1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 //===----------------------------------------------------------------------===// 39 // ConstantFold*Instruction Implementations 40 //===----------------------------------------------------------------------===// 41 42 /// Convert the specified vector Constant node to the specified vector type. 43 /// At this point, we know that the elements of the input vector constant are 44 /// all simple integer or FP values. 45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { 46 47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); 48 if (CV->isNullValue()) return Constant::getNullValue(DstTy); 49 50 // If this cast changes element count then we can't handle it here: 51 // doing so requires endianness information. This should be handled by 52 // Analysis/ConstantFolding.cpp 53 unsigned NumElts = DstTy->getNumElements(); 54 if (NumElts != CV->getType()->getVectorNumElements()) 55 return nullptr; 56 57 Type *DstEltTy = DstTy->getElementType(); 58 59 SmallVector<Constant*, 16> Result; 60 Type *Ty = IntegerType::get(CV->getContext(), 32); 61 for (unsigned i = 0; i != NumElts; ++i) { 62 Constant *C = 63 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); 64 C = ConstantExpr::getBitCast(C, DstEltTy); 65 Result.push_back(C); 66 } 67 68 return ConstantVector::get(Result); 69 } 70 71 /// This function determines which opcode to use to fold two constant cast 72 /// expressions together. It uses CastInst::isEliminableCastPair to determine 73 /// the opcode. Consequently its just a wrapper around that function. 74 /// Determine if it is valid to fold a cast of a cast 75 static unsigned 76 foldConstantCastPair( 77 unsigned opc, ///< opcode of the second cast constant expression 78 ConstantExpr *Op, ///< the first cast constant expression 79 Type *DstTy ///< destination type of the first cast 80 ) { 81 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 82 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 83 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 84 85 // The types and opcodes for the two Cast constant expressions 86 Type *SrcTy = Op->getOperand(0)->getType(); 87 Type *MidTy = Op->getType(); 88 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 89 Instruction::CastOps secondOp = Instruction::CastOps(opc); 90 91 // Assume that pointers are never more than 64 bits wide, and only use this 92 // for the middle type. Otherwise we could end up folding away illegal 93 // bitcasts between address spaces with different sizes. 94 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 95 96 // Let CastInst::isEliminableCastPair do the heavy lifting. 97 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 98 nullptr, FakeIntPtrTy, nullptr); 99 } 100 101 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 102 Type *SrcTy = V->getType(); 103 if (SrcTy == DestTy) 104 return V; // no-op cast 105 106 // Check to see if we are casting a pointer to an aggregate to a pointer to 107 // the first element. If so, return the appropriate GEP instruction. 108 if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) 109 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) 110 if (PTy->getAddressSpace() == DPTy->getAddressSpace() 111 && PTy->getElementType()->isSized()) { 112 SmallVector<Value*, 8> IdxList; 113 Value *Zero = 114 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); 115 IdxList.push_back(Zero); 116 Type *ElTy = PTy->getElementType(); 117 while (ElTy != DPTy->getElementType()) { 118 if (StructType *STy = dyn_cast<StructType>(ElTy)) { 119 if (STy->getNumElements() == 0) break; 120 ElTy = STy->getElementType(0); 121 IdxList.push_back(Zero); 122 } else if (SequentialType *STy = 123 dyn_cast<SequentialType>(ElTy)) { 124 ElTy = STy->getElementType(); 125 IdxList.push_back(Zero); 126 } else { 127 break; 128 } 129 } 130 131 if (ElTy == DPTy->getElementType()) 132 // This GEP is inbounds because all indices are zero. 133 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(), 134 V, IdxList); 135 } 136 137 // Handle casts from one vector constant to another. We know that the src 138 // and dest type have the same size (otherwise its an illegal cast). 139 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 140 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { 141 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() && 142 "Not cast between same sized vectors!"); 143 SrcTy = nullptr; 144 // First, check for null. Undef is already handled. 145 if (isa<ConstantAggregateZero>(V)) 146 return Constant::getNullValue(DestTy); 147 148 // Handle ConstantVector and ConstantAggregateVector. 149 return BitCastConstantVector(V, DestPTy); 150 } 151 152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 153 // This allows for other simplifications (although some of them 154 // can only be handled by Analysis/ConstantFolding.cpp). 155 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 156 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 157 } 158 159 // Finally, implement bitcast folding now. The code below doesn't handle 160 // bitcast right. 161 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. 162 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 163 164 // Handle integral constant input. 165 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 166 if (DestTy->isIntegerTy()) 167 // Integral -> Integral. This is a no-op because the bit widths must 168 // be the same. Consequently, we just fold to V. 169 return V; 170 171 // See note below regarding the PPC_FP128 restriction. 172 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 173 return ConstantFP::get(DestTy->getContext(), 174 APFloat(DestTy->getFltSemantics(), 175 CI->getValue())); 176 177 // Otherwise, can't fold this (vector?) 178 return nullptr; 179 } 180 181 // Handle ConstantFP input: FP -> Integral. 182 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 183 // PPC_FP128 is really the sum of two consecutive doubles, where the first 184 // double is always stored first in memory, regardless of the target 185 // endianness. The memory layout of i128, however, depends on the target 186 // endianness, and so we can't fold this without target endianness 187 // information. This should instead be handled by 188 // Analysis/ConstantFolding.cpp 189 if (FP->getType()->isPPC_FP128Ty()) 190 return nullptr; 191 192 // Make sure dest type is compatible with the folded integer constant. 193 if (!DestTy->isIntegerTy()) 194 return nullptr; 195 196 return ConstantInt::get(FP->getContext(), 197 FP->getValueAPF().bitcastToAPInt()); 198 } 199 200 return nullptr; 201 } 202 203 204 /// V is an integer constant which only has a subset of its bytes used. 205 /// The bytes used are indicated by ByteStart (which is the first byte used, 206 /// counting from the least significant byte) and ByteSize, which is the number 207 /// of bytes used. 208 /// 209 /// This function analyzes the specified constant to see if the specified byte 210 /// range can be returned as a simplified constant. If so, the constant is 211 /// returned, otherwise null is returned. 212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, 213 unsigned ByteSize) { 214 assert(C->getType()->isIntegerTy() && 215 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && 216 "Non-byte sized integer input"); 217 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; 218 assert(ByteSize && "Must be accessing some piece"); 219 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); 220 assert(ByteSize != CSize && "Should not extract everything"); 221 222 // Constant Integers are simple. 223 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 224 APInt V = CI->getValue(); 225 if (ByteStart) 226 V.lshrInPlace(ByteStart*8); 227 V = V.trunc(ByteSize*8); 228 return ConstantInt::get(CI->getContext(), V); 229 } 230 231 // In the input is a constant expr, we might be able to recursively simplify. 232 // If not, we definitely can't do anything. 233 ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 234 if (!CE) return nullptr; 235 236 switch (CE->getOpcode()) { 237 default: return nullptr; 238 case Instruction::Or: { 239 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 240 if (!RHS) 241 return nullptr; 242 243 // X | -1 -> -1. 244 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) 245 if (RHSC->isMinusOne()) 246 return RHSC; 247 248 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 249 if (!LHS) 250 return nullptr; 251 return ConstantExpr::getOr(LHS, RHS); 252 } 253 case Instruction::And: { 254 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 255 if (!RHS) 256 return nullptr; 257 258 // X & 0 -> 0. 259 if (RHS->isNullValue()) 260 return RHS; 261 262 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 263 if (!LHS) 264 return nullptr; 265 return ConstantExpr::getAnd(LHS, RHS); 266 } 267 case Instruction::LShr: { 268 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 269 if (!Amt) 270 return nullptr; 271 APInt ShAmt = Amt->getValue(); 272 // Cannot analyze non-byte shifts. 273 if ((ShAmt & 7) != 0) 274 return nullptr; 275 ShAmt.lshrInPlace(3); 276 277 // If the extract is known to be all zeros, return zero. 278 if (ShAmt.uge(CSize - ByteStart)) 279 return Constant::getNullValue( 280 IntegerType::get(CE->getContext(), ByteSize * 8)); 281 // If the extract is known to be fully in the input, extract it. 282 if (ShAmt.ule(CSize - (ByteStart + ByteSize))) 283 return ExtractConstantBytes(CE->getOperand(0), 284 ByteStart + ShAmt.getZExtValue(), ByteSize); 285 286 // TODO: Handle the 'partially zero' case. 287 return nullptr; 288 } 289 290 case Instruction::Shl: { 291 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 292 if (!Amt) 293 return nullptr; 294 APInt ShAmt = Amt->getValue(); 295 // Cannot analyze non-byte shifts. 296 if ((ShAmt & 7) != 0) 297 return nullptr; 298 ShAmt.lshrInPlace(3); 299 300 // If the extract is known to be all zeros, return zero. 301 if (ShAmt.uge(ByteStart + ByteSize)) 302 return Constant::getNullValue( 303 IntegerType::get(CE->getContext(), ByteSize * 8)); 304 // If the extract is known to be fully in the input, extract it. 305 if (ShAmt.ule(ByteStart)) 306 return ExtractConstantBytes(CE->getOperand(0), 307 ByteStart - ShAmt.getZExtValue(), ByteSize); 308 309 // TODO: Handle the 'partially zero' case. 310 return nullptr; 311 } 312 313 case Instruction::ZExt: { 314 unsigned SrcBitSize = 315 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); 316 317 // If extracting something that is completely zero, return 0. 318 if (ByteStart*8 >= SrcBitSize) 319 return Constant::getNullValue(IntegerType::get(CE->getContext(), 320 ByteSize*8)); 321 322 // If exactly extracting the input, return it. 323 if (ByteStart == 0 && ByteSize*8 == SrcBitSize) 324 return CE->getOperand(0); 325 326 // If extracting something completely in the input, if the input is a 327 // multiple of 8 bits, recurse. 328 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) 329 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); 330 331 // Otherwise, if extracting a subset of the input, which is not multiple of 332 // 8 bits, do a shift and trunc to get the bits. 333 if ((ByteStart+ByteSize)*8 < SrcBitSize) { 334 assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); 335 Constant *Res = CE->getOperand(0); 336 if (ByteStart) 337 Res = ConstantExpr::getLShr(Res, 338 ConstantInt::get(Res->getType(), ByteStart*8)); 339 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), 340 ByteSize*8)); 341 } 342 343 // TODO: Handle the 'partially zero' case. 344 return nullptr; 345 } 346 } 347 } 348 349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known 350 /// factors factored out. If Folded is false, return null if no factoring was 351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 352 /// top-level folder. 