1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 //===----------------------------------------------------------------------===// 39 // ConstantFold*Instruction Implementations 40 //===----------------------------------------------------------------------===// 41 42 /// Convert the specified vector Constant node to the specified vector type. 43 /// At this point, we know that the elements of the input vector constant are 44 /// all simple integer or FP values. 45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { 46 47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); 48 if (CV->isNullValue()) return Constant::getNullValue(DstTy); 49 50 // Do not iterate on scalable vector. The num of elements is unknown at 51 // compile-time. 52 if (isa<ScalableVectorType>(DstTy)) 53 return nullptr; 54 55 // If this cast changes element count then we can't handle it here: 56 // doing so requires endianness information. This should be handled by 57 // Analysis/ConstantFolding.cpp 58 unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements(); 59 if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements()) 60 return nullptr; 61 62 Type *DstEltTy = DstTy->getElementType(); 63 // Fast path for splatted constants. 64 if (Constant *Splat = CV->getSplatValue()) { 65 return ConstantVector::getSplat(DstTy->getElementCount(), 66 ConstantExpr::getBitCast(Splat, DstEltTy)); 67 } 68 69 SmallVector<Constant*, 16> Result; 70 Type *Ty = IntegerType::get(CV->getContext(), 32); 71 for (unsigned i = 0; i != NumElts; ++i) { 72 Constant *C = 73 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); 74 C = ConstantExpr::getBitCast(C, DstEltTy); 75 Result.push_back(C); 76 } 77 78 return ConstantVector::get(Result); 79 } 80 81 /// This function determines which opcode to use to fold two constant cast 82 /// expressions together. It uses CastInst::isEliminableCastPair to determine 83 /// the opcode. Consequently its just a wrapper around that function. 84 /// Determine if it is valid to fold a cast of a cast 85 static unsigned 86 foldConstantCastPair( 87 unsigned opc, ///< opcode of the second cast constant expression 88 ConstantExpr *Op, ///< the first cast constant expression 89 Type *DstTy ///< destination type of the first cast 90 ) { 91 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 92 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 93 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 94 95 // The types and opcodes for the two Cast constant expressions 96 Type *SrcTy = Op->getOperand(0)->getType(); 97 Type *MidTy = Op->getType(); 98 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 99 Instruction::CastOps secondOp = Instruction::CastOps(opc); 100 101 // Assume that pointers are never more than 64 bits wide, and only use this 102 // for the middle type. Otherwise we could end up folding away illegal 103 // bitcasts between address spaces with different sizes. 104 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 105 106 // Let CastInst::isEliminableCastPair do the heavy lifting. 107 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 108 nullptr, FakeIntPtrTy, nullptr); 109 } 110 111 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 112 Type *SrcTy = V->getType(); 113 if (SrcTy == DestTy) 114 return V; // no-op cast 115 116 // Check to see if we are casting a pointer to an aggregate to a pointer to 117 // the first element. If so, return the appropriate GEP instruction. 118 if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) 119 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) 120 if (PTy->getAddressSpace() == DPTy->getAddressSpace() 121 && PTy->getElementType()->isSized()) { 122 SmallVector<Value*, 8> IdxList; 123 Value *Zero = 124 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); 125 IdxList.push_back(Zero); 126 Type *ElTy = PTy->getElementType(); 127 while (ElTy && ElTy != DPTy->getElementType()) { 128 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0); 129 IdxList.push_back(Zero); 130 } 131 132 if (ElTy == DPTy->getElementType()) 133 // This GEP is inbounds because all indices are zero. 134 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(), 135 V, IdxList); 136 } 137 138 // Handle casts from one vector constant to another. We know that the src 139 // and dest type have the same size (otherwise its an illegal cast). 140 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 141 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { 142 assert(DestPTy->getPrimitiveSizeInBits() == 143 SrcTy->getPrimitiveSizeInBits() && 144 "Not cast between same sized vectors!"); 145 SrcTy = nullptr; 146 // First, check for null. Undef is already handled. 147 if (isa<ConstantAggregateZero>(V)) 148 return Constant::getNullValue(DestTy); 149 150 // Handle ConstantVector and ConstantAggregateVector. 151 return BitCastConstantVector(V, DestPTy); 152 } 153 154 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 155 // This allows for other simplifications (although some of them 156 // can only be handled by Analysis/ConstantFolding.cpp). 157 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 158 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 159 } 160 161 // Finally, implement bitcast folding now. The code below doesn't handle 162 // bitcast right. 163 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. 164 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 165 166 // Handle integral constant input. 167 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 168 if (DestTy->isIntegerTy()) 169 // Integral -> Integral. This is a no-op because the bit widths must 170 // be the same. Consequently, we just fold to V. 171 return V; 172 173 // See note below regarding the PPC_FP128 restriction. 174 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 175 return ConstantFP::get(DestTy->getContext(), 176 APFloat(DestTy->getFltSemantics(), 177 CI->getValue())); 178 179 // Otherwise, can't fold this (vector?) 180 return nullptr; 181 } 182 183 // Handle ConstantFP input: FP -> Integral. 184 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 185 // PPC_FP128 is really the sum of two consecutive doubles, where the first 186 // double is always stored first in memory, regardless of the target 187 // endianness. The memory layout of i128, however, depends on the target 188 // endianness, and so we can't fold this without target endianness 189 // information. This should instead be handled by 190 // Analysis/ConstantFolding.cpp 191 if (FP->getType()->isPPC_FP128Ty()) 192 return nullptr; 193 194 // Make sure dest type is compatible with the folded integer constant. 195 if (!DestTy->isIntegerTy()) 196 return nullptr; 197 198 return ConstantInt::get(FP->getContext(), 199 FP->getValueAPF().bitcastToAPInt()); 200 } 201 202 return nullptr; 203 } 204 205 206 /// V is an integer constant which only has a subset of its bytes used. 207 /// The bytes used are indicated by ByteStart (which is the first byte used, 208 /// counting from the least significant byte) and ByteSize, which is the number 209 /// of bytes used. 210 /// 211 /// This function analyzes the specified constant to see if the specified byte 212 /// range can be returned as a simplified constant. If so, the constant is 213 /// returned, otherwise null is returned. 214 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, 215 unsigned ByteSize) { 216 assert(C->getType()->isIntegerTy() && 217 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && 218 "Non-byte sized integer input"); 219 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; 220 assert(ByteSize && "Must be accessing some piece"); 221 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); 222 assert(ByteSize != CSize && "Should not extract everything"); 223 224 // Constant Integers are simple. 225 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 226 APInt V = CI->getValue(); 227 if (ByteStart) 228 V.lshrInPlace(ByteStart*8); 229 V = V.trunc(ByteSize*8); 230 return ConstantInt::get(CI->getContext(), V); 231 } 232 233 // In the input is a constant expr, we might be able to recursively simplify. 234 // If not, we definitely can't do anything. 235 ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 236 if (!CE) return nullptr; 237 238 switch (CE->getOpcode()) { 239 default: return nullptr; 240 case Instruction::Or: { 241 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 242 if (!RHS) 243 return nullptr; 244 245 // X | -1 -> -1. 246 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) 247 if (RHSC->isMinusOne()) 248 return RHSC; 249 250 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 251 if (!LHS) 252 return nullptr; 253 return ConstantExpr::getOr(LHS, RHS); 254 } 255 case Instruction::And: { 256 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 257 if (!RHS) 258 return nullptr; 259 260 // X & 0 -> 0. 261 if (RHS->isNullValue()) 262 return RHS; 263 264 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 265 if (!LHS) 266 return nullptr; 267 return ConstantExpr::getAnd(LHS, RHS); 268 } 269 case Instruction::LShr: { 270 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 271 if (!Amt) 272 return nullptr; 273 APInt ShAmt = Amt->getValue(); 274 // Cannot analyze non-byte shifts. 275 if ((ShAmt & 7) != 0) 276 return nullptr; 277 ShAmt.lshrInPlace(3); 278 279 // If the extract is known to be all zeros, return zero. 280 if (ShAmt.uge(CSize - ByteStart)) 281 return Constant::getNullValue( 282 IntegerType::get(CE->getContext(), ByteSize * 8)); 283 // If the extract is known to be fully in the input, extract it. 284 if (ShAmt.ule(CSize - (ByteStart + ByteSize))) 285 return ExtractConstantBytes(CE->getOperand(0), 286 ByteStart + ShAmt.getZExtValue(), ByteSize); 287 288 // TODO: Handle the 'partially zero' case. 289 return nullptr; 290 } 291 292 case Instruction::Shl: { 293 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 294 if (!Amt) 295 return nullptr; 296 APInt ShAmt = Amt->getValue(); 297 // Cannot analyze non-byte shifts. 298 if ((ShAmt & 7) != 0) 299 return nullptr; 300 ShAmt.lshrInPlace(3); 301 302 // If the extract is known to be all zeros, return zero. 303 if (ShAmt.uge(ByteStart + ByteSize)) 304 return Constant::getNullValue( 305 IntegerType::get(CE->getContext(), ByteSize * 8)); 306 // If the extract is known to be fully in the input, extract it. 307 if (ShAmt.ule(ByteStart)) 308 return ExtractConstantBytes(CE->getOperand(0), 309 ByteStart - ShAmt.getZExtValue(), ByteSize); 310 311 // TODO: Handle the 'partially zero' case. 312 return nullptr; 313 } 314 315 case Instruction::ZExt: { 316 unsigned SrcBitSize = 317 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); 318 319 // If extracting something that is completely zero, return 0. 320 if (ByteStart*8 >= SrcBitSize) 321 return Constant::getNullValue(IntegerType::get(CE->getContext(), 322 ByteSize*8)); 323 324 // If exactly extracting the input, return it. 325 if (ByteStart == 0 && ByteSize*8 == SrcBitSize) 326 return CE->getOperand(0); 327 328 // If extracting something completely in the input, if the input is a 329 // multiple of 8 bits, recurse. 330 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) 331 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); 332 333 // Otherwise, if extracting a subset of the input, which is not multiple of 334 // 8 bits, do a shift and trunc to get the bits. 335 if ((ByteStart+ByteSize)*8 < SrcBitSize) { 336 assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); 337 Constant *Res = CE->getOperand(0); 338 if (ByteStart) 339 Res = ConstantExpr::getLShr(Res, 340 ConstantInt::get(Res->getType(), ByteStart*8)); 341 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), 342 ByteSize*8)); 343 } 344 345 // TODO: Handle the 'partially zero' case. 346 return nullptr; 347 } 348 } 349 } 350 351 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known 352 /// factors factored out. If Folded is false, return null if no factoring was 353 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 354 /// top-level folder. 