xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantFold.cpp (revision c66a499e037efd268a744e487e7d0c45a4944a9b)
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM.  This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/IR/ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 //===----------------------------------------------------------------------===//
37 //                ConstantFold*Instruction Implementations
38 //===----------------------------------------------------------------------===//
39 
40 /// Convert the specified vector Constant node to the specified vector type.
41 /// At this point, we know that the elements of the input vector constant are
42 /// all simple integer or FP values.
43 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
44 
45   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
46   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
47 
48   // Do not iterate on scalable vector. The num of elements is unknown at
49   // compile-time.
50   if (isa<ScalableVectorType>(DstTy))
51     return nullptr;
52 
53   // If this cast changes element count then we can't handle it here:
54   // doing so requires endianness information.  This should be handled by
55   // Analysis/ConstantFolding.cpp
56   unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements();
57   if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements())
58     return nullptr;
59 
60   Type *DstEltTy = DstTy->getElementType();
61   // Fast path for splatted constants.
62   if (Constant *Splat = CV->getSplatValue()) {
63     return ConstantVector::getSplat(DstTy->getElementCount(),
64                                     ConstantExpr::getBitCast(Splat, DstEltTy));
65   }
66 
67   SmallVector<Constant*, 16> Result;
68   Type *Ty = IntegerType::get(CV->getContext(), 32);
69   for (unsigned i = 0; i != NumElts; ++i) {
70     Constant *C =
71       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
72     C = ConstantExpr::getBitCast(C, DstEltTy);
73     Result.push_back(C);
74   }
75 
76   return ConstantVector::get(Result);
77 }
78 
79 /// This function determines which opcode to use to fold two constant cast
80 /// expressions together. It uses CastInst::isEliminableCastPair to determine
81 /// the opcode. Consequently its just a wrapper around that function.
82 /// Determine if it is valid to fold a cast of a cast
83 static unsigned
84 foldConstantCastPair(
85   unsigned opc,          ///< opcode of the second cast constant expression
86   ConstantExpr *Op,      ///< the first cast constant expression
87   Type *DstTy            ///< destination type of the first cast
88 ) {
89   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
90   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
91   assert(CastInst::isCast(opc) && "Invalid cast opcode");
92 
93   // The types and opcodes for the two Cast constant expressions
94   Type *SrcTy = Op->getOperand(0)->getType();
95   Type *MidTy = Op->getType();
96   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
97   Instruction::CastOps secondOp = Instruction::CastOps(opc);
98 
99   // Assume that pointers are never more than 64 bits wide, and only use this
100   // for the middle type. Otherwise we could end up folding away illegal
101   // bitcasts between address spaces with different sizes.
102   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
103 
104   // Let CastInst::isEliminableCastPair do the heavy lifting.
105   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
106                                         nullptr, FakeIntPtrTy, nullptr);
107 }
108 
109 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
110   Type *SrcTy = V->getType();
111   if (SrcTy == DestTy)
112     return V; // no-op cast
113 
114   // Check to see if we are casting a pointer to an aggregate to a pointer to
115   // the first element.  If so, return the appropriate GEP instruction.
116   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
117     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
118       if (PTy->getAddressSpace() == DPTy->getAddressSpace() &&
119           !PTy->isOpaque() && !DPTy->isOpaque() &&
120           PTy->getNonOpaquePointerElementType()->isSized()) {
121         SmallVector<Value*, 8> IdxList;
122         Value *Zero =
123           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
124         IdxList.push_back(Zero);
125         Type *ElTy = PTy->getNonOpaquePointerElementType();
126         while (ElTy && ElTy != DPTy->getNonOpaquePointerElementType()) {
127           ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0);
128           IdxList.push_back(Zero);
129         }
130 
131         if (ElTy == DPTy->getNonOpaquePointerElementType())
132           // This GEP is inbounds because all indices are zero.
133           return ConstantExpr::getInBoundsGetElementPtr(
134               PTy->getNonOpaquePointerElementType(), V, IdxList);
135       }
136 
137   // Handle casts from one vector constant to another.  We know that the src
138   // and dest type have the same size (otherwise its an illegal cast).
139   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
140     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
141       assert(DestPTy->getPrimitiveSizeInBits() ==
142                  SrcTy->getPrimitiveSizeInBits() &&
143              "Not cast between same sized vectors!");
144       SrcTy = nullptr;
145       // First, check for null.  Undef is already handled.
146       if (isa<ConstantAggregateZero>(V))
147         return Constant::getNullValue(DestTy);
148 
149       // Handle ConstantVector and ConstantAggregateVector.
150       return BitCastConstantVector(V, DestPTy);
151     }
152 
153     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
154     // This allows for other simplifications (although some of them
155     // can only be handled by Analysis/ConstantFolding.cpp).
156     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
157       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
158   }
159 
160   // Finally, implement bitcast folding now.   The code below doesn't handle
161   // bitcast right.
162   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
163     return ConstantPointerNull::get(cast<PointerType>(DestTy));
164 
165   // Handle integral constant input.
166   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
167     if (DestTy->isIntegerTy())
168       // Integral -> Integral. This is a no-op because the bit widths must
169       // be the same. Consequently, we just fold to V.
170       return V;
171 
172     // See note below regarding the PPC_FP128 restriction.
173     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
174       return ConstantFP::get(DestTy->getContext(),
175                              APFloat(DestTy->getFltSemantics(),
176                                      CI->getValue()));
177 
178     // Otherwise, can't fold this (vector?)
179     return nullptr;
180   }
181 
182   // Handle ConstantFP input: FP -> Integral.
183   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
184     // PPC_FP128 is really the sum of two consecutive doubles, where the first
185     // double is always stored first in memory, regardless of the target
186     // endianness. The memory layout of i128, however, depends on the target
187     // endianness, and so we can't fold this without target endianness
188     // information. This should instead be handled by
189     // Analysis/ConstantFolding.cpp
190     if (FP->getType()->isPPC_FP128Ty())
191       return nullptr;
192 
193     // Make sure dest type is compatible with the folded integer constant.
194     if (!DestTy->isIntegerTy())
195       return nullptr;
196 
197     return ConstantInt::get(FP->getContext(),
198                             FP->getValueAPF().bitcastToAPInt());
199   }
200 
201   return nullptr;
202 }
203 
204 
205 /// V is an integer constant which only has a subset of its bytes used.
206 /// The bytes used are indicated by ByteStart (which is the first byte used,
207 /// counting from the least significant byte) and ByteSize, which is the number
208 /// of bytes used.
209 ///
210 /// This function analyzes the specified constant to see if the specified byte
211 /// range can be returned as a simplified constant.  If so, the constant is
212 /// returned, otherwise null is returned.
213 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
214                                       unsigned ByteSize) {
215   assert(C->getType()->isIntegerTy() &&
216          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
217          "Non-byte sized integer input");
218   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
219   assert(ByteSize && "Must be accessing some piece");
220   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
221   assert(ByteSize != CSize && "Should not extract everything");
222 
223   // Constant Integers are simple.
224   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
225     APInt V = CI->getValue();
226     if (ByteStart)
227       V.lshrInPlace(ByteStart*8);
228     V = V.trunc(ByteSize*8);
229     return ConstantInt::get(CI->getContext(), V);
230   }
231 
232   // In the input is a constant expr, we might be able to recursively simplify.
233   // If not, we definitely can't do anything.
234   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
235   if (!CE) return nullptr;
236 
237   switch (CE->getOpcode()) {
238   default: return nullptr;
239   case Instruction::Or: {
240     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
241     if (!RHS)
242       return nullptr;
243 
244     // X | -1 -> -1.
245     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
246       if (RHSC->isMinusOne())
247         return RHSC;
248 
249     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
250     if (!LHS)
251       return nullptr;
252     return ConstantExpr::getOr(LHS, RHS);
253   }
254   case Instruction::And: {
255     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
256     if (!RHS)
257       return nullptr;
258 
259     // X & 0 -> 0.
260     if (RHS->isNullValue())
261       return RHS;
262 
263     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
264     if (!LHS)
265       return nullptr;
266     return ConstantExpr::getAnd(LHS, RHS);
267   }
268   case Instruction::LShr: {
269     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
270     if (!Amt)
271       return nullptr;
272     APInt ShAmt = Amt->getValue();
273     // Cannot analyze non-byte shifts.
274     if ((ShAmt & 7) != 0)
275       return nullptr;
276     ShAmt.lshrInPlace(3);
277 
278     // If the extract is known to be all zeros, return zero.
279     if (ShAmt.uge(CSize - ByteStart))
280       return Constant::getNullValue(
281           IntegerType::get(CE->getContext(), ByteSize * 8));
282     // If the extract is known to be fully in the input, extract it.
283     if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
284       return ExtractConstantBytes(CE->getOperand(0),
285                                   ByteStart + ShAmt.getZExtValue(), ByteSize);
286 
287     // TODO: Handle the 'partially zero' case.
288     return nullptr;
289   }
290 
291   case Instruction::Shl: {
292     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
293     if (!Amt)
294       return nullptr;
295     APInt ShAmt = Amt->getValue();
296     // Cannot analyze non-byte shifts.
297     if ((ShAmt & 7) != 0)
298       return nullptr;
299     ShAmt.lshrInPlace(3);
300 
301     // If the extract is known to be all zeros, return zero.
302     if (ShAmt.uge(ByteStart + ByteSize))
303       return Constant::getNullValue(
304           IntegerType::get(CE->getContext(), ByteSize * 8));
305     // If the extract is known to be fully in the input, extract it.
306     if (ShAmt.ule(ByteStart))
307       return ExtractConstantBytes(CE->getOperand(0),
308                                   ByteStart - ShAmt.getZExtValue(), ByteSize);
309 
310     // TODO: Handle the 'partially zero' case.
311     return nullptr;
312   }
313 
314   case Instruction::ZExt: {
315     unsigned SrcBitSize =
316       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
317 
318     // If extracting something that is completely zero, return 0.
