 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { 665 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, 666 DestTy, false), 667 Idx, DestTy); 668 return ConstantExpr::getMul(C, Idx); 669 } 670 } else if (CE->getNumOperands() == 3 && 671 CE->getOperand(1)->isNullValue()) { 672 // Handle an alignof-like expression. 673 if (StructType *STy = dyn_cast<StructType>(Ty)) 674 if (!STy->isPacked()) { 675 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); 676 if (CI->isOne() && 677 STy->getNumElements() == 2 && 678 STy->getElementType(0)->isIntegerTy(1)) { 679 return getFoldedAlignOf(STy->getElementType(1), DestTy, false); 680 } 681 } 682 // Handle an offsetof-like expression. 683 if (Ty->isStructTy() || Ty->isArrayTy()) { 684 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), 685 DestTy, false)) 686 return C; 687 } 688 } 689 } 690 // Other pointer types cannot be casted 691 return nullptr; 692 case Instruction::UIToFP: 693 case Instruction::SIToFP: 694 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 695 const APInt &api = CI->getValue(); 696 APFloat apf(DestTy->getFltSemantics(), 697 APInt::getNullValue(DestTy->getPrimitiveSizeInBits())); 698 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 699 APFloat::rmNearestTiesToEven); 700 return ConstantFP::get(V->getContext(), apf); 701 } 702 return nullptr; 703 case Instruction::ZExt: 704 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 705 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 706 return ConstantInt::get(V->getContext(), 707 CI->getValue().zext(BitWidth)); 708 } 709 return nullptr; 710 case Instruction::SExt: 711 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 712 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 713 return ConstantInt::get(V->getContext(), 714 CI->getValue().sext(BitWidth)); 715 } 716 return nullptr; 717 case Instruction::Trunc: { 718 if (V->getType()->isVectorTy()) 719 return nullptr; 720 721 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 722 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 723 return ConstantInt::get(V->getContext(), 724 CI->getValue().trunc(DestBitWidth)); 725 } 726 727 // The input must be a constantexpr. See if we can simplify this based on 728 // the bytes we are demanding. Only do this if the source and dest are an 729 // even multiple of a byte. 730 if ((DestBitWidth & 7) == 0 && 731 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) 732 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) 733 return Res; 734 735 return nullptr; 736 } 737 case Instruction::BitCast: 738 return FoldBitCast(V, DestTy); 739 case Instruction::AddrSpaceCast: 740 return nullptr; 741 } 742 } 743 744 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 745 Constant *V1, Constant *V2) { 746 // Check for i1 and vector true/false conditions. 747 if (Cond->isNullValue()) return V2; 748 if (Cond->isAllOnesValue()) return V1; 749 750 // If the condition is a vector constant, fold the result elementwise. 751 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 752 auto *V1VTy = CondV->getType(); 753 SmallVector<Constant*, 16> Result; 754 Type *Ty = IntegerType::get(CondV->getContext(), 32); 755 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { 756 Constant *V; 757 Constant *V1Element = ConstantExpr::getExtractElement(V1, 758 ConstantInt::get(Ty, i)); 759 Constant *V2Element = ConstantExpr::getExtractElement(V2, 760 ConstantInt::get(Ty, i)); 761 auto *Cond = cast<Constant>(CondV->getOperand(i)); 762 if (V1Element == V2Element) { 763 V = V1Element; 764 } else if (isa<UndefValue>(Cond)) { 765 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 766 } else { 767 if (!isa<ConstantInt>(Cond)) break; 768 V = Cond->isNullValue() ? V2Element : V1Element; 769 } 770 Result.push_back(V); 771 } 772 773 // If we were able to build the vector, return it. 774 if (Result.size() == V1VTy->getNumElements()) 775 return ConstantVector::get(Result); 776 } 777 778 if (isa<UndefValue>(Cond)) { 779 if (isa<UndefValue>(V1)) return V1; 780 return V2; 781 } 782 if (isa<UndefValue>(V1)) return V2; 783 if (isa<UndefValue>(V2)) return V1; 784 if (V1 == V2) return V1; 785 786 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { 787 if (TrueVal->getOpcode() == Instruction::Select) 788 if (TrueVal->getOperand(0) == Cond) 789 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); 790 } 791 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { 792 if (FalseVal->getOpcode() == Instruction::Select) 793 if (FalseVal->getOperand(0) == Cond) 794 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); 795 } 796 797 return nullptr; 798 } 799 800 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 801 Constant *Idx) { 802 auto *ValVTy = cast<VectorType>(Val->getType()); 803 804 // extractelt undef, C -> undef 805 // extractelt C, undef -> undef 806 if (isa<UndefValue>(Val) || isa<UndefValue>(Idx)) 807 return UndefValue::get(ValVTy->getElementType()); 808 809 auto *CIdx = dyn_cast<ConstantInt>(Idx); 810 if (!CIdx) 811 return nullptr; 812 813 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { 814 // ee({w,x,y,z}, wrong_value) -> undef 815 if (CIdx->uge(ValFVTy->getNumElements())) 816 return UndefValue::get(ValFVTy->getElementType()); 817 } 818 819 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 820 if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 821 if (CE->getOpcode() == Instruction::GetElementPtr) { 822 SmallVector<Constant *, 8> Ops; 823 Ops.reserve(CE->getNumOperands()); 824 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 825 Constant *Op = CE->getOperand(i); 826 if (Op->getType()->isVectorTy()) { 827 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 828 if (!ScalarOp) 829 return nullptr; 830 Ops.push_back(ScalarOp); 831 } else 832 Ops.push_back(Op); 833 } 834 return CE->getWithOperands(Ops, ValVTy->getElementType(), false, 835 Ops[0]->getType()->getPointerElementType()); 836 } 837 } 838 839 // CAZ of type ScalableVectorType and n < CAZ->getMinNumElements() => 840 // extractelt CAZ, n -> 0 841 if (auto *ValSVTy = dyn_cast<ScalableVectorType>(Val->getType())) { 842 if (!CIdx->uge(ValSVTy->getMinNumElements())) { 843 if (auto *CAZ = dyn_cast<ConstantAggregateZero>(Val)) 844 return CAZ->getElementValue(CIdx->getZExtValue()); 845 } 846 return nullptr; 847 } 848 849 return Val->getAggregateElement(CIdx); 850 } 851 852 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 853 Constant *Elt, 854 Constant *Idx) { 855 if (isa<UndefValue>(Idx)) 856 return UndefValue::get(Val->getType()); 857 858 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 859 if (!CIdx) return nullptr; 860 861 // Do not iterate on scalable vector. The num of elements is unknown at 862 // compile-time. 863 if (isa<ScalableVectorType>(Val->getType())) 864 return nullptr; 865 866 auto *ValTy = cast<FixedVectorType>(Val->getType()); 867 868 unsigned NumElts = ValTy->getNumElements(); 869 if (CIdx->uge(NumElts)) 870 return UndefValue::get(Val->getType()); 871 872 SmallVector<Constant*, 16> Result; 873 Result.reserve(NumElts); 874 auto *Ty = Type::getInt32Ty(Val->getContext()); 875 uint64_t IdxVal = CIdx->getZExtValue(); 876 for (unsigned i = 0; i != NumElts; ++i) { 877 if (i == IdxVal) { 878 Result.push_back(Elt); 879 continue; 880 } 881 882 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 883 Result.push_back(C); 884 } 885 886 return ConstantVector::get(Result); 887 } 888 889 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, 890 ArrayRef<int> Mask) { 891 auto *V1VTy = cast<VectorType>(V1->getType()); 892 unsigned MaskNumElts = Mask.size(); 893 ElementCount MaskEltCount = {MaskNumElts, isa<ScalableVectorType>(V1VTy)}; 894 Type *EltTy = V1VTy->getElementType(); 895 896 // Undefined shuffle mask -> undefined value. 897 if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) { 898 return UndefValue::get(FixedVectorType::get(EltTy, MaskNumElts)); 899 } 900 901 // If the mask is all zeros this is a splat, no need to go through all 902 // elements. 903 if (all_of(Mask, [](int Elt) { return Elt == 0; }) && 904 !MaskEltCount.Scalable) { 905 Type *Ty = IntegerType::get(V1->getContext(), 32); 906 Constant *Elt = 907 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); 908 return ConstantVector::getSplat(MaskEltCount, Elt); 909 } 910 // Do not iterate on scalable vector. The num of elements is unknown at 911 // compile-time. 912 if (isa<ScalableVectorType>(V1VTy)) 913 return nullptr; 914 915 unsigned SrcNumElts = V1VTy->getElementCount().Min; 916 917 // Loop over the shuffle mask, evaluating each element. 918 SmallVector<Constant*, 32> Result; 919 for (unsigned i = 0; i != MaskNumElts; ++i) { 920 int Elt = Mask[i]; 921 if (Elt == -1) { 922 Result.push_back(UndefValue::get(EltTy)); 923 continue; 924 } 925 Constant *InElt; 926 if (unsigned(Elt) >= SrcNumElts*2) 927 InElt = UndefValue::get(EltTy); 928 else if (unsigned(Elt) >= SrcNumElts) { 929 Type *Ty = IntegerType::get(V2->getContext(), 32); 930 InElt = 931 ConstantExpr::getExtractElement(V2, 932 ConstantInt::get(Ty, Elt - SrcNumElts)); 933 } else { 934 Type *Ty = IntegerType::get(V1->getContext(), 32); 935 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 936 } 937 Result.push_back(InElt); 938 } 939 940 return ConstantVector::get(Result); 941 } 942 943 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 944 ArrayRef<unsigned> Idxs) { 945 // Base case: no indices, so return the entire value. 