355 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) { 356 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 357 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); 358 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 359 return ConstantExpr::getNUWMul(E, N); 360 } 361 362 if (StructType *STy = dyn_cast<StructType>(Ty)) 363 if (!STy->isPacked()) { 364 unsigned NumElems = STy->getNumElements(); 365 // An empty struct has size zero. 366 if (NumElems == 0) 367 return ConstantExpr::getNullValue(DestTy); 368 // Check for a struct with all members having the same size. 369 Constant *MemberSize = 370 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 371 bool AllSame = true; 372 for (unsigned i = 1; i != NumElems; ++i) 373 if (MemberSize != 374 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 375 AllSame = false; 376 break; 377 } 378 if (AllSame) { 379 Constant *N = ConstantInt::get(DestTy, NumElems); 380 return ConstantExpr::getNUWMul(MemberSize, N); 381 } 382 } 383 384 // Pointer size doesn't depend on the pointee type, so canonicalize them 385 // to an arbitrary pointee. 386 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 387 if (!PTy->getElementType()->isIntegerTy(1)) 388 return 389 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), 390 PTy->getAddressSpace()), 391 DestTy, true); 392 393 // If there's no interesting folding happening, bail so that we don't create 394 // a constant that looks like it needs folding but really doesn't. 395 if (!Folded) 396 return nullptr; 397 398 // Base case: Get a regular sizeof expression. 399 Constant *C = ConstantExpr::getSizeOf(Ty); 400 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 401 DestTy, false), 402 C, DestTy); 403 return C; 404 } 405 406 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known 407 /// factors factored out. If Folded is false, return null if no factoring was 408 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 409 /// top-level folder. 410 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) { 411 // The alignment of an array is equal to the alignment of the 412 // array element. Note that this is not always true for vectors. 413 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 414 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); 415 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 416 DestTy, 417 false), 418 C, DestTy); 419 return C; 420 } 421 422 if (StructType *STy = dyn_cast<StructType>(Ty)) { 423 // Packed structs always have an alignment of 1. 424 if (STy->isPacked()) 425 return ConstantInt::get(DestTy, 1); 426 427 // Otherwise, struct alignment is the maximum alignment of any member. 428 // Without target data, we can't compare much, but we can check to see 429 // if all the members have the same alignment. 430 unsigned NumElems = STy->getNumElements(); 431 // An empty struct has minimal alignment. 432 if (NumElems == 0) 433 return ConstantInt::get(DestTy, 1); 434 // Check for a struct with all members having the same alignment. 435 Constant *MemberAlign = 436 getFoldedAlignOf(STy->getElementType(0), DestTy, true); 437 bool AllSame = true; 438 for (unsigned i = 1; i != NumElems; ++i) 439 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { 440 AllSame = false; 441 break; 442 } 443 if (AllSame) 444 return MemberAlign; 445 } 446 447 // Pointer alignment doesn't depend on the pointee type, so canonicalize them 448 // to an arbitrary pointee. 449 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 450 if (!PTy->getElementType()->isIntegerTy(1)) 451 return 452 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), 453 1), 454 PTy->getAddressSpace()), 455 DestTy, true); 456 457 // If there's no interesting folding happening, bail so that we don't create 458 // a constant that looks like it needs folding but really doesn't. 459 if (!Folded) 460 return nullptr; 461 462 // Base case: Get a regular alignof expression. 463 Constant *C = ConstantExpr::getAlignOf(Ty); 464 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 465 DestTy, false), 466 C, DestTy); 467 return C; 468 } 469 470 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with 471 /// any known factors factored out. If Folded is false, return null if no 472 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression 473 /// back into the top-level folder. 474 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy, 475 bool Folded) { 476 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 477 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, 478 DestTy, false), 479 FieldNo, DestTy); 480 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 481 return ConstantExpr::getNUWMul(E, N); 482 } 483 484 if (StructType *STy = dyn_cast<StructType>(Ty)) 485 if (!STy->isPacked()) { 486 unsigned NumElems = STy->getNumElements(); 487 // An empty struct has no members. 488 if (NumElems == 0) 489 return nullptr; 490 // Check for a struct with all members having the same size. 491 Constant *MemberSize = 492 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 493 bool AllSame = true; 494 for (unsigned i = 1; i != NumElems; ++i) 495 if (MemberSize != 496 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 497 AllSame = false; 498 break; 499 } 500 if (AllSame) { 501 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, 502 false, 503 DestTy, 504 false), 505 FieldNo, DestTy); 506 return ConstantExpr::getNUWMul(MemberSize, N); 507 } 508 } 509 510 // If there's no interesting folding happening, bail so that we don't create 511 // a constant that looks like it needs folding but really doesn't. 512 if (!Folded) 513 return nullptr; 514 515 // Base case: Get a regular offsetof expression. 516 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); 517 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 518 DestTy, false), 519 C, DestTy); 520 return C; 521 } 522 523 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 524 Type *DestTy) { 525 if (isa<PoisonValue>(V)) 526 return PoisonValue::get(DestTy); 527 528 if (isa<UndefValue>(V)) { 529 // zext(undef) = 0, because the top bits will be zero. 530 // sext(undef) = 0, because the top bits will all be the same. 531 // [us]itofp(undef) = 0, because the result value is bounded. 532 if (opc == Instruction::ZExt || opc == Instruction::SExt || 533 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 534 return Constant::getNullValue(DestTy); 535 return UndefValue::get(DestTy); 536 } 537 538 if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 539 opc != Instruction::AddrSpaceCast) 540 return Constant::getNullValue(DestTy); 541 542 // If the cast operand is a constant expression, there's a few things we can 543 // do to try to simplify it. 544 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 545 if (CE->isCast()) { 546 // Try hard to fold cast of cast because they are often eliminable. 547 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 548 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); 549 } else if (CE->getOpcode() == Instruction::GetElementPtr && 550 // Do not fold addrspacecast (gep 0, .., 0). It might make the 551 // addrspacecast uncanonicalized. 552 opc != Instruction::AddrSpaceCast && 553 // Do not fold bitcast (gep) with inrange index, as this loses 554 // information. 555 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() && 556 // Do not fold if the gep type is a vector, as bitcasting 557 // operand 0 of a vector gep will result in a bitcast between 558 // different sizes. 559 !CE->getType()->isVectorTy()) { 560 // If all of the indexes in the GEP are null values, there is no pointer 561 // adjustment going on. We might as well cast the source pointer. 562 bool isAllNull = true; 563 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 564 if (!CE->getOperand(i)->isNullValue()) { 565 isAllNull = false; 566 break; 567 } 568 if (isAllNull) 569 // This is casting one pointer type to another, always BitCast 570 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); 571 } 572 } 573 574 // If the cast operand is a constant vector, perform the cast by 575 // operating on each element. In the cast of bitcasts, the element 576 // count may be mismatched; don't attempt to handle that here. 577 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 578 DestTy->isVectorTy() && 579 cast<FixedVectorType>(DestTy)->getNumElements() == 580 cast<FixedVectorType>(V->getType())->getNumElements()) { 581 VectorType *DestVecTy = cast<VectorType>(DestTy); 582 Type *DstEltTy = DestVecTy->getElementType(); 583 // Fast path for splatted constants. 584 if (Constant *Splat = V->getSplatValue()) { 585 return ConstantVector::getSplat( 586 cast<VectorType>(DestTy)->getElementCount(), 587 ConstantExpr::getCast(opc, Splat, DstEltTy)); 588 } 589 SmallVector<Constant *, 16> res; 590 Type *Ty = IntegerType::get(V->getContext(), 32); 591 for (unsigned i = 0, 592 e = cast<FixedVectorType>(V->getType())->getNumElements(); 593 i != e; ++i) { 594 Constant *C = 595 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 596 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); 597 } 598 return ConstantVector::get(res); 599 } 600 601 // We actually have to do a cast now. Perform the cast according to the 602 // opcode specified. 603 switch (opc) { 604 default: 605 llvm_unreachable("Failed to cast constant expression"); 606 case Instruction::FPTrunc: 607 case Instruction::FPExt: 608 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 609 bool ignored; 610 APFloat Val = FPC->getValueAPF(); 611 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() : 612 DestTy->isFloatTy() ? APFloat::IEEEsingle() : 613 DestTy->isDoubleTy() ? APFloat::IEEEdouble() : 614 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() : 615 DestTy->isFP128Ty() ? APFloat::IEEEquad() : 616 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() : 617 APFloat::Bogus(), 618 APFloat::rmNearestTiesToEven, &ignored); 619 return ConstantFP::get(V->getContext(), Val); 620 } 621 return nullptr; // Can't fold. 622 case Instruction::FPToUI: 623 case Instruction::FPToSI: 624 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 625 const APFloat &V = FPC->getValueAPF(); 626 bool ignored; 627 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 628 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 629 if (APFloat::opInvalidOp == 630 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 631 // Undefined behavior invoked - the destination type can't represent 632 // the input constant. 633 return UndefValue::get(DestTy); 634 } 635 return ConstantInt::get(FPC->getContext(), IntVal); 636 } 637 return nullptr; // Can't fold. 638 case Instruction::IntToPtr: //always treated as unsigned 639 if (V->isNullValue()) // Is it an integral null value? 640 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 641 return nullptr; // Other pointer types cannot be casted 642 case Instruction::PtrToInt: // always treated as unsigned 643 // Is it a null pointer value? 644 if (V->isNullValue()) 645 return ConstantInt::get(DestTy, 0); 646 // If this is a sizeof-like expression, pull out multiplications by 647 // known factors to expose them to subsequent folding. If it's an 648 // alignof-like expression, factor out known factors. 649 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 650 if (CE->getOpcode() == Instruction::GetElementPtr && 651 CE->getOperand(0)->isNullValue()) { 652 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and 653 // getFoldedAlignOf() don't handle the case when DestTy is a vector of 654 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see 655 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this 656 // happen in one "real" C-code test case, so it does not seem to be an 657 // important optimization to handle vectors here. For now, simply bail 658 // out. 659 if (DestTy->isVectorTy()) 660 return nullptr; 661 GEPOperator *GEPO = cast<GEPOperator>(CE); 662 Type *Ty = GEPO->getSourceElementType(); 663 if (CE->getNumOperands() == 2) { 664 // Handle a sizeof-like expression. 665 Constant *Idx = CE->getOperand(1); 666 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); 667 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { 668 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, 669 DestTy, false), 670 Idx, DestTy); 671 return ConstantExpr::getMul(C, Idx); 672 } 673 } else if (CE->getNumOperands() == 3 && 674 CE->getOperand(1)->isNullValue()) { 675 // Handle an alignof-like expression. 676 if (StructType *STy = dyn_cast<StructType>(Ty)) 677 if (!STy->isPacked()) { 678 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); 679 if (CI->isOne() && 680 STy->getNumElements() == 2 && 681 STy->getElementType(0)->isIntegerTy(1)) { 682 return getFoldedAlignOf(STy->getElementType(1), DestTy, false); 683 } 684 } 685 // Handle an offsetof-like expression. 