319     if (ByteStart*8 >= SrcBitSize)
320       return Constant::getNullValue(IntegerType::get(CE->getContext(),
321                                                      ByteSize*8));
322 
323     // If exactly extracting the input, return it.
324     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
325       return CE->getOperand(0);
326 
327     // If extracting something completely in the input, if the input is a
328     // multiple of 8 bits, recurse.
329     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
330       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
331 
332     // Otherwise, if extracting a subset of the input, which is not multiple of
333     // 8 bits, do a shift and trunc to get the bits.
334     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
335       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
336       Constant *Res = CE->getOperand(0);
337       if (ByteStart)
338         Res = ConstantExpr::getLShr(Res,
339                                  ConstantInt::get(Res->getType(), ByteStart*8));
340       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
341                                                           ByteSize*8));
342     }
343 
344     // TODO: Handle the 'partially zero' case.
345     return nullptr;
346   }
347   }
348 }
349 
350 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
351                                             Type *DestTy) {
352   if (isa<PoisonValue>(V))
353     return PoisonValue::get(DestTy);
354 
355   if (isa<UndefValue>(V)) {
356     // zext(undef) = 0, because the top bits will be zero.
357     // sext(undef) = 0, because the top bits will all be the same.
358     // [us]itofp(undef) = 0, because the result value is bounded.
359     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
360         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
361       return Constant::getNullValue(DestTy);
362     return UndefValue::get(DestTy);
363   }
364 
365   if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
366       opc != Instruction::AddrSpaceCast)
367     return Constant::getNullValue(DestTy);
368 
369   // If the cast operand is a constant expression, there's a few things we can
370   // do to try to simplify it.
371   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
372     if (CE->isCast()) {
373       // Try hard to fold cast of cast because they are often eliminable.
374       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
375         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
376     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
377                // Do not fold addrspacecast (gep 0, .., 0). It might make the
378                // addrspacecast uncanonicalized.
379                opc != Instruction::AddrSpaceCast &&
380                // Do not fold bitcast (gep) with inrange index, as this loses
381                // information.
382                !cast<GEPOperator>(CE)->getInRangeIndex() &&
383                // Do not fold if the gep type is a vector, as bitcasting
384                // operand 0 of a vector gep will result in a bitcast between
385                // different sizes.
386                !CE->getType()->isVectorTy()) {
387       // If all of the indexes in the GEP are null values, there is no pointer
388       // adjustment going on.  We might as well cast the source pointer.
389       bool isAllNull = true;
390       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
391         if (!CE->getOperand(i)->isNullValue()) {
392           isAllNull = false;
393           break;
394         }
395       if (isAllNull)
396         // This is casting one pointer type to another, always BitCast
397         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
398     }
399   }
400 
401   // If the cast operand is a constant vector, perform the cast by
402   // operating on each element. In the cast of bitcasts, the element
403   // count may be mismatched; don't attempt to handle that here.
404   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
405       DestTy->isVectorTy() &&
406       cast<FixedVectorType>(DestTy)->getNumElements() ==
407           cast<FixedVectorType>(V->getType())->getNumElements()) {
408     VectorType *DestVecTy = cast<VectorType>(DestTy);
409     Type *DstEltTy = DestVecTy->getElementType();
410     // Fast path for splatted constants.
411     if (Constant *Splat = V->getSplatValue()) {
412       return ConstantVector::getSplat(
413           cast<VectorType>(DestTy)->getElementCount(),
414           ConstantExpr::getCast(opc, Splat, DstEltTy));
415     }
416     SmallVector<Constant *, 16> res;
417     Type *Ty = IntegerType::get(V->getContext(), 32);
418     for (unsigned i = 0,
419                   e = cast<FixedVectorType>(V->getType())->getNumElements();
420          i != e; ++i) {
421       Constant *C =
422         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
423       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
424     }
425     return ConstantVector::get(res);
426   }
427 
428   // We actually have to do a cast now. Perform the cast according to the
429   // opcode specified.
430   switch (opc) {
431   default:
432     llvm_unreachable("Failed to cast constant expression");
433   case Instruction::FPTrunc:
434   case Instruction::FPExt:
435     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
436       bool ignored;
437       APFloat Val = FPC->getValueAPF();
438       Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven,
439                   &ignored);
440       return ConstantFP::get(V->getContext(), Val);
441     }
442     return nullptr; // Can't fold.
443   case Instruction::FPToUI:
444   case Instruction::FPToSI:
445     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
446       const APFloat &V = FPC->getValueAPF();
447       bool ignored;
448       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
449       APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
450       if (APFloat::opInvalidOp ==
451           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
452         // Undefined behavior invoked - the destination type can't represent
453         // the input constant.
454         return PoisonValue::get(DestTy);
455       }
456       return ConstantInt::get(FPC->getContext(), IntVal);
457     }
458     return nullptr; // Can't fold.
459   case Instruction::IntToPtr:   //always treated as unsigned
460     if (V->isNullValue())       // Is it an integral null value?
461       return ConstantPointerNull::get(cast<PointerType>(DestTy));
462     return nullptr;                   // Other pointer types cannot be casted
463   case Instruction::PtrToInt:   // always treated as unsigned
464     // Is it a null pointer value?
465     if (V->isNullValue())
466       return ConstantInt::get(DestTy, 0);
467     // Other pointer types cannot be casted
468     return nullptr;
469   case Instruction::UIToFP:
470   case Instruction::SIToFP:
471     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
472       const APInt &api = CI->getValue();
473       APFloat apf(DestTy->getFltSemantics(),
474                   APInt::getZero(DestTy->getPrimitiveSizeInBits()));
475       apf.convertFromAPInt(api, opc==Instruction::SIToFP,
476                            APFloat::rmNearestTiesToEven);
477       return ConstantFP::get(V->getContext(), apf);
478     }
479     return nullptr;
480   case Instruction::ZExt:
481     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
482       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
483       return ConstantInt::get(V->getContext(),
484                               CI->getValue().zext(BitWidth));
485     }
486     return nullptr;
487   case Instruction::SExt:
488     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
489       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
490       return ConstantInt::get(V->getContext(),
491                               CI->getValue().sext(BitWidth));
492     }
493     return nullptr;
494   case Instruction::Trunc: {
495     if (V->getType()->isVectorTy())
496       return nullptr;
497 
498     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
499     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
500       return ConstantInt::get(V->getContext(),
501                               CI->getValue().trunc(DestBitWidth));
502     }
503 
504     // The input must be a constantexpr.  See if we can simplify this based on
505     // the bytes we are demanding.  Only do this if the source and dest are an
506     // even multiple of a byte.
507     if ((DestBitWidth & 7) == 0 &&
508         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
509       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
510         return Res;
511 
512     return nullptr;
513   }
514   case Instruction::BitCast:
515     return FoldBitCast(V, DestTy);
516   case Instruction::AddrSpaceCast:
517     return nullptr;
518   }
519 }
520 
521 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
522                                               Constant *V1, Constant *V2) {
523   // Check for i1 and vector true/false conditions.
524   if (Cond->isNullValue()) return V2;
525   if (Cond->isAllOnesValue()) return V1;
526 
527   // If the condition is a vector constant, fold the result elementwise.
528   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
529     auto *V1VTy = CondV->getType();
530     SmallVector<Constant*, 16> Result;
531     Type *Ty = IntegerType::get(CondV->getContext(), 32);
532     for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
533       Constant *V;
534       Constant *V1Element = ConstantExpr::getExtractElement(V1,
535                                                     ConstantInt::get(Ty, i));
536       Constant *V2Element = ConstantExpr::getExtractElement(V2,
537                                                     ConstantInt::get(Ty, i));
538       auto *Cond = cast<Constant>(CondV->getOperand(i));
539       if (isa<PoisonValue>(Cond)) {
540         V = PoisonValue::get(V1Element->getType());
541       } else if (V1Element == V2Element) {
542         V = V1Element;
543       } else if (isa<UndefValue>(Cond)) {
544         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
545       } else {
546         if (!isa<ConstantInt>(Cond)) break;
547         V = Cond->isNullValue() ? V2Element : V1Element;
548       }
549       Result.push_back(V);
550     }
551 
552     // If we were able to build the vector, return it.
553     if (Result.size() == V1VTy->getNumElements())
554       return ConstantVector::get(Result);
555   }
556 
557   if (isa<PoisonValue>(Cond))
558     return PoisonValue::get(V1->getType());
559 
560   if (isa<UndefValue>(Cond)) {
561     if (isa<UndefValue>(V1)) return V1;
562     return V2;
563   }
564 
565   if (V1 == V2) return V1;
566 
567   if (isa<PoisonValue>(V1))
568     return V2;
569   if (isa<PoisonValue>(V2))
570     return V1;
571 
572   // If the true or false value is undef, we can fold to the other value as
573   // long as the other value isn't poison.
574   auto NotPoison = [](Constant *C) {
575     if (isa<PoisonValue>(C))
576       return false;
577 
578     // TODO: We can analyze ConstExpr by opcode to determine if there is any
579     //       possibility of poison.
580     if (isa<ConstantExpr>(C))
581       return false;
582 
583     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) ||
584         isa<ConstantPointerNull>(C) || isa<Function>(C))
585       return true;
586 
587     if (C->getType()->isVectorTy())
588       return !C->containsPoisonElement() && !C->containsConstantExpression();
589 
590     // TODO: Recursively analyze aggregates or other constants.
