xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantFold.cpp (revision e40139ff33b48b56a24c808b166b04b8ee6f5b21)
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM.  This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 //===----------------------------------------------------------------------===//
39 //                ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
41 
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
46 
47   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49 
50   // If this cast changes element count then we can't handle it here:
51   // doing so requires endianness information.  This should be handled by
52   // Analysis/ConstantFolding.cpp
53   unsigned NumElts = DstTy->getNumElements();
54   if (NumElts != CV->getType()->getVectorNumElements())
55     return nullptr;
56 
57   Type *DstEltTy = DstTy->getElementType();
58 
59   SmallVector<Constant*, 16> Result;
60   Type *Ty = IntegerType::get(CV->getContext(), 32);
61   for (unsigned i = 0; i != NumElts; ++i) {
62     Constant *C =
63       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
64     C = ConstantExpr::getBitCast(C, DstEltTy);
65     Result.push_back(C);
66   }
67 
68   return ConstantVector::get(Result);
69 }
70 
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
75 static unsigned
76 foldConstantCastPair(
77   unsigned opc,          ///< opcode of the second cast constant expression
78   ConstantExpr *Op,      ///< the first cast constant expression
79   Type *DstTy            ///< destination type of the first cast
80 ) {
81   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
82   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
83   assert(CastInst::isCast(opc) && "Invalid cast opcode");
84 
85   // The types and opcodes for the two Cast constant expressions
86   Type *SrcTy = Op->getOperand(0)->getType();
87   Type *MidTy = Op->getType();
88   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
89   Instruction::CastOps secondOp = Instruction::CastOps(opc);
90 
91   // Assume that pointers are never more than 64 bits wide, and only use this
92   // for the middle type. Otherwise we could end up folding away illegal
93   // bitcasts between address spaces with different sizes.
94   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
95 
96   // Let CastInst::isEliminableCastPair do the heavy lifting.
97   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
98                                         nullptr, FakeIntPtrTy, nullptr);
99 }
100 
101 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
102   Type *SrcTy = V->getType();
103   if (SrcTy == DestTy)
104     return V; // no-op cast
105 
106   // Check to see if we are casting a pointer to an aggregate to a pointer to
107   // the first element.  If so, return the appropriate GEP instruction.
108   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
109     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
110       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
111           && PTy->getElementType()->isSized()) {
112         SmallVector<Value*, 8> IdxList;
113         Value *Zero =
114           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
115         IdxList.push_back(Zero);
116         Type *ElTy = PTy->getElementType();
117         while (ElTy != DPTy->getElementType()) {
118           if (StructType *STy = dyn_cast<StructType>(ElTy)) {
119             if (STy->getNumElements() == 0) break;
120             ElTy = STy->getElementType(0);
121             IdxList.push_back(Zero);
122           } else if (SequentialType *STy =
123                      dyn_cast<SequentialType>(ElTy)) {
124             ElTy = STy->getElementType();
125             IdxList.push_back(Zero);
126           } else {
127             break;
128           }
129         }
130 
131         if (ElTy == DPTy->getElementType())
132           // This GEP is inbounds because all indices are zero.
133           return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
134                                                         V, IdxList);
135       }
136 
137   // Handle casts from one vector constant to another.  We know that the src
138   // and dest type have the same size (otherwise its an illegal cast).
139   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
140     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
141       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
142              "Not cast between same sized vectors!");
143       SrcTy = nullptr;
144       // First, check for null.  Undef is already handled.
145       if (isa<ConstantAggregateZero>(V))
146         return Constant::getNullValue(DestTy);
147 
148       // Handle ConstantVector and ConstantAggregateVector.
149       return BitCastConstantVector(V, DestPTy);
150     }
151 
152     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153     // This allows for other simplifications (although some of them
154     // can only be handled by Analysis/ConstantFolding.cpp).
155     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
156       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
157   }
158 
159   // Finally, implement bitcast folding now.   The code below doesn't handle
160   // bitcast right.
161   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
162     return ConstantPointerNull::get(cast<PointerType>(DestTy));
163 
164   // Handle integral constant input.
165   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
166     if (DestTy->isIntegerTy())
167       // Integral -> Integral. This is a no-op because the bit widths must
168       // be the same. Consequently, we just fold to V.
169       return V;
170 
171     // See note below regarding the PPC_FP128 restriction.
172     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
173       return ConstantFP::get(DestTy->getContext(),
174                              APFloat(DestTy->getFltSemantics(),
175                                      CI->getValue()));
176 
177     // Otherwise, can't fold this (vector?)
178     return nullptr;
179   }
180 
181   // Handle ConstantFP input: FP -> Integral.
182   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
183     // PPC_FP128 is really the sum of two consecutive doubles, where the first
184     // double is always stored first in memory, regardless of the target
185     // endianness. The memory layout of i128, however, depends on the target
186     // endianness, and so we can't fold this without target endianness
187     // information. This should instead be handled by
188     // Analysis/ConstantFolding.cpp
189     if (FP->getType()->isPPC_FP128Ty())
190       return nullptr;
191 
192     // Make sure dest type is compatible with the folded integer constant.
193     if (!DestTy->isIntegerTy())
194       return nullptr;
195 
196     return ConstantInt::get(FP->getContext(),
197                             FP->getValueAPF().bitcastToAPInt());
198   }
199 
200   return nullptr;
201 }
202 
203 
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
207 /// of bytes used.
208 ///
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant.  If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
213                                       unsigned ByteSize) {
214   assert(C->getType()->isIntegerTy() &&
215          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
216          "Non-byte sized integer input");
217   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
218   assert(ByteSize && "Must be accessing some piece");
219   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
220   assert(ByteSize != CSize && "Should not extract everything");
221 
222   // Constant Integers are simple.
223   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
224     APInt V = CI->getValue();
225     if (ByteStart)
226       V.lshrInPlace(ByteStart*8);
227     V = V.trunc(ByteSize*8);
228     return ConstantInt::get(CI->getContext(), V);
229   }
230 
231   // In the input is a constant expr, we might be able to recursively simplify.
232   // If not, we definitely can't do anything.
233   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234   if (!CE) return nullptr;
235 
236   switch (CE->getOpcode()) {
237   default: return nullptr;
238   case Instruction::Or: {
239     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240     if (!RHS)
241       return nullptr;
242 
243     // X | -1 -> -1.
244     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
245       if (RHSC->isMinusOne())
246         return RHSC;
247 
248     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
249     if (!LHS)
250       return nullptr;
251     return ConstantExpr::getOr(LHS, RHS);
252   }
253   case Instruction::And: {
254     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
255     if (!RHS)
256       return nullptr;
257 
258     // X & 0 -> 0.
259     if (RHS->isNullValue())
260       return RHS;
261 
262     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
263     if (!LHS)
264       return nullptr;
265     return ConstantExpr::getAnd(LHS, RHS);
266   }
267   case Instruction::LShr: {
268     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269     if (!Amt)
270       return nullptr;
271     APInt ShAmt = Amt->getValue();
272     // Cannot analyze non-byte shifts.
273     if ((ShAmt & 7) != 0)
274       return nullptr;
275     ShAmt.lshrInPlace(3);
276 
277     // If the extract is known to be all zeros, return zero.
278     if (ShAmt.uge(CSize - ByteStart))
279       return Constant::getNullValue(
280           IntegerType::get(CE->getContext(), ByteSize * 8));
281     // If the extract is known to be fully in the input, extract it.
282     if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
283       return ExtractConstantBytes(CE->getOperand(0),
284                                   ByteStart + ShAmt.getZExtValue(), ByteSize);
285 
286     // TODO: Handle the 'partially zero' case.
287     return nullptr;
288   }
289 
290   case Instruction::Shl: {
291     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
292     if (!Amt)
293       return nullptr;
294     APInt ShAmt = Amt->getValue();
295     // Cannot analyze non-byte shifts.
296     if ((ShAmt & 7) != 0)
297       return nullptr;
298     ShAmt.lshrInPlace(3);
299 
300     // If the extract is known to be all zeros, return zero.
301     if (ShAmt.uge(ByteStart + ByteSize))
302       return Constant::getNullValue(
303           IntegerType::get(CE->getContext(), ByteSize * 8));
304     // If the extract is known to be fully in the input, extract it.
305     if (ShAmt.ule(ByteStart))
306       return ExtractConstantBytes(CE->getOperand(0),
307                                   ByteStart - ShAmt.getZExtValue(), ByteSize);
308 
309     // TODO: Handle the 'partially zero' case.
310     return nullptr;
311   }
312 
313   case Instruction::ZExt: {
314     unsigned SrcBitSize =
315       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
316 
317     // If extracting something that is completely zero, return 0.
318     if (ByteStart*8 >= SrcBitSize)
319       return Constant::getNullValue(IntegerType::get(CE->getContext(),
320                                                      ByteSize*8));
321 
322     // If exactly extracting the input, return it.
323     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
324       return CE->getOperand(0);
325 
326     // If extracting something completely in the input, if the input is a
327     // multiple of 8 bits, recurse.
328     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
329       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
330 
331     // Otherwise, if extracting a subset of the input, which is not multiple of
332     // 8 bits, do a shift and trunc to get the bits.
333     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
334       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
335       Constant *Res = CE->getOperand(0);
336       if (ByteStart)
337         Res = ConstantExpr::getLShr(Res,
338                                  ConstantInt::get(Res->getType(), ByteStart*8));
339       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
340                                                           ByteSize*8));
341     }
342 
343     // TODO: Handle the 'partially zero' case.
344     return nullptr;
345   }
346   }
347 }
348 
349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
350 /// factors factored out. If Folded is false, return null if no factoring was
351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
352 /// top-level folder.
353 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) {
354   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
355     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
356     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
357     return ConstantExpr::getNUWMul(E, N);
358   }
359 
360   if (StructType *STy = dyn_cast<StructType>(Ty))
361     if (!STy->isPacked()) {
362       unsigned NumElems = STy->getNumElements();
363       // An empty struct has size zero.