686 if (Ty->isStructTy() || Ty->isArrayTy()) { 687 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), 688 DestTy, false)) 689 return C; 690 } 691 } 692 } 693 // Other pointer types cannot be casted 694 return nullptr; 695 case Instruction::UIToFP: 696 case Instruction::SIToFP: 697 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 698 const APInt &api = CI->getValue(); 699 APFloat apf(DestTy->getFltSemantics(), 700 APInt::getNullValue(DestTy->getPrimitiveSizeInBits())); 701 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 702 APFloat::rmNearestTiesToEven); 703 return ConstantFP::get(V->getContext(), apf); 704 } 705 return nullptr; 706 case Instruction::ZExt: 707 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 708 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 709 return ConstantInt::get(V->getContext(), 710 CI->getValue().zext(BitWidth)); 711 } 712 return nullptr; 713 case Instruction::SExt: 714 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 715 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 716 return ConstantInt::get(V->getContext(), 717 CI->getValue().sext(BitWidth)); 718 } 719 return nullptr; 720 case Instruction::Trunc: { 721 if (V->getType()->isVectorTy()) 722 return nullptr; 723 724 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 725 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 726 return ConstantInt::get(V->getContext(), 727 CI->getValue().trunc(DestBitWidth)); 728 } 729 730 // The input must be a constantexpr. See if we can simplify this based on 731 // the bytes we are demanding. Only do this if the source and dest are an 732 // even multiple of a byte. 733 if ((DestBitWidth & 7) == 0 && 734 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) 735 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) 736 return Res; 737 738 return nullptr; 739 } 740 case Instruction::BitCast: 741 return FoldBitCast(V, DestTy); 742 case Instruction::AddrSpaceCast: 743 return nullptr; 744 } 745 } 746 747 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 748 Constant *V1, Constant *V2) { 749 // Check for i1 and vector true/false conditions. 750 if (Cond->isNullValue()) return V2; 751 if (Cond->isAllOnesValue()) return V1; 752 753 // If the condition is a vector constant, fold the result elementwise. 754 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 755 auto *V1VTy = CondV->getType(); 756 SmallVector<Constant*, 16> Result; 757 Type *Ty = IntegerType::get(CondV->getContext(), 32); 758 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { 759 Constant *V; 760 Constant *V1Element = ConstantExpr::getExtractElement(V1, 761 ConstantInt::get(Ty, i)); 762 Constant *V2Element = ConstantExpr::getExtractElement(V2, 763 ConstantInt::get(Ty, i)); 764 auto *Cond = cast<Constant>(CondV->getOperand(i)); 765 if (isa<PoisonValue>(Cond)) { 766 V = PoisonValue::get(V1Element->getType()); 767 } else if (V1Element == V2Element) { 768 V = V1Element; 769 } else if (isa<UndefValue>(Cond)) { 770 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 771 } else { 772 if (!isa<ConstantInt>(Cond)) break; 773 V = Cond->isNullValue() ? V2Element : V1Element; 774 } 775 Result.push_back(V); 776 } 777 778 // If we were able to build the vector, return it. 779 if (Result.size() == V1VTy->getNumElements()) 780 return ConstantVector::get(Result); 781 } 782 783 if (isa<PoisonValue>(Cond)) 784 return PoisonValue::get(V1->getType()); 785 786 if (isa<UndefValue>(Cond)) { 787 if (isa<UndefValue>(V1)) return V1; 788 return V2; 789 } 790 791 if (V1 == V2) return V1; 792 793 if (isa<PoisonValue>(V1)) 794 return V2; 795 if (isa<PoisonValue>(V2)) 796 return V1; 797 798 // If the true or false value is undef, we can fold to the other value as 799 // long as the other value isn't poison. 800 auto NotPoison = [](Constant *C) { 801 if (isa<PoisonValue>(C)) 802 return false; 803 804 // TODO: We can analyze ConstExpr by opcode to determine if there is any 805 // possibility of poison. 806 if (isa<ConstantExpr>(C)) 807 return false; 808 809 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) || 810 isa<ConstantPointerNull>(C) || isa<Function>(C)) 811 return true; 812 813 if (C->getType()->isVectorTy()) 814 return !C->containsPoisonElement() && !C->containsConstantExpression(); 815 816 // TODO: Recursively analyze aggregates or other constants. 817 return false; 818 }; 819 if (isa<UndefValue>(V1) && NotPoison(V2)) return V2; 820 if (isa<UndefValue>(V2) && NotPoison(V1)) return V1; 821 822 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { 823 if (TrueVal->getOpcode() == Instruction::Select) 824 if (TrueVal->getOperand(0) == Cond) 825 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); 826 } 827 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { 828 if (FalseVal->getOpcode() == Instruction::Select) 829 if (FalseVal->getOperand(0) == Cond) 830 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); 831 } 832 833 return nullptr; 834 } 835 836 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 837 Constant *Idx) { 838 auto *ValVTy = cast<VectorType>(Val->getType()); 839 840 // extractelt poison, C -> poison 841 // extractelt C, undef -> poison 842 if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx)) 843 return PoisonValue::get(ValVTy->getElementType()); 844 845 // extractelt undef, C -> undef 846 if (isa<UndefValue>(Val)) 847 return UndefValue::get(ValVTy->getElementType()); 848 849 auto *CIdx = dyn_cast<ConstantInt>(Idx); 850 if (!CIdx) 851 return nullptr; 852 853 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { 854 // ee({w,x,y,z}, wrong_value) -> poison 855 if (CIdx->uge(ValFVTy->getNumElements())) 856 return PoisonValue::get(ValFVTy->getElementType()); 857 } 858 859 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 860 if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 861 if (CE->getOpcode() == Instruction::GetElementPtr) { 862 SmallVector<Constant *, 8> Ops; 863 Ops.reserve(CE->getNumOperands()); 864 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 865 Constant *Op = CE->getOperand(i); 866 if (Op->getType()->isVectorTy()) { 867 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 868 if (!ScalarOp) 869 return nullptr; 870 Ops.push_back(ScalarOp); 871 } else 872 Ops.push_back(Op); 873 } 874 return CE->getWithOperands(Ops, ValVTy->getElementType(), false, 875 Ops[0]->getType()->getPointerElementType()); 876 } else if (CE->getOpcode() == Instruction::InsertElement) { 877 if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) { 878 if (APSInt::isSameValue(APSInt(IEIdx->getValue()), 879 APSInt(CIdx->getValue()))) { 880 return CE->getOperand(1); 881 } else { 882 return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx); 883 } 884 } 885 } 886 } 887 888 // CAZ of type ScalableVectorType and n < CAZ->getMinNumElements() => 889 // extractelt CAZ, n -> 0 890 if (auto *ValSVTy = dyn_cast<ScalableVectorType>(Val->getType())) { 891 if (!CIdx->uge(ValSVTy->getMinNumElements())) { 892 if (auto *CAZ = dyn_cast<ConstantAggregateZero>(Val)) 893 return CAZ->getElementValue(CIdx->getZExtValue()); 894 } 895 return nullptr; 896 } 897 898 return Val->getAggregateElement(CIdx); 899 } 900 901 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 902 Constant *Elt, 903 Constant *Idx) { 904 if (isa<UndefValue>(Idx)) 905 return PoisonValue::get(Val->getType()); 906 907 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 908 if (!CIdx) return nullptr; 909 910 // Do not iterate on scalable vector. The num of elements is unknown at 911 // compile-time. 912 if (isa<ScalableVectorType>(Val->getType())) 913 return nullptr; 914 915 auto *ValTy = cast<FixedVectorType>(Val->getType()); 916 917 unsigned NumElts = ValTy->getNumElements(); 918 if (CIdx->uge(NumElts)) 919 return UndefValue::get(Val->getType()); 920 921 SmallVector<Constant*, 16> Result; 922 Result.reserve(NumElts); 923 auto *Ty = Type::getInt32Ty(Val->getContext()); 924 uint64_t IdxVal = CIdx->getZExtValue(); 925 for (unsigned i = 0; i != NumElts; ++i) { 926 if (i == IdxVal) { 927 Result.push_back(Elt); 928 continue; 929 } 930 931 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 932 Result.push_back(C); 933 } 934 935 return ConstantVector::get(Result); 936 } 937 938 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, 939 ArrayRef<int> Mask) { 940 auto *V1VTy = cast<VectorType>(V1->getType()); 941 unsigned MaskNumElts = Mask.size(); 942 auto MaskEltCount = 943 ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy)); 944 Type *EltTy = V1VTy->getElementType(); 945 946 // Undefined shuffle mask -> undefined value. 947 if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) { 948 return UndefValue::get(FixedVectorType::get(EltTy, MaskNumElts)); 949 } 950 951 // If the mask is all zeros this is a splat, no need to go through all 952 // elements. 953 if (all_of(Mask, [](int Elt) { return Elt == 0; }) && 954 !MaskEltCount.isScalable()) { 955 Type *Ty = IntegerType::get(V1->getContext(), 32); 956 Constant *Elt = 957 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); 958 return ConstantVector::getSplat(MaskEltCount, Elt); 959 } 960 // Do not iterate on scalable vector. The num of elements is unknown at 961 // compile-time. 962 if (isa<ScalableVectorType>(V1VTy)) 963 return nullptr; 964 965 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue(); 966 967 // Loop over the shuffle mask, evaluating each element. 968 SmallVector<Constant*, 32> Result; 969 for (unsigned i = 0; i != MaskNumElts; ++i) { 970 int Elt = Mask[i]; 971 if (Elt == -1) { 972 Result.push_back(UndefValue::get(EltTy)); 973 continue; 974 } 975 Constant *InElt; 976 if (unsigned(Elt) >= SrcNumElts*2) 977 InElt = UndefValue::get(EltTy); 978 else if (unsigned(Elt) >= SrcNumElts) { 979 Type *Ty = IntegerType::get(V2->getContext(), 32); 980 InElt = 981 ConstantExpr::getExtractElement(V2, 982 ConstantInt::get(Ty, Elt - SrcNumElts)); 983 } else { 984 Type *Ty = IntegerType::get(V1->getContext(), 32); 985 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 986 } 987 Result.push_back(InElt); 988 } 989 990 return ConstantVector::get(Result); 991 } 992 993 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 994 ArrayRef<unsigned> Idxs) { 995 // Base case: no indices, so return the entire value. 996 if (Idxs.empty()) 997 return Agg; 998 999 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 1000 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 1001 1002 return nullptr; 1003 } 1004 1005 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 1006 Constant *Val, 1007 ArrayRef<unsigned> Idxs) { 1008 // Base case: no indices, so replace the entire value. 1009 if (Idxs.empty()) 1010 return Val; 1011 1012 unsigned NumElts; 1013 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 1014 NumElts = ST->getNumElements(); 1015 else 1016 NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); 1017 1018 SmallVector<Constant*, 32> Result; 1019 for (unsigned i = 0; i != NumElts; ++i) { 1020 Constant *C = Agg->getAggregateElement(i); 1021 if (!C) return nullptr; 1022 1023 if (Idxs[0] == i) 1024 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 1025 1026 Result.push_back(C); 1027 } 1028 1029 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 1030 return ConstantStruct::get(ST, Result); 1031 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); 1032 } 1033 1034 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 1035 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 1036 1037 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 1038 // vectors are always evaluated per element. 1039 bool IsScalableVector = isa<ScalableVectorType>(C->getType()); 1040 bool HasScalarUndefOrScalableVectorUndef = 1041 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); 1042 1043 if (HasScalarUndefOrScalableVectorUndef) { 1044 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 1045 case Instruction::FNeg: 1046 return C; // -undef -> undef 1047 case Instruction::UnaryOpsEnd: 1048 llvm_unreachable("Invalid UnaryOp"); 1049 } 1050 } 1051 1052 // Constant should not be UndefValue, unless these are vector constants. 1053 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); 1054 // We only have FP UnaryOps right now. 1055 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 1056 1057 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1058 const APFloat &CV = CFP->getValueAPF(); 1059 switch (Opcode) { 1060 default: 1061 break; 1062 case Instruction::FNeg: 1063 return ConstantFP::get(C->getContext(), neg(CV)); 1064 } 1065 } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) { 1066 1067 Type *Ty = IntegerType::get(VTy->getContext(), 32); 1068 // Fast path for splatted constants. 