1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 //===----------------------------------------------------------------------===// 39 // ConstantFold*Instruction Implementations 40 //===----------------------------------------------------------------------===// 41 42 /// Convert the specified vector Constant node to the specified vector type. 43 /// At this point, we know that the elements of the input vector constant are 44 /// all simple integer or FP values. 45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { 46 47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); 48 if (CV->isNullValue()) return Constant::getNullValue(DstTy); 49 50 // If this cast changes element count then we can't handle it here: 51 // doing so requires endianness information. This should be handled by 52 // Analysis/ConstantFolding.cpp 53 unsigned NumElts = DstTy->getNumElements(); 54 if (NumElts != CV->getType()->getVectorNumElements()) 55 return nullptr; 56 57 Type *DstEltTy = DstTy->getElementType(); 58 59 SmallVector<Constant*, 16> Result; 60 Type *Ty = IntegerType::get(CV->getContext(), 32); 61 for (unsigned i = 0; i != NumElts; ++i) { 62 Constant *C = 63 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); 64 C = ConstantExpr::getBitCast(C, DstEltTy); 65 Result.push_back(C); 66 } 67 68 return ConstantVector::get(Result); 69 } 70 71 /// This function determines which opcode to use to fold two constant cast 72 /// expressions together. It uses CastInst::isEliminableCastPair to determine 73 /// the opcode. Consequently its just a wrapper around that function. 74 /// Determine if it is valid to fold a cast of a cast 75 static unsigned 76 foldConstantCastPair( 77 unsigned opc, ///< opcode of the second cast constant expression 78 ConstantExpr *Op, ///< the first cast constant expression 79 Type *DstTy ///< destination type of the first cast 80 ) { 81 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 82 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 83 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 84 85 // The types and opcodes for the two Cast constant expressions 86 Type *SrcTy = Op->getOperand(0)->getType(); 87 Type *MidTy = Op->getType(); 88 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 89 Instruction::CastOps secondOp = Instruction::CastOps(opc); 90 91 // Assume that pointers are never more than 64 bits wide, and only use this 92 // for the middle type. Otherwise we could end up folding away illegal 93 // bitcasts between address spaces with different sizes. 94 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 95 96 // Let CastInst::isEliminableCastPair do the heavy lifting. 97 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 98 nullptr, FakeIntPtrTy, nullptr); 99 } 100 101 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 102 Type *SrcTy = V->getType(); 103 if (SrcTy == DestTy) 104 return V; // no-op cast 105 106 // Check to see if we are casting a pointer to an aggregate to a pointer to 107 // the first element. If so, return the appropriate GEP instruction. 108 if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) 109 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) 110 if (PTy->getAddressSpace() == DPTy->getAddressSpace() 111 && PTy->getElementType()->isSized()) { 112 SmallVector<Value*, 8> IdxList; 113 Value *Zero = 114 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); 115 IdxList.push_back(Zero); 116 Type *ElTy = PTy->getElementType(); 117 while (ElTy != DPTy->getElementType()) { 118 if (StructType *STy = dyn_cast<StructType>(ElTy)) { 119 if (STy->getNumElements() == 0) break; 120 ElTy = STy->getElementType(0); 121 IdxList.push_back(Zero); 122 } else if (SequentialType *STy = 123 dyn_cast<SequentialType>(ElTy)) { 124 ElTy = STy->getElementType(); 125 IdxList.push_back(Zero); 126 } else { 127 break; 128 } 129 } 130 131 if (ElTy == DPTy->getElementType()) 132 // This GEP is inbounds because all indices are zero. 133 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(), 134 V, IdxList); 135 } 136 137 // Handle casts from one vector constant to another. We know that the src 138 // and dest type have the same size (otherwise its an illegal cast). 139 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 140 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { 141 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() && 142 "Not cast between same sized vectors!"); 143 SrcTy = nullptr; 144 // First, check for null. Undef is already handled. 145 if (isa<ConstantAggregateZero>(V)) 146 return Constant::getNullValue(DestTy); 147 148 // Handle ConstantVector and ConstantAggregateVector. 149 return BitCastConstantVector(V, DestPTy); 150 } 151 152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 153 // This allows for other simplifications (although some of them 154 // can only be handled by Analysis/ConstantFolding.cpp). 155 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 156 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 157 } 158 159 // Finally, implement bitcast folding now. The code below doesn't handle 160 // bitcast right. 161 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. 162 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 163 164 // Handle integral constant input. 165 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 166 if (DestTy->isIntegerTy()) 167 // Integral -> Integral. This is a no-op because the bit widths must 168 // be the same. Consequently, we just fold to V. 169 return V; 170 171 // See note below regarding the PPC_FP128 restriction. 