364       if (NumElems == 0)
365         return ConstantExpr::getNullValue(DestTy);
366       // Check for a struct with all members having the same size.
367       Constant *MemberSize =
368         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
369       bool AllSame = true;
370       for (unsigned i = 1; i != NumElems; ++i)
371         if (MemberSize !=
372             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
373           AllSame = false;
374           break;
375         }
376       if (AllSame) {
377         Constant *N = ConstantInt::get(DestTy, NumElems);
378         return ConstantExpr::getNUWMul(MemberSize, N);
379       }
380     }
381 
382   // Pointer size doesn't depend on the pointee type, so canonicalize them
383   // to an arbitrary pointee.
384   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
385     if (!PTy->getElementType()->isIntegerTy(1))
386       return
387         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
388                                          PTy->getAddressSpace()),
389                         DestTy, true);
390 
391   // If there's no interesting folding happening, bail so that we don't create
392   // a constant that looks like it needs folding but really doesn't.
393   if (!Folded)
394     return nullptr;
395 
396   // Base case: Get a regular sizeof expression.
397   Constant *C = ConstantExpr::getSizeOf(Ty);
398   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
399                                                     DestTy, false),
400                             C, DestTy);
401   return C;
402 }
403 
404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
405 /// factors factored out. If Folded is false, return null if no factoring was
406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
407 /// top-level folder.
408 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) {
409   // The alignment of an array is equal to the alignment of the
410   // array element. Note that this is not always true for vectors.
411   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
412     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
413     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
414                                                       DestTy,
415                                                       false),
416                               C, DestTy);
417     return C;
418   }
419 
420   if (StructType *STy = dyn_cast<StructType>(Ty)) {
421     // Packed structs always have an alignment of 1.
422     if (STy->isPacked())
423       return ConstantInt::get(DestTy, 1);
424 
425     // Otherwise, struct alignment is the maximum alignment of any member.
426     // Without target data, we can't compare much, but we can check to see
427     // if all the members have the same alignment.
428     unsigned NumElems = STy->getNumElements();
429     // An empty struct has minimal alignment.
430     if (NumElems == 0)
431       return ConstantInt::get(DestTy, 1);
432     // Check for a struct with all members having the same alignment.
433     Constant *MemberAlign =
434       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
435     bool AllSame = true;
436     for (unsigned i = 1; i != NumElems; ++i)
437       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
438         AllSame = false;
439         break;
440       }
441     if (AllSame)
442       return MemberAlign;
443   }
444 
445   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446   // to an arbitrary pointee.
447   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
448     if (!PTy->getElementType()->isIntegerTy(1))
449       return
450         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
451                                                            1),
452                                           PTy->getAddressSpace()),
453                          DestTy, true);
454 
455   // If there's no interesting folding happening, bail so that we don't create
456   // a constant that looks like it needs folding but really doesn't.
457   if (!Folded)
458     return nullptr;
459 
460   // Base case: Get a regular alignof expression.
461   Constant *C = ConstantExpr::getAlignOf(Ty);
462   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
463                                                     DestTy, false),
464                             C, DestTy);
465   return C;
466 }
467 
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
472 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy,
473                                    bool Folded) {
474   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
475     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
476                                                                 DestTy, false),
477                                         FieldNo, DestTy);
478     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
479     return ConstantExpr::getNUWMul(E, N);
480   }
481 
482   if (StructType *STy = dyn_cast<StructType>(Ty))
483     if (!STy->isPacked()) {
484       unsigned NumElems = STy->getNumElements();
485       // An empty struct has no members.
486       if (NumElems == 0)
487         return nullptr;
488       // Check for a struct with all members having the same size.
489       Constant *MemberSize =
490         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
491       bool AllSame = true;
492       for (unsigned i = 1; i != NumElems; ++i)
493         if (MemberSize !=
494             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
495           AllSame = false;
496           break;
497         }
498       if (AllSame) {
499         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
500                                                                     false,
501                                                                     DestTy,
502                                                                     false),
503                                             FieldNo, DestTy);
504         return ConstantExpr::getNUWMul(MemberSize, N);
505       }
506     }
507 
508   // If there's no interesting folding happening, bail so that we don't create
509   // a constant that looks like it needs folding but really doesn't.
510   if (!Folded)
511     return nullptr;
512 
513   // Base case: Get a regular offsetof expression.
514   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
515   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
516                                                     DestTy, false),
517                             C, DestTy);
518   return C;
519 }
520 
521 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
522                                             Type *DestTy) {
523   if (isa<UndefValue>(V)) {
524     // zext(undef) = 0, because the top bits will be zero.
525     // sext(undef) = 0, because the top bits will all be the same.
526     // [us]itofp(undef) = 0, because the result value is bounded.
527     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
528         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
529       return Constant::getNullValue(DestTy);
530     return UndefValue::get(DestTy);
531   }
532 
533   if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
534       opc != Instruction::AddrSpaceCast)
535     return Constant::getNullValue(DestTy);
536 
537   // If the cast operand is a constant expression, there's a few things we can
538   // do to try to simplify it.
539   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
540     if (CE->isCast()) {
541       // Try hard to fold cast of cast because they are often eliminable.
542       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
543         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
544     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
545                // Do not fold addrspacecast (gep 0, .., 0). It might make the
546                // addrspacecast uncanonicalized.
547                opc != Instruction::AddrSpaceCast &&
548                // Do not fold bitcast (gep) with inrange index, as this loses
549                // information.
550                !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
551                // Do not fold if the gep type is a vector, as bitcasting
552                // operand 0 of a vector gep will result in a bitcast between
553                // different sizes.
554                !CE->getType()->isVectorTy()) {
555       // If all of the indexes in the GEP are null values, there is no pointer
556       // adjustment going on.  We might as well cast the source pointer.
557       bool isAllNull = true;
558       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
559         if (!CE->getOperand(i)->isNullValue()) {
560           isAllNull = false;
561           break;
562         }
563       if (isAllNull)
564         // This is casting one pointer type to another, always BitCast
565         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
566     }
567   }
568 
569   // If the cast operand is a constant vector, perform the cast by
570   // operating on each element. In the cast of bitcasts, the element
571   // count may be mismatched; don't attempt to handle that here.
572   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
573       DestTy->isVectorTy() &&
574       DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
575     SmallVector<Constant*, 16> res;
576     VectorType *DestVecTy = cast<VectorType>(DestTy);
577     Type *DstEltTy = DestVecTy->getElementType();
578     Type *Ty = IntegerType::get(V->getContext(), 32);
579     for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
580       Constant *C =
581         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
582       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
583     }
584     return ConstantVector::get(res);
585   }
586 
587   // We actually have to do a cast now. Perform the cast according to the
588   // opcode specified.
589   switch (opc) {
590   default:
591     llvm_unreachable("Failed to cast constant expression");
592   case Instruction::FPTrunc:
593   case Instruction::FPExt:
594     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
595       bool ignored;
596       APFloat Val = FPC->getValueAPF();
597       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
598                   DestTy->isFloatTy() ? APFloat::IEEEsingle() :
599                   DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
600                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
601                   DestTy->isFP128Ty() ? APFloat::IEEEquad() :
602                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
603                   APFloat::Bogus(),
604                   APFloat::rmNearestTiesToEven, &ignored);
605       return ConstantFP::get(V->getContext(), Val);
606     }
607     return nullptr; // Can't fold.
608   case Instruction::FPToUI:
609   case Instruction::FPToSI:
610     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
611       const APFloat &V = FPC->getValueAPF();
612       bool ignored;
613       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
614       APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
615       if (APFloat::opInvalidOp ==
616           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
617         // Undefined behavior invoked - the destination type can't represent
618         // the input constant.
619         return UndefValue::get(DestTy);
620       }
621       return ConstantInt::get(FPC->getContext(), IntVal);
622     }
623     return nullptr; // Can't fold.
624   case Instruction::IntToPtr:   //always treated as unsigned
625     if (V->isNullValue())       // Is it an integral null value?
626       return ConstantPointerNull::get(cast<PointerType>(DestTy));
627     return nullptr;                   // Other pointer types cannot be casted
628   case Instruction::PtrToInt:   // always treated as unsigned
629     // Is it a null pointer value?
630     if (V->isNullValue())
631       return ConstantInt::get(DestTy, 0);
632     // If this is a sizeof-like expression, pull out multiplications by
633     // known factors to expose them to subsequent folding. If it's an
634     // alignof-like expression, factor out known factors.
635     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
636       if (CE->getOpcode() == Instruction::GetElementPtr &&
637           CE->getOperand(0)->isNullValue()) {
638         // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
639         // getFoldedAlignOf() don't handle the case when DestTy is a vector of
640         // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
641         // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
642         // happen in one "real" C-code test case, so it does not seem to be an
643         // important optimization to handle vectors here. For now, simply bail
644         // out.
645         if (DestTy->isVectorTy())
646           return nullptr;
647         GEPOperator *GEPO = cast<GEPOperator>(CE);
648         Type *Ty = GEPO->getSourceElementType();
649         if (CE->getNumOperands() == 2) {
650           // Handle a sizeof-like expression.
651           Constant *Idx = CE->getOperand(1);
652           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
653           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
654             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
655                                                                 DestTy, false),
656                                         Idx, DestTy);
657             return ConstantExpr::getMul(C, Idx);
658           }
659         } else if (CE->getNumOperands() == 3 &&
660                    CE->getOperand(1)->isNullValue()) {
661           // Handle an alignof-like expression.
662           if (StructType *STy = dyn_cast<StructType>(Ty))
663             if (!STy->isPacked()) {
664               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
665               if (CI->isOne() &&
666                   STy->getNumElements() == 2 &&
667                   STy->getElementType(0)->isIntegerTy(1)) {
668                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
669               }
670             }
671           // Handle an offsetof-like expression.