1069 if (Constant *Splat = C->getSplatValue()) { 1070 Constant *Elt = ConstantExpr::get(Opcode, Splat); 1071 return ConstantVector::getSplat(VTy->getElementCount(), Elt); 1072 } 1073 1074 // Fold each element and create a vector constant from those constants. 1075 SmallVector<Constant *, 16> Result; 1076 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 1077 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1078 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 1079 1080 Result.push_back(ConstantExpr::get(Opcode, Elt)); 1081 } 1082 1083 return ConstantVector::get(Result); 1084 } 1085 1086 // We don't know how to fold this. 1087 return nullptr; 1088 } 1089 1090 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 1091 Constant *C2) { 1092 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 1093 1094 // Simplify BinOps with their identity values first. They are no-ops and we 1095 // can always return the other value, including undef or poison values. 1096 // FIXME: remove unnecessary duplicated identity patterns below. 1097 // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops, 1098 // like X << 0 = X. 1099 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType()); 1100 if (Identity) { 1101 if (C1 == Identity) 1102 return C2; 1103 if (C2 == Identity) 1104 return C1; 1105 } 1106 1107 // Binary operations propagate poison. 1108 // FIXME: Currently, or/and i1 poison aren't folded into poison because 1109 // it causes miscompilation when combined with another optimization in 1110 // InstCombine (select i1 -> and/or). The select fold is wrong, but 1111 // fixing it requires an effort, so temporarily disable this until it is 1112 // fixed. 1113 bool PoisonFold = !C1->getType()->isIntegerTy(1) || 1114 (Opcode != Instruction::Or && Opcode != Instruction::And); 1115 if (PoisonFold && (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))) 1116 return PoisonValue::get(C1->getType()); 1117 1118 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 1119 // vectors are always evaluated per element. 1120 bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); 1121 bool HasScalarUndefOrScalableVectorUndef = 1122 (!C1->getType()->isVectorTy() || IsScalableVector) && 1123 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 1124 if (HasScalarUndefOrScalableVectorUndef) { 1125 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 1126 case Instruction::Xor: 1127 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1128 // Handle undef ^ undef -> 0 special case. This is a common 1129 // idiom (misuse). 1130 return Constant::getNullValue(C1->getType()); 1131 LLVM_FALLTHROUGH; 1132 case Instruction::Add: 1133 case Instruction::Sub: 1134 return UndefValue::get(C1->getType()); 1135 case Instruction::And: 1136 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 1137 return C1; 1138 return Constant::getNullValue(C1->getType()); // undef & X -> 0 1139 case Instruction::Mul: { 1140 // undef * undef -> undef 1141 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1142 return C1; 1143 const APInt *CV; 1144 // X * undef -> undef if X is odd 1145 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 1146 if ((*CV)[0]) 1147 return UndefValue::get(C1->getType()); 1148 1149 // X * undef -> 0 otherwise 1150 return Constant::getNullValue(C1->getType()); 1151 } 1152 case Instruction::SDiv: 1153 case Instruction::UDiv: 1154 // X / undef -> undef 1155 if (isa<UndefValue>(C2)) 1156 return C2; 1157 // undef / 0 -> undef 1158 // undef / 1 -> undef 1159 if (match(C2, m_Zero()) || match(C2, m_One())) 1160 return C1; 1161 // undef / X -> 0 otherwise 1162 return Constant::getNullValue(C1->getType()); 1163 case Instruction::URem: 1164 case Instruction::SRem: 1165 // X % undef -> undef 1166 if (match(C2, m_Undef())) 1167 return C2; 1168 // undef % 0 -> undef 1169 if (match(C2, m_Zero())) 1170 return C1; 1171 // undef % X -> 0 otherwise 1172 return Constant::getNullValue(C1->getType()); 1173 case Instruction::Or: // X | undef -> -1 1174 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 1175 return C1; 1176 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 1177 case Instruction::LShr: 1178 // X >>l undef -> undef 1179 if (isa<UndefValue>(C2)) 1180 return C2; 1181 // undef >>l 0 -> undef 1182 if (match(C2, m_Zero())) 1183 return C1; 1184 // undef >>l X -> 0 1185 return Constant::getNullValue(C1->getType()); 1186 case Instruction::AShr: 1187 // X >>a undef -> undef 1188 if (isa<UndefValue>(C2)) 1189 return C2; 1190 // undef >>a 0 -> undef 1191 if (match(C2, m_Zero())) 1192 return C1; 1193 // TODO: undef >>a X -> undef if the shift is exact 1194 // undef >>a X -> 0 1195 return Constant::getNullValue(C1->getType()); 1196 case Instruction::Shl: 1197 // X << undef -> undef 1198 if (isa<UndefValue>(C2)) 1199 return C2; 1200 // undef << 0 -> undef 1201 if (match(C2, m_Zero())) 1202 return C1; 1203 // undef << X -> 0 1204 return Constant::getNullValue(C1->getType()); 1205 case Instruction::FSub: 1206 // -0.0 - undef --> undef (consistent with "fneg undef") 1207 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) 1208 return C2; 1209 LLVM_FALLTHROUGH; 1210 case Instruction::FAdd: 1211 case Instruction::FMul: 1212 case Instruction::FDiv: 1213 case Instruction::FRem: 1214 // [any flop] undef, undef -> undef 1215 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1216 return C1; 1217 // [any flop] C, undef -> NaN 1218 // [any flop] undef, C -> NaN 1219 // We could potentially specialize NaN/Inf constants vs. 'normal' 1220 // constants (possibly differently depending on opcode and operand). This 1221 // would allow returning undef sometimes. But it is always safe to fold to 1222 // NaN because we can choose the undef operand as NaN, and any FP opcode 1223 // with a NaN operand will propagate NaN. 1224 return ConstantFP::getNaN(C1->getType()); 1225 case Instruction::BinaryOpsEnd: 1226 llvm_unreachable("Invalid BinaryOp"); 1227 } 1228 } 1229 1230 // Neither constant should be UndefValue, unless these are vector constants. 1231 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); 1232 1233 // Handle simplifications when the RHS is a constant int. 1234 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1235 switch (Opcode) { 1236 case Instruction::Add: 1237 if (CI2->isZero()) return C1; // X + 0 == X 1238 break; 1239 case Instruction::Sub: 1240 if (CI2->isZero()) return C1; // X - 0 == X 1241 break; 1242 case Instruction::Mul: 1243 if (CI2->isZero()) return C2; // X * 0 == 0 1244 if (CI2->isOne()) 1245 return C1; // X * 1 == X 1246 break; 1247 case Instruction::UDiv: 1248 case Instruction::SDiv: 1249 if (CI2->isOne()) 1250 return C1; // X / 1 == X 1251 if (CI2->isZero()) 1252 return UndefValue::get(CI2->getType()); // X / 0 == undef 1253 break; 1254 case Instruction::URem: 1255 case Instruction::SRem: 1256 if (CI2->isOne()) 1257 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 1258 if (CI2->isZero()) 1259 return UndefValue::get(CI2->getType()); // X % 0 == undef 1260 break; 1261 case Instruction::And: 1262 if (CI2->isZero()) return C2; // X & 0 == 0 1263 if (CI2->isMinusOne()) 1264 return C1; // X & -1 == X 1265 1266 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1267 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) 1268 if (CE1->getOpcode() == Instruction::ZExt) { 1269 unsigned DstWidth = CI2->getType()->getBitWidth(); 1270 unsigned SrcWidth = 1271 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1272 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1273 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) 1274 return C1; 1275 } 1276 1277 // If and'ing the address of a global with a constant, fold it. 1278 if (CE1->getOpcode() == Instruction::PtrToInt && 1279 isa<GlobalValue>(CE1->getOperand(0))) { 1280 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 1281 1282 MaybeAlign GVAlign; 1283 1284 if (Module *TheModule = GV->getParent()) { 1285 const DataLayout &DL = TheModule->getDataLayout(); 1286 GVAlign = GV->getPointerAlignment(DL); 1287 1288 // If the function alignment is not specified then assume that it 1289 // is 4. 1290 // This is dangerous; on x86, the alignment of the pointer 1291 // corresponds to the alignment of the function, but might be less 1292 // than 4 if it isn't explicitly specified. 1293 // However, a fix for this behaviour was reverted because it 1294 // increased code size (see https://reviews.llvm.org/D55115) 1295 // FIXME: This code should be deleted once existing targets have 1296 // appropriate defaults 1297 if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) 1298 GVAlign = Align(4); 1299 } else if (isa<Function>(GV)) { 1300 // Without a datalayout we have to assume the worst case: that the 1301 // function pointer isn't aligned at all. 1302 GVAlign = llvm::None; 1303 } else if (isa<GlobalVariable>(GV)) { 1304 GVAlign = cast<GlobalVariable>(GV)->getAlign(); 1305 } 1306 1307 if (GVAlign && *GVAlign > 1) { 1308 unsigned DstWidth = CI2->getType()->getBitWidth(); 1309 unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign)); 1310 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1311 1312 // If checking bits we know are clear, return zero. 1313 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 1314 return Constant::getNullValue(CI2->getType()); 1315 } 1316 } 1317 } 1318 break; 1319 case Instruction::Or: 1320 if (CI2->isZero()) return C1; // X | 0 == X 1321 if (CI2->isMinusOne()) 1322 return C2; // X | -1 == -1 1323 break; 1324 case Instruction::Xor: 1325 if (CI2->isZero()) return C1; // X ^ 0 == X 1326 1327 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1328 switch (CE1->getOpcode()) { 1329 default: break; 1330 case Instruction::ICmp: 1331 case Instruction::FCmp: 1332 // cmp pred ^ true -> cmp !pred 1333 assert(CI2->isOne()); 1334 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); 1335 pred = CmpInst::getInversePredicate(pred); 1336 return ConstantExpr::getCompare(pred, CE1->getOperand(0), 1337 CE1->getOperand(1)); 1338 } 1339 } 1340 break; 1341 case Instruction::AShr: 1342 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 1343 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) 1344 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. 1345 return ConstantExpr::getLShr(C1, C2); 1346 break; 1347 } 1348 } else if (isa<ConstantInt>(C1)) { 1349 // If C1 is a ConstantInt and C2 is not, swap the operands. 1350 if (Instruction::isCommutative(Opcode)) 1351 return ConstantExpr::get(Opcode, C2, C1); 1352 } 1353 1354 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 1355 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1356 const APInt &C1V = CI1->getValue(); 1357 const APInt &C2V = CI2->getValue(); 1358 switch (Opcode) { 1359 default: 1360 break; 1361 case Instruction::Add: 1362 return ConstantInt::get(CI1->getContext(), C1V + C2V); 1363 case Instruction::Sub: 1364 return ConstantInt::get(CI1->getContext(), C1V - C2V); 1365 case Instruction::Mul: 1366 return ConstantInt::get(CI1->getContext(), C1V * C2V); 1367 case Instruction::UDiv: 1368 assert(!CI2->isZero() && "Div by zero handled above"); 1369 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 1370 case Instruction::SDiv: 1371 assert(!CI2->isZero() && "Div by zero handled above"); 1372 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1373 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef 1374 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 1375 case Instruction::URem: 1376 assert(!CI2->isZero() && "Div by zero handled above"); 1377 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 1378 case Instruction::SRem: 1379 assert(!CI2->isZero() && "Div by zero handled above"); 1380 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1381 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef 1382 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 1383 case Instruction::And: 1384 return ConstantInt::get(CI1->getContext(), C1V & C2V); 1385 case Instruction::Or: 1386 return ConstantInt::get(CI1->getContext(), C1V | C2V); 1387 case Instruction::Xor: 1388 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 1389 case Instruction::Shl: 1390 if (C2V.ult(C1V.getBitWidth())) 1391 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 1392 return UndefValue::get(C1->getType()); // too big shift is undef 1393 case Instruction::LShr: 1394 if (C2V.ult(C1V.getBitWidth())) 1395 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 1396 return UndefValue::get(C1->getType()); // too big shift is undef 1397 case Instruction::AShr: 1398 if (C2V.ult(C1V.getBitWidth())) 1399 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 1400 return UndefValue::get(C1->getType()); // too big shift is undef 1401 } 1402 } 1403 1404 switch (Opcode) { 1405 case Instruction::SDiv: 1406 case Instruction::UDiv: 1407 case Instruction::URem: 1408 case Instruction::SRem: 1409 case Instruction::LShr: 1410 case Instruction::AShr: 1411 case Instruction::Shl: 1412 if (CI1->isZero()) return C1; 1413 break; 1414 default: 1415 break; 1416 } 1417 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 1418 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 1419 const APFloat &C1V = CFP1->getValueAPF(); 1420 const APFloat &C2V = CFP2->getValueAPF(); 1421 APFloat C3V = C1V; // copy for modification 1422 switch (Opcode) { 1423 default: 1424 break; 1425 case Instruction::FAdd: 1426 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 1427 return ConstantFP::get(C1->getContext(), C3V); 1428 case Instruction::FSub: 1429 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 1430 return ConstantFP::get(C1->getContext(), C3V); 1431 case Instruction::FMul: 1432 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 1433 return ConstantFP::get(C1->getContext(), C3V); 1434 case Instruction::FDiv: 1435 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 1436 return ConstantFP::get(C1->getContext(), C3V); 1437 case Instruction::FRem: 1438 (void)C3V.mod(C2V); 1439 return ConstantFP::get(C1->getContext(), C3V); 1440 } 1441 } 1442 } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) { 1443 // Fast path for splatted constants. 