946 if (Idxs.empty()) 947 return Agg; 948 949 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 950 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 951 952 return nullptr; 953 } 954 955 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 956 Constant *Val, 957 ArrayRef<unsigned> Idxs) { 958 // Base case: no indices, so replace the entire value. 959 if (Idxs.empty()) 960 return Val; 961 962 unsigned NumElts; 963 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 964 NumElts = ST->getNumElements(); 965 else 966 NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); 967 968 SmallVector<Constant*, 32> Result; 969 for (unsigned i = 0; i != NumElts; ++i) { 970 Constant *C = Agg->getAggregateElement(i); 971 if (!C) return nullptr; 972 973 if (Idxs[0] == i) 974 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 975 976 Result.push_back(C); 977 } 978 979 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 980 return ConstantStruct::get(ST, Result); 981 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); 982 } 983 984 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 985 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 986 987 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 988 // vectors are always evaluated per element. 989 bool IsScalableVector = isa<ScalableVectorType>(C->getType()); 990 bool HasScalarUndefOrScalableVectorUndef = 991 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); 992 993 if (HasScalarUndefOrScalableVectorUndef) { 994 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 995 case Instruction::FNeg: 996 return C; // -undef -> undef 997 case Instruction::UnaryOpsEnd: 998 llvm_unreachable("Invalid UnaryOp"); 999 } 1000 } 1001 1002 // Constant should not be UndefValue, unless these are vector constants. 1003 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); 1004 // We only have FP UnaryOps right now. 1005 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 1006 1007 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1008 const APFloat &CV = CFP->getValueAPF(); 1009 switch (Opcode) { 1010 default: 1011 break; 1012 case Instruction::FNeg: 1013 return ConstantFP::get(C->getContext(), neg(CV)); 1014 } 1015 } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) { 1016 1017 Type *Ty = IntegerType::get(VTy->getContext(), 32); 1018 // Fast path for splatted constants. 1019 if (Constant *Splat = C->getSplatValue()) { 1020 Constant *Elt = ConstantExpr::get(Opcode, Splat); 1021 return ConstantVector::getSplat(VTy->getElementCount(), Elt); 1022 } 1023 1024 // Fold each element and create a vector constant from those constants. 1025 SmallVector<Constant *, 16> Result; 1026 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 1027 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1028 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 1029 1030 Result.push_back(ConstantExpr::get(Opcode, Elt)); 1031 } 1032 1033 return ConstantVector::get(Result); 1034 } 1035 1036 // We don't know how to fold this. 1037 return nullptr; 1038 } 1039 1040 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 1041 Constant *C2) { 1042 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 1043 1044 // Simplify BinOps with their identity values first. They are no-ops and we 1045 // can always return the other value, including undef or poison values. 1046 // FIXME: remove unnecessary duplicated identity patterns below. 1047 // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops, 1048 // like X << 0 = X. 1049 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType()); 1050 if (Identity) { 1051 if (C1 == Identity) 1052 return C2; 1053 if (C2 == Identity) 1054 return C1; 1055 } 1056 1057 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 1058 // vectors are always evaluated per element. 1059 bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); 1060 bool HasScalarUndefOrScalableVectorUndef = 1061 (!C1->getType()->isVectorTy() || IsScalableVector) && 1062 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 1063 if (HasScalarUndefOrScalableVectorUndef) { 1064 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 1065 case Instruction::Xor: 1066 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1067 // Handle undef ^ undef -> 0 special case. This is a common 1068 // idiom (misuse). 1069 return Constant::getNullValue(C1->getType()); 1070 LLVM_FALLTHROUGH; 1071 case Instruction::Add: 1072 case Instruction::Sub: 1073 return UndefValue::get(C1->getType()); 1074 case Instruction::And: 1075 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 1076 return C1; 1077 return Constant::getNullValue(C1->getType()); // undef & X -> 0 1078 case Instruction::Mul: { 1079 // undef * undef -> undef 1080 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1081 return C1; 1082 const APInt *CV; 1083 // X * undef -> undef if X is odd 1084 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 1085 if ((*CV)[0]) 1086 return UndefValue::get(C1->getType()); 1087 1088 // X * undef -> 0 otherwise 1089 return Constant::getNullValue(C1->getType()); 1090 } 1091 case Instruction::SDiv: 1092 case Instruction::UDiv: 1093 // X / undef -> undef 1094 if (isa<UndefValue>(C2)) 1095 return C2; 1096 // undef / 0 -> undef 1097 // undef / 1 -> undef 1098 if (match(C2, m_Zero()) || match(C2, m_One())) 1099 return C1; 1100 // undef / X -> 0 otherwise 1101 return Constant::getNullValue(C1->getType()); 1102 case Instruction::URem: 1103 case Instruction::SRem: 1104 // X % undef -> undef 1105 if (match(C2, m_Undef())) 1106 return C2; 1107 // undef % 0 -> undef 1108 if (match(C2, m_Zero())) 1109 return C1; 1110 // undef % X -> 0 otherwise 1111 return Constant::getNullValue(C1->getType()); 1112 case Instruction::Or: // X | undef -> -1 1113 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 1114 return C1; 1115 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 1116 case Instruction::LShr: 1117 // X >>l undef -> undef 1118 if (isa<UndefValue>(C2)) 1119 return C2; 1120 // undef >>l 0 -> undef 1121 if (match(C2, m_Zero())) 1122 return C1; 1123 // undef >>l X -> 0 1124 return Constant::getNullValue(C1->getType()); 1125 case Instruction::AShr: 1126 // X >>a undef -> undef 1127 if (isa<UndefValue>(C2)) 1128 return C2; 1129 // undef >>a 0 -> undef 1130 if (match(C2, m_Zero())) 1131 return C1; 1132 // TODO: undef >>a X -> undef if the shift is exact 1133 // undef >>a X -> 0 1134 return Constant::getNullValue(C1->getType()); 1135 case Instruction::Shl: 1136 // X << undef -> undef 1137 if (isa<UndefValue>(C2)) 1138 return C2; 1139 // undef << 0 -> undef 1140 if (match(C2, m_Zero())) 1141 return C1; 1142 // undef << X -> 0 1143 return Constant::getNullValue(C1->getType()); 1144 case Instruction::FSub: 1145 // -0.0 - undef --> undef (consistent with "fneg undef") 1146 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) 1147 return C2; 1148 LLVM_FALLTHROUGH; 1149 case Instruction::FAdd: 1150 case Instruction::FMul: 1151 case Instruction::FDiv: 1152 case Instruction::FRem: 1153 // [any flop] undef, undef -> undef 1154 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1155 return C1; 1156 // [any flop] C, undef -> NaN 1157 // [any flop] undef, C -> NaN 1158 // We could potentially specialize NaN/Inf constants vs. 'normal' 1159 // constants (possibly differently depending on opcode and operand). This 1160 // would allow returning undef sometimes. But it is always safe to fold to 1161 // NaN because we can choose the undef operand as NaN, and any FP opcode 1162 // with a NaN operand will propagate NaN. 1163 return ConstantFP::getNaN(C1->getType()); 1164 case Instruction::BinaryOpsEnd: 1165 llvm_unreachable("Invalid BinaryOp"); 1166 } 1167 } 1168 1169 // Neither constant should be UndefValue, unless these are vector constants. 1170 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); 1171 1172 // Handle simplifications when the RHS is a constant int. 1173 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1174 switch (Opcode) { 1175 case Instruction::Add: 1176 if (CI2->isZero()) return C1; // X + 0 == X 1177 break; 1178 case Instruction::Sub: 1179 if (CI2->isZero()) return C1; // X - 0 == X 1180 break; 1181 case Instruction::Mul: 1182 if (CI2->isZero()) return C2; // X * 0 == 0 1183 if (CI2->isOne()) 1184 return C1; // X * 1 == X 1185 break; 1186 case Instruction::UDiv: 1187 case Instruction::SDiv: 1188 if (CI2->isOne()) 1189 return C1; // X / 1 == X 1190 if (CI2->isZero()) 1191 return UndefValue::get(CI2->getType()); // X / 0 == undef 1192 break; 1193 case Instruction::URem: 1194 case Instruction::SRem: 1195 if (CI2->isOne()) 1196 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 1197 if (CI2->isZero()) 1198 return UndefValue::get(CI2->getType()); // X % 0 == undef 1199 break; 1200 case Instruction::And: 1201 if (CI2->isZero()) return C2; // X & 0 == 0 1202 if (CI2->isMinusOne()) 1203 return C1; // X & -1 == X 1204 1205 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1206 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) 1207 if (CE1->getOpcode() == Instruction::ZExt) { 1208 unsigned DstWidth = CI2->getType()->getBitWidth(); 1209 unsigned SrcWidth = 1210 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1211 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1212 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) 1213 return C1; 1214 } 1215 1216 // If and'ing the address of a global with a constant, fold it. 1217 if (CE1->getOpcode() == Instruction::PtrToInt && 1218 isa<GlobalValue>(CE1->getOperand(0))) { 1219 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 1220 1221 MaybeAlign GVAlign; 1222 1223 if (Module *TheModule = GV->getParent()) { 1224 const DataLayout &DL = TheModule->getDataLayout(); 1225 GVAlign = GV->getPointerAlignment(DL); 1226 1227 // If the function alignment is not specified then assume that it 1228 // is 4. 