672           if (Ty->isStructTy() || Ty->isArrayTy()) {
673             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
674                                                 DestTy, false))
675               return C;
676           }
677         }
678       }
679     // Other pointer types cannot be casted
680     return nullptr;
681   case Instruction::UIToFP:
682   case Instruction::SIToFP:
683     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
684       const APInt &api = CI->getValue();
685       APFloat apf(DestTy->getFltSemantics(),
686                   APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
687       apf.convertFromAPInt(api, opc==Instruction::SIToFP,
688                            APFloat::rmNearestTiesToEven);
689       return ConstantFP::get(V->getContext(), apf);
690     }
691     return nullptr;
692   case Instruction::ZExt:
693     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
694       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
695       return ConstantInt::get(V->getContext(),
696                               CI->getValue().zext(BitWidth));
697     }
698     return nullptr;
699   case Instruction::SExt:
700     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
701       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
702       return ConstantInt::get(V->getContext(),
703                               CI->getValue().sext(BitWidth));
704     }
705     return nullptr;
706   case Instruction::Trunc: {
707     if (V->getType()->isVectorTy())
708       return nullptr;
709 
710     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
711     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
712       return ConstantInt::get(V->getContext(),
713                               CI->getValue().trunc(DestBitWidth));
714     }
715 
716     // The input must be a constantexpr.  See if we can simplify this based on
717     // the bytes we are demanding.  Only do this if the source and dest are an
718     // even multiple of a byte.
719     if ((DestBitWidth & 7) == 0 &&
720         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
721       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
722         return Res;
723 
724     return nullptr;
725   }
726   case Instruction::BitCast:
727     return FoldBitCast(V, DestTy);
728   case Instruction::AddrSpaceCast:
729     return nullptr;
730   }
731 }
732 
733 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
734                                               Constant *V1, Constant *V2) {
735   // Check for i1 and vector true/false conditions.
736   if (Cond->isNullValue()) return V2;
737   if (Cond->isAllOnesValue()) return V1;
738 
739   // If the condition is a vector constant, fold the result elementwise.
740   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
741     SmallVector<Constant*, 16> Result;
742     Type *Ty = IntegerType::get(CondV->getContext(), 32);
743     for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
744       Constant *V;
745       Constant *V1Element = ConstantExpr::getExtractElement(V1,
746                                                     ConstantInt::get(Ty, i));
747       Constant *V2Element = ConstantExpr::getExtractElement(V2,
748                                                     ConstantInt::get(Ty, i));
749       auto *Cond = cast<Constant>(CondV->getOperand(i));
750       if (V1Element == V2Element) {
751         V = V1Element;
752       } else if (isa<UndefValue>(Cond)) {
753         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
754       } else {
755         if (!isa<ConstantInt>(Cond)) break;
756         V = Cond->isNullValue() ? V2Element : V1Element;
757       }
758       Result.push_back(V);
759     }
760 
761     // If we were able to build the vector, return it.
762     if (Result.size() == V1->getType()->getVectorNumElements())
763       return ConstantVector::get(Result);
764   }
765 
766   if (isa<UndefValue>(Cond)) {
767     if (isa<UndefValue>(V1)) return V1;
768     return V2;
769   }
770   if (isa<UndefValue>(V1)) return V2;
771   if (isa<UndefValue>(V2)) return V1;
772   if (V1 == V2) return V1;
773 
774   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
775     if (TrueVal->getOpcode() == Instruction::Select)
776       if (TrueVal->getOperand(0) == Cond)
777         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
778   }
779   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
780     if (FalseVal->getOpcode() == Instruction::Select)
781       if (FalseVal->getOperand(0) == Cond)
782         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
783   }
784 
785   return nullptr;
786 }
787 
788 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
789                                                       Constant *Idx) {
790   // extractelt undef, C -> undef
791   // extractelt C, undef -> undef
792   if (isa<UndefValue>(Val) || isa<UndefValue>(Idx))
793     return UndefValue::get(Val->getType()->getVectorElementType());
794 
795   if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
796     // ee({w,x,y,z}, wrong_value) -> undef
797     if (CIdx->uge(Val->getType()->getVectorNumElements()))
798       return UndefValue::get(Val->getType()->getVectorElementType());
799     return Val->getAggregateElement(CIdx->getZExtValue());
800   }
801   return nullptr;
802 }
803 
804 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
805                                                      Constant *Elt,
806                                                      Constant *Idx) {
807   if (isa<UndefValue>(Idx))
808     return UndefValue::get(Val->getType());
809 
810   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
811   if (!CIdx) return nullptr;
812 
813   unsigned NumElts = Val->getType()->getVectorNumElements();
814   if (CIdx->uge(NumElts))
815     return UndefValue::get(Val->getType());
816 
817   SmallVector<Constant*, 16> Result;
818   Result.reserve(NumElts);
819   auto *Ty = Type::getInt32Ty(Val->getContext());
820   uint64_t IdxVal = CIdx->getZExtValue();
821   for (unsigned i = 0; i != NumElts; ++i) {
822     if (i == IdxVal) {
823       Result.push_back(Elt);
824       continue;
825     }
826 
827     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
828     Result.push_back(C);
829   }
830 
831   return ConstantVector::get(Result);
832 }
833 
834 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
835                                                      Constant *V2,
836                                                      Constant *Mask) {
837   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
838   Type *EltTy = V1->getType()->getVectorElementType();
839 
840   // Undefined shuffle mask -> undefined value.
841   if (isa<UndefValue>(Mask))
842     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
843 
844   // Don't break the bitcode reader hack.
845   if (isa<ConstantExpr>(Mask)) return nullptr;
846 
847   unsigned SrcNumElts = V1->getType()->getVectorNumElements();
848 
849   // Loop over the shuffle mask, evaluating each element.
850   SmallVector<Constant*, 32> Result;
851   for (unsigned i = 0; i != MaskNumElts; ++i) {
852     int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
853     if (Elt == -1) {
854       Result.push_back(UndefValue::get(EltTy));
855       continue;
856     }
857     Constant *InElt;
858     if (unsigned(Elt) >= SrcNumElts*2)
859       InElt = UndefValue::get(EltTy);
860     else if (unsigned(Elt) >= SrcNumElts) {
861       Type *Ty = IntegerType::get(V2->getContext(), 32);
862       InElt =
863         ConstantExpr::getExtractElement(V2,
864                                         ConstantInt::get(Ty, Elt - SrcNumElts));
865     } else {
866       Type *Ty = IntegerType::get(V1->getContext(), 32);
867       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
868     }
869     Result.push_back(InElt);
870   }
871 
872   return ConstantVector::get(Result);
873 }
874 
875 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
876                                                     ArrayRef<unsigned> Idxs) {
877   // Base case: no indices, so return the entire value.
878   if (Idxs.empty())
879     return Agg;
880 
881   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
882     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
883 
884   return nullptr;
885 }
886 
887 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
888                                                    Constant *Val,
889                                                    ArrayRef<unsigned> Idxs) {
890   // Base case: no indices, so replace the entire value.
891   if (Idxs.empty())
892     return Val;
893 
894   unsigned NumElts;
895   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
896     NumElts = ST->getNumElements();
897   else
898     NumElts = cast<SequentialType>(Agg->getType())->getNumElements();
899 
900   SmallVector<Constant*, 32> Result;
901   for (unsigned i = 0; i != NumElts; ++i) {
902     Constant *C = Agg->getAggregateElement(i);
903     if (!C) return nullptr;
904 
905     if (Idxs[0] == i)
906       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
907 
908     Result.push_back(C);
909   }
910 
911   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
912     return ConstantStruct::get(ST, Result);
913   if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
914     return ConstantArray::get(AT, Result);
915   return ConstantVector::get(Result);
916 }
917 
918 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
919   assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
920 
921   // Handle scalar UndefValue. Vectors are always evaluated per element.
922   bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C);
923 
924   if (HasScalarUndef) {
925     switch (static_cast<Instruction::UnaryOps>(Opcode)) {
926     case Instruction::FNeg:
927       return C; // -undef -> undef
928     case Instruction::UnaryOpsEnd:
929       llvm_unreachable("Invalid UnaryOp");
930     }
931   }
932 
933   // Constant should not be UndefValue, unless these are vector constants.
934   assert(!HasScalarUndef && "Unexpected UndefValue");
935   // We only have FP UnaryOps right now.
936   assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
937 
938   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
939     const APFloat &CV = CFP->getValueAPF();
940     switch (Opcode) {
941     default:
942       break;
943     case Instruction::FNeg:
944       return ConstantFP::get(C->getContext(), neg(CV));
945     }
946   } else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) {
947     // Fold each element and create a vector constant from those constants.
948     SmallVector<Constant*, 16> Result;
949     Type *Ty = IntegerType::get(VTy->getContext(), 32);
950     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
951       Constant *ExtractIdx = ConstantInt::get(Ty, i);
952       Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
953 
954       Result.push_back(ConstantExpr::get(Opcode, Elt));
955     }
956 
957     return ConstantVector::get(Result);
958   }
959 
960   // We don't know how to fold this.
961   return nullptr;
962 }
963 
964 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
965                                               Constant *C2) {
966   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
967 
968   // Handle scalar UndefValue. Vectors are always evaluated per element.
969   bool HasScalarUndef = !C1->getType()->isVectorTy() &&
970                         (isa<UndefValue>(C1) || isa<UndefValue>(C2));
971   if (HasScalarUndef) {
972     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
973     case Instruction::Xor:
974       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
975         // Handle undef ^ undef -> 0 special case. This is a common
976         // idiom (misuse).