1444 if (Constant *C2Splat = C2->getSplatValue()) { 1445 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) 1446 return UndefValue::get(VTy); 1447 if (Constant *C1Splat = C1->getSplatValue()) { 1448 return ConstantVector::getSplat( 1449 VTy->getElementCount(), 1450 ConstantExpr::get(Opcode, C1Splat, C2Splat)); 1451 } 1452 } 1453 1454 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 1455 // Fold each element and create a vector constant from those constants. 1456 SmallVector<Constant*, 16> Result; 1457 Type *Ty = IntegerType::get(FVTy->getContext(), 32); 1458 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { 1459 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1460 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 1461 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 1462 1463 // If any element of a divisor vector is zero, the whole op is undef. 1464 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) 1465 return UndefValue::get(VTy); 1466 1467 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); 1468 } 1469 1470 return ConstantVector::get(Result); 1471 } 1472 } 1473 1474 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1475 // There are many possible foldings we could do here. We should probably 1476 // at least fold add of a pointer with an integer into the appropriate 1477 // getelementptr. This will improve alias analysis a bit. 1478 1479 // Given ((a + b) + c), if (b + c) folds to something interesting, return 1480 // (a + (b + c)). 1481 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 1482 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 1483 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 1484 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 1485 } 1486 } else if (isa<ConstantExpr>(C2)) { 1487 // If C2 is a constant expr and C1 isn't, flop them around and fold the 1488 // other way if possible. 1489 if (Instruction::isCommutative(Opcode)) 1490 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 1491 } 1492 1493 // i1 can be simplified in many cases. 1494 if (C1->getType()->isIntegerTy(1)) { 1495 switch (Opcode) { 1496 case Instruction::Add: 1497 case Instruction::Sub: 1498 return ConstantExpr::getXor(C1, C2); 1499 case Instruction::Mul: 1500 return ConstantExpr::getAnd(C1, C2); 1501 case Instruction::Shl: 1502 case Instruction::LShr: 1503 case Instruction::AShr: 1504 // We can assume that C2 == 0. If it were one the result would be 1505 // undefined because the shift value is as large as the bitwidth. 1506 return C1; 1507 case Instruction::SDiv: 1508 case Instruction::UDiv: 1509 // We can assume that C2 == 1. If it were zero the result would be 1510 // undefined through division by zero. 1511 return C1; 1512 case Instruction::URem: 1513 case Instruction::SRem: 1514 // We can assume that C2 == 1. If it were zero the result would be 1515 // undefined through division by zero. 1516 return ConstantInt::getFalse(C1->getContext()); 1517 default: 1518 break; 1519 } 1520 } 1521 1522 // We don't know how to fold this. 1523 return nullptr; 1524 } 1525 1526 /// This type is zero-sized if it's an array or structure of zero-sized types. 1527 /// The only leaf zero-sized type is an empty structure. 1528 static bool isMaybeZeroSizedType(Type *Ty) { 1529 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1530 if (STy->isOpaque()) return true; // Can't say. 1531 1532 // If all of elements have zero size, this does too. 1533 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1534 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; 1535 return true; 1536 1537 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1538 return isMaybeZeroSizedType(ATy->getElementType()); 1539 } 1540 return false; 1541 } 1542 1543 /// Compare the two constants as though they were getelementptr indices. 1544 /// This allows coercion of the types to be the same thing. 1545 /// 1546 /// If the two constants are the "same" (after coercion), return 0. If the 1547 /// first is less than the second, return -1, if the second is less than the 1548 /// first, return 1. If the constants are not integral, return -2. 1549 /// 1550 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { 1551 if (C1 == C2) return 0; 1552 1553 // Ok, we found a different index. If they are not ConstantInt, we can't do 1554 // anything with them. 1555 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) 1556 return -2; // don't know! 1557 1558 // We cannot compare the indices if they don't fit in an int64_t. 1559 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 || 1560 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64) 1561 return -2; // don't know! 1562 1563 // Ok, we have two differing integer indices. Sign extend them to be the same 1564 // type. 1565 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue(); 1566 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue(); 1567 1568 if (C1Val == C2Val) return 0; // They are equal 1569 1570 // If the type being indexed over is really just a zero sized type, there is 1571 // no pointer difference being made here. 1572 if (isMaybeZeroSizedType(ElTy)) 1573 return -2; // dunno. 1574 1575 // If they are really different, now that they are the same type, then we 1576 // found a difference! 1577 if (C1Val < C2Val) 1578 return -1; 1579 else 1580 return 1; 1581 } 1582 1583 /// This function determines if there is anything we can decide about the two 1584 /// constants provided. This doesn't need to handle simple things like 1585 /// ConstantFP comparisons, but should instead handle ConstantExprs. 1586 /// If we can determine that the two constants have a particular relation to 1587 /// each other, we should return the corresponding FCmpInst predicate, 1588 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in 1589 /// ConstantFoldCompareInstruction. 1590 /// 1591 /// To simplify this code we canonicalize the relation so that the first 1592 /// operand is always the most "complex" of the two. We consider ConstantFP 1593 /// to be the simplest, and ConstantExprs to be the most complex. 1594 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { 1595 assert(V1->getType() == V2->getType() && 1596 "Cannot compare values of different types!"); 1597 1598 // We do not know if a constant expression will evaluate to a number or NaN. 1599 // Therefore, we can only say that the relation is unordered or equal. 1600 if (V1 == V2) return FCmpInst::FCMP_UEQ; 1601 1602 if (!isa<ConstantExpr>(V1)) { 1603 if (!isa<ConstantExpr>(V2)) { 1604 // Simple case, use the standard constant folder. 1605 ConstantInt *R = nullptr; 1606 R = dyn_cast<ConstantInt>( 1607 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); 1608 if (R && !R->isZero()) 1609 return FCmpInst::FCMP_OEQ; 1610 R = dyn_cast<ConstantInt>( 1611 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); 1612 if (R && !R->isZero()) 1613 return FCmpInst::FCMP_OLT; 1614 R = dyn_cast<ConstantInt>( 1615 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); 1616 if (R && !R->isZero()) 1617 return FCmpInst::FCMP_OGT; 1618 1619 // Nothing more we can do 1620 return FCmpInst::BAD_FCMP_PREDICATE; 1621 } 1622 1623 // If the first operand is simple and second is ConstantExpr, swap operands. 1624 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); 1625 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) 1626 return FCmpInst::getSwappedPredicate(SwappedRelation); 1627 } else { 1628 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1629 // constantexpr or a simple constant. 1630 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1631 switch (CE1->getOpcode()) { 1632 case Instruction::FPTrunc: 1633 case Instruction::FPExt: 1634 case Instruction::UIToFP: 1635 case Instruction::SIToFP: 1636 // We might be able to do something with these but we don't right now. 1637 break; 1638 default: 1639 break; 1640 } 1641 } 1642 // There are MANY other foldings that we could perform here. They will 1643 // probably be added on demand, as they seem needed. 1644 return FCmpInst::BAD_FCMP_PREDICATE; 1645 } 1646 1647 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 1648 const GlobalValue *GV2) { 1649 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 1650 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr()) 1651 return true; 1652 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 1653 Type *Ty = GVar->getValueType(); 1654 // A global with opaque type might end up being zero sized. 1655 if (!Ty->isSized()) 1656 return true; 1657 // A global with an empty type might lie at the address of any other 1658 // global. 1659 if (Ty->isEmptyTy()) 1660 return true; 1661 } 1662 return false; 1663 }; 1664 // Don't try to decide equality of aliases. 1665 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 1666 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 1667 return ICmpInst::ICMP_NE; 1668 return ICmpInst::BAD_ICMP_PREDICATE; 1669 } 1670 1671 /// This function determines if there is anything we can decide about the two 1672 /// constants provided. This doesn't need to handle simple things like integer 1673 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 1674 /// If we can determine that the two constants have a particular relation to 1675 /// each other, we should return the corresponding ICmp predicate, otherwise 1676 /// return ICmpInst::BAD_ICMP_PREDICATE. 1677 /// 1678 /// To simplify this code we canonicalize the relation so that the first 1679 /// operand is always the most "complex" of the two. We consider simple 1680 /// constants (like ConstantInt) to be the simplest, followed by 1681 /// GlobalValues, followed by ConstantExpr's (the most complex). 1682 /// 1683 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, 1684 bool isSigned) { 1685 assert(V1->getType() == V2->getType() && 1686 "Cannot compare different types of values!"); 1687 if (V1 == V2) return ICmpInst::ICMP_EQ; 1688 1689 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && 1690 !isa<BlockAddress>(V1)) { 1691 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && 1692 !isa<BlockAddress>(V2)) { 1693 // We distilled this down to a simple case, use the standard constant 1694 // folder. 1695 ConstantInt *R = nullptr; 1696 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; 1697 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1698 if (R && !R->isZero()) 1699 return pred; 1700 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1701 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1702 if (R && !R->isZero()) 1703 return pred; 1704 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1705 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1706 if (R && !R->isZero()) 1707 return pred; 1708 1709 // If we couldn't figure it out, bail. 1710 return ICmpInst::BAD_ICMP_PREDICATE; 1711 } 1712 1713 // If the first operand is simple, swap operands. 