1229 // This is dangerous; on x86, the alignment of the pointer 1230 // corresponds to the alignment of the function, but might be less 1231 // than 4 if it isn't explicitly specified. 1232 // However, a fix for this behaviour was reverted because it 1233 // increased code size (see https://reviews.llvm.org/D55115) 1234 // FIXME: This code should be deleted once existing targets have 1235 // appropriate defaults 1236 if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) 1237 GVAlign = Align(4); 1238 } else if (isa<Function>(GV)) { 1239 // Without a datalayout we have to assume the worst case: that the 1240 // function pointer isn't aligned at all. 1241 GVAlign = llvm::None; 1242 } else if (isa<GlobalVariable>(GV)) { 1243 GVAlign = cast<GlobalVariable>(GV)->getAlign(); 1244 } 1245 1246 if (GVAlign && *GVAlign > 1) { 1247 unsigned DstWidth = CI2->getType()->getBitWidth(); 1248 unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign)); 1249 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1250 1251 // If checking bits we know are clear, return zero. 1252 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 1253 return Constant::getNullValue(CI2->getType()); 1254 } 1255 } 1256 } 1257 break; 1258 case Instruction::Or: 1259 if (CI2->isZero()) return C1; // X | 0 == X 1260 if (CI2->isMinusOne()) 1261 return C2; // X | -1 == -1 1262 break; 1263 case Instruction::Xor: 1264 if (CI2->isZero()) return C1; // X ^ 0 == X 1265 1266 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1267 switch (CE1->getOpcode()) { 1268 default: break; 1269 case Instruction::ICmp: 1270 case Instruction::FCmp: 1271 // cmp pred ^ true -> cmp !pred 1272 assert(CI2->isOne()); 1273 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); 1274 pred = CmpInst::getInversePredicate(pred); 1275 return ConstantExpr::getCompare(pred, CE1->getOperand(0), 1276 CE1->getOperand(1)); 1277 } 1278 } 1279 break; 1280 case Instruction::AShr: 1281 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 1282 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) 1283 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. 1284 return ConstantExpr::getLShr(C1, C2); 1285 break; 1286 } 1287 } else if (isa<ConstantInt>(C1)) { 1288 // If C1 is a ConstantInt and C2 is not, swap the operands. 1289 if (Instruction::isCommutative(Opcode)) 1290 return ConstantExpr::get(Opcode, C2, C1); 1291 } 1292 1293 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 1294 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1295 const APInt &C1V = CI1->getValue(); 1296 const APInt &C2V = CI2->getValue(); 1297 switch (Opcode) { 1298 default: 1299 break; 1300 case Instruction::Add: 1301 return ConstantInt::get(CI1->getContext(), C1V + C2V); 1302 case Instruction::Sub: 1303 return ConstantInt::get(CI1->getContext(), C1V - C2V); 1304 case Instruction::Mul: 1305 return ConstantInt::get(CI1->getContext(), C1V * C2V); 1306 case Instruction::UDiv: 1307 assert(!CI2->isZero() && "Div by zero handled above"); 1308 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 1309 case Instruction::SDiv: 1310 assert(!CI2->isZero() && "Div by zero handled above"); 1311 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1312 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef 1313 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 1314 case Instruction::URem: 1315 assert(!CI2->isZero() && "Div by zero handled above"); 1316 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 1317 case Instruction::SRem: 1318 assert(!CI2->isZero() && "Div by zero handled above"); 1319 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1320 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef 1321 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 1322 case Instruction::And: 1323 return ConstantInt::get(CI1->getContext(), C1V & C2V); 1324 case Instruction::Or: 1325 return ConstantInt::get(CI1->getContext(), C1V | C2V); 1326 case Instruction::Xor: 1327 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 1328 case Instruction::Shl: 1329 if (C2V.ult(C1V.getBitWidth())) 1330 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 1331 return UndefValue::get(C1->getType()); // too big shift is undef 1332 case Instruction::LShr: 1333 if (C2V.ult(C1V.getBitWidth())) 1334 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 1335 return UndefValue::get(C1->getType()); // too big shift is undef 1336 case Instruction::AShr: 1337 if (C2V.ult(C1V.getBitWidth())) 1338 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 1339 return UndefValue::get(C1->getType()); // too big shift is undef 1340 } 1341 } 1342 1343 switch (Opcode) { 1344 case Instruction::SDiv: 1345 case Instruction::UDiv: 1346 case Instruction::URem: 1347 case Instruction::SRem: 1348 case Instruction::LShr: 1349 case Instruction::AShr: 1350 case Instruction::Shl: 1351 if (CI1->isZero()) return C1; 1352 break; 1353 default: 1354 break; 1355 } 1356 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 1357 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 1358 const APFloat &C1V = CFP1->getValueAPF(); 1359 const APFloat &C2V = CFP2->getValueAPF(); 1360 APFloat C3V = C1V; // copy for modification 1361 switch (Opcode) { 1362 default: 1363 break; 1364 case Instruction::FAdd: 1365 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 1366 return ConstantFP::get(C1->getContext(), C3V); 1367 case Instruction::FSub: 1368 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 1369 return ConstantFP::get(C1->getContext(), C3V); 1370 case Instruction::FMul: 1371 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 1372 return ConstantFP::get(C1->getContext(), C3V); 1373 case Instruction::FDiv: 1374 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 1375 return ConstantFP::get(C1->getContext(), C3V); 1376 case Instruction::FRem: 1377 (void)C3V.mod(C2V); 1378 return ConstantFP::get(C1->getContext(), C3V); 1379 } 1380 } 1381 } else if (IsScalableVector) { 1382 // Do not iterate on scalable vector. The number of elements is unknown at 1383 // compile-time. 1384 // FIXME: this branch can potentially be removed 1385 return nullptr; 1386 } else if (auto *VTy = dyn_cast<FixedVectorType>(C1->getType())) { 1387 // Fast path for splatted constants. 1388 if (Constant *C2Splat = C2->getSplatValue()) { 1389 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) 1390 return UndefValue::get(VTy); 1391 if (Constant *C1Splat = C1->getSplatValue()) { 1392 return ConstantVector::getSplat( 1393 VTy->getElementCount(), 1394 ConstantExpr::get(Opcode, C1Splat, C2Splat)); 1395 } 1396 } 1397 1398 // Fold each element and create a vector constant from those constants. 1399 SmallVector<Constant*, 16> Result; 1400 Type *Ty = IntegerType::get(VTy->getContext(), 32); 1401 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 1402 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1403 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 1404 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 1405 1406 // If any element of a divisor vector is zero, the whole op is undef. 1407 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) 1408 return UndefValue::get(VTy); 1409 1410 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); 1411 } 1412 1413 return ConstantVector::get(Result); 1414 } 1415 1416 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1417 // There are many possible foldings we could do here. We should probably 1418 // at least fold add of a pointer with an integer into the appropriate 1419 // getelementptr. This will improve alias analysis a bit. 1420 1421 // Given ((a + b) + c), if (b + c) folds to something interesting, return 1422 // (a + (b + c)). 1423 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 1424 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 1425 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 1426 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 1427 } 1428 } else if (isa<ConstantExpr>(C2)) { 1429 // If C2 is a constant expr and C1 isn't, flop them around and fold the 1430 // other way if possible. 