591     return false;
592   };
593   if (isa<UndefValue>(V1) && NotPoison(V2)) return V2;
594   if (isa<UndefValue>(V2) && NotPoison(V1)) return V1;
595 
596   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
597     if (TrueVal->getOpcode() == Instruction::Select)
598       if (TrueVal->getOperand(0) == Cond)
599         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
600   }
601   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
602     if (FalseVal->getOpcode() == Instruction::Select)
603       if (FalseVal->getOperand(0) == Cond)
604         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
605   }
606 
607   return nullptr;
608 }
609 
610 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
611                                                       Constant *Idx) {
612   auto *ValVTy = cast<VectorType>(Val->getType());
613 
614   // extractelt poison, C -> poison
615   // extractelt C, undef -> poison
616   if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx))
617     return PoisonValue::get(ValVTy->getElementType());
618 
619   // extractelt undef, C -> undef
620   if (isa<UndefValue>(Val))
621     return UndefValue::get(ValVTy->getElementType());
622 
623   auto *CIdx = dyn_cast<ConstantInt>(Idx);
624   if (!CIdx)
625     return nullptr;
626 
627   if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
628     // ee({w,x,y,z}, wrong_value) -> poison
629     if (CIdx->uge(ValFVTy->getNumElements()))
630       return PoisonValue::get(ValFVTy->getElementType());
631   }
632 
633   // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
634   if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
635     if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
636       SmallVector<Constant *, 8> Ops;
637       Ops.reserve(CE->getNumOperands());
638       for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
639         Constant *Op = CE->getOperand(i);
640         if (Op->getType()->isVectorTy()) {
641           Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
642           if (!ScalarOp)
643             return nullptr;
644           Ops.push_back(ScalarOp);
645         } else
646           Ops.push_back(Op);
647       }
648       return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
649                                  GEP->getSourceElementType());
650     } else if (CE->getOpcode() == Instruction::InsertElement) {
651       if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) {
652         if (APSInt::isSameValue(APSInt(IEIdx->getValue()),
653                                 APSInt(CIdx->getValue()))) {
654           return CE->getOperand(1);
655         } else {
656           return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx);
657         }
658       }
659     }
660   }
661 
662   if (Constant *C = Val->getAggregateElement(CIdx))
663     return C;
664 
665   // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
666   if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
667     if (Constant *SplatVal = Val->getSplatValue())
668       return SplatVal;
669   }
670 
671   return nullptr;
672 }
673 
674 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
675                                                      Constant *Elt,
676                                                      Constant *Idx) {
677   if (isa<UndefValue>(Idx))
678     return PoisonValue::get(Val->getType());
679 
680   // Inserting null into all zeros is still all zeros.
681   // TODO: This is true for undef and poison splats too.
682   if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue())
683     return Val;
684 
685   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
686   if (!CIdx) return nullptr;
687 
688   // Do not iterate on scalable vector. The num of elements is unknown at
689   // compile-time.
690   if (isa<ScalableVectorType>(Val->getType()))
691     return nullptr;
692 
693   auto *ValTy = cast<FixedVectorType>(Val->getType());
694 
695   unsigned NumElts = ValTy->getNumElements();
696   if (CIdx->uge(NumElts))
697     return PoisonValue::get(Val->getType());
698 
699   SmallVector<Constant*, 16> Result;
700   Result.reserve(NumElts);
701   auto *Ty = Type::getInt32Ty(Val->getContext());
702   uint64_t IdxVal = CIdx->getZExtValue();
703   for (unsigned i = 0; i != NumElts; ++i) {
704     if (i == IdxVal) {
705       Result.push_back(Elt);
706       continue;
707     }
708 
709     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
710     Result.push_back(C);
711   }
712 
713   return ConstantVector::get(Result);
714 }
715 
716 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
717                                                      ArrayRef<int> Mask) {
718   auto *V1VTy = cast<VectorType>(V1->getType());
719   unsigned MaskNumElts = Mask.size();
720   auto MaskEltCount =
721       ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy));
722   Type *EltTy = V1VTy->getElementType();
723 
724   // Undefined shuffle mask -> undefined value.
725   if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
726     return UndefValue::get(VectorType::get(EltTy, MaskEltCount));
727   }
728 
729   // If the mask is all zeros this is a splat, no need to go through all
730   // elements.
731   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
732     Type *Ty = IntegerType::get(V1->getContext(), 32);
733     Constant *Elt =
734         ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
735 
736     if (Elt->isNullValue()) {
737       auto *VTy = VectorType::get(EltTy, MaskEltCount);
738       return ConstantAggregateZero::get(VTy);
739     } else if (!MaskEltCount.isScalable())
740       return ConstantVector::getSplat(MaskEltCount, Elt);
741   }
742   // Do not iterate on scalable vector. The num of elements is unknown at
743   // compile-time.
744   if (isa<ScalableVectorType>(V1VTy))
745     return nullptr;
746 
747   unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
748 
749   // Loop over the shuffle mask, evaluating each element.
750   SmallVector<Constant*, 32> Result;
751   for (unsigned i = 0; i != MaskNumElts; ++i) {
752     int Elt = Mask[i];
753     if (Elt == -1) {
754       Result.push_back(UndefValue::get(EltTy));
755       continue;
756     }
757     Constant *InElt;
758     if (unsigned(Elt) >= SrcNumElts*2)
759       InElt = UndefValue::get(EltTy);
760     else if (unsigned(Elt) >= SrcNumElts) {
761       Type *Ty = IntegerType::get(V2->getContext(), 32);
762       InElt =
763         ConstantExpr::getExtractElement(V2,
764                                         ConstantInt::get(Ty, Elt - SrcNumElts));
765     } else {
766       Type *Ty = IntegerType::get(V1->getContext(), 32);
767       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
768     }
769     Result.push_back(InElt);
770   }
771 
772   return ConstantVector::get(Result);
773 }
774 
775 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
776                                                     ArrayRef<unsigned> Idxs) {
777   // Base case: no indices, so return the entire value.
778   if (Idxs.empty())
779     return Agg;
780 
781   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
782     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
783 
784   return nullptr;
785 }
786 
787 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
788                                                    Constant *Val,
789                                                    ArrayRef<unsigned> Idxs) {
790   // Base case: no indices, so replace the entire value.
791   if (Idxs.empty())
792     return Val;
793 
794   unsigned NumElts;
795   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
796     NumElts = ST->getNumElements();
797   else
798     NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
799 
800   SmallVector<Constant*, 32> Result;
801   for (unsigned i = 0; i != NumElts; ++i) {
802     Constant *C = Agg->getAggregateElement(i);
803     if (!C) return nullptr;
804 
805     if (Idxs[0] == i)
806       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
807 
808     Result.push_back(C);
809   }
810 
811   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
812     return ConstantStruct::get(ST, Result);
813   return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
814 }
815 
816 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
817   assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
818 
819   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
820   // vectors are always evaluated per element.
821   bool IsScalableVector = isa<ScalableVectorType>(C->getType());
822   bool HasScalarUndefOrScalableVectorUndef =
823       (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
824 
825   if (HasScalarUndefOrScalableVectorUndef) {
826     switch (static_cast<Instruction::UnaryOps>(Opcode)) {
827     case Instruction::FNeg:
828       return C; // -undef -> undef
829     case Instruction::UnaryOpsEnd:
830       llvm_unreachable("Invalid UnaryOp");
831     }
832   }
833 
834   // Constant should not be UndefValue, unless these are vector constants.
835   assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
836   // We only have FP UnaryOps right now.
837   assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
838 
839   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
840     const APFloat &CV = CFP->getValueAPF();
841     switch (Opcode) {
842     default:
843       break;
844     case Instruction::FNeg:
845       return ConstantFP::get(C->getContext(), neg(CV));
846     }
847   } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) {
848 
849     Type *Ty = IntegerType::get(VTy->getContext(), 32);
850     // Fast path for splatted constants.
851     if (Constant *Splat = C->getSplatValue())
852       if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat))
853         return ConstantVector::getSplat(VTy->getElementCount(), Elt);
854 
855     // Fold each element and create a vector constant from those constants.
856     SmallVector<Constant *, 16> Result;
857     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
858       Constant *ExtractIdx = ConstantInt::get(Ty, i);
859       Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
860       Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt);
861       if (!Res)
862         return nullptr;
863       Result.push_back(Res);
864     }
865 
866     return ConstantVector::get(Result);
867   }
868 
869   // We don't know how to fold this.
870   return nullptr;
871 }
872 
873 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
874                                               Constant *C2) {
875   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
876 
877   // Simplify BinOps with their identity values first. They are no-ops and we
878   // can always return the other value, including undef or poison values.
879   // FIXME: remove unnecessary duplicated identity patterns below.
880   // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops,
881   //        like X << 0 = X.
882   Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType());
883   if (Identity) {
884     if (C1 == Identity)
885       return C2;
886     if (C2 == Identity)
887       return C1;
888   }
889 
890   // Binary operations propagate poison.
891   if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
892     return PoisonValue::get(C1->getType());
893 
894   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
895   // vectors are always evaluated per element.
896   bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
897   bool HasScalarUndefOrScalableVectorUndef =
898       (!C1->getType()->isVectorTy() || IsScalableVector) &&
899       (isa<UndefValue>(C1) || isa<UndefValue>(C2));
900   if (HasScalarUndefOrScalableVectorUndef) {
901     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
902     case Instruction::Xor:
903       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
904         // Handle undef ^ undef -> 0 special case. This is a common
905         // idiom (misuse).