1714 ICmpInst::Predicate SwappedRelation = 1715 evaluateICmpRelation(V2, V1, isSigned); 1716 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1717 return ICmpInst::getSwappedPredicate(SwappedRelation); 1718 1719 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1720 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1721 ICmpInst::Predicate SwappedRelation = 1722 evaluateICmpRelation(V2, V1, isSigned); 1723 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1724 return ICmpInst::getSwappedPredicate(SwappedRelation); 1725 return ICmpInst::BAD_ICMP_PREDICATE; 1726 } 1727 1728 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1729 // constant (which, since the types must match, means that it's a 1730 // ConstantPointerNull). 1731 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1732 return areGlobalsPotentiallyEqual(GV, GV2); 1733 } else if (isa<BlockAddress>(V2)) { 1734 return ICmpInst::ICMP_NE; // Globals never equal labels. 1735 } else { 1736 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); 1737 // GlobalVals can never be null unless they have external weak linkage. 1738 // We don't try to evaluate aliases here. 1739 // NOTE: We should not be doing this constant folding if null pointer 1740 // is considered valid for the function. But currently there is no way to 1741 // query it from the Constant type. 1742 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1743 !NullPointerIsDefined(nullptr /* F */, 1744 GV->getType()->getAddressSpace())) 1745 return ICmpInst::ICMP_NE; 1746 } 1747 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1748 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1749 ICmpInst::Predicate SwappedRelation = 1750 evaluateICmpRelation(V2, V1, isSigned); 1751 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1752 return ICmpInst::getSwappedPredicate(SwappedRelation); 1753 return ICmpInst::BAD_ICMP_PREDICATE; 1754 } 1755 1756 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1757 // constant (which, since the types must match, means that it is a 1758 // ConstantPointerNull). 1759 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1760 // Block address in another function can't equal this one, but block 1761 // addresses in the current function might be the same if blocks are 1762 // empty. 1763 if (BA2->getFunction() != BA->getFunction()) 1764 return ICmpInst::ICMP_NE; 1765 } else { 1766 // Block addresses aren't null, don't equal the address of globals. 1767 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && 1768 "Canonicalization guarantee!"); 1769 return ICmpInst::ICMP_NE; 1770 } 1771 } else { 1772 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1773 // constantexpr, a global, block address, or a simple constant. 1774 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1775 Constant *CE1Op0 = CE1->getOperand(0); 1776 1777 switch (CE1->getOpcode()) { 1778 case Instruction::Trunc: 1779 case Instruction::FPTrunc: 1780 case Instruction::FPExt: 1781 case Instruction::FPToUI: 1782 case Instruction::FPToSI: 1783 break; // We can't evaluate floating point casts or truncations. 1784 1785 case Instruction::BitCast: 1786 // If this is a global value cast, check to see if the RHS is also a 1787 // GlobalValue. 1788 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) 1789 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) 1790 return areGlobalsPotentiallyEqual(GV, GV2); 1791 LLVM_FALLTHROUGH; 1792 case Instruction::UIToFP: 1793 case Instruction::SIToFP: 1794 case Instruction::ZExt: 1795 case Instruction::SExt: 1796 // We can't evaluate floating point casts or truncations. 1797 if (CE1Op0->getType()->isFPOrFPVectorTy()) 1798 break; 1799 1800 // If the cast is not actually changing bits, and the second operand is a 1801 // null pointer, do the comparison with the pre-casted value. 1802 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) { 1803 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; 1804 if (CE1->getOpcode() == Instruction::SExt) isSigned = true; 1805 return evaluateICmpRelation(CE1Op0, 1806 Constant::getNullValue(CE1Op0->getType()), 1807 isSigned); 1808 } 1809 break; 1810 1811 case Instruction::GetElementPtr: { 1812 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1813 // Ok, since this is a getelementptr, we know that the constant has a 1814 // pointer type. Check the various cases. 1815 if (isa<ConstantPointerNull>(V2)) { 1816 // If we are comparing a GEP to a null pointer, check to see if the base 1817 // of the GEP equals the null pointer. 1818 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1819 if (GV->hasExternalWeakLinkage()) 1820 // Weak linkage GVals could be zero or not. We're comparing that 1821 // to null pointer so its greater-or-equal 1822 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 1823 else 1824 // If its not weak linkage, the GVal must have a non-zero address 1825 // so the result is greater-than 1826 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1827 } else if (isa<ConstantPointerNull>(CE1Op0)) { 1828 // If we are indexing from a null pointer, check to see if we have any 1829 // non-zero indices. 1830 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) 1831 if (!CE1->getOperand(i)->isNullValue()) 1832 // Offsetting from null, must not be equal. 1833 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1834 // Only zero indexes from null, must still be zero. 1835 return ICmpInst::ICMP_EQ; 1836 } 1837 // Otherwise, we can't really say if the first operand is null or not. 1838 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1839 if (isa<ConstantPointerNull>(CE1Op0)) { 1840 if (GV2->hasExternalWeakLinkage()) 1841 // Weak linkage GVals could be zero or not. We're comparing it to 1842 // a null pointer, so its less-or-equal 1843 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1844 else 1845 // If its not weak linkage, the GVal must have a non-zero address 1846 // so the result is less-than 1847 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1848 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1849 if (GV == GV2) { 1850 // If this is a getelementptr of the same global, then it must be 1851 // different. Because the types must match, the getelementptr could 1852 // only have at most one index, and because we fold getelementptr's 1853 // with a single zero index, it must be nonzero. 1854 assert(CE1->getNumOperands() == 2 && 1855 !CE1->getOperand(1)->isNullValue() && 1856 "Surprising getelementptr!"); 1857 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1858 } else { 1859 if (CE1GEP->hasAllZeroIndices()) 1860 return areGlobalsPotentiallyEqual(GV, GV2); 1861 return ICmpInst::BAD_ICMP_PREDICATE; 1862 } 1863 } 1864 } else { 1865 ConstantExpr *CE2 = cast<ConstantExpr>(V2); 1866 Constant *CE2Op0 = CE2->getOperand(0); 1867 1868 // There are MANY other foldings that we could perform here. They will 1869 // probably be added on demand, as they seem needed. 1870 switch (CE2->getOpcode()) { 1871 default: break; 1872 case Instruction::GetElementPtr: 1873 // By far the most common case to handle is when the base pointers are 1874 // obviously to the same global. 1875 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1876 // Don't know relative ordering, but check for inequality. 1877 if (CE1Op0 != CE2Op0) { 1878 GEPOperator *CE2GEP = cast<GEPOperator>(CE2); 1879 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1880 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1881 cast<GlobalValue>(CE2Op0)); 1882 return ICmpInst::BAD_ICMP_PREDICATE; 1883 } 1884 // Ok, we know that both getelementptr instructions are based on the 1885 // same global. From this, we can precisely determine the relative 1886 // ordering of the resultant pointers. 1887 unsigned i = 1; 1888 1889 // The logic below assumes that the result of the comparison 1890 // can be determined by finding the first index that differs. 1891 // This doesn't work if there is over-indexing in any 1892 // subsequent indices, so check for that case first. 1893 if (!CE1->isGEPWithNoNotionalOverIndexing() || 1894 !CE2->isGEPWithNoNotionalOverIndexing()) 1895 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1896 1897 // Compare all of the operands the GEP's have in common. 1898 gep_type_iterator GTI = gep_type_begin(CE1); 1899 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); 1900 ++i, ++GTI) 1901 switch (IdxCompare(CE1->getOperand(i), 1902 CE2->getOperand(i), GTI.getIndexedType())) { 1903 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; 1904 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; 1905 case -2: return ICmpInst::BAD_ICMP_PREDICATE; 1906 } 1907 1908 // Ok, we ran out of things they have in common. If any leftovers 1909 // are non-zero then we have a difference, otherwise we are equal. 1910 for (; i < CE1->getNumOperands(); ++i) 1911 if (!CE1->getOperand(i)->isNullValue()) { 1912 if (isa<ConstantInt>(CE1->getOperand(i))) 1913 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1914 else 1915 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1916 } 1917 1918 for (; i < CE2->getNumOperands(); ++i) 1919 if (!CE2->getOperand(i)->isNullValue()) { 1920 if (isa<ConstantInt>(CE2->getOperand(i))) 1921 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1922 else 1923 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1924 } 1925 return ICmpInst::ICMP_EQ; 1926 } 1927 } 1928 } 1929 break; 1930 } 1931 default: 1932 break; 1933 } 1934 } 1935 1936 return ICmpInst::BAD_ICMP_PREDICATE; 1937 } 1938 1939 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 1940 Constant *C1, Constant *C2) { 1941 Type *ResultTy; 1942 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1943 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1944 VT->getElementCount()); 1945 else 1946 ResultTy = Type::getInt1Ty(C1->getContext()); 1947 1948 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1949 if (pred == FCmpInst::FCMP_FALSE) 1950 return Constant::getNullValue(ResultTy); 1951 1952 if (pred == FCmpInst::FCMP_TRUE) 1953 return Constant::getAllOnesValue(ResultTy); 1954 1955 // Handle some degenerate cases first 1956 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 1957 return PoisonValue::get(ResultTy); 1958 1959 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1960 CmpInst::Predicate Predicate = CmpInst::Predicate(pred); 1961 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1962 // For EQ and NE, we can always pick a value for the undef to make the 1963 // predicate pass or fail, so we can return undef. 1964 // Also, if both operands are undef, we can return undef for int comparison. 1965 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1966 return UndefValue::get(ResultTy); 1967 1968 // Otherwise, for integer compare, pick the same value as the non-undef 1969 // operand, and fold it to true or false. 1970 if (isIntegerPredicate) 1971 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1972 1973 // Choosing NaN for the undef will always make unordered comparison succeed 1974 // and ordered comparison fails. 