977         return Constant::getNullValue(C1->getType());
978       LLVM_FALLTHROUGH;
979     case Instruction::Add:
980     case Instruction::Sub:
981       return UndefValue::get(C1->getType());
982     case Instruction::And:
983       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
984         return C1;
985       return Constant::getNullValue(C1->getType());   // undef & X -> 0
986     case Instruction::Mul: {
987       // undef * undef -> undef
988       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
989         return C1;
990       const APInt *CV;
991       // X * undef -> undef   if X is odd
992       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
993         if ((*CV)[0])
994           return UndefValue::get(C1->getType());
995 
996       // X * undef -> 0       otherwise
997       return Constant::getNullValue(C1->getType());
998     }
999     case Instruction::SDiv:
1000     case Instruction::UDiv:
1001       // X / undef -> undef
1002       if (isa<UndefValue>(C2))
1003         return C2;
1004       // undef / 0 -> undef
1005       // undef / 1 -> undef
1006       if (match(C2, m_Zero()) || match(C2, m_One()))
1007         return C1;
1008       // undef / X -> 0       otherwise
1009       return Constant::getNullValue(C1->getType());
1010     case Instruction::URem:
1011     case Instruction::SRem:
1012       // X % undef -> undef
1013       if (match(C2, m_Undef()))
1014         return C2;
1015       // undef % 0 -> undef
1016       if (match(C2, m_Zero()))
1017         return C1;
1018       // undef % X -> 0       otherwise
1019       return Constant::getNullValue(C1->getType());
1020     case Instruction::Or:                          // X | undef -> -1
1021       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1022         return C1;
1023       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1024     case Instruction::LShr:
1025       // X >>l undef -> undef
1026       if (isa<UndefValue>(C2))
1027         return C2;
1028       // undef >>l 0 -> undef
1029       if (match(C2, m_Zero()))
1030         return C1;
1031       // undef >>l X -> 0
1032       return Constant::getNullValue(C1->getType());
1033     case Instruction::AShr:
1034       // X >>a undef -> undef
1035       if (isa<UndefValue>(C2))
1036         return C2;
1037       // undef >>a 0 -> undef
1038       if (match(C2, m_Zero()))
1039         return C1;
1040       // TODO: undef >>a X -> undef if the shift is exact
1041       // undef >>a X -> 0
1042       return Constant::getNullValue(C1->getType());
1043     case Instruction::Shl:
1044       // X << undef -> undef
1045       if (isa<UndefValue>(C2))
1046         return C2;
1047       // undef << 0 -> undef
1048       if (match(C2, m_Zero()))
1049         return C1;
1050       // undef << X -> 0
1051       return Constant::getNullValue(C1->getType());
1052     case Instruction::FAdd:
1053     case Instruction::FSub:
1054     case Instruction::FMul:
1055     case Instruction::FDiv:
1056     case Instruction::FRem:
1057       // [any flop] undef, undef -> undef
1058       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1059         return C1;
1060       // [any flop] C, undef -> NaN
1061       // [any flop] undef, C -> NaN
1062       // We could potentially specialize NaN/Inf constants vs. 'normal'
1063       // constants (possibly differently depending on opcode and operand). This
1064       // would allow returning undef sometimes. But it is always safe to fold to
1065       // NaN because we can choose the undef operand as NaN, and any FP opcode
1066       // with a NaN operand will propagate NaN.
1067       return ConstantFP::getNaN(C1->getType());
1068     case Instruction::BinaryOpsEnd:
1069       llvm_unreachable("Invalid BinaryOp");
1070     }
1071   }
1072 
1073   // Neither constant should be UndefValue, unless these are vector constants.
1074   assert(!HasScalarUndef && "Unexpected UndefValue");
1075 
1076   // Handle simplifications when the RHS is a constant int.
1077   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1078     switch (Opcode) {
1079     case Instruction::Add:
1080       if (CI2->isZero()) return C1;                             // X + 0 == X
1081       break;
1082     case Instruction::Sub:
1083       if (CI2->isZero()) return C1;                             // X - 0 == X
1084       break;
1085     case Instruction::Mul:
1086       if (CI2->isZero()) return C2;                             // X * 0 == 0
1087       if (CI2->isOne())
1088         return C1;                                              // X * 1 == X
1089       break;
1090     case Instruction::UDiv:
1091     case Instruction::SDiv:
1092       if (CI2->isOne())
1093         return C1;                                            // X / 1 == X
1094       if (CI2->isZero())
1095         return UndefValue::get(CI2->getType());               // X / 0 == undef
1096       break;
1097     case Instruction::URem:
1098     case Instruction::SRem:
1099       if (CI2->isOne())
1100         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1101       if (CI2->isZero())
1102         return UndefValue::get(CI2->getType());               // X % 0 == undef
1103       break;
1104     case Instruction::And:
1105       if (CI2->isZero()) return C2;                           // X & 0 == 0
1106       if (CI2->isMinusOne())
1107         return C1;                                            // X & -1 == X
1108 
1109       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1110         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1111         if (CE1->getOpcode() == Instruction::ZExt) {
1112           unsigned DstWidth = CI2->getType()->getBitWidth();
1113           unsigned SrcWidth =
1114             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1115           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1116           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1117             return C1;
1118         }
1119 
1120         // If and'ing the address of a global with a constant, fold it.
1121         if (CE1->getOpcode() == Instruction::PtrToInt &&
1122             isa<GlobalValue>(CE1->getOperand(0))) {
1123           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1124 
1125           MaybeAlign GVAlign;
1126 
1127           if (Module *TheModule = GV->getParent()) {
1128             GVAlign = GV->getPointerAlignment(TheModule->getDataLayout());
1129 
1130             // If the function alignment is not specified then assume that it
1131             // is 4.
1132             // This is dangerous; on x86, the alignment of the pointer
1133             // corresponds to the alignment of the function, but might be less
1134             // than 4 if it isn't explicitly specified.
1135             // However, a fix for this behaviour was reverted because it
1136             // increased code size (see https://reviews.llvm.org/D55115)
1137             // FIXME: This code should be deleted once existing targets have
1138             // appropriate defaults
1139             if (!GVAlign && isa<Function>(GV))
1140               GVAlign = Align(4);
1141           } else if (isa<Function>(GV)) {
1142             // Without a datalayout we have to assume the worst case: that the
1143             // function pointer isn't aligned at all.
1144             GVAlign = llvm::None;
1145           } else {
1146             GVAlign = MaybeAlign(GV->getAlignment());
1147           }
1148 
1149           if (GVAlign && *GVAlign > 1) {
1150             unsigned DstWidth = CI2->getType()->getBitWidth();
1151             unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
1152             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1153 
1154             // If checking bits we know are clear, return zero.
1155             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1156               return Constant::getNullValue(CI2->getType());
1157           }
1158         }
1159       }
1160       break;
1161     case Instruction::Or:
1162       if (CI2->isZero()) return C1;        // X | 0 == X
1163       if (CI2->isMinusOne())
1164         return C2;                         // X | -1 == -1
1165       break;
1166     case Instruction::Xor:
1167       if (CI2->isZero()) return C1;        // X ^ 0 == X
1168 
1169       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1170         switch (CE1->getOpcode()) {
1171         default: break;
1172         case Instruction::ICmp:
1173         case Instruction::FCmp:
1174           // cmp pred ^ true -> cmp !pred
1175           assert(CI2->isOne());
1176           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1177           pred = CmpInst::getInversePredicate(pred);
1178           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1179                                           CE1->getOperand(1));
1180         }
1181       }
1182       break;
1183     case Instruction::AShr:
1184       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1185       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1186         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1187           return ConstantExpr::getLShr(C1, C2);
1188       break;
1189     }
1190   } else if (isa<ConstantInt>(C1)) {
1191     // If C1 is a ConstantInt and C2 is not, swap the operands.
1192     if (Instruction::isCommutative(Opcode))
1193       return ConstantExpr::get(Opcode, C2, C1);
1194   }
1195 
1196   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1197     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1198       const APInt &C1V = CI1->getValue();
1199       const APInt &C2V = CI2->getValue();
1200       switch (Opcode) {
1201       default:
1202         break;
1203       case Instruction::Add:
1204         return ConstantInt::get(CI1->getContext(), C1V + C2V);
1205       case Instruction::Sub:
1206         return ConstantInt::get(CI1->getContext(), C1V - C2V);
1207       case Instruction::Mul:
1208         return ConstantInt::get(CI1->getContext(), C1V * C2V);
1209       case Instruction::UDiv:
1210         assert(!CI2->isZero() && "Div by zero handled above");
1211         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1212       case Instruction::SDiv:
1213         assert(!CI2->isZero() && "Div by zero handled above");
1214         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1215           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1216         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1217       case Instruction::URem:
1218         assert(!CI2->isZero() && "Div by zero handled above");
1219         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1220       case Instruction::SRem:
1221         assert(!CI2->isZero() && "Div by zero handled above");
1222         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1223           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1224         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1225       case Instruction::And:
1226         return ConstantInt::get(CI1->getContext(), C1V & C2V);
1227       case Instruction::Or:
1228         return ConstantInt::get(CI1->getContext(), C1V | C2V);
1229       case Instruction::Xor:
1230         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1231       case Instruction::Shl:
1232         if (C2V.ult(C1V.getBitWidth()))
1233           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1234         return UndefValue::get(C1->getType()); // too big shift is undef
1235       case Instruction::LShr:
1236         if (C2V.ult(C1V.getBitWidth()))
1237           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1238         return UndefValue::get(C1->getType()); // too big shift is undef
1239       case Instruction::AShr:
1240         if (C2V.ult(C1V.getBitWidth()))
1241           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1242         return UndefValue::get(C1->getType()); // too big shift is undef
1243       }
1244     }
1245 
1246     switch (Opcode) {
1247     case Instruction::SDiv:
1248     case Instruction::UDiv:
1249     case Instruction::URem:
1250     case Instruction::SRem:
1251     case Instruction::LShr:
1252     case Instruction::AShr:
1253     case Instruction::Shl:
1254       if (CI1->isZero()) return C1;
1255       break;
1256     default:
1257       break;
1258     }
1259   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1260     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1261       const APFloat &C1V = CFP1->getValueAPF();
1262       const APFloat &C2V = CFP2->getValueAPF();
1263       APFloat C3V = C1V;  // copy for modification
1264       switch (Opcode) {
1265       default:
1266         break;
1267       case Instruction::FAdd:
1268         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1269         return ConstantFP::get(C1->getContext(), C3V);
1270       case Instruction::FSub:
1271         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1272         return ConstantFP::get(C1->getContext(), C3V);
1273       case Instruction::FMul:
1274         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1275         return ConstantFP::get(C1->getContext(), C3V);
1276       case Instruction::FDiv:
1277         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1278         return ConstantFP::get(C1->getContext(), C3V);
1279       case Instruction::FRem:
1280         (void)C3V.mod(C2V);
1281         return ConstantFP::get(C1->getContext(), C3V);
1282       }
1283     }
1284   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1285     // Fold each element and create a vector constant from those constants.