172 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 173 return ConstantFP::get(DestTy->getContext(), 174 APFloat(DestTy->getFltSemantics(), 175 CI->getValue())); 176 177 // Otherwise, can't fold this (vector?) 178 return nullptr; 179 } 180 181 // Handle ConstantFP input: FP -> Integral. 182 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 183 // PPC_FP128 is really the sum of two consecutive doubles, where the first 184 // double is always stored first in memory, regardless of the target 185 // endianness. The memory layout of i128, however, depends on the target 186 // endianness, and so we can't fold this without target endianness 187 // information. This should instead be handled by 188 // Analysis/ConstantFolding.cpp 189 if (FP->getType()->isPPC_FP128Ty()) 190 return nullptr; 191 192 // Make sure dest type is compatible with the folded integer constant. 193 if (!DestTy->isIntegerTy()) 194 return nullptr; 195 196 return ConstantInt::get(FP->getContext(), 197 FP->getValueAPF().bitcastToAPInt()); 198 } 199 200 return nullptr; 201 } 202 203 204 /// V is an integer constant which only has a subset of its bytes used. 205 /// The bytes used are indicated by ByteStart (which is the first byte used, 206 /// counting from the least significant byte) and ByteSize, which is the number 207 /// of bytes used. 208 /// 209 /// This function analyzes the specified constant to see if the specified byte 210 /// range can be returned as a simplified constant. If so, the constant is 211 /// returned, otherwise null is returned. 212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, 213 unsigned ByteSize) { 214 assert(C->getType()->isIntegerTy() && 215 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && 216 "Non-byte sized integer input"); 217 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; 218 assert(ByteSize && "Must be accessing some piece"); 219 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); 220 assert(ByteSize != CSize && "Should not extract everything"); 221 222 // Constant Integers are simple. 223 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 224 APInt V = CI->getValue(); 225 if (ByteStart) 226 V.lshrInPlace(ByteStart*8); 227 V = V.trunc(ByteSize*8); 228 return ConstantInt::get(CI->getContext(), V); 229 } 230 231 // In the input is a constant expr, we might be able to recursively simplify. 232 // If not, we definitely can't do anything. 233 ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 234 if (!CE) return nullptr; 235 236 switch (CE->getOpcode()) { 237 default: return nullptr; 238 case Instruction::Or: { 239 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 240 if (!RHS) 241 return nullptr; 242 243 // X | -1 -> -1. 244 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) 245 if (RHSC->isMinusOne()) 246 return RHSC; 247 248 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 249 if (!LHS) 250 return nullptr; 251 return ConstantExpr::getOr(LHS, RHS); 252 } 253 case Instruction::And: { 254 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 255 if (!RHS) 256 return nullptr; 257 258 // X & 0 -> 0. 259 if (RHS->isNullValue()) 260 return RHS; 261 262 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 263 if (!LHS) 264 return nullptr; 265 return ConstantExpr::getAnd(LHS, RHS); 266 } 267 case Instruction::LShr: { 268 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 269 if (!Amt) 270 return nullptr; 271 APInt ShAmt = Amt->getValue(); 272 // Cannot analyze non-byte shifts. 273 if ((ShAmt & 7) != 0) 274 return nullptr; 275 ShAmt.lshrInPlace(3); 276 277 // If the extract is known to be all zeros, return zero. 278 if (ShAmt.uge(CSize - ByteStart)) 279 return Constant::getNullValue( 280 IntegerType::get(CE->getContext(), ByteSize * 8)); 281 // If the extract is known to be fully in the input, extract it. 282 if (ShAmt.ule(CSize - (ByteStart + ByteSize))) 283 return ExtractConstantBytes(CE->getOperand(0), 284 ByteStart + ShAmt.getZExtValue(), ByteSize); 285 286 // TODO: Handle the 'partially zero' case. 287 return nullptr; 288 } 289 290 case Instruction::Shl: { 291 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 292 if (!Amt) 293 return nullptr; 294 APInt ShAmt = Amt->getValue(); 295 // Cannot analyze non-byte shifts. 296 if ((ShAmt & 7) != 0) 297 return nullptr; 298 ShAmt.lshrInPlace(3); 299 300 // If the extract is known to be all zeros, return zero. 301 if (ShAmt.uge(ByteStart + ByteSize)) 302 return Constant::getNullValue( 303 IntegerType::get(CE->getContext(), ByteSize * 8)); 304 // If the extract is known to be fully in the input, extract it. 305 if (ShAmt.ule(ByteStart)) 306 return ExtractConstantBytes(CE->getOperand(0), 307 ByteStart - ShAmt.getZExtValue(), ByteSize); 308 309 // TODO: Handle the 'partially zero' case. 310 return nullptr; 311 } 312 313 case Instruction::ZExt: { 314 unsigned SrcBitSize = 315 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); 316 317 // If extracting something that is completely zero, return 0. 318 if (ByteStart*8 >= SrcBitSize) 319 return Constant::getNullValue(IntegerType::get(CE->getContext(), 320 ByteSize*8)); 321 322 // If exactly extracting the input, return it. 323 if (ByteStart == 0 && ByteSize*8 == SrcBitSize) 324 return CE->getOperand(0); 325 326 // If extracting something completely in the input, if the input is a 327 // multiple of 8 bits, recurse. 