353 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) { 354 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 355 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); 356 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 357 return ConstantExpr::getNUWMul(E, N); 358 } 359 360 if (StructType *STy = dyn_cast<StructType>(Ty)) 361 if (!STy->isPacked()) { 362 unsigned NumElems = STy->getNumElements(); 363 // An empty struct has size zero. 364 if (NumElems == 0) 365 return ConstantExpr::getNullValue(DestTy); 366 // Check for a struct with all members having the same size. 367 Constant *MemberSize = 368 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 369 bool AllSame = true; 370 for (unsigned i = 1; i != NumElems; ++i) 371 if (MemberSize != 372 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 373 AllSame = false; 374 break; 375 } 376 if (AllSame) { 377 Constant *N = ConstantInt::get(DestTy, NumElems); 378 return ConstantExpr::getNUWMul(MemberSize, N); 379 } 380 } 381 382 // Pointer size doesn't depend on the pointee type, so canonicalize them 383 // to an arbitrary pointee. 384 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 385 if (!PTy->getElementType()->isIntegerTy(1)) 386 return 387 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), 388 PTy->getAddressSpace()), 389 DestTy, true); 390 391 // If there's no interesting folding happening, bail so that we don't create 392 // a constant that looks like it needs folding but really doesn't. 393 if (!Folded) 394 return nullptr; 395 396 // Base case: Get a regular sizeof expression. 397 Constant *C = ConstantExpr::getSizeOf(Ty); 398 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 399 DestTy, false), 400 C, DestTy); 401 return C; 402 } 403 404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known 405 /// factors factored out. If Folded is false, return null if no factoring was 406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 407 /// top-level folder. 408 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) { 409 // The alignment of an array is equal to the alignment of the 410 // array element. Note that this is not always true for vectors. 411 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 412 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); 413 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 414 DestTy, 415 false), 416 C, DestTy); 417 return C; 418 } 419 420 if (StructType *STy = dyn_cast<StructType>(Ty)) { 421 // Packed structs always have an alignment of 1. 422 if (STy->isPacked()) 423 return ConstantInt::get(DestTy, 1); 424 425 // Otherwise, struct alignment is the maximum alignment of any member. 426 // Without target data, we can't compare much, but we can check to see 427 // if all the members have the same alignment. 428 unsigned NumElems = STy->getNumElements(); 429 // An empty struct has minimal alignment. 430 if (NumElems == 0) 431 return ConstantInt::get(DestTy, 1); 432 // Check for a struct with all members having the same alignment. 433 Constant *MemberAlign = 434 getFoldedAlignOf(STy->getElementType(0), DestTy, true); 435 bool AllSame = true; 436 for (unsigned i = 1; i != NumElems; ++i) 437 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { 438 AllSame = false; 439 break; 440 } 441 if (AllSame) 442 return MemberAlign; 443 } 444 445 // Pointer alignment doesn't depend on the pointee type, so canonicalize them 446 // to an arbitrary pointee. 447 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 448 if (!PTy->getElementType()->isIntegerTy(1)) 449 return 450 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), 451 1), 452 PTy->getAddressSpace()), 453 DestTy, true); 454 455 // If there's no interesting folding happening, bail so that we don't create 456 // a constant that looks like it needs folding but really doesn't. 457 if (!Folded) 458 return nullptr; 459 460 // Base case: Get a regular alignof expression. 461 Constant *C = ConstantExpr::getAlignOf(Ty); 462 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 463 DestTy, false), 464 C, DestTy); 465 return C; 466 } 467 468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with 469 /// any known factors factored out. If Folded is false, return null if no 470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression 471 /// back into the top-level folder. 472 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy, 473 bool Folded) { 474 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 475 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, 476 DestTy, false), 477 FieldNo, DestTy); 478 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 479 return ConstantExpr::getNUWMul(E, N); 480 } 481 482 if (StructType *STy = dyn_cast<StructType>(Ty)) 483 if (!STy->isPacked()) { 484 unsigned NumElems = STy->getNumElements(); 485 // An empty struct has no members. 486 if (NumElems == 0) 487 return nullptr; 488 // Check for a struct with all members having the same size. 489 Constant *MemberSize = 490 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 491 bool AllSame = true; 492 for (unsigned i = 1; i != NumElems; ++i) 493 if (MemberSize != 494 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 495 AllSame = false; 496 break; 497 } 498 if (AllSame) { 499 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, 500 false, 501 DestTy, 502 false), 503 FieldNo, DestTy); 504 return ConstantExpr::getNUWMul(MemberSize, N); 505 } 506 } 507 508 // If there's no interesting folding happening, bail so that we don't create 509 // a constant that looks like it needs folding but really doesn't. 510 if (!Folded) 511 return nullptr; 512 513 // Base case: Get a regular offsetof expression. 514 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); 515 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 516 DestTy, false), 517 C, DestTy); 518 return C; 519 } 520 521 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 522 Type *DestTy) { 523 if (isa<UndefValue>(V)) { 524 // zext(undef) = 0, because the top bits will be zero. 525 // sext(undef) = 0, because the top bits will all be the same. 526 // [us]itofp(undef) = 0, because the result value is bounded. 527 if (opc == Instruction::ZExt || opc == Instruction::SExt || 528 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 529 return Constant::getNullValue(DestTy); 530 return UndefValue::get(DestTy); 531 } 532 533 if (V->isNullValue() && !DestTy->isX86_MMXTy() && 534 opc != Instruction::AddrSpaceCast) 535 return Constant::getNullValue(DestTy); 536 537 // If the cast operand is a constant expression, there's a few things we can 538 // do to try to simplify it. 539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 540 if (CE->isCast()) { 541 // Try hard to fold cast of cast because they are often eliminable. 542 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 543 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); 544 } else if (CE->getOpcode() == Instruction::GetElementPtr && 545 // Do not fold addrspacecast (gep 0, .., 0). It might make the 546 // addrspacecast uncanonicalized. 547 opc != Instruction::AddrSpaceCast && 548 // Do not fold bitcast (gep) with inrange index, as this loses 549 // information. 550 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() && 551 // Do not fold if the gep type is a vector, as bitcasting 552 // operand 0 of a vector gep will result in a bitcast between 553 // different sizes. 554 !CE->getType()->isVectorTy()) { 555 // If all of the indexes in the GEP are null values, there is no pointer 556 // adjustment going on. We might as well cast the source pointer. 557 bool isAllNull = true; 558 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 559 if (!CE->getOperand(i)->isNullValue()) { 560 isAllNull = false; 561 break; 562 } 563 if (isAllNull) 564 // This is casting one pointer type to another, always BitCast 565 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); 566 } 567 } 568 569 // If the cast operand is a constant vector, perform the cast by 570 // operating on each element. In the cast of bitcasts, the element 571 // count may be mismatched; don't attempt to handle that here. 572 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 573 DestTy->isVectorTy() && 574 DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) { 575 SmallVector<Constant*, 16> res; 576 VectorType *DestVecTy = cast<VectorType>(DestTy); 577 Type *DstEltTy = DestVecTy->getElementType(); 578 Type *Ty = IntegerType::get(V->getContext(), 32); 579 for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) { 580 Constant *C = 581 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 582 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); 583 } 584 return ConstantVector::get(res); 585 } 586 587 // We actually have to do a cast now. Perform the cast according to the 588 // opcode specified. 589 switch (opc) { 590 default: 591 llvm_unreachable("Failed to cast constant expression"); 592 case Instruction::FPTrunc: 593 case Instruction::FPExt: 594 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 595 bool ignored; 596 APFloat Val = FPC->getValueAPF(); 597 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() : 598 DestTy->isFloatTy() ? APFloat::IEEEsingle() : 599 DestTy->isDoubleTy() ? APFloat::IEEEdouble() : 600 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() : 601 DestTy->isFP128Ty() ? APFloat::IEEEquad() : 602 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() : 603 APFloat::Bogus(), 604 APFloat::rmNearestTiesToEven, &ignored); 605 return ConstantFP::get(V->getContext(), Val); 606 } 607 return nullptr; // Can't fold. 608 case Instruction::FPToUI: 609 case Instruction::FPToSI: 610 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 611 const APFloat &V = FPC->getValueAPF(); 612 bool ignored; 613 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 614 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 615 if (APFloat::opInvalidOp == 616 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 617 // Undefined behavior invoked - the destination type can't represent 618 // the input constant. 619 return UndefValue::get(DestTy); 620 } 621 return ConstantInt::get(FPC->getContext(), IntVal); 622 } 623 return nullptr; // Can't fold. 624 case Instruction::IntToPtr: //always treated as unsigned 625 if (V->isNullValue()) // Is it an integral null value? 626 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 627 return nullptr; // Other pointer types cannot be casted 628 case Instruction::PtrToInt: // always treated as unsigned 629 // Is it a null pointer value? 630 if (V->isNullValue()) 631 return ConstantInt::get(DestTy, 0); 632 // If this is a sizeof-like expression, pull out multiplications by 633 // known factors to expose them to subsequent folding. If it's an 634 // alignof-like expression, factor out known factors. 