1286     SmallVector<Constant*, 16> Result;
1287     Type *Ty = IntegerType::get(VTy->getContext(), 32);
1288     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1289       Constant *ExtractIdx = ConstantInt::get(Ty, i);
1290       Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1291       Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1292 
1293       // If any element of a divisor vector is zero, the whole op is undef.
1294       if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1295         return UndefValue::get(VTy);
1296 
1297       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1298     }
1299 
1300     return ConstantVector::get(Result);
1301   }
1302 
1303   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1304     // There are many possible foldings we could do here.  We should probably
1305     // at least fold add of a pointer with an integer into the appropriate
1306     // getelementptr.  This will improve alias analysis a bit.
1307 
1308     // Given ((a + b) + c), if (b + c) folds to something interesting, return
1309     // (a + (b + c)).
1310     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1311       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1312       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1313         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1314     }
1315   } else if (isa<ConstantExpr>(C2)) {
1316     // If C2 is a constant expr and C1 isn't, flop them around and fold the
1317     // other way if possible.
1318     if (Instruction::isCommutative(Opcode))
1319       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1320   }
1321 
1322   // i1 can be simplified in many cases.
1323   if (C1->getType()->isIntegerTy(1)) {
1324     switch (Opcode) {
1325     case Instruction::Add:
1326     case Instruction::Sub:
1327       return ConstantExpr::getXor(C1, C2);
1328     case Instruction::Mul:
1329       return ConstantExpr::getAnd(C1, C2);
1330     case Instruction::Shl:
1331     case Instruction::LShr:
1332     case Instruction::AShr:
1333       // We can assume that C2 == 0.  If it were one the result would be
1334       // undefined because the shift value is as large as the bitwidth.
1335       return C1;
1336     case Instruction::SDiv:
1337     case Instruction::UDiv:
1338       // We can assume that C2 == 1.  If it were zero the result would be
1339       // undefined through division by zero.
1340       return C1;
1341     case Instruction::URem:
1342     case Instruction::SRem:
1343       // We can assume that C2 == 1.  If it were zero the result would be
1344       // undefined through division by zero.
1345       return ConstantInt::getFalse(C1->getContext());
1346     default:
1347       break;
1348     }
1349   }
1350 
1351   // We don't know how to fold this.
1352   return nullptr;
1353 }
1354 
1355 /// This type is zero-sized if it's an array or structure of zero-sized types.
1356 /// The only leaf zero-sized type is an empty structure.
1357 static bool isMaybeZeroSizedType(Type *Ty) {
1358   if (StructType *STy = dyn_cast<StructType>(Ty)) {
1359     if (STy->isOpaque()) return true;  // Can't say.
1360 
1361     // If all of elements have zero size, this does too.
1362     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1363       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1364     return true;
1365 
1366   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1367     return isMaybeZeroSizedType(ATy->getElementType());
1368   }
1369   return false;
1370 }
1371 
1372 /// Compare the two constants as though they were getelementptr indices.
1373 /// This allows coercion of the types to be the same thing.
1374 ///
1375 /// If the two constants are the "same" (after coercion), return 0.  If the
1376 /// first is less than the second, return -1, if the second is less than the
1377 /// first, return 1.  If the constants are not integral, return -2.
1378 ///
1379 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1380   if (C1 == C2) return 0;
1381 
1382   // Ok, we found a different index.  If they are not ConstantInt, we can't do
1383   // anything with them.
1384   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1385     return -2; // don't know!
1386 
1387   // We cannot compare the indices if they don't fit in an int64_t.
1388   if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1389       cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1390     return -2; // don't know!
1391 
1392   // Ok, we have two differing integer indices.  Sign extend them to be the same
1393   // type.
1394   int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1395   int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1396 
1397   if (C1Val == C2Val) return 0;  // They are equal
1398 
1399   // If the type being indexed over is really just a zero sized type, there is
1400   // no pointer difference being made here.
1401   if (isMaybeZeroSizedType(ElTy))
1402     return -2; // dunno.
1403 
1404   // If they are really different, now that they are the same type, then we
1405   // found a difference!
1406   if (C1Val < C2Val)
1407     return -1;
1408   else
1409     return 1;
1410 }
1411 
1412 /// This function determines if there is anything we can decide about the two
1413 /// constants provided. This doesn't need to handle simple things like
1414 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1415 /// If we can determine that the two constants have a particular relation to
1416 /// each other, we should return the corresponding FCmpInst predicate,
1417 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1418 /// ConstantFoldCompareInstruction.
1419 ///
1420 /// To simplify this code we canonicalize the relation so that the first
1421 /// operand is always the most "complex" of the two.  We consider ConstantFP
1422 /// to be the simplest, and ConstantExprs to be the most complex.
1423 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1424   assert(V1->getType() == V2->getType() &&
1425          "Cannot compare values of different types!");
1426 
1427   // We do not know if a constant expression will evaluate to a number or NaN.
1428   // Therefore, we can only say that the relation is unordered or equal.
1429   if (V1 == V2) return FCmpInst::FCMP_UEQ;
1430 
1431   if (!isa<ConstantExpr>(V1)) {
1432     if (!isa<ConstantExpr>(V2)) {
1433       // Simple case, use the standard constant folder.
1434       ConstantInt *R = nullptr;
1435       R = dyn_cast<ConstantInt>(
1436                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1437       if (R && !R->isZero())
1438         return FCmpInst::FCMP_OEQ;
1439       R = dyn_cast<ConstantInt>(
1440                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1441       if (R && !R->isZero())
1442         return FCmpInst::FCMP_OLT;
1443       R = dyn_cast<ConstantInt>(
1444                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1445       if (R && !R->isZero())
1446         return FCmpInst::FCMP_OGT;
1447 
1448       // Nothing more we can do
1449       return FCmpInst::BAD_FCMP_PREDICATE;
1450     }
1451 
1452     // If the first operand is simple and second is ConstantExpr, swap operands.
1453     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1454     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1455       return FCmpInst::getSwappedPredicate(SwappedRelation);
1456   } else {
1457     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1458     // constantexpr or a simple constant.
1459     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1460     switch (CE1->getOpcode()) {
1461     case Instruction::FPTrunc:
1462     case Instruction::FPExt:
1463     case Instruction::UIToFP:
1464     case Instruction::SIToFP:
1465       // We might be able to do something with these but we don't right now.
1466       break;
1467     default:
1468       break;
1469     }
1470   }
1471   // There are MANY other foldings that we could perform here.  They will
1472   // probably be added on demand, as they seem needed.
1473   return FCmpInst::BAD_FCMP_PREDICATE;
1474 }
1475 
1476 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1477                                                       const GlobalValue *GV2) {
1478   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1479     if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1480       return true;
1481     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1482       Type *Ty = GVar->getValueType();
1483       // A global with opaque type might end up being zero sized.
1484       if (!Ty->isSized())
1485         return true;
1486       // A global with an empty type might lie at the address of any other
1487       // global.
1488       if (Ty->isEmptyTy())
1489         return true;
1490     }
1491     return false;
1492   };
1493   // Don't try to decide equality of aliases.
1494   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1495     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1496       return ICmpInst::ICMP_NE;
1497   return ICmpInst::BAD_ICMP_PREDICATE;
1498 }
1499 
1500 /// This function determines if there is anything we can decide about the two
1501 /// constants provided. This doesn't need to handle simple things like integer
1502 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1503 /// If we can determine that the two constants have a particular relation to
1504 /// each other, we should return the corresponding ICmp predicate, otherwise
1505 /// return ICmpInst::BAD_ICMP_PREDICATE.
1506 ///
1507 /// To simplify this code we canonicalize the relation so that the first
1508 /// operand is always the most "complex" of the two.  We consider simple
1509 /// constants (like ConstantInt) to be the simplest, followed by
1510 /// GlobalValues, followed by ConstantExpr's (the most complex).
1511 ///
1512 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1513                                                 bool isSigned) {
1514   assert(V1->getType() == V2->getType() &&
1515          "Cannot compare different types of values!");
1516   if (V1 == V2) return ICmpInst::ICMP_EQ;
1517 
1518   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1519       !isa<BlockAddress>(V1)) {
1520     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1521         !isa<BlockAddress>(V2)) {
1522       // We distilled this down to a simple case, use the standard constant
1523       // folder.
1524       ConstantInt *R = nullptr;
1525       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1526       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1527       if (R && !R->isZero())
1528         return pred;
1529       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1530       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1531       if (R && !R->isZero())
1532         return pred;
1533       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1534       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1535       if (R && !R->isZero())
1536         return pred;
1537 
1538       // If we couldn't figure it out, bail.
1539       return ICmpInst::BAD_ICMP_PREDICATE;
1540     }
1541 
1542     // If the first operand is simple, swap operands.
1543     ICmpInst::Predicate SwappedRelation =
1544       evaluateICmpRelation(V2, V1, isSigned);
1545     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1546       return ICmpInst::getSwappedPredicate(SwappedRelation);
1547 
1548   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1549     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1550       ICmpInst::Predicate SwappedRelation =
1551         evaluateICmpRelation(V2, V1, isSigned);
1552       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1553         return ICmpInst::getSwappedPredicate(SwappedRelation);
1554       return ICmpInst::BAD_ICMP_PREDICATE;
1555     }
1556 
1557     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1558     // constant (which, since the types must match, means that it's a
1559     // ConstantPointerNull).