1975 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1976 } 1977 1978 // icmp eq/ne(null,GV) -> false/true 1979 if (C1->isNullValue()) { 1980 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) 1981 // Don't try to evaluate aliases. External weak GV can be null. 1982 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1983 !NullPointerIsDefined(nullptr /* F */, 1984 GV->getType()->getAddressSpace())) { 1985 if (pred == ICmpInst::ICMP_EQ) 1986 return ConstantInt::getFalse(C1->getContext()); 1987 else if (pred == ICmpInst::ICMP_NE) 1988 return ConstantInt::getTrue(C1->getContext()); 1989 } 1990 // icmp eq/ne(GV,null) -> false/true 1991 } else if (C2->isNullValue()) { 1992 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) 1993 // Don't try to evaluate aliases. External weak GV can be null. 1994 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1995 !NullPointerIsDefined(nullptr /* F */, 1996 GV->getType()->getAddressSpace())) { 1997 if (pred == ICmpInst::ICMP_EQ) 1998 return ConstantInt::getFalse(C1->getContext()); 1999 else if (pred == ICmpInst::ICMP_NE) 2000 return ConstantInt::getTrue(C1->getContext()); 2001 } 2002 } 2003 2004 // If the comparison is a comparison between two i1's, simplify it. 2005 if (C1->getType()->isIntegerTy(1)) { 2006 switch(pred) { 2007 case ICmpInst::ICMP_EQ: 2008 if (isa<ConstantInt>(C2)) 2009 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 2010 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 2011 case ICmpInst::ICMP_NE: 2012 return ConstantExpr::getXor(C1, C2); 2013 default: 2014 break; 2015 } 2016 } 2017 2018 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 2019 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 2020 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 2021 switch (pred) { 2022 default: llvm_unreachable("Invalid ICmp Predicate"); 2023 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2); 2024 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2); 2025 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); 2026 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); 2027 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); 2028 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); 2029 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); 2030 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); 2031 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); 2032 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); 2033 } 2034 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 2035 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 2036 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 2037 APFloat::cmpResult R = C1V.compare(C2V); 2038 switch (pred) { 2039 default: llvm_unreachable("Invalid FCmp Predicate"); 2040 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); 2041 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy); 2042 case FCmpInst::FCMP_UNO: 2043 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); 2044 case FCmpInst::FCMP_ORD: 2045 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); 2046 case FCmpInst::FCMP_UEQ: 2047 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 2048 R==APFloat::cmpEqual); 2049 case FCmpInst::FCMP_OEQ: 2050 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); 2051 case FCmpInst::FCMP_UNE: 2052 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); 2053 case FCmpInst::FCMP_ONE: 2054 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 2055 R==APFloat::cmpGreaterThan); 2056 case FCmpInst::FCMP_ULT: 2057 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 2058 R==APFloat::cmpLessThan); 2059 case FCmpInst::FCMP_OLT: 2060 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); 2061 case FCmpInst::FCMP_UGT: 2062 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 2063 R==APFloat::cmpGreaterThan); 2064 case FCmpInst::FCMP_OGT: 2065 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); 2066 case FCmpInst::FCMP_ULE: 2067 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); 2068 case FCmpInst::FCMP_OLE: 2069 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 2070 R==APFloat::cmpEqual); 2071 case FCmpInst::FCMP_UGE: 2072 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); 2073 case FCmpInst::FCMP_OGE: 2074 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || 2075 R==APFloat::cmpEqual); 2076 } 2077 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { 2078 2079 // Fast path for splatted constants. 2080 if (Constant *C1Splat = C1->getSplatValue()) 2081 if (Constant *C2Splat = C2->getSplatValue()) 2082 return ConstantVector::getSplat( 2083 C1VTy->getElementCount(), 2084 ConstantExpr::getCompare(pred, C1Splat, C2Splat)); 2085 2086 // Do not iterate on scalable vector. The number of elements is unknown at 2087 // compile-time. 2088 if (isa<ScalableVectorType>(C1VTy)) 2089 return nullptr; 2090 2091 // If we can constant fold the comparison of each element, constant fold 2092 // the whole vector comparison. 2093 SmallVector<Constant*, 4> ResElts; 2094 Type *Ty = IntegerType::get(C1->getContext(), 32); 2095 // Compare the elements, producing an i1 result or constant expr. 2096 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue(); 2097 I != E; ++I) { 2098 Constant *C1E = 2099 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I)); 2100 Constant *C2E = 2101 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I)); 2102 2103 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); 2104 } 2105 2106 return ConstantVector::get(ResElts); 2107 } 2108 2109 if (C1->getType()->isFloatingPointTy() && 2110 // Only call evaluateFCmpRelation if we have a constant expr to avoid 2111 // infinite recursive loop 2112 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { 2113 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 2114 switch (evaluateFCmpRelation(C1, C2)) { 2115 default: llvm_unreachable("Unknown relation!"); 2116 case FCmpInst::FCMP_UNO: 2117 case FCmpInst::FCMP_ORD: 2118 case FCmpInst::FCMP_UNE: 2119 case FCmpInst::FCMP_ULT: 2120 case FCmpInst::FCMP_UGT: 2121 case FCmpInst::FCMP_ULE: 2122 case FCmpInst::FCMP_UGE: 2123 case FCmpInst::FCMP_TRUE: 2124 case FCmpInst::FCMP_FALSE: 2125 case FCmpInst::BAD_FCMP_PREDICATE: 2126 break; // Couldn't determine anything about these constants. 2127 case FCmpInst::FCMP_OEQ: // We know that C1 == C2 2128 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || 2129 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || 2130 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 2131 break; 2132 case FCmpInst::FCMP_OLT: // We know that C1 < C2 2133 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 2134 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || 2135 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); 2136 break; 2137 case FCmpInst::FCMP_OGT: // We know that C1 > C2 2138 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 2139 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || 2140 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 2141 break; 2142 case FCmpInst::FCMP_OLE: // We know that C1 <= C2 2143 // We can only partially decide this relation. 2144 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 2145 Result = 0; 2146 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 2147 Result = 1; 2148 break; 2149 case FCmpInst::FCMP_OGE: // We known that C1 >= C2 2150 // We can only partially decide this relation. 2151 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 2152 Result = 0; 2153 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 2154 Result = 1; 2155 break; 2156 case FCmpInst::FCMP_ONE: // We know that C1 != C2 2157 // We can only partially decide this relation. 2158 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 2159 Result = 0; 2160 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 2161 Result = 1; 2162 break; 2163 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2). 2164 // We can only partially decide this relation. 2165 if (pred == FCmpInst::FCMP_ONE) 2166 Result = 0; 2167 else if (pred == FCmpInst::FCMP_UEQ) 2168 Result = 1; 2169 break; 2170 } 2171 2172 // If we evaluated the result, return it now. 2173 if (Result != -1) 2174 return ConstantInt::get(ResultTy, Result); 2175 2176 } else { 2177 // Evaluate the relation between the two constants, per the predicate. 2178 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 2179 switch (evaluateICmpRelation(C1, C2, 2180 CmpInst::isSigned((CmpInst::Predicate)pred))) { 2181 default: llvm_unreachable("Unknown relational!"); 2182 case ICmpInst::BAD_ICMP_PREDICATE: 2183 break; // Couldn't determine anything about these constants. 2184 case ICmpInst::ICMP_EQ: // We know the constants are equal! 2185 // If we know the constants are equal, we can decide the result of this 2186 // computation precisely. 2187 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); 2188 break; 2189 case ICmpInst::ICMP_ULT: 2190 switch (pred) { 2191 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 2192 Result = 1; break; 2193 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 2194 Result = 0; break; 2195 } 2196 break; 2197 case ICmpInst::ICMP_SLT: 2198 switch (pred) { 2199 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 2200 Result = 1; break; 2201 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 2202 Result = 0; break; 2203 } 2204 break; 2205 case ICmpInst::ICMP_UGT: 2206 switch (pred) { 2207 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 2208 Result = 1; break; 2209 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 2210 Result = 0; break; 2211 } 2212 break; 2213 case ICmpInst::ICMP_SGT: 2214 switch (pred) { 2215 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 2216 Result = 1; break; 2217 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 2218 Result = 0; break; 2219 } 2220 break; 2221 case ICmpInst::ICMP_ULE: 2222 if (pred == ICmpInst::ICMP_UGT) Result = 0; 2223 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; 2224 break; 2225 case ICmpInst::ICMP_SLE: 2226 if (pred == ICmpInst::ICMP_SGT) Result = 0; 2227 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; 2228 break; 2229 case ICmpInst::ICMP_UGE: 2230 if (pred == ICmpInst::ICMP_ULT) Result = 0; 2231 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; 2232 break; 2233 case ICmpInst::ICMP_SGE: 2234 if (pred == ICmpInst::ICMP_SLT) Result = 0; 2235 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; 2236 break; 2237 case ICmpInst::ICMP_NE: 2238 if (pred == ICmpInst::ICMP_EQ) Result = 0; 2239 if (pred == ICmpInst::ICMP_NE) Result = 1; 2240 break; 2241 } 2242 2243 // If we evaluated the result, return it now. 2244 if (Result != -1) 2245 return ConstantInt::get(ResultTy, Result); 2246 2247 // If the right hand side is a bitcast, try using its inverse to simplify 2248 // it by moving it to the left hand side. We can't do this if it would turn 2249 // a vector compare into a scalar compare or visa versa, or if it would turn 2250 // the operands into FP values. 2251 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { 2252 Constant *CE2Op0 = CE2->getOperand(0); 2253 if (CE2->getOpcode() == Instruction::BitCast && 2254 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() && 2255 !CE2Op0->getType()->isFPOrFPVectorTy()) { 2256 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); 2257 return ConstantExpr::getICmp(pred, Inverse, CE2Op0); 2258 } 2259 } 2260 2261 // If the left hand side is an extension, try eliminating it. 2262 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 2263 if ((CE1->getOpcode() == Instruction::SExt && 2264 ICmpInst::isSigned((ICmpInst::Predicate)pred)) || 2265 (CE1->getOpcode() == Instruction::ZExt && 2266 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){ 2267 Constant *CE1Op0 = CE1->getOperand(0); 2268 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); 2269 if (CE1Inverse == CE1Op0) { 2270 // Check whether we can safely truncate the right hand side. 2271 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); 2272 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, 2273 C2->getType()) == C2) 2274 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); 2275 } 2276 } 2277 } 2278 2279 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 2280 (C1->isNullValue() && !C2->isNullValue())) { 2281 // If C2 is a constant expr and C1 isn't, flip them around and fold the 2282 // other way if possible. 2283 // Also, if C1 is null and C2 isn't, flip them around. 2284 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); 2285 return ConstantExpr::getICmp(pred, C2, C1); 2286 } 2287 } 2288 return nullptr; 2289 } 2290 2291 /// Test whether the given sequence of *normalized* indices is "inbounds". 2292 template<typename IndexTy> 2293 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { 2294 // No indices means nothing that could be out of bounds. 2295 if (Idxs.empty()) return true; 2296 2297 // If the first index is zero, it's in bounds. 2298 if (cast<Constant>(Idxs[0])->isNullValue()) return true; 2299 2300 // If the first index is one and all the rest are zero, it's in bounds, 2301 // by the one-past-the-end rule. 2302 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { 2303 if (!CI->isOne()) 2304 return false; 2305 } else { 2306 auto *CV = cast<ConstantDataVector>(Idxs[0]); 2307 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); 2308 if (!CI || !CI->isOne()) 2309 return false; 2310 } 2311 2312 for (unsigned i = 1, e = Idxs.size(); i != e; ++i) 2313 if (!cast<Constant>(Idxs[i])->isNullValue()) 2314 return false; 2315 return true; 2316 } 2317 2318 /// Test whether a given ConstantInt is in-range for a SequentialType. 