906         return Constant::getNullValue(C1->getType());
907       [[fallthrough]];
908     case Instruction::Add:
909     case Instruction::Sub:
910       return UndefValue::get(C1->getType());
911     case Instruction::And:
912       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
913         return C1;
914       return Constant::getNullValue(C1->getType());   // undef & X -> 0
915     case Instruction::Mul: {
916       // undef * undef -> undef
917       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
918         return C1;
919       const APInt *CV;
920       // X * undef -> undef   if X is odd
921       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
922         if ((*CV)[0])
923           return UndefValue::get(C1->getType());
924 
925       // X * undef -> 0       otherwise
926       return Constant::getNullValue(C1->getType());
927     }
928     case Instruction::SDiv:
929     case Instruction::UDiv:
930       // X / undef -> poison
931       // X / 0 -> poison
932       if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
933         return PoisonValue::get(C2->getType());
934       // undef / 1 -> undef
935       if (match(C2, m_One()))
936         return C1;
937       // undef / X -> 0       otherwise
938       return Constant::getNullValue(C1->getType());
939     case Instruction::URem:
940     case Instruction::SRem:
941       // X % undef -> poison
942       // X % 0 -> poison
943       if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
944         return PoisonValue::get(C2->getType());
945       // undef % X -> 0       otherwise
946       return Constant::getNullValue(C1->getType());
947     case Instruction::Or:                          // X | undef -> -1
948       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
949         return C1;
950       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
951     case Instruction::LShr:
952       // X >>l undef -> poison
953       if (isa<UndefValue>(C2))
954         return PoisonValue::get(C2->getType());
955       // undef >>l 0 -> undef
956       if (match(C2, m_Zero()))
957         return C1;
958       // undef >>l X -> 0
959       return Constant::getNullValue(C1->getType());
960     case Instruction::AShr:
961       // X >>a undef -> poison
962       if (isa<UndefValue>(C2))
963         return PoisonValue::get(C2->getType());
964       // undef >>a 0 -> undef
965       if (match(C2, m_Zero()))
966         return C1;
967       // TODO: undef >>a X -> poison if the shift is exact
968       // undef >>a X -> 0
969       return Constant::getNullValue(C1->getType());
970     case Instruction::Shl:
971       // X << undef -> undef
972       if (isa<UndefValue>(C2))
973         return PoisonValue::get(C2->getType());
974       // undef << 0 -> undef
975       if (match(C2, m_Zero()))
976         return C1;
977       // undef << X -> 0
978       return Constant::getNullValue(C1->getType());
979     case Instruction::FSub:
980       // -0.0 - undef --> undef (consistent with "fneg undef")
981       if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
982         return C2;
983       [[fallthrough]];
984     case Instruction::FAdd:
985     case Instruction::FMul:
986     case Instruction::FDiv:
987     case Instruction::FRem:
988       // [any flop] undef, undef -> undef
989       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
990         return C1;
991       // [any flop] C, undef -> NaN
992       // [any flop] undef, C -> NaN
993       // We could potentially specialize NaN/Inf constants vs. 'normal'
994       // constants (possibly differently depending on opcode and operand). This
995       // would allow returning undef sometimes. But it is always safe to fold to
996       // NaN because we can choose the undef operand as NaN, and any FP opcode
997       // with a NaN operand will propagate NaN.
998       return ConstantFP::getNaN(C1->getType());
999     case Instruction::BinaryOpsEnd:
1000       llvm_unreachable("Invalid BinaryOp");
1001     }
1002   }
1003 
1004   // Neither constant should be UndefValue, unless these are vector constants.
1005   assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
1006 
1007   // Handle simplifications when the RHS is a constant int.
1008   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1009     switch (Opcode) {
1010     case Instruction::Add:
1011       if (CI2->isZero()) return C1;                             // X + 0 == X
1012       break;
1013     case Instruction::Sub:
1014       if (CI2->isZero()) return C1;                             // X - 0 == X
1015       break;
1016     case Instruction::Mul:
1017       if (CI2->isZero()) return C2;                             // X * 0 == 0
1018       if (CI2->isOne())
1019         return C1;                                              // X * 1 == X
1020       break;
1021     case Instruction::UDiv:
1022     case Instruction::SDiv:
1023       if (CI2->isOne())
1024         return C1;                                            // X / 1 == X
1025       if (CI2->isZero())
1026         return PoisonValue::get(CI2->getType());              // X / 0 == poison
1027       break;
1028     case Instruction::URem:
1029     case Instruction::SRem:
1030       if (CI2->isOne())
1031         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1032       if (CI2->isZero())
1033         return PoisonValue::get(CI2->getType());              // X % 0 == poison
1034       break;
1035     case Instruction::And:
1036       if (CI2->isZero()) return C2;                           // X & 0 == 0
1037       if (CI2->isMinusOne())
1038         return C1;                                            // X & -1 == X
1039 
1040       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1041         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1042         if (CE1->getOpcode() == Instruction::ZExt) {
1043           unsigned DstWidth = CI2->getType()->getBitWidth();
1044           unsigned SrcWidth =
1045             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1046           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1047           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1048             return C1;
1049         }
1050 
1051         // If and'ing the address of a global with a constant, fold it.
1052         if (CE1->getOpcode() == Instruction::PtrToInt &&
1053             isa<GlobalValue>(CE1->getOperand(0))) {
1054           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1055 
1056           MaybeAlign GVAlign;
1057 
1058           if (Module *TheModule = GV->getParent()) {
1059             const DataLayout &DL = TheModule->getDataLayout();
1060             GVAlign = GV->getPointerAlignment(DL);
1061 
1062             // If the function alignment is not specified then assume that it
1063             // is 4.
1064             // This is dangerous; on x86, the alignment of the pointer
1065             // corresponds to the alignment of the function, but might be less
1066             // than 4 if it isn't explicitly specified.
1067             // However, a fix for this behaviour was reverted because it
1068             // increased code size (see https://reviews.llvm.org/D55115)
1069             // FIXME: This code should be deleted once existing targets have
1070             // appropriate defaults
1071             if (isa<Function>(GV) && !DL.getFunctionPtrAlign())
1072               GVAlign = Align(4);
1073           } else if (isa<Function>(GV)) {
1074             // Without a datalayout we have to assume the worst case: that the
1075             // function pointer isn't aligned at all.
1076             GVAlign = std::nullopt;
1077           } else if (isa<GlobalVariable>(GV)) {
1078             GVAlign = cast<GlobalVariable>(GV)->getAlign();
1079           }
1080 
1081           if (GVAlign && *GVAlign > 1) {
1082             unsigned DstWidth = CI2->getType()->getBitWidth();
1083             unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
1084             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1085 
1086             // If checking bits we know are clear, return zero.
1087             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1088               return Constant::getNullValue(CI2->getType());
1089           }
1090         }
1091       }
1092       break;
1093     case Instruction::Or:
1094       if (CI2->isZero()) return C1;        // X | 0 == X
1095       if (CI2->isMinusOne())
1096         return C2;                         // X | -1 == -1
1097       break;
1098     case Instruction::Xor:
1099       if (CI2->isZero()) return C1;        // X ^ 0 == X
1100 
1101       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1102         switch (CE1->getOpcode()) {
1103         default: break;
1104         case Instruction::ICmp:
1105         case Instruction::FCmp:
1106           // cmp pred ^ true -> cmp !pred
1107           assert(CI2->isOne());
1108           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1109           pred = CmpInst::getInversePredicate(pred);
1110           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1111                                           CE1->getOperand(1));
1112         }
1113       }
1114       break;
1115     case Instruction::AShr:
1116       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1117       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1118         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1119           return ConstantExpr::getLShr(C1, C2);
1120       break;
1121     }
1122   } else if (isa<ConstantInt>(C1)) {
1123     // If C1 is a ConstantInt and C2 is not, swap the operands.
1124     if (Instruction::isCommutative(Opcode))
1125       return ConstantExpr::get(Opcode, C2, C1);
1126   }
1127 
1128   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1129     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1130       const APInt &C1V = CI1->getValue();
1131       const APInt &C2V = CI2->getValue();
1132       switch (Opcode) {
1133       default:
1134         break;
1135       case Instruction::Add:
1136         return ConstantInt::get(CI1->getContext(), C1V + C2V);
1137       case Instruction::Sub:
1138         return ConstantInt::get(CI1->getContext(), C1V - C2V);
1139       case Instruction::Mul:
1140         return ConstantInt::get(CI1->getContext(), C1V * C2V);
1141       case Instruction::UDiv:
1142         assert(!CI2->isZero() && "Div by zero handled above");
1143         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1144       case Instruction::SDiv:
1145         assert(!CI2->isZero() && "Div by zero handled above");
1146         if (C2V.isAllOnes() && C1V.isMinSignedValue())
1147           return PoisonValue::get(CI1->getType());   // MIN_INT / -1 -> poison
1148         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1149       case Instruction::URem:
1150         assert(!CI2->isZero() && "Div by zero handled above");
1151         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1152       case Instruction::SRem:
1153         assert(!CI2->isZero() && "Div by zero handled above");
1154         if (C2V.isAllOnes() && C1V.isMinSignedValue())
1155           return PoisonValue::get(CI1->getType());   // MIN_INT % -1 -> poison
1156         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1157       case Instruction::And:
1158         return ConstantInt::get(CI1->getContext(), C1V & C2V);
1159       case Instruction::Or:
1160         return ConstantInt::get(CI1->getContext(), C1V | C2V);
1161       case Instruction::Xor:
1162         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1163       case Instruction::Shl:
1164         if (C2V.ult(C1V.getBitWidth()))
1165           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1166         return PoisonValue::get(C1->getType()); // too big shift is poison
1167       case Instruction::LShr:
1168         if (C2V.ult(C1V.getBitWidth()))
1169           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1170         return PoisonValue::get(C1->getType()); // too big shift is poison
1171       case Instruction::AShr:
1172         if (C2V.ult(C1V.getBitWidth()))
1173           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1174         return PoisonValue::get(C1->getType()); // too big shift is poison
1175       }
1176     }
1177 
1178     switch (Opcode) {
1179     case Instruction::SDiv:
1180     case Instruction::UDiv:
1181     case Instruction::URem:
1182     case Instruction::SRem:
1183     case Instruction::LShr:
1184     case Instruction::AShr:
1185     case Instruction::Shl:
1186       if (CI1->isZero()) return C1;
1187       break;
1188     default:
1189       break;
1190     }
1191   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1192     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1193       const APFloat &C1V = CFP1->getValueAPF();
1194       const APFloat &C2V = CFP2->getValueAPF();
1195       APFloat C3V = C1V;  // copy for modification
1196       switch (Opcode) {
1197       default:
1198         break;
1199       case Instruction::FAdd:
1200         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1201         return ConstantFP::get(C1->getContext(), C3V);
1202       case Instruction::FSub:
1203         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1204         return ConstantFP::get(C1->getContext(), C3V);
1205       case Instruction::FMul:
1206         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1207         return ConstantFP::get(C1->getContext(), C3V);
1208       case Instruction::FDiv:
1209         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1210         return ConstantFP::get(C1->getContext(), C3V);
1211       case Instruction::FRem:
1212         (void)C3V.mod(C2V);
1213         return ConstantFP::get(C1->getContext(), C3V);
1214       }
1215     }
1216   } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) {
1217     // Fast path for splatted constants.