1560     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1561       return areGlobalsPotentiallyEqual(GV, GV2);
1562     } else if (isa<BlockAddress>(V2)) {
1563       return ICmpInst::ICMP_NE; // Globals never equal labels.
1564     } else {
1565       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1566       // GlobalVals can never be null unless they have external weak linkage.
1567       // We don't try to evaluate aliases here.
1568       // NOTE: We should not be doing this constant folding if null pointer
1569       // is considered valid for the function. But currently there is no way to
1570       // query it from the Constant type.
1571       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1572           !NullPointerIsDefined(nullptr /* F */,
1573                                 GV->getType()->getAddressSpace()))
1574         return ICmpInst::ICMP_NE;
1575     }
1576   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1577     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1578       ICmpInst::Predicate SwappedRelation =
1579         evaluateICmpRelation(V2, V1, isSigned);
1580       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1581         return ICmpInst::getSwappedPredicate(SwappedRelation);
1582       return ICmpInst::BAD_ICMP_PREDICATE;
1583     }
1584 
1585     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1586     // constant (which, since the types must match, means that it is a
1587     // ConstantPointerNull).
1588     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1589       // Block address in another function can't equal this one, but block
1590       // addresses in the current function might be the same if blocks are
1591       // empty.
1592       if (BA2->getFunction() != BA->getFunction())
1593         return ICmpInst::ICMP_NE;
1594     } else {
1595       // Block addresses aren't null, don't equal the address of globals.
1596       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1597              "Canonicalization guarantee!");
1598       return ICmpInst::ICMP_NE;
1599     }
1600   } else {
1601     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1602     // constantexpr, a global, block address, or a simple constant.
1603     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1604     Constant *CE1Op0 = CE1->getOperand(0);
1605 
1606     switch (CE1->getOpcode()) {
1607     case Instruction::Trunc:
1608     case Instruction::FPTrunc:
1609     case Instruction::FPExt:
1610     case Instruction::FPToUI:
1611     case Instruction::FPToSI:
1612       break; // We can't evaluate floating point casts or truncations.
1613 
1614     case Instruction::UIToFP:
1615     case Instruction::SIToFP:
1616     case Instruction::BitCast:
1617     case Instruction::ZExt:
1618     case Instruction::SExt:
1619       // We can't evaluate floating point casts or truncations.
1620       if (CE1Op0->getType()->isFPOrFPVectorTy())
1621         break;
1622 
1623       // If the cast is not actually changing bits, and the second operand is a
1624       // null pointer, do the comparison with the pre-casted value.
1625       if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1626         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1627         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1628         return evaluateICmpRelation(CE1Op0,
1629                                     Constant::getNullValue(CE1Op0->getType()),
1630                                     isSigned);
1631       }
1632       break;
1633 
1634     case Instruction::GetElementPtr: {
1635       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1636       // Ok, since this is a getelementptr, we know that the constant has a
1637       // pointer type.  Check the various cases.
1638       if (isa<ConstantPointerNull>(V2)) {
1639         // If we are comparing a GEP to a null pointer, check to see if the base
1640         // of the GEP equals the null pointer.
1641         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1642           if (GV->hasExternalWeakLinkage())
1643             // Weak linkage GVals could be zero or not. We're comparing that
1644             // to null pointer so its greater-or-equal
1645             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1646           else
1647             // If its not weak linkage, the GVal must have a non-zero address
1648             // so the result is greater-than
1649             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1650         } else if (isa<ConstantPointerNull>(CE1Op0)) {
1651           // If we are indexing from a null pointer, check to see if we have any
1652           // non-zero indices.
1653           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1654             if (!CE1->getOperand(i)->isNullValue())
1655               // Offsetting from null, must not be equal.
1656               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1657           // Only zero indexes from null, must still be zero.
1658           return ICmpInst::ICMP_EQ;
1659         }
1660         // Otherwise, we can't really say if the first operand is null or not.
1661       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1662         if (isa<ConstantPointerNull>(CE1Op0)) {
1663           if (GV2->hasExternalWeakLinkage())
1664             // Weak linkage GVals could be zero or not. We're comparing it to
1665             // a null pointer, so its less-or-equal
1666             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1667           else
1668             // If its not weak linkage, the GVal must have a non-zero address
1669             // so the result is less-than
1670             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1671         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1672           if (GV == GV2) {
1673             // If this is a getelementptr of the same global, then it must be
1674             // different.  Because the types must match, the getelementptr could
1675             // only have at most one index, and because we fold getelementptr's
1676             // with a single zero index, it must be nonzero.
1677             assert(CE1->getNumOperands() == 2 &&
1678                    !CE1->getOperand(1)->isNullValue() &&
1679                    "Surprising getelementptr!");
1680             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1681           } else {
1682             if (CE1GEP->hasAllZeroIndices())
1683               return areGlobalsPotentiallyEqual(GV, GV2);
1684             return ICmpInst::BAD_ICMP_PREDICATE;
1685           }
1686         }
1687       } else {
1688         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1689         Constant *CE2Op0 = CE2->getOperand(0);
1690 
1691         // There are MANY other foldings that we could perform here.  They will
1692         // probably be added on demand, as they seem needed.
1693         switch (CE2->getOpcode()) {
1694         default: break;
1695         case Instruction::GetElementPtr:
1696           // By far the most common case to handle is when the base pointers are
1697           // obviously to the same global.
1698           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1699             // Don't know relative ordering, but check for inequality.
1700             if (CE1Op0 != CE2Op0) {
1701               GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1702               if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1703                 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1704                                                   cast<GlobalValue>(CE2Op0));
1705               return ICmpInst::BAD_ICMP_PREDICATE;
1706             }
1707             // Ok, we know that both getelementptr instructions are based on the
1708             // same global.  From this, we can precisely determine the relative
1709             // ordering of the resultant pointers.
1710             unsigned i = 1;
1711 
1712             // The logic below assumes that the result of the comparison
1713             // can be determined by finding the first index that differs.
1714             // This doesn't work if there is over-indexing in any
1715             // subsequent indices, so check for that case first.
1716             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1717                 !CE2->isGEPWithNoNotionalOverIndexing())
1718                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1719 
1720             // Compare all of the operands the GEP's have in common.
1721             gep_type_iterator GTI = gep_type_begin(CE1);
1722             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1723                  ++i, ++GTI)
1724               switch (IdxCompare(CE1->getOperand(i),
1725                                  CE2->getOperand(i), GTI.getIndexedType())) {
1726               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1727               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1728               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1729               }
1730 
1731             // Ok, we ran out of things they have in common.  If any leftovers
1732             // are non-zero then we have a difference, otherwise we are equal.
1733             for (; i < CE1->getNumOperands(); ++i)
1734               if (!CE1->getOperand(i)->isNullValue()) {
1735                 if (isa<ConstantInt>(CE1->getOperand(i)))
1736                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1737                 else
1738                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1739               }
1740 
1741             for (; i < CE2->getNumOperands(); ++i)
1742               if (!CE2->getOperand(i)->isNullValue()) {
1743                 if (isa<ConstantInt>(CE2->getOperand(i)))
1744                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1745                 else
1746                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1747               }
1748             return ICmpInst::ICMP_EQ;
1749           }
1750         }
1751       }
1752       break;
1753     }
1754     default:
1755       break;
1756     }
1757   }
1758 
1759   return ICmpInst::BAD_ICMP_PREDICATE;
1760 }
1761 
1762 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1763                                                Constant *C1, Constant *C2) {
1764   Type *ResultTy;
1765   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1766     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1767                                VT->getNumElements());
1768   else
1769     ResultTy = Type::getInt1Ty(C1->getContext());
1770 
1771   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1772   if (pred == FCmpInst::FCMP_FALSE)
1773     return Constant::getNullValue(ResultTy);
1774 
1775   if (pred == FCmpInst::FCMP_TRUE)
1776     return Constant::getAllOnesValue(ResultTy);
1777 
1778   // Handle some degenerate cases first
1779   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1780     CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1781     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1782     // For EQ and NE, we can always pick a value for the undef to make the
1783     // predicate pass or fail, so we can return undef.
1784     // Also, if both operands are undef, we can return undef for int comparison.
1785     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1786       return UndefValue::get(ResultTy);
1787 
1788     // Otherwise, for integer compare, pick the same value as the non-undef
1789     // operand, and fold it to true or false.
1790     if (isIntegerPredicate)
1791       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1792 
1793     // Choosing NaN for the undef will always make unordered comparison succeed
1794     // and ordered comparison fails.
1795     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1796   }
1797 
1798   // icmp eq/ne(null,GV) -> false/true
1799   if (C1->isNullValue()) {
1800     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1801       // Don't try to evaluate aliases.  External weak GV can be null.
1802       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1803           !NullPointerIsDefined(nullptr /* F */,
1804                                 GV->getType()->getAddressSpace())) {
1805         if (pred == ICmpInst::ICMP_EQ)
1806           return ConstantInt::getFalse(C1->getContext());
1807         else if (pred == ICmpInst::ICMP_NE)
1808           return ConstantInt::getTrue(C1->getContext());
1809       }
1810   // icmp eq/ne(GV,null) -> false/true
1811   } else if (C2->isNullValue()) {
1812     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1813       // Don't try to evaluate aliases.  External weak GV can be null.
1814       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1815           !NullPointerIsDefined(nullptr /* F */,
1816                                 GV->getType()->getAddressSpace())) {
1817         if (pred == ICmpInst::ICMP_EQ)
1818           return ConstantInt::getFalse(C1->getContext());
1819         else if (pred == ICmpInst::ICMP_NE)
1820           return ConstantInt::getTrue(C1->getContext());
1821       }
1822   }
1823 
1824   // If the comparison is a comparison between two i1's, simplify it.