635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 636 if (CE->getOpcode() == Instruction::GetElementPtr && 637 CE->getOperand(0)->isNullValue()) { 638 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and 639 // getFoldedAlignOf() don't handle the case when DestTy is a vector of 640 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see 641 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this 642 // happen in one "real" C-code test case, so it does not seem to be an 643 // important optimization to handle vectors here. For now, simply bail 644 // out. 645 if (DestTy->isVectorTy()) 646 return nullptr; 647 GEPOperator *GEPO = cast<GEPOperator>(CE); 648 Type *Ty = GEPO->getSourceElementType(); 649 if (CE->getNumOperands() == 2) { 650 // Handle a sizeof-like expression. 651 Constant *Idx = CE->getOperand(1); 652 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); 653 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { 654 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, 655 DestTy, false), 656 Idx, DestTy); 657 return ConstantExpr::getMul(C, Idx); 658 } 659 } else if (CE->getNumOperands() == 3 && 660 CE->getOperand(1)->isNullValue()) { 661 // Handle an alignof-like expression. 662 if (StructType *STy = dyn_cast<StructType>(Ty)) 663 if (!STy->isPacked()) { 664 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); 665 if (CI->isOne() && 666 STy->getNumElements() == 2 && 667 STy->getElementType(0)->isIntegerTy(1)) { 668 return getFoldedAlignOf(STy->getElementType(1), DestTy, false); 669 } 670 } 671 // Handle an offsetof-like expression. 672 if (Ty->isStructTy() || Ty->isArrayTy()) { 673 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), 674 DestTy, false)) 675 return C; 676 } 677 } 678 } 679 // Other pointer types cannot be casted 680 return nullptr; 681 case Instruction::UIToFP: 682 case Instruction::SIToFP: 683 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 684 const APInt &api = CI->getValue(); 685 APFloat apf(DestTy->getFltSemantics(), 686 APInt::getNullValue(DestTy->getPrimitiveSizeInBits())); 687 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 688 APFloat::rmNearestTiesToEven); 689 return ConstantFP::get(V->getContext(), apf); 690 } 691 return nullptr; 692 case Instruction::ZExt: 693 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 694 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 695 return ConstantInt::get(V->getContext(), 696 CI->getValue().zext(BitWidth)); 697 } 698 return nullptr; 699 case Instruction::SExt: 700 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 701 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 702 return ConstantInt::get(V->getContext(), 703 CI->getValue().sext(BitWidth)); 704 } 705 return nullptr; 706 case Instruction::Trunc: { 707 if (V->getType()->isVectorTy()) 708 return nullptr; 709 710 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 711 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 712 return ConstantInt::get(V->getContext(), 713 CI->getValue().trunc(DestBitWidth)); 714 } 715 716 // The input must be a constantexpr. See if we can simplify this based on 717 // the bytes we are demanding. Only do this if the source and dest are an 718 // even multiple of a byte. 719 if ((DestBitWidth & 7) == 0 && 720 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) 721 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) 722 return Res; 723 724 return nullptr; 725 } 726 case Instruction::BitCast: 727 return FoldBitCast(V, DestTy); 728 case Instruction::AddrSpaceCast: 729 return nullptr; 730 } 731 } 732 733 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 734 Constant *V1, Constant *V2) { 735 // Check for i1 and vector true/false conditions. 736 if (Cond->isNullValue()) return V2; 737 if (Cond->isAllOnesValue()) return V1; 738 739 // If the condition is a vector constant, fold the result elementwise. 740 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 741 SmallVector<Constant*, 16> Result; 742 Type *Ty = IntegerType::get(CondV->getContext(), 32); 743 for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){ 744 Constant *V; 745 Constant *V1Element = ConstantExpr::getExtractElement(V1, 746 ConstantInt::get(Ty, i)); 747 Constant *V2Element = ConstantExpr::getExtractElement(V2, 748 ConstantInt::get(Ty, i)); 749 auto *Cond = cast<Constant>(CondV->getOperand(i)); 750 if (V1Element == V2Element) { 751 V = V1Element; 752 } else if (isa<UndefValue>(Cond)) { 753 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 754 } else { 755 if (!isa<ConstantInt>(Cond)) break; 756 V = Cond->isNullValue() ? V2Element : V1Element; 757 } 758 Result.push_back(V); 759 } 760 761 // If we were able to build the vector, return it. 762 if (Result.size() == V1->getType()->getVectorNumElements()) 763 return ConstantVector::get(Result); 764 } 765 766 if (isa<UndefValue>(Cond)) { 767 if (isa<UndefValue>(V1)) return V1; 768 return V2; 769 } 770 if (isa<UndefValue>(V1)) return V2; 771 if (isa<UndefValue>(V2)) return V1; 772 if (V1 == V2) return V1; 773 774 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { 775 if (TrueVal->getOpcode() == Instruction::Select) 776 if (TrueVal->getOperand(0) == Cond) 777 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); 778 } 779 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { 780 if (FalseVal->getOpcode() == Instruction::Select) 781 if (FalseVal->getOperand(0) == Cond) 782 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); 783 } 784 785 return nullptr; 786 } 787 788 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 789 Constant *Idx) { 790 // extractelt undef, C -> undef 791 // extractelt C, undef -> undef 792 if (isa<UndefValue>(Val) || isa<UndefValue>(Idx)) 793 return UndefValue::get(Val->getType()->getVectorElementType()); 794 795 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) { 796 // ee({w,x,y,z}, wrong_value) -> undef 797 if (CIdx->uge(Val->getType()->getVectorNumElements())) 798 return UndefValue::get(Val->getType()->getVectorElementType()); 799 return Val->getAggregateElement(CIdx->getZExtValue()); 800 } 801 return nullptr; 802 } 803 804 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 805 Constant *Elt, 806 Constant *Idx) { 807 if (isa<UndefValue>(Idx)) 808 return UndefValue::get(Val->getType()); 809 810 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 811 if (!CIdx) return nullptr; 812 813 unsigned NumElts = Val->getType()->getVectorNumElements(); 814 if (CIdx->uge(NumElts)) 815 return UndefValue::get(Val->getType()); 816 817 SmallVector<Constant*, 16> Result; 818 Result.reserve(NumElts); 819 auto *Ty = Type::getInt32Ty(Val->getContext()); 820 uint64_t IdxVal = CIdx->getZExtValue(); 821 for (unsigned i = 0; i != NumElts; ++i) { 822 if (i == IdxVal) { 823 Result.push_back(Elt); 824 continue; 825 } 826 827 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 828 Result.push_back(C); 829 } 830 831 return ConstantVector::get(Result); 832 } 833 834 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, 835 Constant *V2, 836 Constant *Mask) { 837 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 838 Type *EltTy = V1->getType()->getVectorElementType(); 839 840 // Undefined shuffle mask -> undefined value. 841 if (isa<UndefValue>(Mask)) 842 return UndefValue::get(VectorType::get(EltTy, MaskNumElts)); 843 844 // Don't break the bitcode reader hack. 845 if (isa<ConstantExpr>(Mask)) return nullptr; 846 847 unsigned SrcNumElts = V1->getType()->getVectorNumElements(); 848 849 // Loop over the shuffle mask, evaluating each element. 850 SmallVector<Constant*, 32> Result; 851 for (unsigned i = 0; i != MaskNumElts; ++i) { 852 int Elt = ShuffleVectorInst::getMaskValue(Mask, i); 853 if (Elt == -1) { 854 Result.push_back(UndefValue::get(EltTy)); 855 continue; 856 } 857 Constant *InElt; 858 if (unsigned(Elt) >= SrcNumElts*2) 859 InElt = UndefValue::get(EltTy); 860 else if (unsigned(Elt) >= SrcNumElts) { 861 Type *Ty = IntegerType::get(V2->getContext(), 32); 862 InElt = 863 ConstantExpr::getExtractElement(V2, 864 ConstantInt::get(Ty, Elt - SrcNumElts)); 865 } else { 866 Type *Ty = IntegerType::get(V1->getContext(), 32); 867 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 868 } 869 Result.push_back(InElt); 870 } 871 872 return ConstantVector::get(Result); 873 } 874 875 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 876 ArrayRef<unsigned> Idxs) { 877 // Base case: no indices, so return the entire value. 878 if (Idxs.empty()) 879 return Agg; 880 881 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 882 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 883 884 return nullptr; 885 } 886 887 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 888 Constant *Val, 889 ArrayRef<unsigned> Idxs) { 890 // Base case: no indices, so replace the entire value. 891 if (Idxs.empty()) 892 return Val; 893 894 unsigned NumElts; 895 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 896 NumElts = ST->getNumElements(); 897 else 898 NumElts = cast<SequentialType>(Agg->getType())->getNumElements(); 899 900 SmallVector<Constant*, 32> Result; 901 for (unsigned i = 0; i != NumElts; ++i) { 902 Constant *C = Agg->getAggregateElement(i); 903 if (!C) return nullptr; 904 905 if (Idxs[0] == i) 906 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 907 908 Result.push_back(C); 909 } 910 911 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 912 return ConstantStruct::get(ST, Result); 913 if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType())) 914 return ConstantArray::get(AT, Result); 915 return ConstantVector::get(Result); 916 } 917 918 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 919 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 920 921 // Handle scalar UndefValue. Vectors are always evaluated per element. 922 bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C); 923 924 if (HasScalarUndef) { 925 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 926 case Instruction::FNeg: 927 return C; // -undef -> undef 928 case Instruction::UnaryOpsEnd: 929 llvm_unreachable("Invalid UnaryOp"); 930 } 931 } 932 933 // Constant should not be UndefValue, unless these are vector constants. 934 assert(!HasScalarUndef && "Unexpected UndefValue"); 935 // We only have FP UnaryOps right now. 936 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 937 938 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 939 const APFloat &CV = CFP->getValueAPF(); 940 switch (Opcode) { 941 default: 942 break; 943 case Instruction::FNeg: 944 return ConstantFP::get(C->getContext(), neg(CV)); 945 } 946 } else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) { 947 // Fold each element and create a vector constant from those constants. 948 SmallVector<Constant*, 16> Result; 949 Type *Ty = IntegerType::get(VTy->getContext(), 32); 950 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 951 Constant *ExtractIdx = ConstantInt::get(Ty, i); 952 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 953 954 Result.push_back(ConstantExpr::get(Opcode, Elt)); 955 } 956 957 return ConstantVector::get(Result); 958 } 959 960 // We don't know how to fold this. 961 return nullptr; 962 } 963 964 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 965 Constant *C2) { 966 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 967 968 // Handle scalar UndefValue. Vectors are always evaluated per element. 969 bool HasScalarUndef = !C1->getType()->isVectorTy() && 970 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 971 if (HasScalarUndef) { 972 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 973 case Instruction::Xor: 974 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 975 // Handle undef ^ undef -> 0 special case. This is a common 976 // idiom (misuse). 