1218     if (Constant *C2Splat = C2->getSplatValue()) {
1219       if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
1220         return PoisonValue::get(VTy);
1221       if (Constant *C1Splat = C1->getSplatValue()) {
1222         Constant *Res =
1223             ConstantExpr::isDesirableBinOp(Opcode)
1224                 ? ConstantExpr::get(Opcode, C1Splat, C2Splat)
1225                 : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat);
1226         if (!Res)
1227           return nullptr;
1228         return ConstantVector::getSplat(VTy->getElementCount(), Res);
1229       }
1230     }
1231 
1232     if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
1233       // Fold each element and create a vector constant from those constants.
1234       SmallVector<Constant*, 16> Result;
1235       Type *Ty = IntegerType::get(FVTy->getContext(), 32);
1236       for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
1237         Constant *ExtractIdx = ConstantInt::get(Ty, i);
1238         Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1239         Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1240 
1241         // If any element of a divisor vector is zero, the whole op is poison.
1242         if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1243           return PoisonValue::get(VTy);
1244 
1245         Constant *Res = ConstantExpr::isDesirableBinOp(Opcode)
1246                             ? ConstantExpr::get(Opcode, LHS, RHS)
1247                             : ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1248         if (!Res)
1249           return nullptr;
1250         Result.push_back(Res);
1251       }
1252 
1253       return ConstantVector::get(Result);
1254     }
1255   }
1256 
1257   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1258     // There are many possible foldings we could do here.  We should probably
1259     // at least fold add of a pointer with an integer into the appropriate
1260     // getelementptr.  This will improve alias analysis a bit.
1261 
1262     // Given ((a + b) + c), if (b + c) folds to something interesting, return
1263     // (a + (b + c)).
1264     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1265       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1266       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1267         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1268     }
1269   } else if (isa<ConstantExpr>(C2)) {
1270     // If C2 is a constant expr and C1 isn't, flop them around and fold the
1271     // other way if possible.
1272     if (Instruction::isCommutative(Opcode))
1273       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1274   }
1275 
1276   // i1 can be simplified in many cases.
1277   if (C1->getType()->isIntegerTy(1)) {
1278     switch (Opcode) {
1279     case Instruction::Add:
1280     case Instruction::Sub:
1281       return ConstantExpr::getXor(C1, C2);
1282     case Instruction::Mul:
1283       return ConstantExpr::getAnd(C1, C2);
1284     case Instruction::Shl:
1285     case Instruction::LShr:
1286     case Instruction::AShr:
1287       // We can assume that C2 == 0.  If it were one the result would be
1288       // undefined because the shift value is as large as the bitwidth.
1289       return C1;
1290     case Instruction::SDiv:
1291     case Instruction::UDiv:
1292       // We can assume that C2 == 1.  If it were zero the result would be
1293       // undefined through division by zero.
1294       return C1;
1295     case Instruction::URem:
1296     case Instruction::SRem:
1297       // We can assume that C2 == 1.  If it were zero the result would be
1298       // undefined through division by zero.
1299       return ConstantInt::getFalse(C1->getContext());
1300     default:
1301       break;
1302     }
1303   }
1304 
1305   // We don't know how to fold this.
1306   return nullptr;
1307 }
1308 
1309 /// This function determines if there is anything we can decide about the two
1310 /// constants provided. This doesn't need to handle simple things like
1311 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1312 /// If we can determine that the two constants have a particular relation to
1313 /// each other, we should return the corresponding FCmpInst predicate,
1314 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1315 /// ConstantFoldCompareInstruction.
1316 ///
1317 /// To simplify this code we canonicalize the relation so that the first
1318 /// operand is always the most "complex" of the two.  We consider ConstantFP
1319 /// to be the simplest, and ConstantExprs to be the most complex.
1320 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1321   assert(V1->getType() == V2->getType() &&
1322          "Cannot compare values of different types!");
1323 
1324   // We do not know if a constant expression will evaluate to a number or NaN.
1325   // Therefore, we can only say that the relation is unordered or equal.
1326   if (V1 == V2) return FCmpInst::FCMP_UEQ;
1327 
1328   if (!isa<ConstantExpr>(V1)) {
1329     if (!isa<ConstantExpr>(V2)) {
1330       // Simple case, use the standard constant folder.
1331       ConstantInt *R = nullptr;
1332       R = dyn_cast<ConstantInt>(
1333                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1334       if (R && !R->isZero())
1335         return FCmpInst::FCMP_OEQ;
1336       R = dyn_cast<ConstantInt>(
1337                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1338       if (R && !R->isZero())
1339         return FCmpInst::FCMP_OLT;
1340       R = dyn_cast<ConstantInt>(
1341                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1342       if (R && !R->isZero())
1343         return FCmpInst::FCMP_OGT;
1344 
1345       // Nothing more we can do
1346       return FCmpInst::BAD_FCMP_PREDICATE;
1347     }
1348 
1349     // If the first operand is simple and second is ConstantExpr, swap operands.
1350     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1351     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1352       return FCmpInst::getSwappedPredicate(SwappedRelation);
1353   } else {
1354     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1355     // constantexpr or a simple constant.
1356     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1357     switch (CE1->getOpcode()) {
1358     case Instruction::FPTrunc:
1359     case Instruction::FPExt:
1360     case Instruction::UIToFP:
1361     case Instruction::SIToFP:
1362       // We might be able to do something with these but we don't right now.
1363       break;
1364     default:
1365       break;
1366     }
1367   }
1368   // There are MANY other foldings that we could perform here.  They will
1369   // probably be added on demand, as they seem needed.
1370   return FCmpInst::BAD_FCMP_PREDICATE;
1371 }
1372 
1373 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1374                                                       const GlobalValue *GV2) {
1375   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1376     if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
1377       return true;
1378     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1379       Type *Ty = GVar->getValueType();
1380       // A global with opaque type might end up being zero sized.
1381       if (!Ty->isSized())
1382         return true;
1383       // A global with an empty type might lie at the address of any other
1384       // global.
1385       if (Ty->isEmptyTy())
1386         return true;
1387     }
1388     return false;
1389   };
1390   // Don't try to decide equality of aliases.
1391   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1392     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1393       return ICmpInst::ICMP_NE;
1394   return ICmpInst::BAD_ICMP_PREDICATE;
1395 }
1396 
1397 /// This function determines if there is anything we can decide about the two
1398 /// constants provided. This doesn't need to handle simple things like integer
1399 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1400 /// If we can determine that the two constants have a particular relation to
1401 /// each other, we should return the corresponding ICmp predicate, otherwise
1402 /// return ICmpInst::BAD_ICMP_PREDICATE.
1403 ///
1404 /// To simplify this code we canonicalize the relation so that the first
1405 /// operand is always the most "complex" of the two.  We consider simple
1406 /// constants (like ConstantInt) to be the simplest, followed by
1407 /// GlobalValues, followed by ConstantExpr's (the most complex).
1408 ///
1409 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1410                                                 bool isSigned) {
1411   assert(V1->getType() == V2->getType() &&
1412          "Cannot compare different types of values!");
1413   if (V1 == V2) return ICmpInst::ICMP_EQ;
1414 
1415   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1416       !isa<BlockAddress>(V1)) {
1417     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1418         !isa<BlockAddress>(V2)) {
1419       // We distilled this down to a simple case, use the standard constant
1420       // folder.
1421       ConstantInt *R = nullptr;
1422       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1423       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1424       if (R && !R->isZero())
1425         return pred;
1426       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1427       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1428       if (R && !R->isZero())
1429         return pred;
1430       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1431       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1432       if (R && !R->isZero())
1433         return pred;
1434 
1435       // If we couldn't figure it out, bail.
1436       return ICmpInst::BAD_ICMP_PREDICATE;
1437     }
1438 
1439     // If the first operand is simple, swap operands.
1440     ICmpInst::Predicate SwappedRelation =
1441       evaluateICmpRelation(V2, V1, isSigned);
1442     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1443       return ICmpInst::getSwappedPredicate(SwappedRelation);
1444 
1445   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1446     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1447       ICmpInst::Predicate SwappedRelation =
1448         evaluateICmpRelation(V2, V1, isSigned);
1449       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1450         return ICmpInst::getSwappedPredicate(SwappedRelation);
1451       return ICmpInst::BAD_ICMP_PREDICATE;
1452     }
1453 
1454     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1455     // constant (which, since the types must match, means that it's a
1456     // ConstantPointerNull).
1457     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1458       return areGlobalsPotentiallyEqual(GV, GV2);
1459     } else if (isa<BlockAddress>(V2)) {
1460       return ICmpInst::ICMP_NE; // Globals never equal labels.
1461     } else {
1462       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1463       // GlobalVals can never be null unless they have external weak linkage.
1464       // We don't try to evaluate aliases here.
1465       // NOTE: We should not be doing this constant folding if null pointer
1466       // is considered valid for the function. But currently there is no way to
1467       // query it from the Constant type.
1468       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1469           !NullPointerIsDefined(nullptr /* F */,
1470                                 GV->getType()->getAddressSpace()))
1471         return ICmpInst::ICMP_UGT;
1472     }
1473   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1474     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1475       ICmpInst::Predicate SwappedRelation =
1476         evaluateICmpRelation(V2, V1, isSigned);
1477       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1478         return ICmpInst::getSwappedPredicate(SwappedRelation);
1479       return ICmpInst::BAD_ICMP_PREDICATE;
1480     }
1481 
1482     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1483     // constant (which, since the types must match, means that it is a
1484     // ConstantPointerNull).