1431 if (Instruction::isCommutative(Opcode)) 1432 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 1433 } 1434 1435 // i1 can be simplified in many cases. 1436 if (C1->getType()->isIntegerTy(1)) { 1437 switch (Opcode) { 1438 case Instruction::Add: 1439 case Instruction::Sub: 1440 return ConstantExpr::getXor(C1, C2); 1441 case Instruction::Mul: 1442 return ConstantExpr::getAnd(C1, C2); 1443 case Instruction::Shl: 1444 case Instruction::LShr: 1445 case Instruction::AShr: 1446 // We can assume that C2 == 0. If it were one the result would be 1447 // undefined because the shift value is as large as the bitwidth. 1448 return C1; 1449 case Instruction::SDiv: 1450 case Instruction::UDiv: 1451 // We can assume that C2 == 1. If it were zero the result would be 1452 // undefined through division by zero. 1453 return C1; 1454 case Instruction::URem: 1455 case Instruction::SRem: 1456 // We can assume that C2 == 1. If it were zero the result would be 1457 // undefined through division by zero. 1458 return ConstantInt::getFalse(C1->getContext()); 1459 default: 1460 break; 1461 } 1462 } 1463 1464 // We don't know how to fold this. 1465 return nullptr; 1466 } 1467 1468 /// This type is zero-sized if it's an array or structure of zero-sized types. 1469 /// The only leaf zero-sized type is an empty structure. 1470 static bool isMaybeZeroSizedType(Type *Ty) { 1471 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1472 if (STy->isOpaque()) return true; // Can't say. 1473 1474 // If all of elements have zero size, this does too. 1475 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1476 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; 1477 return true; 1478 1479 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1480 return isMaybeZeroSizedType(ATy->getElementType()); 1481 } 1482 return false; 1483 } 1484 1485 /// Compare the two constants as though they were getelementptr indices. 1486 /// This allows coercion of the types to be the same thing. 1487 /// 1488 /// If the two constants are the "same" (after coercion), return 0. If the 1489 /// first is less than the second, return -1, if the second is less than the 1490 /// first, return 1. If the constants are not integral, return -2. 1491 /// 1492 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { 1493 if (C1 == C2) return 0; 1494 1495 // Ok, we found a different index. If they are not ConstantInt, we can't do 1496 // anything with them. 1497 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) 1498 return -2; // don't know! 1499 1500 // We cannot compare the indices if they don't fit in an int64_t. 1501 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 || 1502 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64) 1503 return -2; // don't know! 1504 1505 // Ok, we have two differing integer indices. Sign extend them to be the same 1506 // type. 1507 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue(); 1508 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue(); 1509 1510 if (C1Val == C2Val) return 0; // They are equal 1511 1512 // If the type being indexed over is really just a zero sized type, there is 1513 // no pointer difference being made here. 1514 if (isMaybeZeroSizedType(ElTy)) 1515 return -2; // dunno. 1516 1517 // If they are really different, now that they are the same type, then we 1518 // found a difference! 1519 if (C1Val < C2Val) 1520 return -1; 1521 else 1522 return 1; 1523 } 1524 1525 /// This function determines if there is anything we can decide about the two 1526 /// constants provided. This doesn't need to handle simple things like 1527 /// ConstantFP comparisons, but should instead handle ConstantExprs. 1528 /// If we can determine that the two constants have a particular relation to 1529 /// each other, we should return the corresponding FCmpInst predicate, 1530 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in 1531 /// ConstantFoldCompareInstruction. 1532 /// 1533 /// To simplify this code we canonicalize the relation so that the first 1534 /// operand is always the most "complex" of the two. We consider ConstantFP 1535 /// to be the simplest, and ConstantExprs to be the most complex. 1536 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { 1537 assert(V1->getType() == V2->getType() && 1538 "Cannot compare values of different types!"); 1539 1540 // We do not know if a constant expression will evaluate to a number or NaN. 1541 // Therefore, we can only say that the relation is unordered or equal. 1542 if (V1 == V2) return FCmpInst::FCMP_UEQ; 1543 1544 if (!isa<ConstantExpr>(V1)) { 1545 if (!isa<ConstantExpr>(V2)) { 1546 // Simple case, use the standard constant folder. 1547 ConstantInt *R = nullptr; 1548 R = dyn_cast<ConstantInt>( 1549 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); 1550 if (R && !R->isZero()) 1551 return FCmpInst::FCMP_OEQ; 1552 R = dyn_cast<ConstantInt>( 1553 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); 1554 if (R && !R->isZero()) 1555 return FCmpInst::FCMP_OLT; 1556 R = dyn_cast<ConstantInt>( 1557 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); 1558 if (R && !R->isZero()) 1559 return FCmpInst::FCMP_OGT; 1560 1561 // Nothing more we can do 1562 return FCmpInst::BAD_FCMP_PREDICATE; 1563 } 1564 1565 // If the first operand is simple and second is ConstantExpr, swap operands. 1566 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); 1567 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) 1568 return FCmpInst::getSwappedPredicate(SwappedRelation); 1569 } else { 1570 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1571 // constantexpr or a simple constant. 1572 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1573 switch (CE1->getOpcode()) { 1574 case Instruction::FPTrunc: 1575 case Instruction::FPExt: 1576 case Instruction::UIToFP: 1577 case Instruction::SIToFP: 1578 // We might be able to do something with these but we don't right now. 1579 break; 1580 default: 1581 break; 1582 } 1583 } 1584 // There are MANY other foldings that we could perform here. They will 1585 // probably be added on demand, as they seem needed. 1586 return FCmpInst::BAD_FCMP_PREDICATE; 1587 } 1588 1589 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 1590 const GlobalValue *GV2) { 1591 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 1592 if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage()) 1593 return true; 1594 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 1595 Type *Ty = GVar->getValueType(); 1596 // A global with opaque type might end up being zero sized. 1597 if (!Ty->isSized()) 1598 return true; 1599 // A global with an empty type might lie at the address of any other 1600 // global. 1601 if (Ty->isEmptyTy()) 1602 return true; 1603 } 1604 return false; 1605 }; 1606 // Don't try to decide equality of aliases. 1607 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 1608 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 1609 return ICmpInst::ICMP_NE; 1610 return ICmpInst::BAD_ICMP_PREDICATE; 1611 } 1612 1613 /// This function determines if there is anything we can decide about the two 1614 /// constants provided. This doesn't need to handle simple things like integer 1615 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 1616 /// If we can determine that the two constants have a particular relation to 1617 /// each other, we should return the corresponding ICmp predicate, otherwise 1618 /// return ICmpInst::BAD_ICMP_PREDICATE. 1619 /// 1620 /// To simplify this code we canonicalize the relation so that the first 1621 /// operand is always the most "complex" of the two. We consider simple 1622 /// constants (like ConstantInt) to be the simplest, followed by 1623 /// GlobalValues, followed by ConstantExpr's (the most complex). 1624 /// 1625 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, 1626 bool isSigned) { 1627 assert(V1->getType() == V2->getType() && 1628 "Cannot compare different types of values!"); 1629 if (V1 == V2) return ICmpInst::ICMP_EQ; 1630 1631 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && 1632 !isa<BlockAddress>(V1)) { 1633 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && 1634 !isa<BlockAddress>(V2)) { 1635 // We distilled this down to a simple case, use the standard constant 1636 // folder. 1637 ConstantInt *R = nullptr; 1638 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; 1639 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1640 if (R && !R->isZero()) 1641 return pred; 1642 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1643 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1644 if (R && !R->isZero()) 1645 return pred; 1646 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1647 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1648 if (R && !R->isZero()) 1649 return pred; 1650 1651 // If we couldn't figure it out, bail. 1652 return ICmpInst::BAD_ICMP_PREDICATE; 1653 } 1654 1655 // If the first operand is simple, swap operands. 