2319 static bool isIndexInRangeOfArrayType(uint64_t NumElements, 2320 const ConstantInt *CI) { 2321 // We cannot bounds check the index if it doesn't fit in an int64_t. 2322 if (CI->getValue().getMinSignedBits() > 64) 2323 return false; 2324 2325 // A negative index or an index past the end of our sequential type is 2326 // considered out-of-range. 2327 int64_t IndexVal = CI->getSExtValue(); 2328 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements)) 2329 return false; 2330 2331 // Otherwise, it is in-range. 2332 return true; 2333 } 2334 2335 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 2336 bool InBounds, 2337 Optional<unsigned> InRangeIndex, 2338 ArrayRef<Value *> Idxs) { 2339 if (Idxs.empty()) return C; 2340 2341 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 2342 PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size())); 2343 2344 if (isa<PoisonValue>(C)) 2345 return PoisonValue::get(GEPTy); 2346 2347 if (isa<UndefValue>(C)) 2348 return UndefValue::get(GEPTy); 2349 2350 Constant *Idx0 = cast<Constant>(Idxs[0]); 2351 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0))) 2352 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 2353 ? ConstantVector::getSplat( 2354 cast<VectorType>(GEPTy)->getElementCount(), C) 2355 : C; 2356 2357 if (C->isNullValue()) { 2358 bool isNull = true; 2359 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2360 if (!isa<UndefValue>(Idxs[i]) && 2361 !cast<Constant>(Idxs[i])->isNullValue()) { 2362 isNull = false; 2363 break; 2364 } 2365 if (isNull) { 2366 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType()); 2367 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs); 2368 2369 assert(Ty && "Invalid indices for GEP!"); 2370 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2371 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2372 if (VectorType *VT = dyn_cast<VectorType>(C->getType())) 2373 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount()); 2374 2375 // The GEP returns a vector of pointers when one of more of 2376 // its arguments is a vector. 2377 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 2378 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) { 2379 assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) == 2380 isa<ScalableVectorType>(VT)) && 2381 "Mismatched GEPTy vector types"); 2382 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount()); 2383 break; 2384 } 2385 } 2386 2387 return Constant::getNullValue(GEPTy); 2388 } 2389 } 2390 2391 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2392 // Combine Indices - If the source pointer to this getelementptr instruction 2393 // is a getelementptr instruction, combine the indices of the two 2394 // getelementptr instructions into a single instruction. 2395 // 2396 if (CE->getOpcode() == Instruction::GetElementPtr) { 2397 gep_type_iterator LastI = gep_type_end(CE); 2398 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); 2399 I != E; ++I) 2400 LastI = I; 2401 2402 // We cannot combine indices if doing so would take us outside of an 2403 // array or vector. Doing otherwise could trick us if we evaluated such a 2404 // GEP as part of a load. 2405 // 2406 // e.g. Consider if the original GEP was: 2407 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2408 // i32 0, i32 0, i64 0) 2409 // 2410 // If we then tried to offset it by '8' to get to the third element, 2411 // an i8, we should *not* get: 2412 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2413 // i32 0, i32 0, i64 8) 2414 // 2415 // This GEP tries to index array element '8 which runs out-of-bounds. 2416 // Subsequent evaluation would get confused and produce erroneous results. 2417 // 2418 // The following prohibits such a GEP from being formed by checking to see 2419 // if the index is in-range with respect to an array. 2420 // TODO: This code may be extended to handle vectors as well. 2421 bool PerformFold = false; 2422 if (Idx0->isNullValue()) 2423 PerformFold = true; 2424 else if (LastI.isSequential()) 2425 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0)) 2426 PerformFold = (!LastI.isBoundedSequential() || 2427 isIndexInRangeOfArrayType( 2428 LastI.getSequentialNumElements(), CI)) && 2429 !CE->getOperand(CE->getNumOperands() - 1) 2430 ->getType() 2431 ->isVectorTy(); 2432 2433 if (PerformFold) { 2434 SmallVector<Value*, 16> NewIndices; 2435 NewIndices.reserve(Idxs.size() + CE->getNumOperands()); 2436 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1); 2437 2438 // Add the last index of the source with the first index of the new GEP. 2439 // Make sure to handle the case when they are actually different types. 2440 Constant *Combined = CE->getOperand(CE->getNumOperands()-1); 2441 // Otherwise it must be an array. 2442 if (!Idx0->isNullValue()) { 2443 Type *IdxTy = Combined->getType(); 2444 if (IdxTy != Idx0->getType()) { 2445 unsigned CommonExtendedWidth = 2446 std::max(IdxTy->getIntegerBitWidth(), 2447 Idx0->getType()->getIntegerBitWidth()); 2448 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2449 2450 Type *CommonTy = 2451 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth); 2452 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy); 2453 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy); 2454 Combined = ConstantExpr::get(Instruction::Add, C1, C2); 2455 } else { 2456 Combined = 2457 ConstantExpr::get(Instruction::Add, Idx0, Combined); 2458 } 2459 } 2460 2461 NewIndices.push_back(Combined); 2462 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 2463 2464 // The combined GEP normally inherits its index inrange attribute from 2465 // the inner GEP, but if the inner GEP's last index was adjusted by the 2466 // outer GEP, any inbounds attribute on that index is invalidated. 2467 Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex(); 2468 if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue()) 2469 IRIndex = None; 2470 2471 return ConstantExpr::getGetElementPtr( 2472 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0), 2473 NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(), 2474 IRIndex); 2475 } 2476 } 2477 2478 // Attempt to fold casts to the same type away. For example, folding: 2479 // 2480 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), 2481 // i64 0, i64 0) 2482 // into: 2483 // 2484 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) 2485 // 2486 // Don't fold if the cast is changing address spaces. 2487 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { 2488 PointerType *SrcPtrTy = 2489 dyn_cast<PointerType>(CE->getOperand(0)->getType()); 2490 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); 2491 if (SrcPtrTy && DstPtrTy) { 2492 ArrayType *SrcArrayTy = 2493 dyn_cast<ArrayType>(SrcPtrTy->getElementType()); 2494 ArrayType *DstArrayTy = 2495 dyn_cast<ArrayType>(DstPtrTy->getElementType()); 2496 if (SrcArrayTy && DstArrayTy 2497 && SrcArrayTy->getElementType() == DstArrayTy->getElementType() 2498 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 2499 return ConstantExpr::getGetElementPtr(SrcArrayTy, 2500 (Constant *)CE->getOperand(0), 2501 Idxs, InBounds, InRangeIndex); 2502 } 2503 } 2504 } 2505 2506 // Check to see if any array indices are not within the corresponding 2507 // notional array or vector bounds. If so, try to determine if they can be 2508 // factored out into preceding dimensions. 2509 SmallVector<Constant *, 8> NewIdxs; 2510 Type *Ty = PointeeTy; 2511 Type *Prev = C->getType(); 2512 auto GEPIter = gep_type_begin(PointeeTy, Idxs); 2513 bool Unknown = 2514 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); 2515 for (unsigned i = 1, e = Idxs.size(); i != e; 2516 Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) { 2517 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { 2518 // We don't know if it's in range or not. 2519 Unknown = true; 2520 continue; 2521 } 2522 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) 2523 // Skip if the type of the previous index is not supported. 2524 continue; 2525 if (InRangeIndex && i == *InRangeIndex + 1) { 2526 // If an index is marked inrange, we cannot apply this canonicalization to 2527 // the following index, as that will cause the inrange index to point to 2528 // the wrong element. 2529 continue; 2530 } 2531 if (isa<StructType>(Ty)) { 2532 // The verify makes sure that GEPs into a struct are in range. 2533 continue; 2534 } 2535 if (isa<VectorType>(Ty)) { 2536 // There can be awkward padding in after a non-power of two vector. 2537 Unknown = true; 2538 continue; 2539 } 2540 auto *STy = cast<ArrayType>(Ty); 2541 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { 2542 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) 2543 // It's in range, skip to the next index. 2544 continue; 2545 if (CI->getSExtValue() < 0) { 2546 // It's out of range and negative, don't try to factor it. 2547 Unknown = true; 2548 continue; 2549 } 2550 } else { 2551 auto *CV = cast<ConstantDataVector>(Idxs[i]); 2552 bool InRange = true; 2553 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { 2554 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); 2555 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); 2556 if (CI->getSExtValue() < 0) { 2557 Unknown = true; 2558 break; 2559 } 2560 } 2561 if (InRange || Unknown) 2562 // It's in range, skip to the next index. 2563 // It's out of range and negative, don't try to factor it. 2564 continue; 2565 } 2566 if (isa<StructType>(Prev)) { 2567 // It's out of range, but the prior dimension is a struct 2568 // so we can't do anything about it. 2569 Unknown = true; 2570 continue; 2571 } 2572 // It's out of range, but we can factor it into the prior 2573 // dimension. 2574 NewIdxs.resize(Idxs.size()); 2575 // Determine the number of elements in our sequential type. 2576 uint64_t NumElements = STy->getArrayNumElements(); 2577 2578 // Expand the current index or the previous index to a vector from a scalar 2579 // if necessary. 2580 Constant *CurrIdx = cast<Constant>(Idxs[i]); 2581 auto *PrevIdx = 2582 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); 2583 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); 2584 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); 2585 bool UseVector = IsCurrIdxVector || IsPrevIdxVector; 2586 2587 if (!IsCurrIdxVector && IsPrevIdxVector) 2588 CurrIdx = ConstantDataVector::getSplat( 2589 cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx); 2590 2591 if (!IsPrevIdxVector && IsCurrIdxVector) 2592 PrevIdx = ConstantDataVector::getSplat( 2593 cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx); 2594 2595 Constant *Factor = 2596 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); 2597 if (UseVector) 2598 Factor = ConstantDataVector::getSplat( 2599 IsPrevIdxVector 2600 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 2601 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), 2602 Factor); 2603 2604 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor); 2605 2606 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor); 2607 2608 unsigned CommonExtendedWidth = 2609 std::max(PrevIdx->getType()->getScalarSizeInBits(), 2610 Div->getType()->getScalarSizeInBits()); 2611 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2612 2613 // Before adding, extend both operands to i64 to avoid 2614 // overflow trouble. 2615 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); 2616 if (UseVector) 2617 ExtendedTy = FixedVectorType::get( 2618 ExtendedTy, 2619 IsPrevIdxVector 2620 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 2621 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements()); 2622 2623 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2624 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy); 2625 2626 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2627 Div = ConstantExpr::getSExt(Div, ExtendedTy); 2628 2629 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); 2630 } 2631 2632 // If we did any factoring, start over with the adjusted indices. 2633 if (!NewIdxs.empty()) { 2634 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2635 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); 2636 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, 2637 InRangeIndex); 2638 } 2639 2640 // If all indices are known integers and normalized, we can do a simple 2641 // check for the "inbounds" property. 2642 if (!Unknown && !InBounds) 2643 if (auto *GV = dyn_cast<GlobalVariable>(C)) 2644 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs)) 2645 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, 2646 /*InBounds=*/true, InRangeIndex); 2647 2648 return nullptr; 2649 } 2650