1485     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1486       // Block address in another function can't equal this one, but block
1487       // addresses in the current function might be the same if blocks are
1488       // empty.
1489       if (BA2->getFunction() != BA->getFunction())
1490         return ICmpInst::ICMP_NE;
1491     } else {
1492       // Block addresses aren't null, don't equal the address of globals.
1493       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1494              "Canonicalization guarantee!");
1495       return ICmpInst::ICMP_NE;
1496     }
1497   } else {
1498     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1499     // constantexpr, a global, block address, or a simple constant.
1500     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1501     Constant *CE1Op0 = CE1->getOperand(0);
1502 
1503     switch (CE1->getOpcode()) {
1504     case Instruction::Trunc:
1505     case Instruction::FPTrunc:
1506     case Instruction::FPExt:
1507     case Instruction::FPToUI:
1508     case Instruction::FPToSI:
1509       break; // We can't evaluate floating point casts or truncations.
1510 
1511     case Instruction::BitCast:
1512       // If this is a global value cast, check to see if the RHS is also a
1513       // GlobalValue.
1514       if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0))
1515         if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2))
1516           return areGlobalsPotentiallyEqual(GV, GV2);
1517       [[fallthrough]];
1518     case Instruction::UIToFP:
1519     case Instruction::SIToFP:
1520     case Instruction::ZExt:
1521     case Instruction::SExt:
1522       // We can't evaluate floating point casts or truncations.
1523       if (CE1Op0->getType()->isFPOrFPVectorTy())
1524         break;
1525 
1526       // If the cast is not actually changing bits, and the second operand is a
1527       // null pointer, do the comparison with the pre-casted value.
1528       if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1529         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1530         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1531         return evaluateICmpRelation(CE1Op0,
1532                                     Constant::getNullValue(CE1Op0->getType()),
1533                                     isSigned);
1534       }
1535       break;
1536 
1537     case Instruction::GetElementPtr: {
1538       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1539       // Ok, since this is a getelementptr, we know that the constant has a
1540       // pointer type.  Check the various cases.
1541       if (isa<ConstantPointerNull>(V2)) {
1542         // If we are comparing a GEP to a null pointer, check to see if the base
1543         // of the GEP equals the null pointer.
1544         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1545           // If its not weak linkage, the GVal must have a non-zero address
1546           // so the result is greater-than
1547           if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds())
1548             return ICmpInst::ICMP_UGT;
1549         }
1550       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1551         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1552           if (GV != GV2) {
1553             if (CE1GEP->hasAllZeroIndices())
1554               return areGlobalsPotentiallyEqual(GV, GV2);
1555             return ICmpInst::BAD_ICMP_PREDICATE;
1556           }
1557         }
1558       } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) {
1559         // By far the most common case to handle is when the base pointers are
1560         // obviously to the same global.
1561         const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand());
1562         if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1563           // Don't know relative ordering, but check for inequality.
1564           if (CE1Op0 != CE2Op0) {
1565             if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1566               return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1567                                                 cast<GlobalValue>(CE2Op0));
1568             return ICmpInst::BAD_ICMP_PREDICATE;
1569           }
1570         }
1571       }
1572       break;
1573     }
1574     default:
1575       break;
1576     }
1577   }
1578 
1579   return ICmpInst::BAD_ICMP_PREDICATE;
1580 }
1581 
1582 static Constant *constantFoldCompareGlobalToNull(CmpInst::Predicate Predicate,
1583                                                  Constant *C1, Constant *C2) {
1584   const GlobalValue *GV = dyn_cast<GlobalValue>(C2);
1585   if (!GV || !C1->isNullValue())
1586     return nullptr;
1587 
1588   // Don't try to evaluate aliases.  External weak GV can be null.
1589   if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1590       !NullPointerIsDefined(nullptr /* F */,
1591                             GV->getType()->getAddressSpace())) {
1592     if (Predicate == ICmpInst::ICMP_EQ)
1593       return ConstantInt::getFalse(C1->getContext());
1594     else if (Predicate == ICmpInst::ICMP_NE)
1595       return ConstantInt::getTrue(C1->getContext());
1596   }
1597 
1598   return nullptr;
1599 }
1600 
1601 Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate,
1602                                                Constant *C1, Constant *C2) {
1603   Type *ResultTy;
1604   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1605     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1606                                VT->getElementCount());
1607   else
1608     ResultTy = Type::getInt1Ty(C1->getContext());
1609 
1610   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1611   if (Predicate == FCmpInst::FCMP_FALSE)
1612     return Constant::getNullValue(ResultTy);
1613 
1614   if (Predicate == FCmpInst::FCMP_TRUE)
1615     return Constant::getAllOnesValue(ResultTy);
1616 
1617   // Handle some degenerate cases first
1618   if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
1619     return PoisonValue::get(ResultTy);
1620 
1621   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1622     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1623     // For EQ and NE, we can always pick a value for the undef to make the
1624     // predicate pass or fail, so we can return undef.
1625     // Also, if both operands are undef, we can return undef for int comparison.
1626     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1627       return UndefValue::get(ResultTy);
1628 
1629     // Otherwise, for integer compare, pick the same value as the non-undef
1630     // operand, and fold it to true or false.
1631     if (isIntegerPredicate)
1632       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1633 
1634     // Choosing NaN for the undef will always make unordered comparison succeed
1635     // and ordered comparison fails.
1636     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1637   }
1638 
1639   // icmp eq/ne(null,GV) -> false/true
1640   if (Constant *Folded = constantFoldCompareGlobalToNull(Predicate, C1, C2))
1641     return Folded;
1642 
1643   // icmp eq/ne(GV,null) -> false/true
1644   if (Constant *Folded = constantFoldCompareGlobalToNull(Predicate, C2, C1))
1645     return Folded;
1646 
1647   if (C2->isNullValue()) {
1648     // The caller is expected to commute the operands if the constant expression
1649     // is C2.
1650     // C1 >= 0 --> true
1651     if (Predicate == ICmpInst::ICMP_UGE)
1652       return Constant::getAllOnesValue(ResultTy);
1653     // C1 < 0 --> false
1654     if (Predicate == ICmpInst::ICMP_ULT)
1655       return Constant::getNullValue(ResultTy);
1656   }
1657 
1658   // If the comparison is a comparison between two i1's, simplify it.
1659   if (C1->getType()->isIntegerTy(1)) {
1660     switch (Predicate) {
1661     case ICmpInst::ICMP_EQ:
1662       if (isa<ConstantInt>(C2))
1663         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1664       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1665     case ICmpInst::ICMP_NE:
1666       return ConstantExpr::getXor(C1, C2);
1667     default:
1668       break;
1669     }
1670   }
1671 
1672   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1673     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1674     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1675     return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate));
1676   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1677     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1678     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1679     return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate));
1680   } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
1681 
1682     // Fast path for splatted constants.
1683     if (Constant *C1Splat = C1->getSplatValue())
1684       if (Constant *C2Splat = C2->getSplatValue())
1685         return ConstantVector::getSplat(
1686             C1VTy->getElementCount(),
1687             ConstantExpr::getCompare(Predicate, C1Splat, C2Splat));
1688 
1689     // Do not iterate on scalable vector. The number of elements is unknown at
1690     // compile-time.
1691     if (isa<ScalableVectorType>(C1VTy))
1692       return nullptr;
1693 
1694     // If we can constant fold the comparison of each element, constant fold
1695     // the whole vector comparison.
1696     SmallVector<Constant*, 4> ResElts;
1697     Type *Ty = IntegerType::get(C1->getContext(), 32);
1698     // Compare the elements, producing an i1 result or constant expr.
1699     for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1700          I != E; ++I) {
1701       Constant *C1E =
1702           ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I));
1703       Constant *C2E =
1704           ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I));
1705 
1706       ResElts.push_back(ConstantExpr::getCompare(Predicate, C1E, C2E));
1707     }
1708 
1709     return ConstantVector::get(ResElts);
1710   }
1711 
1712   if (C1->getType()->isFloatingPointTy() &&
1713       // Only call evaluateFCmpRelation if we have a constant expr to avoid
1714       // infinite recursive loop
1715       (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1716     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1717     switch (evaluateFCmpRelation(C1, C2)) {
1718     default: llvm_unreachable("Unknown relation!");
1719     case FCmpInst::FCMP_UNO:
1720     case FCmpInst::FCMP_ORD:
1721     case FCmpInst::FCMP_UNE:
1722     case FCmpInst::FCMP_ULT:
1723     case FCmpInst::FCMP_UGT:
1724     case FCmpInst::FCMP_ULE:
1725     case FCmpInst::FCMP_UGE:
1726     case FCmpInst::FCMP_TRUE:
1727     case FCmpInst::FCMP_FALSE:
1728     case FCmpInst::BAD_FCMP_PREDICATE:
1729       break; // Couldn't determine anything about these constants.
1730     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1731       Result =
1732           (Predicate == FCmpInst::FCMP_UEQ || Predicate == FCmpInst::FCMP_OEQ ||
1733            Predicate == FCmpInst::FCMP_ULE || Predicate == FCmpInst::FCMP_OLE ||
1734            Predicate == FCmpInst::FCMP_UGE || Predicate == FCmpInst::FCMP_OGE);
1735       break;
1736     case FCmpInst::FCMP_OLT: // We know that C1 < C2
1737       Result =
1738           (Predicate == FCmpInst::FCMP_UNE || Predicate == FCmpInst::FCMP_ONE ||
1739            Predicate == FCmpInst::FCMP_ULT || Predicate == FCmpInst::FCMP_OLT ||
1740            Predicate == FCmpInst::FCMP_ULE || Predicate == FCmpInst::FCMP_OLE);
1741       break;
1742     case FCmpInst::FCMP_OGT: // We know that C1 > C2
1743       Result =
1744           (Predicate == FCmpInst::FCMP_UNE || Predicate == FCmpInst::FCMP_ONE ||
1745            Predicate == FCmpInst::FCMP_UGT || Predicate == FCmpInst::FCMP_OGT ||
1746            Predicate == FCmpInst::FCMP_UGE || Predicate == FCmpInst::FCMP_OGE);
1747       break;
1748     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1749       // We can only partially decide this relation.