328 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) 329 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); 330 331 // Otherwise, if extracting a subset of the input, which is not multiple of 332 // 8 bits, do a shift and trunc to get the bits. 333 if ((ByteStart+ByteSize)*8 < SrcBitSize) { 334 assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); 335 Constant *Res = CE->getOperand(0); 336 if (ByteStart) 337 Res = ConstantExpr::getLShr(Res, 338 ConstantInt::get(Res->getType(), ByteStart*8)); 339 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), 340 ByteSize*8)); 341 } 342 343 // TODO: Handle the 'partially zero' case. 344 return nullptr; 345 } 346 } 347 } 348 349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known 350 /// factors factored out. If Folded is false, return null if no factoring was 351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 352 /// top-level folder. 353 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) { 354 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 355 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); 356 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 357 return ConstantExpr::getNUWMul(E, N); 358 } 359 360 if (StructType *STy = dyn_cast<StructType>(Ty)) 361 if (!STy->isPacked()) { 362 unsigned NumElems = STy->getNumElements(); 363 // An empty struct has size zero. 364 if (NumElems == 0) 365 return ConstantExpr::getNullValue(DestTy); 366 // Check for a struct with all members having the same size. 367 Constant *MemberSize = 368 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 369 bool AllSame = true; 370 for (unsigned i = 1; i != NumElems; ++i) 371 if (MemberSize != 372 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 373 AllSame = false; 374 break; 375 } 376 if (AllSame) { 377 Constant *N = ConstantInt::get(DestTy, NumElems); 378 return ConstantExpr::getNUWMul(MemberSize, N); 379 } 380 } 381 382 // Pointer size doesn't depend on the pointee type, so canonicalize them 383 // to an arbitrary pointee. 384 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 385 if (!PTy->getElementType()->isIntegerTy(1)) 386 return 387 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), 388 PTy->getAddressSpace()), 389 DestTy, true); 390 391 // If there's no interesting folding happening, bail so that we don't create 392 // a constant that looks like it needs folding but really doesn't. 393 if (!Folded) 394 return nullptr; 395 396 // Base case: Get a regular sizeof expression. 397 Constant *C = ConstantExpr::getSizeOf(Ty); 398 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 399 DestTy, false), 400 C, DestTy); 401 return C; 402 } 403 404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known 405 /// factors factored out. If Folded is false, return null if no factoring was 406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 407 /// top-level folder. 408 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) { 409 // The alignment of an array is equal to the alignment of the 410 // array element. Note that this is not always true for vectors. 411 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 412 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); 413 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 414 DestTy, 415 false), 416 C, DestTy); 417 return C; 418 } 419 420 if (StructType *STy = dyn_cast<StructType>(Ty)) { 421 // Packed structs always have an alignment of 1. 422 if (STy->isPacked()) 423 return ConstantInt::get(DestTy, 1); 424 425 // Otherwise, struct alignment is the maximum alignment of any member. 426 // Without target data, we can't compare much, but we can check to see 427 // if all the members have the same alignment. 428 unsigned NumElems = STy->getNumElements(); 429 // An empty struct has minimal alignment. 430 if (NumElems == 0) 431 return ConstantInt::get(DestTy, 1); 432 // Check for a struct with all members having the same alignment. 433 Constant *MemberAlign = 434 getFoldedAlignOf(STy->getElementType(0), DestTy, true); 435 bool AllSame = true; 436 for (unsigned i = 1; i != NumElems; ++i) 437 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { 438 AllSame = false; 439 break; 440 } 441 if (AllSame) 442 return MemberAlign; 443 } 444 445 // Pointer alignment doesn't depend on the pointee type, so canonicalize them 446 // to an arbitrary pointee. 447 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 448 if (!PTy->getElementType()->isIntegerTy(1)) 449 return 450 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), 451 1), 452 PTy->getAddressSpace()), 453 DestTy, true); 454 455 // If there's no interesting folding happening, bail so that we don't create 456 // a constant that looks like it needs folding but really doesn't. 457 if (!Folded) 458 return nullptr; 459 460 // Base case: Get a regular alignof expression. 461 Constant *C = ConstantExpr::getAlignOf(Ty); 462 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 463 DestTy, false), 464 C, DestTy); 465 return C; 466 } 467 468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with 469 /// any known factors factored out. If Folded is false, return null if no 470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression 471 /// back into the top-level folder. 472 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy, 473 bool Folded) { 474 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 475 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, 476 DestTy, false), 477 FieldNo, DestTy); 478 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 479 return ConstantExpr::getNUWMul(E, N); 480 } 481 482 if (StructType *STy = dyn_cast<StructType>(Ty)) 483 if (!STy->isPacked()) { 484 unsigned NumElems = STy->getNumElements(); 485 // An empty struct has no members. 