1656 ICmpInst::Predicate SwappedRelation = 1657 evaluateICmpRelation(V2, V1, isSigned); 1658 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1659 return ICmpInst::getSwappedPredicate(SwappedRelation); 1660 1661 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1662 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1663 ICmpInst::Predicate SwappedRelation = 1664 evaluateICmpRelation(V2, V1, isSigned); 1665 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1666 return ICmpInst::getSwappedPredicate(SwappedRelation); 1667 return ICmpInst::BAD_ICMP_PREDICATE; 1668 } 1669 1670 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1671 // constant (which, since the types must match, means that it's a 1672 // ConstantPointerNull). 1673 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1674 return areGlobalsPotentiallyEqual(GV, GV2); 1675 } else if (isa<BlockAddress>(V2)) { 1676 return ICmpInst::ICMP_NE; // Globals never equal labels. 1677 } else { 1678 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); 1679 // GlobalVals can never be null unless they have external weak linkage. 1680 // We don't try to evaluate aliases here. 1681 // NOTE: We should not be doing this constant folding if null pointer 1682 // is considered valid for the function. But currently there is no way to 1683 // query it from the Constant type. 1684 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1685 !NullPointerIsDefined(nullptr /* F */, 1686 GV->getType()->getAddressSpace())) 1687 return ICmpInst::ICMP_NE; 1688 } 1689 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1690 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1691 ICmpInst::Predicate SwappedRelation = 1692 evaluateICmpRelation(V2, V1, isSigned); 1693 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1694 return ICmpInst::getSwappedPredicate(SwappedRelation); 1695 return ICmpInst::BAD_ICMP_PREDICATE; 1696 } 1697 1698 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1699 // constant (which, since the types must match, means that it is a 1700 // ConstantPointerNull). 1701 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1702 // Block address in another function can't equal this one, but block 1703 // addresses in the current function might be the same if blocks are 1704 // empty. 1705 if (BA2->getFunction() != BA->getFunction()) 1706 return ICmpInst::ICMP_NE; 1707 } else { 1708 // Block addresses aren't null, don't equal the address of globals. 1709 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && 1710 "Canonicalization guarantee!"); 1711 return ICmpInst::ICMP_NE; 1712 } 1713 } else { 1714 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1715 // constantexpr, a global, block address, or a simple constant. 1716 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1717 Constant *CE1Op0 = CE1->getOperand(0); 1718 1719 switch (CE1->getOpcode()) { 1720 case Instruction::Trunc: 1721 case Instruction::FPTrunc: 1722 case Instruction::FPExt: 1723 case Instruction::FPToUI: 1724 case Instruction::FPToSI: 1725 break; // We can't evaluate floating point casts or truncations. 1726 1727 case Instruction::UIToFP: 1728 case Instruction::SIToFP: 1729 case Instruction::BitCast: 1730 case Instruction::ZExt: 1731 case Instruction::SExt: 1732 // We can't evaluate floating point casts or truncations. 1733 if (CE1Op0->getType()->isFPOrFPVectorTy()) 1734 break; 1735 1736 // If the cast is not actually changing bits, and the second operand is a 1737 // null pointer, do the comparison with the pre-casted value. 1738 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) { 1739 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; 1740 if (CE1->getOpcode() == Instruction::SExt) isSigned = true; 1741 return evaluateICmpRelation(CE1Op0, 1742 Constant::getNullValue(CE1Op0->getType()), 1743 isSigned); 1744 } 1745 break; 1746 1747 case Instruction::GetElementPtr: { 1748 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1749 // Ok, since this is a getelementptr, we know that the constant has a 1750 // pointer type. Check the various cases. 1751 if (isa<ConstantPointerNull>(V2)) { 1752 // If we are comparing a GEP to a null pointer, check to see if the base 1753 // of the GEP equals the null pointer. 1754 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1755 if (GV->hasExternalWeakLinkage()) 1756 // Weak linkage GVals could be zero or not. We're comparing that 1757 // to null pointer so its greater-or-equal 1758 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 1759 else 1760 // If its not weak linkage, the GVal must have a non-zero address 1761 // so the result is greater-than 1762 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1763 } else if (isa<ConstantPointerNull>(CE1Op0)) { 1764 // If we are indexing from a null pointer, check to see if we have any 1765 // non-zero indices. 1766 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) 1767 if (!CE1->getOperand(i)->isNullValue()) 1768 // Offsetting from null, must not be equal. 1769 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1770 // Only zero indexes from null, must still be zero. 1771 return ICmpInst::ICMP_EQ; 1772 } 1773 // Otherwise, we can't really say if the first operand is null or not. 1774 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1775 if (isa<ConstantPointerNull>(CE1Op0)) { 1776 if (GV2->hasExternalWeakLinkage()) 1777 // Weak linkage GVals could be zero or not. We're comparing it to 1778 // a null pointer, so its less-or-equal 1779 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1780 else 1781 // If its not weak linkage, the GVal must have a non-zero address 1782 // so the result is less-than 1783 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1784 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1785 if (GV == GV2) { 1786 // If this is a getelementptr of the same global, then it must be 1787 // different. Because the types must match, the getelementptr could 1788 // only have at most one index, and because we fold getelementptr's 1789 // with a single zero index, it must be nonzero. 1790 assert(CE1->getNumOperands() == 2 && 1791 !CE1->getOperand(1)->isNullValue() && 1792 "Surprising getelementptr!"); 1793 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1794 } else { 1795 if (CE1GEP->hasAllZeroIndices()) 1796 return areGlobalsPotentiallyEqual(GV, GV2); 1797 return ICmpInst::BAD_ICMP_PREDICATE; 1798 } 1799 } 1800 } else { 1801 ConstantExpr *CE2 = cast<ConstantExpr>(V2); 1802 Constant *CE2Op0 = CE2->getOperand(0); 1803 1804 // There are MANY other foldings that we could perform here. They will 1805 // probably be added on demand, as they seem needed. 1806 switch (CE2->getOpcode()) { 1807 default: break; 1808 case Instruction::GetElementPtr: 1809 // By far the most common case to handle is when the base pointers are 1810 // obviously to the same global. 1811 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1812 // Don't know relative ordering, but check for inequality. 1813 if (CE1Op0 != CE2Op0) { 1814 GEPOperator *CE2GEP = cast<GEPOperator>(CE2); 1815 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1816 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1817 cast<GlobalValue>(CE2Op0)); 1818 return ICmpInst::BAD_ICMP_PREDICATE; 1819 } 1820 // Ok, we know that both getelementptr instructions are based on the 1821 // same global. From this, we can precisely determine the relative 1822 // ordering of the resultant pointers. 1823 unsigned i = 1; 1824 1825 // The logic below assumes that the result of the comparison 1826 // can be determined by finding the first index that differs. 1827 // This doesn't work if there is over-indexing in any 1828 // subsequent indices, so check for that case first. 1829 if (!CE1->isGEPWithNoNotionalOverIndexing() || 1830 !CE2->isGEPWithNoNotionalOverIndexing()) 1831 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1832 1833 // Compare all of the operands the GEP's have in common. 1834 gep_type_iterator GTI = gep_type_begin(CE1); 1835 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); 1836 ++i, ++GTI) 1837 switch (IdxCompare(CE1->getOperand(i), 1838 CE2->getOperand(i), GTI.getIndexedType())) { 1839 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; 1840 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; 1841 case -2: return ICmpInst::BAD_ICMP_PREDICATE; 1842 } 1843 1844 // Ok, we ran out of things they have in common. If any leftovers 1845 // are non-zero then we have a difference, otherwise we are equal. 1846 for (; i < CE1->getNumOperands(); ++i) 1847 if (!CE1->getOperand(i)->isNullValue()) { 1848 if (isa<ConstantInt>(CE1->getOperand(i))) 1849 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1850 else 1851 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1852 } 1853 1854 for (; i < CE2->getNumOperands(); ++i) 1855 if (!CE2->getOperand(i)->isNullValue()) { 1856 if (isa<ConstantInt>(CE2->getOperand(i))) 1857 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1858 else 1859 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1860 } 1861 return ICmpInst::ICMP_EQ; 1862 } 1863 } 1864 } 1865 break; 1866 } 1867 default: 1868 break; 1869 } 1870 } 1871 1872 return ICmpInst::BAD_ICMP_PREDICATE; 1873 } 1874 1875 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 1876 Constant *C1, Constant *C2) { 1877 Type *ResultTy; 1878 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1879 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1880 VT->getElementCount()); 1881 else 1882 ResultTy = Type::getInt1Ty(C1->getContext()); 1883 1884 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1885 if (pred == FCmpInst::FCMP_FALSE) 1886 return Constant::getNullValue(ResultTy); 1887 1888 if (pred == FCmpInst::FCMP_TRUE) 1889 return Constant::getAllOnesValue(ResultTy); 1890 1891 // Handle some degenerate cases first 1892 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1893 CmpInst::Predicate Predicate = CmpInst::Predicate(pred); 1894 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1895 // For EQ and NE, we can always pick a value for the undef to make the 1896 // predicate pass or fail, so we can return undef. 