1750       if (Predicate == FCmpInst::FCMP_UGT || Predicate == FCmpInst::FCMP_OGT)
1751         Result = 0;
1752       else if (Predicate == FCmpInst::FCMP_ULT ||
1753                Predicate == FCmpInst::FCMP_OLT)
1754         Result = 1;
1755       break;
1756     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1757       // We can only partially decide this relation.
1758       if (Predicate == FCmpInst::FCMP_ULT || Predicate == FCmpInst::FCMP_OLT)
1759         Result = 0;
1760       else if (Predicate == FCmpInst::FCMP_UGT ||
1761                Predicate == FCmpInst::FCMP_OGT)
1762         Result = 1;
1763       break;
1764     case FCmpInst::FCMP_ONE: // We know that C1 != C2
1765       // We can only partially decide this relation.
1766       if (Predicate == FCmpInst::FCMP_OEQ || Predicate == FCmpInst::FCMP_UEQ)
1767         Result = 0;
1768       else if (Predicate == FCmpInst::FCMP_ONE ||
1769                Predicate == FCmpInst::FCMP_UNE)
1770         Result = 1;
1771       break;
1772     case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
1773       // We can only partially decide this relation.
1774       if (Predicate == FCmpInst::FCMP_ONE)
1775         Result = 0;
1776       else if (Predicate == FCmpInst::FCMP_UEQ)
1777         Result = 1;
1778       break;
1779     }
1780 
1781     // If we evaluated the result, return it now.
1782     if (Result != -1)
1783       return ConstantInt::get(ResultTy, Result);
1784 
1785   } else {
1786     // Evaluate the relation between the two constants, per the predicate.
1787     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1788     switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(Predicate))) {
1789     default: llvm_unreachable("Unknown relational!");
1790     case ICmpInst::BAD_ICMP_PREDICATE:
1791       break;  // Couldn't determine anything about these constants.
1792     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1793       // If we know the constants are equal, we can decide the result of this
1794       // computation precisely.
1795       Result = ICmpInst::isTrueWhenEqual(Predicate);
1796       break;
1797     case ICmpInst::ICMP_ULT:
1798       switch (Predicate) {
1799       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1800         Result = 1; break;
1801       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1802         Result = 0; break;
1803       default:
1804         break;
1805       }
1806       break;
1807     case ICmpInst::ICMP_SLT:
1808       switch (Predicate) {
1809       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1810         Result = 1; break;
1811       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1812         Result = 0; break;
1813       default:
1814         break;
1815       }
1816       break;
1817     case ICmpInst::ICMP_UGT:
1818       switch (Predicate) {
1819       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1820         Result = 1; break;
1821       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1822         Result = 0; break;
1823       default:
1824         break;
1825       }
1826       break;
1827     case ICmpInst::ICMP_SGT:
1828       switch (Predicate) {
1829       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1830         Result = 1; break;
1831       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1832         Result = 0; break;
1833       default:
1834         break;
1835       }
1836       break;
1837     case ICmpInst::ICMP_ULE:
1838       if (Predicate == ICmpInst::ICMP_UGT)
1839         Result = 0;
1840       if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE)
1841         Result = 1;
1842       break;
1843     case ICmpInst::ICMP_SLE:
1844       if (Predicate == ICmpInst::ICMP_SGT)
1845         Result = 0;
1846       if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE)
1847         Result = 1;
1848       break;
1849     case ICmpInst::ICMP_UGE:
1850       if (Predicate == ICmpInst::ICMP_ULT)
1851         Result = 0;
1852       if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE)
1853         Result = 1;
1854       break;
1855     case ICmpInst::ICMP_SGE:
1856       if (Predicate == ICmpInst::ICMP_SLT)
1857         Result = 0;
1858       if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE)
1859         Result = 1;
1860       break;
1861     case ICmpInst::ICMP_NE:
1862       if (Predicate == ICmpInst::ICMP_EQ)
1863         Result = 0;
1864       if (Predicate == ICmpInst::ICMP_NE)
1865         Result = 1;
1866       break;
1867     }
1868 
1869     // If we evaluated the result, return it now.
1870     if (Result != -1)
1871       return ConstantInt::get(ResultTy, Result);
1872 
1873     // If the right hand side is a bitcast, try using its inverse to simplify
1874     // it by moving it to the left hand side.  We can't do this if it would turn
1875     // a vector compare into a scalar compare or visa versa, or if it would turn
1876     // the operands into FP values.
1877     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1878       Constant *CE2Op0 = CE2->getOperand(0);
1879       if (CE2->getOpcode() == Instruction::BitCast &&
1880           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
1881           !CE2Op0->getType()->isFPOrFPVectorTy()) {
1882         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1883         return ConstantExpr::getICmp(Predicate, Inverse, CE2Op0);
1884       }
1885     }
1886 
1887     // If the left hand side is an extension, try eliminating it.
1888     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1889       if ((CE1->getOpcode() == Instruction::SExt &&
1890            ICmpInst::isSigned(Predicate)) ||
1891           (CE1->getOpcode() == Instruction::ZExt &&
1892            !ICmpInst::isSigned(Predicate))) {
1893         Constant *CE1Op0 = CE1->getOperand(0);
1894         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1895         if (CE1Inverse == CE1Op0) {
1896           // Check whether we can safely truncate the right hand side.
1897           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1898           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
1899                                     C2->getType()) == C2)
1900             return ConstantExpr::getICmp(Predicate, CE1Inverse, C2Inverse);
1901         }
1902       }
1903     }
1904 
1905     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1906         (C1->isNullValue() && !C2->isNullValue())) {
1907       // If C2 is a constant expr and C1 isn't, flip them around and fold the
1908       // other way if possible.
1909       // Also, if C1 is null and C2 isn't, flip them around.
1910       Predicate = ICmpInst::getSwappedPredicate(Predicate);
1911       return ConstantExpr::getICmp(Predicate, C2, C1);
1912     }
1913   }
1914   return nullptr;
1915 }
1916 
1917 /// Test whether the given sequence of *normalized* indices is "inbounds".
1918 template<typename IndexTy>
1919 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
1920   // No indices means nothing that could be out of bounds.
1921   if (Idxs.empty()) return true;
1922 
1923   // If the first index is zero, it's in bounds.
1924   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1925 
1926   // If the first index is one and all the rest are zero, it's in bounds,
1927   // by the one-past-the-end rule.
1928   if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
1929     if (!CI->isOne())
1930       return false;
1931   } else {
1932     auto *CV = cast<ConstantDataVector>(Idxs[0]);
1933     CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
1934     if (!CI || !CI->isOne())
1935       return false;
1936   }
1937 
1938   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1939     if (!cast<Constant>(Idxs[i])->isNullValue())
1940       return false;
1941   return true;
1942 }
1943 
1944 /// Test whether a given ConstantInt is in-range for a SequentialType.
1945 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
1946                                       const ConstantInt *CI) {
1947   // We cannot bounds check the index if it doesn't fit in an int64_t.
1948   if (CI->getValue().getMinSignedBits() > 64)
1949     return false;
1950 
1951   // A negative index or an index past the end of our sequential type is
1952   // considered out-of-range.
1953   int64_t IndexVal = CI->getSExtValue();
1954   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
1955     return false;
1956 
1957   // Otherwise, it is in-range.
1958   return true;
1959 }
1960 
1961 // Combine Indices - If the source pointer to this getelementptr instruction
1962 // is a getelementptr instruction, combine the indices of the two
1963 // getelementptr instructions into a single instruction.
1964 static Constant *foldGEPOfGEP(GEPOperator *GEP, Type *PointeeTy, bool InBounds,
1965                               ArrayRef<Value *> Idxs) {
1966   if (PointeeTy != GEP->getResultElementType())
1967     return nullptr;
1968 
1969   Constant *Idx0 = cast<Constant>(Idxs[0]);
1970   if (Idx0->isNullValue()) {
1971     // Handle the simple case of a zero index.
1972     SmallVector<Value*, 16> NewIndices;
1973     NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
1974     NewIndices.append(GEP->idx_begin(), GEP->idx_end());
1975     NewIndices.append(Idxs.begin() + 1, Idxs.end());
1976     return ConstantExpr::getGetElementPtr(
1977         GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
1978         NewIndices, InBounds && GEP->isInBounds(), GEP->getInRangeIndex());
1979   }
1980 
1981   gep_type_iterator LastI = gep_type_end(GEP);
1982   for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
1983        I != E; ++I)
1984     LastI = I;
1985 
1986   // We can't combine GEPs if the last index is a struct type.
1987   if (!LastI.isSequential())
1988     return nullptr;
1989   // We could perform the transform with non-constant index, but prefer leaving
1990   // it as GEP of GEP rather than GEP of add for now.
1991   ConstantInt *CI = dyn_cast<ConstantInt>(Idx0);
1992   if (!CI)
1993     return nullptr;
1994 
1995   // TODO: This code may be extended to handle vectors as well.
1996   auto *LastIdx = cast<Constant>(GEP->getOperand(GEP->getNumOperands()-1));
1997   Type *LastIdxTy = LastIdx->getType();
1998   if (LastIdxTy->isVectorTy())
1999     return nullptr;
2000 
2001   SmallVector<Value*, 16> NewIndices;
2002   NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
2003   NewIndices.append(GEP->idx_begin(), GEP->idx_end() - 1);
2004 
2005   // Add the last index of the source with the first index of the new GEP.
2006   // Make sure to handle the case when they are actually different types.