977 return Constant::getNullValue(C1->getType()); 978 LLVM_FALLTHROUGH; 979 case Instruction::Add: 980 case Instruction::Sub: 981 return UndefValue::get(C1->getType()); 982 case Instruction::And: 983 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 984 return C1; 985 return Constant::getNullValue(C1->getType()); // undef & X -> 0 986 case Instruction::Mul: { 987 // undef * undef -> undef 988 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 989 return C1; 990 const APInt *CV; 991 // X * undef -> undef if X is odd 992 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 993 if ((*CV)[0]) 994 return UndefValue::get(C1->getType()); 995 996 // X * undef -> 0 otherwise 997 return Constant::getNullValue(C1->getType()); 998 } 999 case Instruction::SDiv: 1000 case Instruction::UDiv: 1001 // X / undef -> undef 1002 if (isa<UndefValue>(C2)) 1003 return C2; 1004 // undef / 0 -> undef 1005 // undef / 1 -> undef 1006 if (match(C2, m_Zero()) || match(C2, m_One())) 1007 return C1; 1008 // undef / X -> 0 otherwise 1009 return Constant::getNullValue(C1->getType()); 1010 case Instruction::URem: 1011 case Instruction::SRem: 1012 // X % undef -> undef 1013 if (match(C2, m_Undef())) 1014 return C2; 1015 // undef % 0 -> undef 1016 if (match(C2, m_Zero())) 1017 return C1; 1018 // undef % X -> 0 otherwise 1019 return Constant::getNullValue(C1->getType()); 1020 case Instruction::Or: // X | undef -> -1 1021 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 1022 return C1; 1023 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 1024 case Instruction::LShr: 1025 // X >>l undef -> undef 1026 if (isa<UndefValue>(C2)) 1027 return C2; 1028 // undef >>l 0 -> undef 1029 if (match(C2, m_Zero())) 1030 return C1; 1031 // undef >>l X -> 0 1032 return Constant::getNullValue(C1->getType()); 1033 case Instruction::AShr: 1034 // X >>a undef -> undef 1035 if (isa<UndefValue>(C2)) 1036 return C2; 1037 // undef >>a 0 -> undef 1038 if (match(C2, m_Zero())) 1039 return C1; 1040 // TODO: undef >>a X -> undef if the shift is exact 1041 // undef >>a X -> 0 1042 return Constant::getNullValue(C1->getType()); 1043 case Instruction::Shl: 1044 // X << undef -> undef 1045 if (isa<UndefValue>(C2)) 1046 return C2; 1047 // undef << 0 -> undef 1048 if (match(C2, m_Zero())) 1049 return C1; 1050 // undef << X -> 0 1051 return Constant::getNullValue(C1->getType()); 1052 case Instruction::FAdd: 1053 case Instruction::FSub: 1054 case Instruction::FMul: 1055 case Instruction::FDiv: 1056 case Instruction::FRem: 1057 // [any flop] undef, undef -> undef 1058 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1059 return C1; 1060 // [any flop] C, undef -> NaN 1061 // [any flop] undef, C -> NaN 1062 // We could potentially specialize NaN/Inf constants vs. 'normal' 1063 // constants (possibly differently depending on opcode and operand). This 1064 // would allow returning undef sometimes. But it is always safe to fold to 1065 // NaN because we can choose the undef operand as NaN, and any FP opcode 1066 // with a NaN operand will propagate NaN. 1067 return ConstantFP::getNaN(C1->getType()); 1068 case Instruction::BinaryOpsEnd: 1069 llvm_unreachable("Invalid BinaryOp"); 1070 } 1071 } 1072 1073 // Neither constant should be UndefValue, unless these are vector constants. 1074 assert(!HasScalarUndef && "Unexpected UndefValue"); 1075 1076 // Handle simplifications when the RHS is a constant int. 1077 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1078 switch (Opcode) { 1079 case Instruction::Add: 1080 if (CI2->isZero()) return C1; // X + 0 == X 1081 break; 1082 case Instruction::Sub: 1083 if (CI2->isZero()) return C1; // X - 0 == X 1084 break; 1085 case Instruction::Mul: 1086 if (CI2->isZero()) return C2; // X * 0 == 0 1087 if (CI2->isOne()) 1088 return C1; // X * 1 == X 1089 break; 1090 case Instruction::UDiv: 1091 case Instruction::SDiv: 1092 if (CI2->isOne()) 1093 return C1; // X / 1 == X 1094 if (CI2->isZero()) 1095 return UndefValue::get(CI2->getType()); // X / 0 == undef 1096 break; 1097 case Instruction::URem: 1098 case Instruction::SRem: 1099 if (CI2->isOne()) 1100 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 1101 if (CI2->isZero()) 1102 return UndefValue::get(CI2->getType()); // X % 0 == undef 1103 break; 1104 case Instruction::And: 1105 if (CI2->isZero()) return C2; // X & 0 == 0 1106 if (CI2->isMinusOne()) 1107 return C1; // X & -1 == X 1108 1109 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1110 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) 1111 if (CE1->getOpcode() == Instruction::ZExt) { 1112 unsigned DstWidth = CI2->getType()->getBitWidth(); 1113 unsigned SrcWidth = 1114 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1115 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1116 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) 1117 return C1; 1118 } 1119 1120 // If and'ing the address of a global with a constant, fold it. 1121 if (CE1->getOpcode() == Instruction::PtrToInt && 1122 isa<GlobalValue>(CE1->getOperand(0))) { 1123 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 1124 1125 MaybeAlign GVAlign; 1126 1127 if (Module *TheModule = GV->getParent()) { 1128 GVAlign = GV->getPointerAlignment(TheModule->getDataLayout()); 1129 1130 // If the function alignment is not specified then assume that it 1131 // is 4. 1132 // This is dangerous; on x86, the alignment of the pointer 1133 // corresponds to the alignment of the function, but might be less 1134 // than 4 if it isn't explicitly specified. 1135 // However, a fix for this behaviour was reverted because it 1136 // increased code size (see https://reviews.llvm.org/D55115) 1137 // FIXME: This code should be deleted once existing targets have 1138 // appropriate defaults 1139 if (!GVAlign && isa<Function>(GV)) 1140 GVAlign = Align(4); 1141 } else if (isa<Function>(GV)) { 1142 // Without a datalayout we have to assume the worst case: that the 1143 // function pointer isn't aligned at all. 1144 GVAlign = llvm::None; 1145 } else { 1146 GVAlign = MaybeAlign(GV->getAlignment()); 1147 } 1148 1149 if (GVAlign && *GVAlign > 1) { 1150 unsigned DstWidth = CI2->getType()->getBitWidth(); 1151 unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign)); 1152 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1153 1154 // If checking bits we know are clear, return zero. 1155 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 1156 return Constant::getNullValue(CI2->getType()); 1157 } 1158 } 1159 } 1160 break; 1161 case Instruction::Or: 1162 if (CI2->isZero()) return C1; // X | 0 == X 1163 if (CI2->isMinusOne()) 1164 return C2; // X | -1 == -1 1165 break; 1166 case Instruction::Xor: 1167 if (CI2->isZero()) return C1; // X ^ 0 == X 1168 1169 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1170 switch (CE1->getOpcode()) { 1171 default: break; 1172 case Instruction::ICmp: 1173 case Instruction::FCmp: 1174 // cmp pred ^ true -> cmp !pred 1175 assert(CI2->isOne()); 1176 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); 1177 pred = CmpInst::getInversePredicate(pred); 1178 return ConstantExpr::getCompare(pred, CE1->getOperand(0), 1179 CE1->getOperand(1)); 1180 } 1181 } 1182 break; 1183 case Instruction::AShr: 1184 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 1185 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) 1186 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. 1187 return ConstantExpr::getLShr(C1, C2); 1188 break; 1189 } 1190 } else if (isa<ConstantInt>(C1)) { 1191 // If C1 is a ConstantInt and C2 is not, swap the operands. 1192 if (Instruction::isCommutative(Opcode)) 1193 return ConstantExpr::get(Opcode, C2, C1); 1194 } 1195 1196 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 1197 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1198 const APInt &C1V = CI1->getValue(); 1199 const APInt &C2V = CI2->getValue(); 1200 switch (Opcode) { 1201 default: 1202 break; 1203 case Instruction::Add: 1204 return ConstantInt::get(CI1->getContext(), C1V + C2V); 1205 case Instruction::Sub: 1206 return ConstantInt::get(CI1->getContext(), C1V - C2V); 1207 case Instruction::Mul: 1208 return ConstantInt::get(CI1->getContext(), C1V * C2V); 1209 case Instruction::UDiv: 1210 assert(!CI2->isZero() && "Div by zero handled above"); 1211 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 1212 case Instruction::SDiv: 1213 assert(!CI2->isZero() && "Div by zero handled above"); 1214 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1215 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef 1216 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 1217 case Instruction::URem: 1218 assert(!CI2->isZero() && "Div by zero handled above"); 1219 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 1220 case Instruction::SRem: 1221 assert(!CI2->isZero() && "Div by zero handled above"); 1222 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1223 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef 1224 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 1225 case Instruction::And: 1226 return ConstantInt::get(CI1->getContext(), C1V & C2V); 1227 case Instruction::Or: 1228 return ConstantInt::get(CI1->getContext(), C1V | C2V); 1229 case Instruction::Xor: 1230 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 1231 case Instruction::Shl: 1232 if (C2V.ult(C1V.getBitWidth())) 1233 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 1234 return UndefValue::get(C1->getType()); // too big shift is undef 1235 case Instruction::LShr: 1236 if (C2V.ult(C1V.getBitWidth())) 1237 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 1238 return UndefValue::get(C1->getType()); // too big shift is undef 1239 case Instruction::AShr: 1240 if (C2V.ult(C1V.getBitWidth())) 1241 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 1242 return UndefValue::get(C1->getType()); // too big shift is undef 1243 } 1244 } 1245 1246 switch (Opcode) { 1247 case Instruction::SDiv: 1248 case Instruction::UDiv: 1249 case Instruction::URem: 1250 case Instruction::SRem: 1251 case Instruction::LShr: 1252 case Instruction::AShr: 1253 case Instruction::Shl: 1254 if (CI1->isZero()) return C1; 1255 break; 1256 default: 1257 break; 1258 } 1259 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 1260 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 1261 const APFloat &C1V = CFP1->getValueAPF(); 1262 const APFloat &C2V = CFP2->getValueAPF(); 1263 APFloat C3V = C1V; // copy for modification 1264 switch (Opcode) { 1265 default: 1266 break; 1267 case Instruction::FAdd: 1268 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 1269 return ConstantFP::get(C1->getContext(), C3V); 1270 case Instruction::FSub: 1271 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 1272 return ConstantFP::get(C1->getContext(), C3V); 1273 case Instruction::FMul: 1274 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 1275 return ConstantFP::get(C1->getContext(), C3V); 1276 case Instruction::FDiv: 1277 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 1278 return ConstantFP::get(C1->getContext(), C3V); 1279 case Instruction::FRem: 1280 (void)C3V.mod(C2V); 1281 return ConstantFP::get(C1->getContext(), C3V); 1282 } 1283 } 1284 } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) { 1285 // Fold each element and create a vector constant from those constants. 1286 SmallVector<Constant*, 16> Result; 1287 Type *Ty = IntegerType::get(VTy->getContext(), 32); 1288 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 1289 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1290 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 1291 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 1292 1293 // If any element of a divisor vector is zero, the whole op is undef. 