1897 // Also, if both operands are undef, we can return undef for int comparison. 1898 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1899 return UndefValue::get(ResultTy); 1900 1901 // Otherwise, for integer compare, pick the same value as the non-undef 1902 // operand, and fold it to true or false. 1903 if (isIntegerPredicate) 1904 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1905 1906 // Choosing NaN for the undef will always make unordered comparison succeed 1907 // and ordered comparison fails. 1908 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1909 } 1910 1911 // icmp eq/ne(null,GV) -> false/true 1912 if (C1->isNullValue()) { 1913 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) 1914 // Don't try to evaluate aliases. External weak GV can be null. 1915 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1916 !NullPointerIsDefined(nullptr /* F */, 1917 GV->getType()->getAddressSpace())) { 1918 if (pred == ICmpInst::ICMP_EQ) 1919 return ConstantInt::getFalse(C1->getContext()); 1920 else if (pred == ICmpInst::ICMP_NE) 1921 return ConstantInt::getTrue(C1->getContext()); 1922 } 1923 // icmp eq/ne(GV,null) -> false/true 1924 } else if (C2->isNullValue()) { 1925 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) 1926 // Don't try to evaluate aliases. External weak GV can be null. 1927 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1928 !NullPointerIsDefined(nullptr /* F */, 1929 GV->getType()->getAddressSpace())) { 1930 if (pred == ICmpInst::ICMP_EQ) 1931 return ConstantInt::getFalse(C1->getContext()); 1932 else if (pred == ICmpInst::ICMP_NE) 1933 return ConstantInt::getTrue(C1->getContext()); 1934 } 1935 } 1936 1937 // If the comparison is a comparison between two i1's, simplify it. 1938 if (C1->getType()->isIntegerTy(1)) { 1939 switch(pred) { 1940 case ICmpInst::ICMP_EQ: 1941 if (isa<ConstantInt>(C2)) 1942 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1943 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1944 case ICmpInst::ICMP_NE: 1945 return ConstantExpr::getXor(C1, C2); 1946 default: 1947 break; 1948 } 1949 } 1950 1951 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1952 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 1953 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 1954 switch (pred) { 1955 default: llvm_unreachable("Invalid ICmp Predicate"); 1956 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2); 1957 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2); 1958 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); 1959 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); 1960 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); 1961 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); 1962 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); 1963 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); 1964 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); 1965 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); 1966 } 1967 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1968 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 1969 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 1970 APFloat::cmpResult R = C1V.compare(C2V); 1971 switch (pred) { 1972 default: llvm_unreachable("Invalid FCmp Predicate"); 1973 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); 1974 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy); 1975 case FCmpInst::FCMP_UNO: 1976 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); 1977 case FCmpInst::FCMP_ORD: 1978 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); 1979 case FCmpInst::FCMP_UEQ: 1980 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1981 R==APFloat::cmpEqual); 1982 case FCmpInst::FCMP_OEQ: 1983 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); 1984 case FCmpInst::FCMP_UNE: 1985 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); 1986 case FCmpInst::FCMP_ONE: 1987 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 1988 R==APFloat::cmpGreaterThan); 1989 case FCmpInst::FCMP_ULT: 1990 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1991 R==APFloat::cmpLessThan); 1992 case FCmpInst::FCMP_OLT: 1993 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); 1994 case FCmpInst::FCMP_UGT: 1995 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1996 R==APFloat::cmpGreaterThan); 1997 case FCmpInst::FCMP_OGT: 1998 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); 1999 case FCmpInst::FCMP_ULE: 2000 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); 2001 case FCmpInst::FCMP_OLE: 2002 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 2003 R==APFloat::cmpEqual); 2004 case FCmpInst::FCMP_UGE: 2005 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); 2006 case FCmpInst::FCMP_OGE: 2007 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || 2008 R==APFloat::cmpEqual); 2009 } 2010 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { 2011 2012 // Do not iterate on scalable vector. The number of elements is unknown at 2013 // compile-time. 2014 if (isa<ScalableVectorType>(C1VTy)) 2015 return nullptr; 2016 2017 // Fast path for splatted constants. 2018 if (Constant *C1Splat = C1->getSplatValue()) 2019 if (Constant *C2Splat = C2->getSplatValue()) 2020 return ConstantVector::getSplat( 2021 C1VTy->getElementCount(), 2022 ConstantExpr::getCompare(pred, C1Splat, C2Splat)); 2023 2024 // If we can constant fold the comparison of each element, constant fold 2025 // the whole vector comparison. 2026 SmallVector<Constant*, 4> ResElts; 2027 Type *Ty = IntegerType::get(C1->getContext(), 32); 2028 // Compare the elements, producing an i1 result or constant expr. 2029 for (unsigned i = 0, e = C1VTy->getElementCount().Min; i != e; ++i) { 2030 Constant *C1E = 2031 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i)); 2032 Constant *C2E = 2033 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i)); 2034 2035 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); 2036 } 2037 2038 return ConstantVector::get(ResElts); 2039 } 2040 2041 if (C1->getType()->isFloatingPointTy() && 2042 // Only call evaluateFCmpRelation if we have a constant expr to avoid 2043 // infinite recursive loop 2044 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { 2045 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 2046 switch (evaluateFCmpRelation(C1, C2)) { 2047 default: llvm_unreachable("Unknown relation!"); 2048 case FCmpInst::FCMP_UNO: 2049 case FCmpInst::FCMP_ORD: 2050 case FCmpInst::FCMP_UNE: 2051 case FCmpInst::FCMP_ULT: 2052 case FCmpInst::FCMP_UGT: 2053 case FCmpInst::FCMP_ULE: 2054 case FCmpInst::FCMP_UGE: 2055 case FCmpInst::FCMP_TRUE: 2056 case FCmpInst::FCMP_FALSE: 2057 case FCmpInst::BAD_FCMP_PREDICATE: 2058 break; // Couldn't determine anything about these constants. 2059 case FCmpInst::FCMP_OEQ: // We know that C1 == C2 2060 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || 2061 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || 2062 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 2063 break; 2064 case FCmpInst::FCMP_OLT: // We know that C1 < C2 2065 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 2066 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || 2067 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); 2068 break; 2069 case FCmpInst::FCMP_OGT: // We know that C1 > C2 2070 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 2071 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || 2072 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 2073 break; 2074 case FCmpInst::FCMP_OLE: // We know that C1 <= C2 2075 // We can only partially decide this relation. 2076 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 2077 Result = 0; 2078 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 2079 Result = 1; 2080 break; 2081 case FCmpInst::FCMP_OGE: // We known that C1 >= C2 2082 // We can only partially decide this relation. 2083 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 2084 Result = 0; 2085 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 2086 Result = 1; 2087 break; 2088 case FCmpInst::FCMP_ONE: // We know that C1 != C2 2089 // We can only partially decide this relation. 2090 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 2091 Result = 0; 2092 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 2093 Result = 1; 2094 break; 2095 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2). 