486 if (NumElems == 0) 487 return nullptr; 488 // Check for a struct with all members having the same size. 489 Constant *MemberSize = 490 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 491 bool AllSame = true; 492 for (unsigned i = 1; i != NumElems; ++i) 493 if (MemberSize != 494 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 495 AllSame = false; 496 break; 497 } 498 if (AllSame) { 499 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, 500 false, 501 DestTy, 502 false), 503 FieldNo, DestTy); 504 return ConstantExpr::getNUWMul(MemberSize, N); 505 } 506 } 507 508 // If there's no interesting folding happening, bail so that we don't create 509 // a constant that looks like it needs folding but really doesn't. 510 if (!Folded) 511 return nullptr; 512 513 // Base case: Get a regular offsetof expression. 514 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); 515 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 516 DestTy, false), 517 C, DestTy); 518 return C; 519 } 520 521 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 522 Type *DestTy) { 523 if (isa<UndefValue>(V)) { 524 // zext(undef) = 0, because the top bits will be zero. 525 // sext(undef) = 0, because the top bits will all be the same. 526 // [us]itofp(undef) = 0, because the result value is bounded. 527 if (opc == Instruction::ZExt || opc == Instruction::SExt || 528 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 529 return Constant::getNullValue(DestTy); 530 return UndefValue::get(DestTy); 531 } 532 533 if (V->isNullValue() && !DestTy->isX86_MMXTy() && 534 opc != Instruction::AddrSpaceCast) 535 return Constant::getNullValue(DestTy); 536 537 // If the cast operand is a constant expression, there's a few things we can 538 // do to try to simplify it. 539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 540 if (CE->isCast()) { 541 // Try hard to fold cast of cast because they are often eliminable. 542 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 543 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); 544 } else if (CE->getOpcode() == Instruction::GetElementPtr && 545 // Do not fold addrspacecast (gep 0, .., 0). It might make the 546 // addrspacecast uncanonicalized. 547 opc != Instruction::AddrSpaceCast && 548 // Do not fold bitcast (gep) with inrange index, as this loses 549 // information. 550 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() && 551 // Do not fold if the gep type is a vector, as bitcasting 552 // operand 0 of a vector gep will result in a bitcast between 553 // different sizes. 554 !CE->getType()->isVectorTy()) { 555 // If all of the indexes in the GEP are null values, there is no pointer 556 // adjustment going on. We might as well cast the source pointer. 557 bool isAllNull = true; 558 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 559 if (!CE->getOperand(i)->isNullValue()) { 560 isAllNull = false; 561 break; 562 } 563 if (isAllNull) 564 // This is casting one pointer type to another, always BitCast 565 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); 566 } 567 } 568 569 // If the cast operand is a constant vector, perform the cast by 570 // operating on each element. In the cast of bitcasts, the element 571 // count may be mismatched; don't attempt to handle that here. 572 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 573 DestTy->isVectorTy() && 574 DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) { 575 SmallVector<Constant*, 16> res; 576 VectorType *DestVecTy = cast<VectorType>(DestTy); 577 Type *DstEltTy = DestVecTy->getElementType(); 578 Type *Ty = IntegerType::get(V->getContext(), 32); 579 for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) { 580 Constant *C = 581 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 582 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); 583 } 584 return ConstantVector::get(res); 585 } 586 587 // We actually have to do a cast now. Perform the cast according to the 588 // opcode specified. 589 switch (opc) { 590 default: 591 llvm_unreachable("Failed to cast constant expression"); 592 case Instruction::FPTrunc: 593 case Instruction::FPExt: 594 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 595 bool ignored; 596 APFloat Val = FPC->getValueAPF(); 597 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() : 598 DestTy->isFloatTy() ? APFloat::IEEEsingle() : 599 DestTy->isDoubleTy() ? APFloat::IEEEdouble() : 600 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() : 601 DestTy->isFP128Ty() ? APFloat::IEEEquad() : 602 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() : 603 APFloat::Bogus(), 604 APFloat::rmNearestTiesToEven, &ignored); 605 return ConstantFP::get(V->getContext(), Val); 606 } 607 return nullptr; // Can't fold. 608 case Instruction::FPToUI: 609 case Instruction::FPToSI: 610 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 611 const APFloat &V = FPC->getValueAPF(); 612 bool ignored; 613 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 614 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 615 if (APFloat::opInvalidOp == 616 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 617 // Undefined behavior invoked - the destination type can't represent 618 // the input constant. 