1294 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) 1295 return UndefValue::get(VTy); 1296 1297 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); 1298 } 1299 1300 return ConstantVector::get(Result); 1301 } 1302 1303 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1304 // There are many possible foldings we could do here. We should probably 1305 // at least fold add of a pointer with an integer into the appropriate 1306 // getelementptr. This will improve alias analysis a bit. 1307 1308 // Given ((a + b) + c), if (b + c) folds to something interesting, return 1309 // (a + (b + c)). 1310 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 1311 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 1312 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 1313 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 1314 } 1315 } else if (isa<ConstantExpr>(C2)) { 1316 // If C2 is a constant expr and C1 isn't, flop them around and fold the 1317 // other way if possible. 1318 if (Instruction::isCommutative(Opcode)) 1319 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 1320 } 1321 1322 // i1 can be simplified in many cases. 1323 if (C1->getType()->isIntegerTy(1)) { 1324 switch (Opcode) { 1325 case Instruction::Add: 1326 case Instruction::Sub: 1327 return ConstantExpr::getXor(C1, C2); 1328 case Instruction::Mul: 1329 return ConstantExpr::getAnd(C1, C2); 1330 case Instruction::Shl: 1331 case Instruction::LShr: 1332 case Instruction::AShr: 1333 // We can assume that C2 == 0. If it were one the result would be 1334 // undefined because the shift value is as large as the bitwidth. 1335 return C1; 1336 case Instruction::SDiv: 1337 case Instruction::UDiv: 1338 // We can assume that C2 == 1. If it were zero the result would be 1339 // undefined through division by zero. 1340 return C1; 1341 case Instruction::URem: 1342 case Instruction::SRem: 1343 // We can assume that C2 == 1. If it were zero the result would be 1344 // undefined through division by zero. 1345 return ConstantInt::getFalse(C1->getContext()); 1346 default: 1347 break; 1348 } 1349 } 1350 1351 // We don't know how to fold this. 1352 return nullptr; 1353 } 1354 1355 /// This type is zero-sized if it's an array or structure of zero-sized types. 1356 /// The only leaf zero-sized type is an empty structure. 1357 static bool isMaybeZeroSizedType(Type *Ty) { 1358 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1359 if (STy->isOpaque()) return true; // Can't say. 1360 1361 // If all of elements have zero size, this does too. 1362 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1363 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; 1364 return true; 1365 1366 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1367 return isMaybeZeroSizedType(ATy->getElementType()); 1368 } 1369 return false; 1370 } 1371 1372 /// Compare the two constants as though they were getelementptr indices. 1373 /// This allows coercion of the types to be the same thing. 1374 /// 1375 /// If the two constants are the "same" (after coercion), return 0. If the 1376 /// first is less than the second, return -1, if the second is less than the 1377 /// first, return 1. If the constants are not integral, return -2. 1378 /// 1379 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { 1380 if (C1 == C2) return 0; 1381 1382 // Ok, we found a different index. If they are not ConstantInt, we can't do 1383 // anything with them. 1384 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) 1385 return -2; // don't know! 1386 1387 // We cannot compare the indices if they don't fit in an int64_t. 1388 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 || 1389 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64) 1390 return -2; // don't know! 1391 1392 // Ok, we have two differing integer indices. Sign extend them to be the same 1393 // type. 1394 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue(); 1395 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue(); 1396 1397 if (C1Val == C2Val) return 0; // They are equal 1398 1399 // If the type being indexed over is really just a zero sized type, there is 1400 // no pointer difference being made here. 1401 if (isMaybeZeroSizedType(ElTy)) 1402 return -2; // dunno. 1403 1404 // If they are really different, now that they are the same type, then we 1405 // found a difference! 1406 if (C1Val < C2Val) 1407 return -1; 1408 else 1409 return 1; 1410 } 1411 1412 /// This function determines if there is anything we can decide about the two 1413 /// constants provided. This doesn't need to handle simple things like 1414 /// ConstantFP comparisons, but should instead handle ConstantExprs. 1415 /// If we can determine that the two constants have a particular relation to 1416 /// each other, we should return the corresponding FCmpInst predicate, 1417 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in 1418 /// ConstantFoldCompareInstruction. 1419 /// 1420 /// To simplify this code we canonicalize the relation so that the first 1421 /// operand is always the most "complex" of the two. We consider ConstantFP 1422 /// to be the simplest, and ConstantExprs to be the most complex. 1423 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { 1424 assert(V1->getType() == V2->getType() && 1425 "Cannot compare values of different types!"); 1426 1427 // We do not know if a constant expression will evaluate to a number or NaN. 1428 // Therefore, we can only say that the relation is unordered or equal. 1429 if (V1 == V2) return FCmpInst::FCMP_UEQ; 1430 1431 if (!isa<ConstantExpr>(V1)) { 1432 if (!isa<ConstantExpr>(V2)) { 1433 // Simple case, use the standard constant folder. 1434 ConstantInt *R = nullptr; 1435 R = dyn_cast<ConstantInt>( 1436 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); 1437 if (R && !R->isZero()) 1438 return FCmpInst::FCMP_OEQ; 1439 R = dyn_cast<ConstantInt>( 1440 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); 1441 if (R && !R->isZero()) 1442 return FCmpInst::FCMP_OLT; 1443 R = dyn_cast<ConstantInt>( 1444 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); 1445 if (R && !R->isZero()) 1446 return FCmpInst::FCMP_OGT; 1447 1448 // Nothing more we can do 1449 return FCmpInst::BAD_FCMP_PREDICATE; 1450 } 1451 1452 // If the first operand is simple and second is ConstantExpr, swap operands. 1453 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); 1454 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) 1455 return FCmpInst::getSwappedPredicate(SwappedRelation); 1456 } else { 1457 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1458 // constantexpr or a simple constant. 1459 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1460 switch (CE1->getOpcode()) { 1461 case Instruction::FPTrunc: 1462 case Instruction::FPExt: 1463 case Instruction::UIToFP: 1464 case Instruction::SIToFP: 1465 // We might be able to do something with these but we don't right now. 1466 break; 1467 default: 1468 break; 1469 } 1470 } 1471 // There are MANY other foldings that we could perform here. They will 1472 // probably be added on demand, as they seem needed. 1473 return FCmpInst::BAD_FCMP_PREDICATE; 1474 } 1475 1476 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 1477 const GlobalValue *GV2) { 1478 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 1479 if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage()) 1480 return true; 1481 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 1482 Type *Ty = GVar->getValueType(); 1483 // A global with opaque type might end up being zero sized. 1484 if (!Ty->isSized()) 1485 return true; 1486 // A global with an empty type might lie at the address of any other 1487 // global. 1488 if (Ty->isEmptyTy()) 1489 return true; 1490 } 1491 return false; 1492 }; 1493 // Don't try to decide equality of aliases. 1494 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 1495 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 1496 return ICmpInst::ICMP_NE; 1497 return ICmpInst::BAD_ICMP_PREDICATE; 1498 } 1499 1500 /// This function determines if there is anything we can decide about the two 1501 /// constants provided. This doesn't need to handle simple things like integer 1502 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 1503 /// If we can determine that the two constants have a particular relation to 1504 /// each other, we should return the corresponding ICmp predicate, otherwise 1505 /// return ICmpInst::BAD_ICMP_PREDICATE. 1506 /// 1507 /// To simplify this code we canonicalize the relation so that the first 1508 /// operand is always the most "complex" of the two. We consider simple 1509 /// constants (like ConstantInt) to be the simplest, followed by 1510 /// GlobalValues, followed by ConstantExpr's (the most complex). 1511 /// 1512 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, 1513 bool isSigned) { 1514 assert(V1->getType() == V2->getType() && 1515 "Cannot compare different types of values!"); 1516 if (V1 == V2) return ICmpInst::ICMP_EQ; 1517 1518 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && 1519 !isa<BlockAddress>(V1)) { 1520 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && 1521 !isa<BlockAddress>(V2)) { 1522 // We distilled this down to a simple case, use the standard constant 1523 // folder. 1524 ConstantInt *R = nullptr; 1525 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; 1526 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1527 if (R && !R->isZero()) 1528 return pred; 1529 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1530 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1531 if (R && !R->isZero()) 1532 return pred; 1533 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1534 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1535 if (R && !R->isZero()) 1536 return pred; 1537 1538 // If we couldn't figure it out, bail. 1539 return ICmpInst::BAD_ICMP_PREDICATE; 1540 } 1541 1542 // If the first operand is simple, swap operands. 1543 ICmpInst::Predicate SwappedRelation = 1544 evaluateICmpRelation(V2, V1, isSigned); 1545 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1546 return ICmpInst::getSwappedPredicate(SwappedRelation); 1547 1548 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1549 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1550 ICmpInst::Predicate SwappedRelation = 1551 evaluateICmpRelation(V2, V1, isSigned); 1552 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1553 return ICmpInst::getSwappedPredicate(SwappedRelation); 1554 return ICmpInst::BAD_ICMP_PREDICATE; 1555 } 1556 1557 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1558 // constant (which, since the types must match, means that it's a 1559 // ConstantPointerNull). 1560 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1561 return areGlobalsPotentiallyEqual(GV, GV2); 1562 } else if (isa<BlockAddress>(V2)) { 1563 return ICmpInst::ICMP_NE; // Globals never equal labels. 1564 } else { 1565 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); 1566 // GlobalVals can never be null unless they have external weak linkage. 