2096 // We can only partially decide this relation. 2097 if (pred == FCmpInst::FCMP_ONE) 2098 Result = 0; 2099 else if (pred == FCmpInst::FCMP_UEQ) 2100 Result = 1; 2101 break; 2102 } 2103 2104 // If we evaluated the result, return it now. 2105 if (Result != -1) 2106 return ConstantInt::get(ResultTy, Result); 2107 2108 } else { 2109 // Evaluate the relation between the two constants, per the predicate. 2110 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 2111 switch (evaluateICmpRelation(C1, C2, 2112 CmpInst::isSigned((CmpInst::Predicate)pred))) { 2113 default: llvm_unreachable("Unknown relational!"); 2114 case ICmpInst::BAD_ICMP_PREDICATE: 2115 break; // Couldn't determine anything about these constants. 2116 case ICmpInst::ICMP_EQ: // We know the constants are equal! 2117 // If we know the constants are equal, we can decide the result of this 2118 // computation precisely. 2119 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); 2120 break; 2121 case ICmpInst::ICMP_ULT: 2122 switch (pred) { 2123 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 2124 Result = 1; break; 2125 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 2126 Result = 0; break; 2127 } 2128 break; 2129 case ICmpInst::ICMP_SLT: 2130 switch (pred) { 2131 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 2132 Result = 1; break; 2133 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 2134 Result = 0; break; 2135 } 2136 break; 2137 case ICmpInst::ICMP_UGT: 2138 switch (pred) { 2139 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 2140 Result = 1; break; 2141 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 2142 Result = 0; break; 2143 } 2144 break; 2145 case ICmpInst::ICMP_SGT: 2146 switch (pred) { 2147 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 2148 Result = 1; break; 2149 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 2150 Result = 0; break; 2151 } 2152 break; 2153 case ICmpInst::ICMP_ULE: 2154 if (pred == ICmpInst::ICMP_UGT) Result = 0; 2155 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; 2156 break; 2157 case ICmpInst::ICMP_SLE: 2158 if (pred == ICmpInst::ICMP_SGT) Result = 0; 2159 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; 2160 break; 2161 case ICmpInst::ICMP_UGE: 2162 if (pred == ICmpInst::ICMP_ULT) Result = 0; 2163 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; 2164 break; 2165 case ICmpInst::ICMP_SGE: 2166 if (pred == ICmpInst::ICMP_SLT) Result = 0; 2167 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; 2168 break; 2169 case ICmpInst::ICMP_NE: 2170 if (pred == ICmpInst::ICMP_EQ) Result = 0; 2171 if (pred == ICmpInst::ICMP_NE) Result = 1; 2172 break; 2173 } 2174 2175 // If we evaluated the result, return it now. 2176 if (Result != -1) 2177 return ConstantInt::get(ResultTy, Result); 2178 2179 // If the right hand side is a bitcast, try using its inverse to simplify 2180 // it by moving it to the left hand side. We can't do this if it would turn 2181 // a vector compare into a scalar compare or visa versa, or if it would turn 2182 // the operands into FP values. 2183 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { 2184 Constant *CE2Op0 = CE2->getOperand(0); 2185 if (CE2->getOpcode() == Instruction::BitCast && 2186 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() && 2187 !CE2Op0->getType()->isFPOrFPVectorTy()) { 2188 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); 2189 return ConstantExpr::getICmp(pred, Inverse, CE2Op0); 2190 } 2191 } 2192 2193 // If the left hand side is an extension, try eliminating it. 2194 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 2195 if ((CE1->getOpcode() == Instruction::SExt && 2196 ICmpInst::isSigned((ICmpInst::Predicate)pred)) || 2197 (CE1->getOpcode() == Instruction::ZExt && 2198 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){ 2199 Constant *CE1Op0 = CE1->getOperand(0); 2200 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); 2201 if (CE1Inverse == CE1Op0) { 2202 // Check whether we can safely truncate the right hand side. 2203 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); 2204 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, 2205 C2->getType()) == C2) 2206 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); 2207 } 2208 } 2209 } 2210 2211 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 2212 (C1->isNullValue() && !C2->isNullValue())) { 2213 // If C2 is a constant expr and C1 isn't, flip them around and fold the 2214 // other way if possible. 2215 // Also, if C1 is null and C2 isn't, flip them around. 2216 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); 2217 return ConstantExpr::getICmp(pred, C2, C1); 2218 } 2219 } 2220 return nullptr; 2221 } 2222 2223 /// Test whether the given sequence of *normalized* indices is "inbounds". 2224 template<typename IndexTy> 2225 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { 2226 // No indices means nothing that could be out of bounds. 2227 if (Idxs.empty()) return true; 2228 2229 // If the first index is zero, it's in bounds. 2230 if (cast<Constant>(Idxs[0])->isNullValue()) return true; 2231 2232 // If the first index is one and all the rest are zero, it's in bounds, 2233 // by the one-past-the-end rule. 2234 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { 2235 if (!CI->isOne()) 2236 return false; 2237 } else { 2238 auto *CV = cast<ConstantDataVector>(Idxs[0]); 2239 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); 2240 if (!CI || !CI->isOne()) 2241 return false; 2242 } 2243 2244 for (unsigned i = 1, e = Idxs.size(); i != e; ++i) 2245 if (!cast<Constant>(Idxs[i])->isNullValue()) 2246 return false; 2247 return true; 2248 } 2249 2250 /// Test whether a given ConstantInt is in-range for a SequentialType. 2251 static bool isIndexInRangeOfArrayType(uint64_t NumElements, 2252 const ConstantInt *CI) { 2253 // We cannot bounds check the index if it doesn't fit in an int64_t. 2254 if (CI->getValue().getMinSignedBits() > 64) 2255 return false; 2256 2257 // A negative index or an index past the end of our sequential type is 2258 // considered out-of-range. 2259 int64_t IndexVal = CI->getSExtValue(); 2260 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements)) 2261 return false; 2262 2263 // Otherwise, it is in-range. 2264 return true; 2265 } 2266 2267 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 2268 bool InBounds, 2269 Optional<unsigned> InRangeIndex, 2270 ArrayRef<Value *> Idxs) { 2271 if (Idxs.empty()) return C; 2272 2273 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 2274 PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size())); 2275 2276 if (isa<UndefValue>(C)) 2277 return UndefValue::get(GEPTy); 2278 2279 Constant *Idx0 = cast<Constant>(Idxs[0]); 2280 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0))) 2281 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 2282 ? ConstantVector::getSplat( 2283 cast<VectorType>(GEPTy)->getElementCount(), C) 2284 : C; 2285 2286 if (C->isNullValue()) { 2287 bool isNull = true; 2288 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2289 if (!isa<UndefValue>(Idxs[i]) && 2290 !cast<Constant>(Idxs[i])->isNullValue()) { 2291 isNull = false; 2292 break; 2293 } 2294 if (isNull) { 2295 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType()); 2296 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs); 2297 2298 assert(Ty && "Invalid indices for GEP!"); 2299 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2300 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2301 if (VectorType *VT = dyn_cast<VectorType>(C->getType())) 2302 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount()); 2303 2304 // The GEP returns a vector of pointers when one of more of 2305 // its arguments is a vector. 2306 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 2307 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) { 2308 assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) == 2309 isa<ScalableVectorType>(VT)) && 2310 "Mismatched GEPTy vector types"); 2311 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount()); 2312 break; 2313 } 2314 } 2315 2316 return Constant::getNullValue(GEPTy); 2317 } 2318 } 2319 2320 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2321 // Combine Indices - If the source pointer to this getelementptr instruction 2322 // is a getelementptr instruction, combine the indices of the two 2323 // getelementptr instructions into a single instruction. 2324 // 2325 if (CE->getOpcode() == Instruction::GetElementPtr) { 2326 gep_type_iterator LastI = gep_type_end(CE); 2327 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); 2328 I != E; ++I) 2329 LastI = I; 2330 2331 // We cannot combine indices if doing so would take us outside of an 2332 // array or vector. Doing otherwise could trick us if we evaluated such a 2333 // GEP as part of a load. 2334 // 2335 // e.g. Consider if the original GEP was: 2336 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2337 // i32 0, i32 0, i64 0) 2338 // 2339 // If we then tried to offset it by '8' to get to the third element, 2340 // an i8, we should *not* get: 2341 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2342 // i32 0, i32 0, i64 8) 2343 // 2344 // This GEP tries to index array element '8 which runs out-of-bounds. 