619 return UndefValue::get(DestTy); 620 } 621 return ConstantInt::get(FPC->getContext(), IntVal); 622 } 623 return nullptr; // Can't fold. 624 case Instruction::IntToPtr: //always treated as unsigned 625 if (V->isNullValue()) // Is it an integral null value? 626 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 627 return nullptr; // Other pointer types cannot be casted 628 case Instruction::PtrToInt: // always treated as unsigned 629 // Is it a null pointer value? 630 if (V->isNullValue()) 631 return ConstantInt::get(DestTy, 0); 632 // If this is a sizeof-like expression, pull out multiplications by 633 // known factors to expose them to subsequent folding. If it's an 634 // alignof-like expression, factor out known factors. 635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 636 if (CE->getOpcode() == Instruction::GetElementPtr && 637 CE->getOperand(0)->isNullValue()) { 638 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and 639 // getFoldedAlignOf() don't handle the case when DestTy is a vector of 640 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see 641 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this 642 // happen in one "real" C-code test case, so it does not seem to be an 643 // important optimization to handle vectors here. For now, simply bail 644 // out. 645 if (DestTy->isVectorTy()) 646 return nullptr; 647 GEPOperator *GEPO = cast<GEPOperator>(CE); 648 Type *Ty = GEPO->getSourceElementType(); 649 if (CE->getNumOperands() == 2) { 650 // Handle a sizeof-like expression. 651 Constant *Idx = CE->getOperand(1); 652 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); 653 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { 654 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, 655 DestTy, false), 656 Idx, DestTy); 657 return ConstantExpr::getMul(C, Idx); 658 } 659 } else if (CE->getNumOperands() == 3 && 660 CE->getOperand(1)->isNullValue()) { 661 // Handle an alignof-like expression. 662 if (StructType *STy = dyn_cast<StructType>(Ty)) 663 if (!STy->isPacked()) { 664 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); 665 if (CI->isOne() && 666 STy->getNumElements() == 2 && 667 STy->getElementType(0)->isIntegerTy(1)) { 668 return getFoldedAlignOf(STy->getElementType(1), DestTy, false); 669 } 670 } 671 // Handle an offsetof-like expression. 672 if (Ty->isStructTy() || Ty->isArrayTy()) { 673 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), 674 DestTy, false)) 675 return C; 676 } 677 } 678 } 679 // Other pointer types cannot be casted 680 return nullptr; 681 case Instruction::UIToFP: 682 case Instruction::SIToFP: 683 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 684 const APInt &api = CI->getValue(); 685 APFloat apf(DestTy->getFltSemantics(), 686 APInt::getNullValue(DestTy->getPrimitiveSizeInBits())); 687 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 688 APFloat::rmNearestTiesToEven); 689 return ConstantFP::get(V->getContext(), apf); 690 } 691 return nullptr; 692 case Instruction::ZExt: 693 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 694 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 695 return ConstantInt::get(V->getContext(), 696 CI->getValue().zext(BitWidth)); 697 } 698 return nullptr; 699 case Instruction::SExt: 700 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 701 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 702 return ConstantInt::get(V->getContext(), 703 CI->getValue().sext(BitWidth)); 704 } 705 return nullptr; 706 case Instruction::Trunc: { 707 if (V->getType()->isVectorTy()) 708 return nullptr; 709 710 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 711 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 712 return ConstantInt::get(V->getContext(), 713 CI->getValue().trunc(DestBitWidth)); 714 } 715 716 // The input must be a constantexpr. See if we can simplify this based on 717 // the bytes we are demanding. Only do this if the source and dest are an 718 // even multiple of a byte. 719 if ((DestBitWidth & 7) == 0 && 720 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) 721 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) 722 return Res; 723 724 return nullptr; 725 } 726 case Instruction::BitCast: 727 return FoldBitCast(V, DestTy); 728 case Instruction::AddrSpaceCast: 729 return nullptr; 730 } 731 } 732 733 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 734 Constant *V1, Constant *V2) { 735 // Check for i1 and vector true/false conditions. 736 if (Cond->isNullValue()) return V2; 737 if (Cond->isAllOnesValue()) return V1; 738 739 // If the condition is a vector constant, fold the result elementwise. 740 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 741 SmallVector<Constant*, 16> Result; 742 Type *Ty = IntegerType::get(CondV->getContext(), 32); 743 for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){ 744 Constant *V; 745 Constant *V1Element = ConstantExpr::getExtractElement(V1, 746 ConstantInt::get(Ty, i)); 747 Constant *V2Element = ConstantExpr::getExtractElement(V2, 748 ConstantInt::get(Ty, i)); 749 auto *Cond = cast<Constant>(CondV->getOperand(i)); 750 if (V1Element == V2Element) { 751 V = V1Element; 752 } else if (isa<UndefValue>(Cond)) { 753 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 754 } else { 755 if (!isa<ConstantInt>(Cond)) break; 756 V = Cond->isNullValue() ? V2Element : V1Element; 757 } 758 Result.push_back(V); 759 } 760 761 // If we were able to build the vector, return it. 762 if (Result.size() == V1->getType()->getVectorNumElements()) 763 return ConstantVector::get(Result); 764 } 765 766 if (isa<UndefValue>(Cond)) { 767 if (isa<UndefValue>(V1)) return V1; 768 return V2; 769 } 770 if (isa<UndefValue>(V1)) return V2; 771 if (isa<UndefValue>(V2)) return V1; 772 if (V1 == V2) return V1; 773 774 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { 775 if (TrueVal->getOpcode() == Instruction::Select) 776 if (TrueVal->getOperand(0) == Cond) 777 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); 778 } 779 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { 780 if (FalseVal->getOpcode() == Instruction::Select) 781 if (FalseVal->getOperand(0) == Cond) 782 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); 783 } 784 785 return nullptr; 786 } 787 788 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 789 Constant *Idx) { 790 // extractelt undef, C -> undef 791 // extractelt C, undef -> undef 792 if (isa<UndefValue>(Val) || isa<UndefValue>(Idx)) 793 return UndefValue::get(Val->getType()->getVectorElementType()); 794 795 auto *CIdx = dyn_cast<ConstantInt>(Idx); 796 if (!CIdx) 797 return nullptr; 798 799 // ee({w,x,y,z}, wrong_value) -> undef 800 if (CIdx->uge(Val->getType()->getVectorNumElements())) 801 return UndefValue::get(Val->getType()->getVectorElementType()); 802 803 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 804 if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 805 if (CE->getOpcode() == Instruction::GetElementPtr) { 806 SmallVector<Constant *, 8> Ops; 807 Ops.reserve(CE->getNumOperands()); 808 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 809 Constant *Op = CE->getOperand(i); 810 if (Op->getType()->isVectorTy()) { 811 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 812 if (!ScalarOp) 813 return nullptr; 814 Ops.push_back(ScalarOp); 815 } else 816 Ops.push_back(Op); 817 } 818 return CE->getWithOperands(Ops, CE->getType()->getVectorElementType(), 819 false, 820 Ops[0]->getType()->getPointerElementType()); 821 } 822 } 823 824 return Val->getAggregateElement(CIdx); 825 } 826 827 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 828 Constant *Elt, 829 Constant *Idx) { 830 if (isa<UndefValue>(Idx)) 831 return UndefValue::get(Val->getType()); 832 833 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 834 if (!CIdx) return nullptr; 835 836 // Do not iterate on scalable vector. The num of elements is unknown at 837 // compile-time. 838 VectorType *ValTy = cast<VectorType>(Val->getType()); 839 if (ValTy->isScalable()) 840 return nullptr; 841 842 unsigned NumElts = Val->getType()->getVectorNumElements(); 843 if (CIdx->uge(NumElts)) 844 return UndefValue::get(Val->getType()); 845 846 SmallVector<Constant*, 16> Result; 847 Result.reserve(NumElts); 848 auto *Ty = Type::getInt32Ty(Val->getContext()); 849 uint64_t IdxVal = CIdx->getZExtValue(); 850 for (unsigned i = 0; i != NumElts; ++i) { 851 if (i == IdxVal) { 852 Result.push_back(Elt); 853 continue; 854 } 855 856 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 857 Result.push_back(C); 858 } 859 860 return ConstantVector::get(Result); 861 } 862 863 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, 864 Constant *V2, 865 Constant *Mask) { 866 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 867 Type *EltTy = V1->getType()->getVectorElementType(); 868 869 // Undefined shuffle mask -> undefined value. 870 if (isa<UndefValue>(Mask)) 871 return UndefValue::get(VectorType::get(EltTy, MaskNumElts)); 872 873 // Don't break the bitcode reader hack. 874 if (isa<ConstantExpr>(Mask)) return nullptr; 875 876 // Do not iterate on scalable vector. The num of elements is unknown at 877 // compile-time. 878 VectorType *ValTy = cast<VectorType>(V1->getType()); 879 if (ValTy->isScalable()) 880 return nullptr; 881 882 unsigned SrcNumElts = V1->getType()->getVectorNumElements(); 883 884 // Loop over the shuffle mask, evaluating each element. 885 SmallVector<Constant*, 32> Result; 886 for (unsigned i = 0; i != MaskNumElts; ++i) { 887 int Elt = ShuffleVectorInst::getMaskValue(Mask, i); 888 if (Elt == -1) { 889 Result.push_back(UndefValue::get(EltTy)); 890 continue; 891 } 892 Constant *InElt; 893 if (unsigned(Elt) >= SrcNumElts*2) 894 InElt = UndefValue::get(EltTy); 895 else if (unsigned(Elt) >= SrcNumElts) { 896 Type *Ty = IntegerType::get(V2->getContext(), 32); 897 InElt = 898 ConstantExpr::getExtractElement(V2, 899 ConstantInt::get(Ty, Elt - SrcNumElts)); 900 } else { 901 Type *Ty = IntegerType::get(V1->getContext(), 32); 902 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 903 } 904 Result.push_back(InElt); 905 } 906 907 return ConstantVector::get(Result); 908 } 909 910 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 911 ArrayRef<unsigned> Idxs) { 912 // Base case: no indices, so return the entire value. 913 if (Idxs.empty()) 914 return Agg; 915 916 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 917 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 918 919 return nullptr; 920 } 921 922 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 923 Constant *Val, 924 ArrayRef<unsigned> Idxs) { 925 // Base case: no indices, so replace the entire value. 