1825   if (C1->getType()->isIntegerTy(1)) {
1826     switch(pred) {
1827     case ICmpInst::ICMP_EQ:
1828       if (isa<ConstantInt>(C2))
1829         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1830       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1831     case ICmpInst::ICMP_NE:
1832       return ConstantExpr::getXor(C1, C2);
1833     default:
1834       break;
1835     }
1836   }
1837 
1838   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1839     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1840     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1841     switch (pred) {
1842     default: llvm_unreachable("Invalid ICmp Predicate");
1843     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1844     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1845     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1846     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1847     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1848     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1849     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1850     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1851     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1852     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1853     }
1854   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1855     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1856     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1857     APFloat::cmpResult R = C1V.compare(C2V);
1858     switch (pred) {
1859     default: llvm_unreachable("Invalid FCmp Predicate");
1860     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1861     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1862     case FCmpInst::FCMP_UNO:
1863       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1864     case FCmpInst::FCMP_ORD:
1865       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1866     case FCmpInst::FCMP_UEQ:
1867       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1868                                         R==APFloat::cmpEqual);
1869     case FCmpInst::FCMP_OEQ:
1870       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1871     case FCmpInst::FCMP_UNE:
1872       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1873     case FCmpInst::FCMP_ONE:
1874       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1875                                         R==APFloat::cmpGreaterThan);
1876     case FCmpInst::FCMP_ULT:
1877       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1878                                         R==APFloat::cmpLessThan);
1879     case FCmpInst::FCMP_OLT:
1880       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1881     case FCmpInst::FCMP_UGT:
1882       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1883                                         R==APFloat::cmpGreaterThan);
1884     case FCmpInst::FCMP_OGT:
1885       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1886     case FCmpInst::FCMP_ULE:
1887       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1888     case FCmpInst::FCMP_OLE:
1889       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1890                                         R==APFloat::cmpEqual);
1891     case FCmpInst::FCMP_UGE:
1892       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1893     case FCmpInst::FCMP_OGE:
1894       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1895                                         R==APFloat::cmpEqual);
1896     }
1897   } else if (C1->getType()->isVectorTy()) {
1898     // If we can constant fold the comparison of each element, constant fold
1899     // the whole vector comparison.
1900     SmallVector<Constant*, 4> ResElts;
1901     Type *Ty = IntegerType::get(C1->getContext(), 32);
1902     // Compare the elements, producing an i1 result or constant expr.
1903     for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1904       Constant *C1E =
1905         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1906       Constant *C2E =
1907         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1908 
1909       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1910     }
1911 
1912     return ConstantVector::get(ResElts);
1913   }
1914 
1915   if (C1->getType()->isFloatingPointTy() &&
1916       // Only call evaluateFCmpRelation if we have a constant expr to avoid
1917       // infinite recursive loop
1918       (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1919     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1920     switch (evaluateFCmpRelation(C1, C2)) {
1921     default: llvm_unreachable("Unknown relation!");
1922     case FCmpInst::FCMP_UNO:
1923     case FCmpInst::FCMP_ORD:
1924     case FCmpInst::FCMP_UNE:
1925     case FCmpInst::FCMP_ULT:
1926     case FCmpInst::FCMP_UGT:
1927     case FCmpInst::FCMP_ULE:
1928     case FCmpInst::FCMP_UGE:
1929     case FCmpInst::FCMP_TRUE:
1930     case FCmpInst::FCMP_FALSE:
1931     case FCmpInst::BAD_FCMP_PREDICATE:
1932       break; // Couldn't determine anything about these constants.
1933     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1934       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1935                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1936                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1937       break;
1938     case FCmpInst::FCMP_OLT: // We know that C1 < C2
1939       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1940                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1941                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1942       break;
1943     case FCmpInst::FCMP_OGT: // We know that C1 > C2
1944       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1945                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1946                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1947       break;
1948     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1949       // We can only partially decide this relation.
1950       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1951         Result = 0;
1952       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1953         Result = 1;
1954       break;
1955     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1956       // We can only partially decide this relation.
1957       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1958         Result = 0;
1959       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1960         Result = 1;
1961       break;
1962     case FCmpInst::FCMP_ONE: // We know that C1 != C2
1963       // We can only partially decide this relation.
1964       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1965         Result = 0;
1966       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1967         Result = 1;
1968       break;
1969     case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
1970       // We can only partially decide this relation.
1971       if (pred == FCmpInst::FCMP_ONE)
1972         Result = 0;
1973       else if (pred == FCmpInst::FCMP_UEQ)
1974         Result = 1;
1975       break;
1976     }
1977 
1978     // If we evaluated the result, return it now.
1979     if (Result != -1)
1980       return ConstantInt::get(ResultTy, Result);
1981 
1982   } else {
1983     // Evaluate the relation between the two constants, per the predicate.
1984     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1985     switch (evaluateICmpRelation(C1, C2,
1986                                  CmpInst::isSigned((CmpInst::Predicate)pred))) {
1987     default: llvm_unreachable("Unknown relational!");
1988     case ICmpInst::BAD_ICMP_PREDICATE:
1989       break;  // Couldn't determine anything about these constants.
1990     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1991       // If we know the constants are equal, we can decide the result of this
1992       // computation precisely.
1993       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1994       break;
1995     case ICmpInst::ICMP_ULT:
1996       switch (pred) {
1997       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1998         Result = 1; break;
1999       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2000         Result = 0; break;
2001       }
2002       break;
2003     case ICmpInst::ICMP_SLT:
2004       switch (pred) {
2005       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2006         Result = 1; break;
2007       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2008         Result = 0; break;
2009       }
2010       break;
2011     case ICmpInst::ICMP_UGT:
2012       switch (pred) {
2013       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2014         Result = 1; break;
2015       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2016         Result = 0; break;
2017       }
2018       break;
2019     case ICmpInst::ICMP_SGT:
2020       switch (pred) {
2021       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2022         Result = 1; break;
2023       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2024         Result = 0; break;
2025       }
2026       break;
2027     case ICmpInst::ICMP_ULE:
2028       if (pred == ICmpInst::ICMP_UGT) Result = 0;
2029       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2030       break;
2031     case ICmpInst::ICMP_SLE:
2032       if (pred == ICmpInst::ICMP_SGT) Result = 0;
2033       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2034       break;
2035     case ICmpInst::ICMP_UGE:
2036       if (pred == ICmpInst::ICMP_ULT) Result = 0;
2037       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2038       break;
2039     case ICmpInst::ICMP_SGE:
2040       if (pred == ICmpInst::ICMP_SLT) Result = 0;
2041       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2042       break;
2043     case ICmpInst::ICMP_NE:
2044       if (pred == ICmpInst::ICMP_EQ) Result = 0;
2045       if (pred == ICmpInst::ICMP_NE) Result = 1;
2046       break;
2047     }
2048 
2049     // If we evaluated the result, return it now.
2050     if (Result != -1)
2051       return ConstantInt::get(ResultTy, Result);
2052 
2053     // If the right hand side is a bitcast, try using its inverse to simplify
2054     // it by moving it to the left hand side.  We can't do this if it would turn
2055     // a vector compare into a scalar compare or visa versa, or if it would turn
2056     // the operands into FP values.
2057     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2058       Constant *CE2Op0 = CE2->getOperand(0);
2059       if (CE2->getOpcode() == Instruction::BitCast &&
2060           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
2061           !CE2Op0->getType()->isFPOrFPVectorTy()) {
2062         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2063         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2064       }
2065     }
2066 
2067     // If the left hand side is an extension, try eliminating it.
2068     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2069       if ((CE1->getOpcode() == Instruction::SExt &&
2070            ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
2071           (CE1->getOpcode() == Instruction::ZExt &&
2072            !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2073         Constant *CE1Op0 = CE1->getOperand(0);
2074         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2075         if (CE1Inverse == CE1Op0) {
2076           // Check whether we can safely truncate the right hand side.
2077           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2078           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2079                                     C2->getType()) == C2)
2080             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2081         }
2082       }
2083     }
2084 
2085     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2086         (C1->isNullValue() && !C2->isNullValue())) {
2087       // If C2 is a constant expr and C1 isn't, flip them around and fold the
2088       // other way if possible.
2089       // Also, if C1 is null and C2 isn't, flip them around.
2090       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2091       return ConstantExpr::getICmp(pred, C2, C1);
2092     }
2093   }
2094   return nullptr;
2095 }
2096 
2097 /// Test whether the given sequence of *normalized* indices is "inbounds".
2098 template<typename IndexTy>
2099 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2100   // No indices means nothing that could be out of bounds.
2101   if (Idxs.empty()) return true;
2102 
2103   // If the first index is zero, it's in bounds.
2104   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2105 
2106   // If the first index is one and all the rest are zero, it's in bounds,
2107   // by the one-past-the-end rule.
2108   if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2109     if (!CI->isOne())
2110       return false;
2111   } else {
2112     auto *CV = cast<ConstantDataVector>(Idxs[0]);
2113     CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2114     if (!CI || !CI->isOne())
2115       return false;
2116   }
2117 
2118   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2119     if (!cast<Constant>(Idxs[i])->isNullValue())
2120       return false;
2121   return true;
2122 }
2123 
2124 /// Test whether a given ConstantInt is in-range for a SequentialType.
2125 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2126                                       const ConstantInt *CI) {
2127   // We cannot bounds check the index if it doesn't fit in an int64_t.
2128   if (CI->getValue().getMinSignedBits() > 64)
2129     return false;
2130 
2131   // A negative index or an index past the end of our sequential type is
2132   // considered out-of-range.
2133   int64_t IndexVal = CI->getSExtValue();
2134   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2135     return false;
2136 
2137   // Otherwise, it is in-range.