1567 // We don't try to evaluate aliases here. 1568 // NOTE: We should not be doing this constant folding if null pointer 1569 // is considered valid for the function. But currently there is no way to 1570 // query it from the Constant type. 1571 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1572 !NullPointerIsDefined(nullptr /* F */, 1573 GV->getType()->getAddressSpace())) 1574 return ICmpInst::ICMP_NE; 1575 } 1576 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1577 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1578 ICmpInst::Predicate SwappedRelation = 1579 evaluateICmpRelation(V2, V1, isSigned); 1580 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1581 return ICmpInst::getSwappedPredicate(SwappedRelation); 1582 return ICmpInst::BAD_ICMP_PREDICATE; 1583 } 1584 1585 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1586 // constant (which, since the types must match, means that it is a 1587 // ConstantPointerNull). 1588 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1589 // Block address in another function can't equal this one, but block 1590 // addresses in the current function might be the same if blocks are 1591 // empty. 1592 if (BA2->getFunction() != BA->getFunction()) 1593 return ICmpInst::ICMP_NE; 1594 } else { 1595 // Block addresses aren't null, don't equal the address of globals. 1596 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && 1597 "Canonicalization guarantee!"); 1598 return ICmpInst::ICMP_NE; 1599 } 1600 } else { 1601 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1602 // constantexpr, a global, block address, or a simple constant. 1603 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1604 Constant *CE1Op0 = CE1->getOperand(0); 1605 1606 switch (CE1->getOpcode()) { 1607 case Instruction::Trunc: 1608 case Instruction::FPTrunc: 1609 case Instruction::FPExt: 1610 case Instruction::FPToUI: 1611 case Instruction::FPToSI: 1612 break; // We can't evaluate floating point casts or truncations. 1613 1614 case Instruction::UIToFP: 1615 case Instruction::SIToFP: 1616 case Instruction::BitCast: 1617 case Instruction::ZExt: 1618 case Instruction::SExt: 1619 // We can't evaluate floating point casts or truncations. 1620 if (CE1Op0->getType()->isFPOrFPVectorTy()) 1621 break; 1622 1623 // If the cast is not actually changing bits, and the second operand is a 1624 // null pointer, do the comparison with the pre-casted value. 1625 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) { 1626 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; 1627 if (CE1->getOpcode() == Instruction::SExt) isSigned = true; 1628 return evaluateICmpRelation(CE1Op0, 1629 Constant::getNullValue(CE1Op0->getType()), 1630 isSigned); 1631 } 1632 break; 1633 1634 case Instruction::GetElementPtr: { 1635 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1636 // Ok, since this is a getelementptr, we know that the constant has a 1637 // pointer type. Check the various cases. 1638 if (isa<ConstantPointerNull>(V2)) { 1639 // If we are comparing a GEP to a null pointer, check to see if the base 1640 // of the GEP equals the null pointer. 1641 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1642 if (GV->hasExternalWeakLinkage()) 1643 // Weak linkage GVals could be zero or not. We're comparing that 1644 // to null pointer so its greater-or-equal 1645 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 1646 else 1647 // If its not weak linkage, the GVal must have a non-zero address 1648 // so the result is greater-than 1649 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1650 } else if (isa<ConstantPointerNull>(CE1Op0)) { 1651 // If we are indexing from a null pointer, check to see if we have any 1652 // non-zero indices. 1653 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) 1654 if (!CE1->getOperand(i)->isNullValue()) 1655 // Offsetting from null, must not be equal. 1656 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1657 // Only zero indexes from null, must still be zero. 1658 return ICmpInst::ICMP_EQ; 1659 } 1660 // Otherwise, we can't really say if the first operand is null or not. 1661 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1662 if (isa<ConstantPointerNull>(CE1Op0)) { 1663 if (GV2->hasExternalWeakLinkage()) 1664 // Weak linkage GVals could be zero or not. We're comparing it to 1665 // a null pointer, so its less-or-equal 1666 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1667 else 1668 // If its not weak linkage, the GVal must have a non-zero address 1669 // so the result is less-than 1670 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1671 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1672 if (GV == GV2) { 1673 // If this is a getelementptr of the same global, then it must be 1674 // different. Because the types must match, the getelementptr could 1675 // only have at most one index, and because we fold getelementptr's 1676 // with a single zero index, it must be nonzero. 1677 assert(CE1->getNumOperands() == 2 && 1678 !CE1->getOperand(1)->isNullValue() && 1679 "Surprising getelementptr!"); 1680 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1681 } else { 1682 if (CE1GEP->hasAllZeroIndices()) 1683 return areGlobalsPotentiallyEqual(GV, GV2); 1684 return ICmpInst::BAD_ICMP_PREDICATE; 1685 } 1686 } 1687 } else { 1688 ConstantExpr *CE2 = cast<ConstantExpr>(V2); 1689 Constant *CE2Op0 = CE2->getOperand(0); 1690 1691 // There are MANY other foldings that we could perform here. They will 1692 // probably be added on demand, as they seem needed. 1693 switch (CE2->getOpcode()) { 1694 default: break; 1695 case Instruction::GetElementPtr: 1696 // By far the most common case to handle is when the base pointers are 1697 // obviously to the same global. 1698 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1699 // Don't know relative ordering, but check for inequality. 1700 if (CE1Op0 != CE2Op0) { 1701 GEPOperator *CE2GEP = cast<GEPOperator>(CE2); 1702 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1703 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1704 cast<GlobalValue>(CE2Op0)); 1705 return ICmpInst::BAD_ICMP_PREDICATE; 1706 } 1707 // Ok, we know that both getelementptr instructions are based on the 1708 // same global. From this, we can precisely determine the relative 1709 // ordering of the resultant pointers. 1710 unsigned i = 1; 1711 1712 // The logic below assumes that the result of the comparison 1713 // can be determined by finding the first index that differs. 1714 // This doesn't work if there is over-indexing in any 1715 // subsequent indices, so check for that case first. 1716 if (!CE1->isGEPWithNoNotionalOverIndexing() || 1717 !CE2->isGEPWithNoNotionalOverIndexing()) 1718 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1719 1720 // Compare all of the operands the GEP's have in common. 1721 gep_type_iterator GTI = gep_type_begin(CE1); 1722 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); 1723 ++i, ++GTI) 1724 switch (IdxCompare(CE1->getOperand(i), 1725 CE2->getOperand(i), GTI.getIndexedType())) { 1726 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; 1727 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; 1728 case -2: return ICmpInst::BAD_ICMP_PREDICATE; 1729 } 1730 1731 // Ok, we ran out of things they have in common. If any leftovers 1732 // are non-zero then we have a difference, otherwise we are equal. 1733 for (; i < CE1->getNumOperands(); ++i) 1734 if (!CE1->getOperand(i)->isNullValue()) { 1735 if (isa<ConstantInt>(CE1->getOperand(i))) 1736 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1737 else 1738 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1739 } 1740 1741 for (; i < CE2->getNumOperands(); ++i) 1742 if (!CE2->getOperand(i)->isNullValue()) { 1743 if (isa<ConstantInt>(CE2->getOperand(i))) 1744 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1745 else 1746 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1747 } 1748 return ICmpInst::ICMP_EQ; 1749 } 1750 } 1751 } 1752 break; 1753 } 1754 default: 1755 break; 1756 } 1757 } 1758 1759 return ICmpInst::BAD_ICMP_PREDICATE; 1760 } 1761 1762 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 1763 Constant *C1, Constant *C2) { 1764 Type *ResultTy; 1765 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1766 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1767 VT->getNumElements()); 1768 else 1769 ResultTy = Type::getInt1Ty(C1->getContext()); 1770 1771 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1772 if (pred == FCmpInst::FCMP_FALSE) 1773 return Constant::getNullValue(ResultTy); 1774 1775 if (pred == FCmpInst::FCMP_TRUE) 1776 return Constant::getAllOnesValue(ResultTy); 1777 1778 // Handle some degenerate cases first 1779 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1780 CmpInst::Predicate Predicate = CmpInst::Predicate(pred); 1781 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1782 // For EQ and NE, we can always pick a value for the undef to make the 1783 // predicate pass or fail, so we can return undef. 1784 // Also, if both operands are undef, we can return undef for int comparison. 1785 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1786 return UndefValue::get(ResultTy); 1787 1788 // Otherwise, for integer compare, pick the same value as the non-undef 1789 // operand, and fold it to true or false. 1790 if (isIntegerPredicate) 1791 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1792 1793 // Choosing NaN for the undef will always make unordered comparison succeed 1794 // and ordered comparison fails. 1795 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1796 } 1797 1798 // icmp eq/ne(null,GV) -> false/true 1799 if (C1->isNullValue()) { 1800 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) 1801 // Don't try to evaluate aliases. External weak GV can be null. 1802 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1803 !NullPointerIsDefined(nullptr /* F */, 1804 GV->getType()->getAddressSpace())) { 1805 if (pred == ICmpInst::ICMP_EQ) 1806 return ConstantInt::getFalse(C1->getContext()); 1807 else if (pred == ICmpInst::ICMP_NE) 1808 return ConstantInt::getTrue(C1->getContext()); 1809 } 1810 // icmp eq/ne(GV,null) -> false/true 1811 } else if (C2->isNullValue()) { 1812 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) 1813 // Don't try to evaluate aliases. External weak GV can be null. 1814 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1815 !NullPointerIsDefined(nullptr /* F */, 1816 GV->getType()->getAddressSpace())) { 1817 if (pred == ICmpInst::ICMP_EQ) 1818 return ConstantInt::getFalse(C1->getContext()); 1819 else if (pred == ICmpInst::ICMP_NE) 1820 return ConstantInt::getTrue(C1->getContext()); 1821 } 1822 } 1823 1824 // If the comparison is a comparison between two i1's, simplify it. 1825 if (C1->getType()->isIntegerTy(1)) { 1826 switch(pred) { 1827 case ICmpInst::ICMP_EQ: 1828 if (isa<ConstantInt>(C2)) 1829 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1830 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1831 case ICmpInst::ICMP_NE: 1832 return ConstantExpr::getXor(C1, C2); 1833 default: 1834 break; 1835 } 1836 } 1837 1838 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1839 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 1840 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 1841 switch (pred) { 1842 default: llvm_unreachable("Invalid ICmp Predicate"); 1843 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2); 1844 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2); 1845 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); 1846 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); 1847 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); 1848 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); 1849 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); 1850 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); 1851 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); 