926 if (Idxs.empty()) 927 return Val; 928 929 unsigned NumElts; 930 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 931 NumElts = ST->getNumElements(); 932 else 933 NumElts = cast<SequentialType>(Agg->getType())->getNumElements(); 934 935 SmallVector<Constant*, 32> Result; 936 for (unsigned i = 0; i != NumElts; ++i) { 937 Constant *C = Agg->getAggregateElement(i); 938 if (!C) return nullptr; 939 940 if (Idxs[0] == i) 941 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 942 943 Result.push_back(C); 944 } 945 946 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 947 return ConstantStruct::get(ST, Result); 948 if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType())) 949 return ConstantArray::get(AT, Result); 950 return ConstantVector::get(Result); 951 } 952 953 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 954 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 955 956 // Handle scalar UndefValue. Vectors are always evaluated per element. 957 bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C); 958 959 if (HasScalarUndef) { 960 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 961 case Instruction::FNeg: 962 return C; // -undef -> undef 963 case Instruction::UnaryOpsEnd: 964 llvm_unreachable("Invalid UnaryOp"); 965 } 966 } 967 968 // Constant should not be UndefValue, unless these are vector constants. 969 assert(!HasScalarUndef && "Unexpected UndefValue"); 970 // We only have FP UnaryOps right now. 971 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 972 973 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 974 const APFloat &CV = CFP->getValueAPF(); 975 switch (Opcode) { 976 default: 977 break; 978 case Instruction::FNeg: 979 return ConstantFP::get(C->getContext(), neg(CV)); 980 } 981 } else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) { 982 // Fold each element and create a vector constant from those constants. 983 SmallVector<Constant*, 16> Result; 984 Type *Ty = IntegerType::get(VTy->getContext(), 32); 985 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 986 Constant *ExtractIdx = ConstantInt::get(Ty, i); 987 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 988 989 Result.push_back(ConstantExpr::get(Opcode, Elt)); 990 } 991 992 return ConstantVector::get(Result); 993 } 994 995 // We don't know how to fold this. 996 return nullptr; 997 } 998 999 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 1000 Constant *C2) { 1001 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 1002 1003 // Simplify BinOps with their identity values first. They are no-ops and we 1004 // can always return the other value, including undef or poison values. 1005 // FIXME: remove unnecessary duplicated identity patterns below. 1006 // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops, 1007 // like X << 0 = X. 1008 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType()); 1009 if (Identity) { 1010 if (C1 == Identity) 1011 return C2; 1012 if (C2 == Identity) 1013 return C1; 1014 } 1015 1016 // Handle scalar UndefValue. Vectors are always evaluated per element. 1017 bool HasScalarUndef = !C1->getType()->isVectorTy() && 1018 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 1019 if (HasScalarUndef) { 1020 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 1021 case Instruction::Xor: 1022 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1023 // Handle undef ^ undef -> 0 special case. This is a common 1024 // idiom (misuse). 1025 return Constant::getNullValue(C1->getType()); 1026 LLVM_FALLTHROUGH; 1027 case Instruction::Add: 1028 case Instruction::Sub: 1029 return UndefValue::get(C1->getType()); 1030 case Instruction::And: 1031 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 1032 return C1; 1033 return Constant::getNullValue(C1->getType()); // undef & X -> 0 1034 case Instruction::Mul: { 1035 // undef * undef -> undef 1036 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1037 return C1; 1038 const APInt *CV; 1039 // X * undef -> undef if X is odd 1040 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 1041 if ((*CV)[0]) 1042 return UndefValue::get(C1->getType()); 1043 1044 // X * undef -> 0 otherwise 1045 return Constant::getNullValue(C1->getType()); 1046 } 1047 case Instruction::SDiv: 1048 case Instruction::UDiv: 1049 // X / undef -> undef 1050 if (isa<UndefValue>(C2)) 1051 return C2; 1052 // undef / 0 -> undef 1053 // undef / 1 -> undef 1054 if (match(C2, m_Zero()) || match(C2, m_One())) 1055 return C1; 1056 // undef / X -> 0 otherwise 1057 return Constant::getNullValue(C1->getType()); 1058 case Instruction::URem: 1059 case Instruction::SRem: 1060 // X % undef -> undef 1061 if (match(C2, m_Undef())) 1062 return C2; 1063 // undef % 0 -> undef 1064 if (match(C2, m_Zero())) 1065 return C1; 1066 // undef % X -> 0 otherwise 1067 return Constant::getNullValue(C1->getType()); 1068 case Instruction::Or: // X | undef -> -1 1069 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 1070 return C1; 1071 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 1072 case Instruction::LShr: 1073 // X >>l undef -> undef 1074 if (isa<UndefValue>(C2)) 1075 return C2; 1076 // undef >>l 0 -> undef 1077 if (match(C2, m_Zero())) 1078 return C1; 1079 // undef >>l X -> 0 1080 return Constant::getNullValue(C1->getType()); 1081 case Instruction::AShr: 1082 // X >>a undef -> undef 1083 if (isa<UndefValue>(C2)) 1084 return C2; 1085 // undef >>a 0 -> undef 1086 if (match(C2, m_Zero())) 1087 return C1; 1088 // TODO: undef >>a X -> undef if the shift is exact 1089 // undef >>a X -> 0 1090 return Constant::getNullValue(C1->getType()); 1091 case Instruction::Shl: 1092 // X << undef -> undef 1093 if (isa<UndefValue>(C2)) 1094 return C2; 1095 // undef << 0 -> undef 1096 if (match(C2, m_Zero())) 1097 return C1; 1098 // undef << X -> 0 1099 return Constant::getNullValue(C1->getType()); 1100 case Instruction::FAdd: 1101 case Instruction::FSub: 1102 case Instruction::FMul: 1103 case Instruction::FDiv: 1104 case Instruction::FRem: 1105 // [any flop] undef, undef -> undef 1106 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1107 return C1; 1108 // [any flop] C, undef -> NaN 1109 // [any flop] undef, C -> NaN 1110 // We could potentially specialize NaN/Inf constants vs. 