2138   return true;
2139 }
2140 
2141 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2142                                           bool InBounds,
2143                                           Optional<unsigned> InRangeIndex,
2144                                           ArrayRef<Value *> Idxs) {
2145   if (Idxs.empty()) return C;
2146 
2147   Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2148       PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2149 
2150   if (isa<UndefValue>(C))
2151     return UndefValue::get(GEPTy);
2152 
2153   Constant *Idx0 = cast<Constant>(Idxs[0]);
2154   if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2155     return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2156                ? ConstantVector::getSplat(
2157                      cast<VectorType>(GEPTy)->getNumElements(), C)
2158                : C;
2159 
2160   if (C->isNullValue()) {
2161     bool isNull = true;
2162     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2163       if (!isa<UndefValue>(Idxs[i]) &&
2164           !cast<Constant>(Idxs[i])->isNullValue()) {
2165         isNull = false;
2166         break;
2167       }
2168     if (isNull) {
2169       PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2170       Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2171 
2172       assert(Ty && "Invalid indices for GEP!");
2173       Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2174       Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2175       if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2176         GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2177 
2178       // The GEP returns a vector of pointers when one of more of
2179       // its arguments is a vector.
2180       for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2181         if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2182           GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2183           break;
2184         }
2185       }
2186 
2187       return Constant::getNullValue(GEPTy);
2188     }
2189   }
2190 
2191   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2192     // Combine Indices - If the source pointer to this getelementptr instruction
2193     // is a getelementptr instruction, combine the indices of the two
2194     // getelementptr instructions into a single instruction.
2195     //
2196     if (CE->getOpcode() == Instruction::GetElementPtr) {
2197       gep_type_iterator LastI = gep_type_end(CE);
2198       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2199            I != E; ++I)
2200         LastI = I;
2201 
2202       // We cannot combine indices if doing so would take us outside of an
2203       // array or vector.  Doing otherwise could trick us if we evaluated such a
2204       // GEP as part of a load.
2205       //
2206       // e.g. Consider if the original GEP was:
2207       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2208       //                    i32 0, i32 0, i64 0)
2209       //
2210       // If we then tried to offset it by '8' to get to the third element,
2211       // an i8, we should *not* get:
2212       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2213       //                    i32 0, i32 0, i64 8)
2214       //
2215       // This GEP tries to index array element '8  which runs out-of-bounds.
2216       // Subsequent evaluation would get confused and produce erroneous results.
2217       //
2218       // The following prohibits such a GEP from being formed by checking to see
2219       // if the index is in-range with respect to an array.
2220       // TODO: This code may be extended to handle vectors as well.
2221       bool PerformFold = false;
2222       if (Idx0->isNullValue())
2223         PerformFold = true;
2224       else if (LastI.isSequential())
2225         if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2226           PerformFold = (!LastI.isBoundedSequential() ||
2227                          isIndexInRangeOfArrayType(
2228                              LastI.getSequentialNumElements(), CI)) &&
2229                         !CE->getOperand(CE->getNumOperands() - 1)
2230                              ->getType()
2231                              ->isVectorTy();
2232 
2233       if (PerformFold) {
2234         SmallVector<Value*, 16> NewIndices;
2235         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2236         NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2237 
2238         // Add the last index of the source with the first index of the new GEP.
2239         // Make sure to handle the case when they are actually different types.
2240         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2241         // Otherwise it must be an array.
2242         if (!Idx0->isNullValue()) {
2243           Type *IdxTy = Combined->getType();
2244           if (IdxTy != Idx0->getType()) {
2245             unsigned CommonExtendedWidth =
2246                 std::max(IdxTy->getIntegerBitWidth(),
2247                          Idx0->getType()->getIntegerBitWidth());
2248             CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2249 
2250             Type *CommonTy =
2251                 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2252             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2253             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2254             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2255           } else {
2256             Combined =
2257               ConstantExpr::get(Instruction::Add, Idx0, Combined);
2258           }
2259         }
2260 
2261         NewIndices.push_back(Combined);
2262         NewIndices.append(Idxs.begin() + 1, Idxs.end());
2263 
2264         // The combined GEP normally inherits its index inrange attribute from
2265         // the inner GEP, but if the inner GEP's last index was adjusted by the
2266         // outer GEP, any inbounds attribute on that index is invalidated.
2267         Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex();
2268         if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue())
2269           IRIndex = None;
2270 
2271         return ConstantExpr::getGetElementPtr(
2272             cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2273             NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(),
2274             IRIndex);
2275       }
2276     }
2277 
2278     // Attempt to fold casts to the same type away.  For example, folding:
2279     //
2280     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2281     //                       i64 0, i64 0)
2282     // into:
2283     //
2284     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2285     //
2286     // Don't fold if the cast is changing address spaces.
2287     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2288       PointerType *SrcPtrTy =
2289         dyn_cast<PointerType>(CE->getOperand(0)->getType());
2290       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2291       if (SrcPtrTy && DstPtrTy) {
2292         ArrayType *SrcArrayTy =
2293           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2294         ArrayType *DstArrayTy =
2295           dyn_cast<ArrayType>(DstPtrTy->getElementType());
2296         if (SrcArrayTy && DstArrayTy
2297             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2298             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2299           return ConstantExpr::getGetElementPtr(SrcArrayTy,
2300                                                 (Constant *)CE->getOperand(0),
2301                                                 Idxs, InBounds, InRangeIndex);
2302       }
2303     }
2304   }
2305 
2306   // Check to see if any array indices are not within the corresponding
2307   // notional array or vector bounds. If so, try to determine if they can be
2308   // factored out into preceding dimensions.
2309   SmallVector<Constant *, 8> NewIdxs;
2310   Type *Ty = PointeeTy;
2311   Type *Prev = C->getType();
2312   bool Unknown =
2313       !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2314   for (unsigned i = 1, e = Idxs.size(); i != e;
2315        Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2316     if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2317       // We don't know if it's in range or not.
2318       Unknown = true;
2319       continue;
2320     }
2321     if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2322       // Skip if the type of the previous index is not supported.
2323       continue;
2324     if (InRangeIndex && i == *InRangeIndex + 1) {
2325       // If an index is marked inrange, we cannot apply this canonicalization to
2326       // the following index, as that will cause the inrange index to point to
2327       // the wrong element.
2328       continue;
2329     }
2330     if (isa<StructType>(Ty)) {
2331       // The verify makes sure that GEPs into a struct are in range.
2332       continue;
2333     }
2334     auto *STy = cast<SequentialType>(Ty);
2335     if (isa<VectorType>(STy)) {
2336       // There can be awkward padding in after a non-power of two vector.
2337       Unknown = true;
2338       continue;
2339     }
2340     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2341       if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2342         // It's in range, skip to the next index.
2343         continue;
2344       if (CI->getSExtValue() < 0) {
2345         // It's out of range and negative, don't try to factor it.
2346         Unknown = true;
2347         continue;
2348       }
2349     } else {
2350       auto *CV = cast<ConstantDataVector>(Idxs[i]);
2351       bool InRange = true;
2352       for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2353         auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2354         InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2355         if (CI->getSExtValue() < 0) {
2356           Unknown = true;
2357           break;
2358         }
2359       }
2360       if (InRange || Unknown)
2361         // It's in range, skip to the next index.
2362         // It's out of range and negative, don't try to factor it.
2363         continue;
2364     }
2365     if (isa<StructType>(Prev)) {
2366       // It's out of range, but the prior dimension is a struct
2367       // so we can't do anything about it.
2368       Unknown = true;
2369       continue;
2370     }
2371     // It's out of range, but we can factor it into the prior
2372     // dimension.
2373     NewIdxs.resize(Idxs.size());
2374     // Determine the number of elements in our sequential type.
2375     uint64_t NumElements = STy->getArrayNumElements();
2376 
2377     // Expand the current index or the previous index to a vector from a scalar
2378     // if necessary.
2379     Constant *CurrIdx = cast<Constant>(Idxs[i]);
2380     auto *PrevIdx =
2381         NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2382     bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2383     bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2384     bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2385 
2386     if (!IsCurrIdxVector && IsPrevIdxVector)
2387       CurrIdx = ConstantDataVector::getSplat(
2388           PrevIdx->getType()->getVectorNumElements(), CurrIdx);
2389 
2390     if (!IsPrevIdxVector && IsCurrIdxVector)
2391       PrevIdx = ConstantDataVector::getSplat(
2392           CurrIdx->getType()->getVectorNumElements(), PrevIdx);
2393 
2394     Constant *Factor =
2395         ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2396     if (UseVector)
2397       Factor = ConstantDataVector::getSplat(
2398           IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements()
2399                           : CurrIdx->getType()->getVectorNumElements(),
2400           Factor);
2401 
2402     NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2403 
2404     Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2405 
2406     unsigned CommonExtendedWidth =
2407         std::max(PrevIdx->getType()->getScalarSizeInBits(),
2408                  Div->getType()->getScalarSizeInBits());
2409     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2410 
2411     // Before adding, extend both operands to i64 to avoid
2412     // overflow trouble.
2413     Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2414     if (UseVector)
2415       ExtendedTy = VectorType::get(
2416           ExtendedTy, IsPrevIdxVector
2417                           ? PrevIdx->getType()->getVectorNumElements()
2418                           : CurrIdx->getType()->getVectorNumElements());
2419 
2420     if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2421       PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2422 
2423     if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2424       Div = ConstantExpr::getSExt(Div, ExtendedTy);
2425 
2426     NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2427   }
2428 
2429   // If we did any factoring, start over with the adjusted indices.
2430   if (!NewIdxs.empty()) {
2431     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2432       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2433     return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2434                                           InRangeIndex);
2435   }
2436 
2437   // If all indices are known integers and normalized, we can do a simple
2438   // check for the "inbounds" property.
2439   if (!Unknown && !InBounds)
2440     if (auto *GV = dyn_cast<GlobalVariable>(C))
2441       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2442         return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2443                                               /*InBounds=*/true, InRangeIndex);
2444 
2445   return nullptr;
2446 }
2447