1852 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); 1853 } 1854 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1855 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 1856 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 1857 APFloat::cmpResult R = C1V.compare(C2V); 1858 switch (pred) { 1859 default: llvm_unreachable("Invalid FCmp Predicate"); 1860 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); 1861 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy); 1862 case FCmpInst::FCMP_UNO: 1863 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); 1864 case FCmpInst::FCMP_ORD: 1865 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); 1866 case FCmpInst::FCMP_UEQ: 1867 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1868 R==APFloat::cmpEqual); 1869 case FCmpInst::FCMP_OEQ: 1870 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); 1871 case FCmpInst::FCMP_UNE: 1872 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); 1873 case FCmpInst::FCMP_ONE: 1874 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 1875 R==APFloat::cmpGreaterThan); 1876 case FCmpInst::FCMP_ULT: 1877 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1878 R==APFloat::cmpLessThan); 1879 case FCmpInst::FCMP_OLT: 1880 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); 1881 case FCmpInst::FCMP_UGT: 1882 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1883 R==APFloat::cmpGreaterThan); 1884 case FCmpInst::FCMP_OGT: 1885 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); 1886 case FCmpInst::FCMP_ULE: 1887 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); 1888 case FCmpInst::FCMP_OLE: 1889 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 1890 R==APFloat::cmpEqual); 1891 case FCmpInst::FCMP_UGE: 1892 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); 1893 case FCmpInst::FCMP_OGE: 1894 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || 1895 R==APFloat::cmpEqual); 1896 } 1897 } else if (C1->getType()->isVectorTy()) { 1898 // If we can constant fold the comparison of each element, constant fold 1899 // the whole vector comparison. 1900 SmallVector<Constant*, 4> ResElts; 1901 Type *Ty = IntegerType::get(C1->getContext(), 32); 1902 // Compare the elements, producing an i1 result or constant expr. 1903 for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){ 1904 Constant *C1E = 1905 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i)); 1906 Constant *C2E = 1907 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i)); 1908 1909 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); 1910 } 1911 1912 return ConstantVector::get(ResElts); 1913 } 1914 1915 if (C1->getType()->isFloatingPointTy() && 1916 // Only call evaluateFCmpRelation if we have a constant expr to avoid 1917 // infinite recursive loop 1918 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { 1919 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1920 switch (evaluateFCmpRelation(C1, C2)) { 1921 default: llvm_unreachable("Unknown relation!"); 1922 case FCmpInst::FCMP_UNO: 1923 case FCmpInst::FCMP_ORD: 1924 case FCmpInst::FCMP_UNE: 1925 case FCmpInst::FCMP_ULT: 1926 case FCmpInst::FCMP_UGT: 1927 case FCmpInst::FCMP_ULE: 1928 case FCmpInst::FCMP_UGE: 1929 case FCmpInst::FCMP_TRUE: 1930 case FCmpInst::FCMP_FALSE: 1931 case FCmpInst::BAD_FCMP_PREDICATE: 1932 break; // Couldn't determine anything about these constants. 1933 case FCmpInst::FCMP_OEQ: // We know that C1 == C2 1934 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || 1935 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || 1936 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 1937 break; 1938 case FCmpInst::FCMP_OLT: // We know that C1 < C2 1939 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 1940 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || 1941 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); 1942 break; 1943 case FCmpInst::FCMP_OGT: // We know that C1 > C2 1944 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 1945 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || 1946 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 1947 break; 1948 case FCmpInst::FCMP_OLE: // We know that C1 <= C2 1949 // We can only partially decide this relation. 1950 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 1951 Result = 0; 1952 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 1953 Result = 1; 1954 break; 1955 case FCmpInst::FCMP_OGE: // We known that C1 >= C2 1956 // We can only partially decide this relation. 1957 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 1958 Result = 0; 1959 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 1960 Result = 1; 1961 break; 1962 case FCmpInst::FCMP_ONE: // We know that C1 != C2 1963 // We can only partially decide this relation. 1964 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 1965 Result = 0; 1966 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 1967 Result = 1; 1968 break; 1969 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2). 1970 // We can only partially decide this relation. 1971 if (pred == FCmpInst::FCMP_ONE) 1972 Result = 0; 1973 else if (pred == FCmpInst::FCMP_UEQ) 1974 Result = 1; 1975 break; 1976 } 1977 1978 // If we evaluated the result, return it now. 1979 if (Result != -1) 1980 return ConstantInt::get(ResultTy, Result); 1981 1982 } else { 1983 // Evaluate the relation between the two constants, per the predicate. 1984 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1985 switch (evaluateICmpRelation(C1, C2, 1986 CmpInst::isSigned((CmpInst::Predicate)pred))) { 1987 default: llvm_unreachable("Unknown relational!"); 1988 case ICmpInst::BAD_ICMP_PREDICATE: 1989 break; // Couldn't determine anything about these constants. 1990 case ICmpInst::ICMP_EQ: // We know the constants are equal! 1991 // If we know the constants are equal, we can decide the result of this 1992 // computation precisely. 1993 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); 1994 break; 1995 case ICmpInst::ICMP_ULT: 1996 switch (pred) { 1997 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 1998 Result = 1; break; 1999 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 2000 Result = 0; break; 2001 } 2002 break; 2003 case ICmpInst::ICMP_SLT: 2004 switch (pred) { 2005 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 2006 Result = 1; break; 2007 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 2008 Result = 0; break; 2009 } 2010 break; 2011 case ICmpInst::ICMP_UGT: 2012 switch (pred) { 2013 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 2014 Result = 1; break; 2015 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 2016 Result = 0; break; 2017 } 2018 break; 2019 case ICmpInst::ICMP_SGT: 2020 switch (pred) { 2021 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 2022 Result = 1; break; 2023 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 2024 Result = 0; break; 2025 } 2026 break; 2027 case ICmpInst::ICMP_ULE: 2028 if (pred == ICmpInst::ICMP_UGT) Result = 0; 2029 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; 2030 break; 2031 case ICmpInst::ICMP_SLE: 2032 if (pred == ICmpInst::ICMP_SGT) Result = 0; 2033 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; 2034 break; 2035 case ICmpInst::ICMP_UGE: 2036 if (pred == ICmpInst::ICMP_ULT) Result = 0; 2037 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; 2038 break; 2039 case ICmpInst::ICMP_SGE: 2040 if (pred == ICmpInst::ICMP_SLT) Result = 0; 2041 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; 2042 break; 2043 case ICmpInst::ICMP_NE: 2044 if (pred == ICmpInst::ICMP_EQ) Result = 0; 2045 if (pred == ICmpInst::ICMP_NE) Result = 1; 2046 break; 2047 } 2048 2049 // If we evaluated the result, return it now. 2050 if (Result != -1) 2051 return ConstantInt::get(ResultTy, Result); 2052 2053 // If the right hand side is a bitcast, try using its inverse to simplify 2054 // it by moving it to the left hand side. We can't do this if it would turn 2055 // a vector compare into a scalar compare or visa versa, or if it would turn 2056 // the operands into FP values. 2057 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { 2058 Constant *CE2Op0 = CE2->getOperand(0); 2059 if (CE2->getOpcode() == Instruction::BitCast && 2060 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() && 2061 !CE2Op0->getType()->isFPOrFPVectorTy()) { 2062 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); 2063 return ConstantExpr::getICmp(pred, Inverse, CE2Op0); 2064 } 2065 } 2066 2067 // If the left hand side is an extension, try eliminating it. 2068 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 2069 if ((CE1->getOpcode() == Instruction::SExt && 2070 ICmpInst::isSigned((ICmpInst::Predicate)pred)) || 2071 (CE1->getOpcode() == Instruction::ZExt && 2072 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){ 2073 Constant *CE1Op0 = CE1->getOperand(0); 2074 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); 2075 if (CE1Inverse == CE1Op0) { 2076 // Check whether we can safely truncate the right hand side. 2077 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); 2078 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, 2079 C2->getType()) == C2) 2080 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); 2081 } 2082 } 2083 } 2084 2085 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 2086 (C1->isNullValue() && !C2->isNullValue())) { 2087 // If C2 is a constant expr and C1 isn't, flip them around and fold the 2088 // other way if possible. 2089 // Also, if C1 is null and C2 isn't, flip them around. 2090 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); 2091 return ConstantExpr::getICmp(pred, C2, C1); 2092 } 2093 } 2094 return nullptr; 2095 } 2096 2097 /// Test whether the given sequence of *normalized* indices is "inbounds". 2098 template<typename IndexTy> 2099 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { 2100 // No indices means nothing that could be out of bounds. 2101 if (Idxs.empty()) return true; 2102 2103 // If the first index is zero, it's in bounds. 2104 if (cast<Constant>(Idxs[0])->isNullValue()) return true; 2105 2106 // If the first index is one and all the rest are zero, it's in bounds, 2107 // by the one-past-the-end rule. 2108 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { 2109 if (!CI->isOne()) 2110 return false; 2111 } else { 2112 auto *CV = cast<ConstantDataVector>(Idxs[0]); 2113 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); 2114 if (!CI || !CI->isOne()) 2115 return false; 2116 } 2117 2118 for (unsigned i = 1, e = Idxs.size(); i != e; ++i) 2119 if (!cast<Constant>(Idxs[i])->isNullValue()) 2120 return false; 2121 return true; 2122 } 2123 2124 /// Test whether a given ConstantInt is in-range for a SequentialType. 2125 static bool isIndexInRangeOfArrayType(uint64_t NumElements, 2126 const ConstantInt *CI) { 2127 // We cannot bounds check the index if it doesn't fit in an int64_t. 2128 if (CI->getValue().getMinSignedBits() > 64) 2129 return false; 2130 2131 // A negative index or an index past the end of our sequential type is 2132 // considered out-of-range. 2133 int64_t IndexVal = CI->getSExtValue(); 2134 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements)) 2135 return false; 2136 2137 // Otherwise, it is in-range. 