2007   if (LastIdxTy != Idx0->getType()) {
2008     unsigned CommonExtendedWidth =
2009         std::max(LastIdxTy->getIntegerBitWidth(),
2010                  Idx0->getType()->getIntegerBitWidth());
2011     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2012 
2013     Type *CommonTy =
2014         Type::getIntNTy(LastIdxTy->getContext(), CommonExtendedWidth);
2015     Idx0 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2016     LastIdx = ConstantExpr::getSExtOrBitCast(LastIdx, CommonTy);
2017   }
2018 
2019   NewIndices.push_back(ConstantExpr::get(Instruction::Add, Idx0, LastIdx));
2020   NewIndices.append(Idxs.begin() + 1, Idxs.end());
2021 
2022   // The combined GEP normally inherits its index inrange attribute from
2023   // the inner GEP, but if the inner GEP's last index was adjusted by the
2024   // outer GEP, any inbounds attribute on that index is invalidated.
2025   std::optional<unsigned> IRIndex = GEP->getInRangeIndex();
2026   if (IRIndex && *IRIndex == GEP->getNumIndices() - 1)
2027     IRIndex = std::nullopt;
2028 
2029   return ConstantExpr::getGetElementPtr(
2030       GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
2031       NewIndices, InBounds && GEP->isInBounds(), IRIndex);
2032 }
2033 
2034 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2035                                           bool InBounds,
2036                                           std::optional<unsigned> InRangeIndex,
2037                                           ArrayRef<Value *> Idxs) {
2038   if (Idxs.empty()) return C;
2039 
2040   Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2041       PointeeTy, C, ArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2042 
2043   if (isa<PoisonValue>(C))
2044     return PoisonValue::get(GEPTy);
2045 
2046   if (isa<UndefValue>(C))
2047     // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
2048     return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
2049 
2050   auto IsNoOp = [&]() {
2051     // For non-opaque pointers having multiple indices will change the result
2052     // type of the GEP.
2053     if (!C->getType()->getScalarType()->isOpaquePointerTy() && Idxs.size() != 1)
2054       return false;
2055 
2056     // Avoid losing inrange information.
2057     if (InRangeIndex)
2058       return false;
2059 
2060     return all_of(Idxs, [](Value *Idx) {
2061       Constant *IdxC = cast<Constant>(Idx);
2062       return IdxC->isNullValue() || isa<UndefValue>(IdxC);
2063     });
2064   };
2065   if (IsNoOp())
2066     return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2067                ? ConstantVector::getSplat(
2068                      cast<VectorType>(GEPTy)->getElementCount(), C)
2069                : C;
2070 
2071   if (C->isNullValue()) {
2072     bool isNull = true;
2073     for (Value *Idx : Idxs)
2074       if (!isa<UndefValue>(Idx) && !cast<Constant>(Idx)->isNullValue()) {
2075         isNull = false;
2076         break;
2077       }
2078     if (isNull) {
2079       PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2080       Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2081 
2082       assert(Ty && "Invalid indices for GEP!");
2083       Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2084       Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2085       if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2086         GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2087 
2088       // The GEP returns a vector of pointers when one of more of
2089       // its arguments is a vector.
2090       for (Value *Idx : Idxs) {
2091         if (auto *VT = dyn_cast<VectorType>(Idx->getType())) {
2092           assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) ==
2093                                                  isa<ScalableVectorType>(VT)) &&
2094                  "Mismatched GEPTy vector types");
2095           GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2096           break;
2097         }
2098       }
2099 
2100       return Constant::getNullValue(GEPTy);
2101     }
2102   }
2103 
2104   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2105     if (auto *GEP = dyn_cast<GEPOperator>(CE))
2106       if (Constant *C = foldGEPOfGEP(GEP, PointeeTy, InBounds, Idxs))
2107         return C;
2108 
2109     // Attempt to fold casts to the same type away.  For example, folding:
2110     //
2111     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2112     //                       i64 0, i64 0)
2113     // into:
2114     //
2115     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2116     //
2117     // Don't fold if the cast is changing address spaces.
2118     Constant *Idx0 = cast<Constant>(Idxs[0]);
2119     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2120       PointerType *SrcPtrTy =
2121         dyn_cast<PointerType>(CE->getOperand(0)->getType());
2122       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2123       if (SrcPtrTy && DstPtrTy && !SrcPtrTy->isOpaque() &&
2124           !DstPtrTy->isOpaque()) {
2125         ArrayType *SrcArrayTy =
2126           dyn_cast<ArrayType>(SrcPtrTy->getNonOpaquePointerElementType());
2127         ArrayType *DstArrayTy =
2128           dyn_cast<ArrayType>(DstPtrTy->getNonOpaquePointerElementType());
2129         if (SrcArrayTy && DstArrayTy
2130             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2131             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2132           return ConstantExpr::getGetElementPtr(SrcArrayTy,
2133                                                 (Constant *)CE->getOperand(0),
2134                                                 Idxs, InBounds, InRangeIndex);
2135       }
2136     }
2137   }
2138 
2139   // Check to see if any array indices are not within the corresponding
2140   // notional array or vector bounds. If so, try to determine if they can be
2141   // factored out into preceding dimensions.
2142   SmallVector<Constant *, 8> NewIdxs;
2143   Type *Ty = PointeeTy;
2144   Type *Prev = C->getType();
2145   auto GEPIter = gep_type_begin(PointeeTy, Idxs);
2146   bool Unknown =
2147       !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2148   for (unsigned i = 1, e = Idxs.size(); i != e;
2149        Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) {
2150     if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2151       // We don't know if it's in range or not.
2152       Unknown = true;
2153       continue;
2154     }
2155     if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2156       // Skip if the type of the previous index is not supported.
2157       continue;
2158     if (InRangeIndex && i == *InRangeIndex + 1) {
2159       // If an index is marked inrange, we cannot apply this canonicalization to
2160       // the following index, as that will cause the inrange index to point to
2161       // the wrong element.
2162       continue;
2163     }
2164     if (isa<StructType>(Ty)) {
2165       // The verify makes sure that GEPs into a struct are in range.
2166       continue;
2167     }
2168     if (isa<VectorType>(Ty)) {
2169       // There can be awkward padding in after a non-power of two vector.
2170       Unknown = true;
2171       continue;
2172     }
2173     auto *STy = cast<ArrayType>(Ty);
2174     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2175       if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2176         // It's in range, skip to the next index.
2177         continue;
2178       if (CI->isNegative()) {
2179         // It's out of range and negative, don't try to factor it.
2180         Unknown = true;
2181         continue;
2182       }
2183     } else {
2184       auto *CV = cast<ConstantDataVector>(Idxs[i]);
2185       bool InRange = true;
2186       for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2187         auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2188         InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2189         if (CI->isNegative()) {
2190           Unknown = true;
2191           break;
2192         }
2193       }
2194       if (InRange || Unknown)
2195         // It's in range, skip to the next index.
2196         // It's out of range and negative, don't try to factor it.
2197         continue;
2198     }
2199     if (isa<StructType>(Prev)) {
2200       // It's out of range, but the prior dimension is a struct
2201       // so we can't do anything about it.
2202       Unknown = true;
2203       continue;
2204     }
2205     // It's out of range, but we can factor it into the prior
2206     // dimension.
2207     NewIdxs.resize(Idxs.size());
2208     // Determine the number of elements in our sequential type.
2209     uint64_t NumElements = STy->getArrayNumElements();
2210 
2211     // Expand the current index or the previous index to a vector from a scalar
2212     // if necessary.
2213     Constant *CurrIdx = cast<Constant>(Idxs[i]);
2214     auto *PrevIdx =
2215         NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2216     bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2217     bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2218     bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2219 
2220     if (!IsCurrIdxVector && IsPrevIdxVector)
2221       CurrIdx = ConstantDataVector::getSplat(
2222           cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx);
2223 
2224     if (!IsPrevIdxVector && IsCurrIdxVector)
2225       PrevIdx = ConstantDataVector::getSplat(
2226           cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx);
2227 
2228     Constant *Factor =
2229         ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2230     if (UseVector)
2231       Factor = ConstantDataVector::getSplat(
2232           IsPrevIdxVector
2233               ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2234               : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(),
2235           Factor);
2236 
2237     NewIdxs[i] =
2238         ConstantFoldBinaryInstruction(Instruction::SRem, CurrIdx, Factor);
2239 
2240     Constant *Div =
2241         ConstantFoldBinaryInstruction(Instruction::SDiv, CurrIdx, Factor);
2242 
2243     // We're working on either ConstantInt or vectors of ConstantInt,
2244     // so these should always fold.
2245     assert(NewIdxs[i] != nullptr && Div != nullptr && "Should have folded");
2246 
2247     unsigned CommonExtendedWidth =
2248         std::max(PrevIdx->getType()->getScalarSizeInBits(),
2249                  Div->getType()->getScalarSizeInBits());
2250     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2251 
2252     // Before adding, extend both operands to i64 to avoid
2253     // overflow trouble.
2254     Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2255     if (UseVector)
2256       ExtendedTy = FixedVectorType::get(
2257           ExtendedTy,
2258           IsPrevIdxVector
2259               ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2260               : cast<FixedVectorType>(CurrIdx->getType())->getNumElements());
2261 
2262     if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2263       PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2264 
2265     if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2266       Div = ConstantExpr::getSExt(Div, ExtendedTy);
2267 
2268     NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2269   }
2270 
2271   // If we did any factoring, start over with the adjusted indices.
2272   if (!NewIdxs.empty()) {
2273     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2274       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2275     return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2276                                           InRangeIndex);
2277   }
2278 
2279   // If all indices are known integers and normalized, we can do a simple
2280   // check for the "inbounds" property.
2281   if (!Unknown && !InBounds)
2282     if (auto *GV = dyn_cast<GlobalVariable>(C))
2283       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2284         return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2285                                               /*InBounds=*/true, InRangeIndex);
2286 
2287   return nullptr;
2288 }
2289