2345 // Subsequent evaluation would get confused and produce erroneous results. 2346 // 2347 // The following prohibits such a GEP from being formed by checking to see 2348 // if the index is in-range with respect to an array. 2349 // TODO: This code may be extended to handle vectors as well. 2350 bool PerformFold = false; 2351 if (Idx0->isNullValue()) 2352 PerformFold = true; 2353 else if (LastI.isSequential()) 2354 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0)) 2355 PerformFold = (!LastI.isBoundedSequential() || 2356 isIndexInRangeOfArrayType( 2357 LastI.getSequentialNumElements(), CI)) && 2358 !CE->getOperand(CE->getNumOperands() - 1) 2359 ->getType() 2360 ->isVectorTy(); 2361 2362 if (PerformFold) { 2363 SmallVector<Value*, 16> NewIndices; 2364 NewIndices.reserve(Idxs.size() + CE->getNumOperands()); 2365 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1); 2366 2367 // Add the last index of the source with the first index of the new GEP. 2368 // Make sure to handle the case when they are actually different types. 2369 Constant *Combined = CE->getOperand(CE->getNumOperands()-1); 2370 // Otherwise it must be an array. 2371 if (!Idx0->isNullValue()) { 2372 Type *IdxTy = Combined->getType(); 2373 if (IdxTy != Idx0->getType()) { 2374 unsigned CommonExtendedWidth = 2375 std::max(IdxTy->getIntegerBitWidth(), 2376 Idx0->getType()->getIntegerBitWidth()); 2377 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2378 2379 Type *CommonTy = 2380 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth); 2381 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy); 2382 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy); 2383 Combined = ConstantExpr::get(Instruction::Add, C1, C2); 2384 } else { 2385 Combined = 2386 ConstantExpr::get(Instruction::Add, Idx0, Combined); 2387 } 2388 } 2389 2390 NewIndices.push_back(Combined); 2391 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 2392 2393 // The combined GEP normally inherits its index inrange attribute from 2394 // the inner GEP, but if the inner GEP's last index was adjusted by the 2395 // outer GEP, any inbounds attribute on that index is invalidated. 2396 Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex(); 2397 if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue()) 2398 IRIndex = None; 2399 2400 return ConstantExpr::getGetElementPtr( 2401 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0), 2402 NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(), 2403 IRIndex); 2404 } 2405 } 2406 2407 // Attempt to fold casts to the same type away. For example, folding: 2408 // 2409 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), 2410 // i64 0, i64 0) 2411 // into: 2412 // 2413 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) 2414 // 2415 // Don't fold if the cast is changing address spaces. 2416 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { 2417 PointerType *SrcPtrTy = 2418 dyn_cast<PointerType>(CE->getOperand(0)->getType()); 2419 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); 2420 if (SrcPtrTy && DstPtrTy) { 2421 ArrayType *SrcArrayTy = 2422 dyn_cast<ArrayType>(SrcPtrTy->getElementType()); 2423 ArrayType *DstArrayTy = 2424 dyn_cast<ArrayType>(DstPtrTy->getElementType()); 2425 if (SrcArrayTy && DstArrayTy 2426 && SrcArrayTy->getElementType() == DstArrayTy->getElementType() 2427 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 2428 return ConstantExpr::getGetElementPtr(SrcArrayTy, 2429 (Constant *)CE->getOperand(0), 2430 Idxs, InBounds, InRangeIndex); 2431 } 2432 } 2433 } 2434 2435 // Check to see if any array indices are not within the corresponding 2436 // notional array or vector bounds. If so, try to determine if they can be 2437 // factored out into preceding dimensions. 2438 SmallVector<Constant *, 8> NewIdxs; 2439 Type *Ty = PointeeTy; 2440 Type *Prev = C->getType(); 2441 auto GEPIter = gep_type_begin(PointeeTy, Idxs); 2442 bool Unknown = 2443 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); 2444 for (unsigned i = 1, e = Idxs.size(); i != e; 2445 Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) { 2446 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { 2447 // We don't know if it's in range or not. 2448 Unknown = true; 2449 continue; 2450 } 2451 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) 2452 // Skip if the type of the previous index is not supported. 2453 continue; 2454 if (InRangeIndex && i == *InRangeIndex + 1) { 2455 // If an index is marked inrange, we cannot apply this canonicalization to 2456 // the following index, as that will cause the inrange index to point to 2457 // the wrong element. 2458 continue; 2459 } 2460 if (isa<StructType>(Ty)) { 2461 // The verify makes sure that GEPs into a struct are in range. 2462 continue; 2463 } 2464 if (isa<VectorType>(Ty)) { 2465 // There can be awkward padding in after a non-power of two vector. 2466 Unknown = true; 2467 continue; 2468 } 2469 auto *STy = cast<ArrayType>(Ty); 2470 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { 2471 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) 2472 // It's in range, skip to the next index. 2473 continue; 2474 if (CI->getSExtValue() < 0) { 2475 // It's out of range and negative, don't try to factor it. 2476 Unknown = true; 2477 continue; 2478 } 2479 } else { 2480 auto *CV = cast<ConstantDataVector>(Idxs[i]); 2481 bool InRange = true; 2482 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { 2483 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); 2484 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); 2485 if (CI->getSExtValue() < 0) { 2486 Unknown = true; 2487 break; 2488 } 2489 } 2490 if (InRange || Unknown) 2491 // It's in range, skip to the next index. 2492 // It's out of range and negative, don't try to factor it. 2493 continue; 2494 } 2495 if (isa<StructType>(Prev)) { 2496 // It's out of range, but the prior dimension is a struct 2497 // so we can't do anything about it. 2498 Unknown = true; 2499 continue; 2500 } 2501 // It's out of range, but we can factor it into the prior 2502 // dimension. 2503 NewIdxs.resize(Idxs.size()); 2504 // Determine the number of elements in our sequential type. 2505 uint64_t NumElements = STy->getArrayNumElements(); 2506 2507 // Expand the current index or the previous index to a vector from a scalar 2508 // if necessary. 2509 Constant *CurrIdx = cast<Constant>(Idxs[i]); 2510 auto *PrevIdx = 2511 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); 2512 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); 2513 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); 2514 bool UseVector = IsCurrIdxVector || IsPrevIdxVector; 2515 2516 if (!IsCurrIdxVector && IsPrevIdxVector) 2517 CurrIdx = ConstantDataVector::getSplat( 2518 cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx); 2519 2520 if (!IsPrevIdxVector && IsCurrIdxVector) 2521 PrevIdx = ConstantDataVector::getSplat( 2522 cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx); 2523 2524 Constant *Factor = 2525 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); 2526 if (UseVector) 2527 Factor = ConstantDataVector::getSplat( 2528 IsPrevIdxVector 2529 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 2530 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), 2531 Factor); 2532 2533 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor); 2534 2535 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor); 2536 2537 unsigned CommonExtendedWidth = 2538 std::max(PrevIdx->getType()->getScalarSizeInBits(), 2539 Div->getType()->getScalarSizeInBits()); 2540 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2541 2542 // Before adding, extend both operands to i64 to avoid 2543 // overflow trouble. 2544 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); 2545 if (UseVector) 2546 ExtendedTy = FixedVectorType::get( 2547 ExtendedTy, 2548 IsPrevIdxVector 2549 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 2550 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements()); 2551 2552 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2553 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy); 2554 2555 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2556 Div = ConstantExpr::getSExt(Div, ExtendedTy); 2557 2558 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); 2559 } 2560 2561 // If we did any factoring, start over with the adjusted indices. 2562 if (!NewIdxs.empty()) { 2563 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2564 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); 2565 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, 2566 InRangeIndex); 2567 } 2568 2569 // If all indices are known integers and normalized, we can do a simple 2570 // check for the "inbounds" property. 2571 if (!Unknown && !InBounds) 2572 if (auto *GV = dyn_cast<GlobalVariable>(C)) 2573 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs)) 2574 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, 2575 /*InBounds=*/true, InRangeIndex); 2576 2577 return nullptr; 2578 } 2579