2138 return true; 2139 } 2140 2141 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 2142 bool InBounds, 2143 Optional<unsigned> InRangeIndex, 2144 ArrayRef<Value *> Idxs) { 2145 if (Idxs.empty()) return C; 2146 2147 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 2148 PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size())); 2149 2150 if (isa<UndefValue>(C)) 2151 return UndefValue::get(GEPTy); 2152 2153 Constant *Idx0 = cast<Constant>(Idxs[0]); 2154 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0))) 2155 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 2156 ? ConstantVector::getSplat( 2157 cast<VectorType>(GEPTy)->getNumElements(), C) 2158 : C; 2159 2160 if (C->isNullValue()) { 2161 bool isNull = true; 2162 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2163 if (!isa<UndefValue>(Idxs[i]) && 2164 !cast<Constant>(Idxs[i])->isNullValue()) { 2165 isNull = false; 2166 break; 2167 } 2168 if (isNull) { 2169 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType()); 2170 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs); 2171 2172 assert(Ty && "Invalid indices for GEP!"); 2173 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2174 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2175 if (VectorType *VT = dyn_cast<VectorType>(C->getType())) 2176 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); 2177 2178 // The GEP returns a vector of pointers when one of more of 2179 // its arguments is a vector. 2180 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 2181 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) { 2182 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); 2183 break; 2184 } 2185 } 2186 2187 return Constant::getNullValue(GEPTy); 2188 } 2189 } 2190 2191 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2192 // Combine Indices - If the source pointer to this getelementptr instruction 2193 // is a getelementptr instruction, combine the indices of the two 2194 // getelementptr instructions into a single instruction. 2195 // 2196 if (CE->getOpcode() == Instruction::GetElementPtr) { 2197 gep_type_iterator LastI = gep_type_end(CE); 2198 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); 2199 I != E; ++I) 2200 LastI = I; 2201 2202 // We cannot combine indices if doing so would take us outside of an 2203 // array or vector. Doing otherwise could trick us if we evaluated such a 2204 // GEP as part of a load. 2205 // 2206 // e.g. Consider if the original GEP was: 2207 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2208 // i32 0, i32 0, i64 0) 2209 // 2210 // If we then tried to offset it by '8' to get to the third element, 2211 // an i8, we should *not* get: 2212 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2213 // i32 0, i32 0, i64 8) 2214 // 2215 // This GEP tries to index array element '8 which runs out-of-bounds. 2216 // Subsequent evaluation would get confused and produce erroneous results. 2217 // 2218 // The following prohibits such a GEP from being formed by checking to see 2219 // if the index is in-range with respect to an array. 2220 // TODO: This code may be extended to handle vectors as well. 2221 bool PerformFold = false; 2222 if (Idx0->isNullValue()) 2223 PerformFold = true; 2224 else if (LastI.isSequential()) 2225 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0)) 2226 PerformFold = (!LastI.isBoundedSequential() || 2227 isIndexInRangeOfArrayType( 2228 LastI.getSequentialNumElements(), CI)) && 2229 !CE->getOperand(CE->getNumOperands() - 1) 2230 ->getType() 2231 ->isVectorTy(); 2232 2233 if (PerformFold) { 2234 SmallVector<Value*, 16> NewIndices; 2235 NewIndices.reserve(Idxs.size() + CE->getNumOperands()); 2236 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1); 2237 2238 // Add the last index of the source with the first index of the new GEP. 2239 // Make sure to handle the case when they are actually different types. 2240 Constant *Combined = CE->getOperand(CE->getNumOperands()-1); 2241 // Otherwise it must be an array. 2242 if (!Idx0->isNullValue()) { 2243 Type *IdxTy = Combined->getType(); 2244 if (IdxTy != Idx0->getType()) { 2245 unsigned CommonExtendedWidth = 2246 std::max(IdxTy->getIntegerBitWidth(), 2247 Idx0->getType()->getIntegerBitWidth()); 2248 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2249 2250 Type *CommonTy = 2251 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth); 2252 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy); 2253 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy); 2254 Combined = ConstantExpr::get(Instruction::Add, C1, C2); 2255 } else { 2256 Combined = 2257 ConstantExpr::get(Instruction::Add, Idx0, Combined); 2258 } 2259 } 2260 2261 NewIndices.push_back(Combined); 2262 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 2263 2264 // The combined GEP normally inherits its index inrange attribute from 2265 // the inner GEP, but if the inner GEP's last index was adjusted by the 2266 // outer GEP, any inbounds attribute on that index is invalidated. 2267 Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex(); 2268 if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue()) 2269 IRIndex = None; 2270 2271 return ConstantExpr::getGetElementPtr( 2272 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0), 2273 NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(), 2274 IRIndex); 2275 } 2276 } 2277 2278 // Attempt to fold casts to the same type away. For example, folding: 2279 // 2280 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), 2281 // i64 0, i64 0) 2282 // into: 2283 // 2284 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) 2285 // 2286 // Don't fold if the cast is changing address spaces. 2287 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { 2288 PointerType *SrcPtrTy = 2289 dyn_cast<PointerType>(CE->getOperand(0)->getType()); 2290 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); 2291 if (SrcPtrTy && DstPtrTy) { 2292 ArrayType *SrcArrayTy = 2293 dyn_cast<ArrayType>(SrcPtrTy->getElementType()); 2294 ArrayType *DstArrayTy = 2295 dyn_cast<ArrayType>(DstPtrTy->getElementType()); 2296 if (SrcArrayTy && DstArrayTy 2297 && SrcArrayTy->getElementType() == DstArrayTy->getElementType() 2298 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 2299 return ConstantExpr::getGetElementPtr(SrcArrayTy, 2300 (Constant *)CE->getOperand(0), 2301 Idxs, InBounds, InRangeIndex); 2302 } 2303 } 2304 } 2305 2306 // Check to see if any array indices are not within the corresponding 2307 // notional array or vector bounds. If so, try to determine if they can be 2308 // factored out into preceding dimensions. 2309 SmallVector<Constant *, 8> NewIdxs; 2310 Type *Ty = PointeeTy; 2311 Type *Prev = C->getType(); 2312 bool Unknown = 2313 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); 2314 for (unsigned i = 1, e = Idxs.size(); i != e; 2315 Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) { 2316 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { 2317 // We don't know if it's in range or not. 2318 Unknown = true; 2319 continue; 2320 } 2321 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) 2322 // Skip if the type of the previous index is not supported. 2323 continue; 2324 if (InRangeIndex && i == *InRangeIndex + 1) { 2325 // If an index is marked inrange, we cannot apply this canonicalization to 2326 // the following index, as that will cause the inrange index to point to 2327 // the wrong element. 2328 continue; 2329 } 2330 if (isa<StructType>(Ty)) { 2331 // The verify makes sure that GEPs into a struct are in range. 2332 continue; 2333 } 2334 auto *STy = cast<SequentialType>(Ty); 2335 if (isa<VectorType>(STy)) { 2336 // There can be awkward padding in after a non-power of two vector. 2337 Unknown = true; 2338 continue; 2339 } 2340 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { 2341 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) 2342 // It's in range, skip to the next index. 2343 continue; 2344 if (CI->getSExtValue() < 0) { 2345 // It's out of range and negative, don't try to factor it. 2346 Unknown = true; 2347 continue; 2348 } 2349 } else { 2350 auto *CV = cast<ConstantDataVector>(Idxs[i]); 2351 bool InRange = true; 2352 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { 2353 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); 2354 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); 2355 if (CI->getSExtValue() < 0) { 2356 Unknown = true; 2357 break; 2358 } 2359 } 2360 if (InRange || Unknown) 2361 // It's in range, skip to the next index. 2362 // It's out of range and negative, don't try to factor it. 2363 continue; 2364 } 2365 if (isa<StructType>(Prev)) { 2366 // It's out of range, but the prior dimension is a struct 2367 // so we can't do anything about it. 2368 Unknown = true; 2369 continue; 2370 } 2371 // It's out of range, but we can factor it into the prior 2372 // dimension. 2373 NewIdxs.resize(Idxs.size()); 2374 // Determine the number of elements in our sequential type. 2375 uint64_t NumElements = STy->getArrayNumElements(); 2376 2377 // Expand the current index or the previous index to a vector from a scalar 2378 // if necessary. 2379 Constant *CurrIdx = cast<Constant>(Idxs[i]); 2380 auto *PrevIdx = 2381 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); 2382 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); 2383 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); 2384 bool UseVector = IsCurrIdxVector || IsPrevIdxVector; 2385 2386 if (!IsCurrIdxVector && IsPrevIdxVector) 2387 CurrIdx = ConstantDataVector::getSplat( 2388 PrevIdx->getType()->getVectorNumElements(), CurrIdx); 2389 2390 if (!IsPrevIdxVector && IsCurrIdxVector) 2391 PrevIdx = ConstantDataVector::getSplat( 2392 CurrIdx->getType()->getVectorNumElements(), PrevIdx); 2393 2394 Constant *Factor = 2395 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); 2396 if (UseVector) 2397 Factor = ConstantDataVector::getSplat( 2398 IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements() 2399 : CurrIdx->getType()->getVectorNumElements(), 2400 Factor); 2401 2402 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor); 2403 2404 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor); 2405 2406 unsigned CommonExtendedWidth = 2407 std::max(PrevIdx->getType()->getScalarSizeInBits(), 2408 Div->getType()->getScalarSizeInBits()); 2409 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2410 2411 // Before adding, extend both operands to i64 to avoid 2412 // overflow trouble. 2413 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); 2414 if (UseVector) 2415 ExtendedTy = VectorType::get( 2416 ExtendedTy, IsPrevIdxVector 2417 ? PrevIdx->getType()->getVectorNumElements() 2418 : CurrIdx->getType()->getVectorNumElements()); 2419 2420 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2421 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy); 2422 2423 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2424 Div = ConstantExpr::getSExt(Div, ExtendedTy); 2425 2426 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); 2427 } 2428 2429 // If we did any factoring, start over with the adjusted indices. 2430 if (!NewIdxs.empty()) { 2431 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2432 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); 2433 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, 2434 InRangeIndex); 2435 } 2436 2437 // If all indices are known integers and normalized, we can do a simple 2438 // check for the "inbounds" property. 2439 if (!Unknown && !InBounds) 2440 if (auto *GV = dyn_cast<GlobalVariable>(C)) 2441 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs)) 2442 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, 2443 /*InBounds=*/true, InRangeIndex); 2444 2445 return nullptr; 2446 } 2447