'normal' 1111 // constants (possibly differently depending on opcode and operand). This 1112 // would allow returning undef sometimes. But it is always safe to fold to 1113 // NaN because we can choose the undef operand as NaN, and any FP opcode 1114 // with a NaN operand will propagate NaN. 1115 return ConstantFP::getNaN(C1->getType()); 1116 case Instruction::BinaryOpsEnd: 1117 llvm_unreachable("Invalid BinaryOp"); 1118 } 1119 } 1120 1121 // Neither constant should be UndefValue, unless these are vector constants. 1122 assert(!HasScalarUndef && "Unexpected UndefValue"); 1123 1124 // Handle simplifications when the RHS is a constant int. 1125 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1126 switch (Opcode) { 1127 case Instruction::Add: 1128 if (CI2->isZero()) return C1; // X + 0 == X 1129 break; 1130 case Instruction::Sub: 1131 if (CI2->isZero()) return C1; // X - 0 == X 1132 break; 1133 case Instruction::Mul: 1134 if (CI2->isZero()) return C2; // X * 0 == 0 1135 if (CI2->isOne()) 1136 return C1; // X * 1 == X 1137 break; 1138 case Instruction::UDiv: 1139 case Instruction::SDiv: 1140 if (CI2->isOne()) 1141 return C1; // X / 1 == X 1142 if (CI2->isZero()) 1143 return UndefValue::get(CI2->getType()); // X / 0 == undef 1144 break; 1145 case Instruction::URem: 1146 case Instruction::SRem: 1147 if (CI2->isOne()) 1148 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 1149 if (CI2->isZero()) 1150 return UndefValue::get(CI2->getType()); // X % 0 == undef 1151 break; 1152 case Instruction::And: 1153 if (CI2->isZero()) return C2; // X & 0 == 0 1154 if (CI2->isMinusOne()) 1155 return C1; // X & -1 == X 1156 1157 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1158 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) 1159 if (CE1->getOpcode() == Instruction::ZExt) { 1160 unsigned DstWidth = CI2->getType()->getBitWidth(); 1161 unsigned SrcWidth = 1162 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1163 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1164 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) 1165 return C1; 1166 } 1167 1168 // If and'ing the address of a global with a constant, fold it. 1169 if (CE1->getOpcode() == Instruction::PtrToInt && 1170 isa<GlobalValue>(CE1->getOperand(0))) { 1171 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 1172 1173 MaybeAlign GVAlign; 1174 1175 if (Module *TheModule = GV->getParent()) { 1176 GVAlign = GV->getPointerAlignment(TheModule->getDataLayout()); 1177 1178 // If the function alignment is not specified then assume that it 1179 // is 4. 1180 // This is dangerous; on x86, the alignment of the pointer 1181 // corresponds to the alignment of the function, but might be less 1182 // than 4 if it isn't explicitly specified. 1183 // However, a fix for this behaviour was reverted because it 1184 // increased code size (see https://reviews.llvm.org/D55115) 1185 // FIXME: This code should be deleted once existing targets have 1186 // appropriate defaults 1187 if (!GVAlign && isa<Function>(GV)) 1188 GVAlign = Align(4); 1189 } else if (isa<Function>(GV)) { 1190 // Without a datalayout we have to assume the worst case: that the 1191 // function pointer isn't aligned at all. 1192 GVAlign = llvm::None; 1193 } else { 1194 GVAlign = MaybeAlign(GV->getAlignment()); 1195 } 1196 1197 if (GVAlign && *GVAlign > 1) { 1198 unsigned DstWidth = CI2->getType()->getBitWidth(); 1199 unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign)); 1200 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1201 1202 // If checking bits we know are clear, return zero. 1203 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 1204 return Constant::getNullValue(CI2->getType()); 1205 } 1206 } 1207 } 1208 break; 1209 case Instruction::Or: 1210 if (CI2->isZero()) return C1; // X | 0 == X 1211 if (CI2->isMinusOne()) 1212 return C2; // X | -1 == -1 1213 break; 1214 case Instruction::Xor: 1215 if (CI2->isZero()) return C1; // X ^ 0 == X 1216 1217 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1218 switch (CE1->getOpcode()) { 1219 default: break; 1220 case Instruction::ICmp: 1221 case Instruction::FCmp: 1222 // cmp pred ^ true -> cmp !pred 1223 assert(CI2->isOne()); 1224 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); 1225 pred = CmpInst::getInversePredicate(pred); 1226 return ConstantExpr::getCompare(pred, CE1->getOperand(0), 1227 CE1->getOperand(1)); 1228 } 1229 } 1230 break; 1231 case Instruction::AShr: 1232 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 1233 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) 1234 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. 1235 return ConstantExpr::getLShr(C1, C2); 1236 break; 1237 } 1238 } else if (isa<ConstantInt>(C1)) { 1239 // If C1 is a ConstantInt and C2 is not, swap the operands. 1240 if (Instruction::isCommutative(Opcode)) 1241 return ConstantExpr::get(Opcode, C2, C1); 1242 } 1243 1244 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 1245 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1246 const APInt &C1V = CI1->getValue(); 1247 const APInt &C2V = CI2->getValue(); 1248 switch (Opcode) { 1249 default: 1250 break; 1251 case Instruction::Add: 1252 return ConstantInt::get(CI1->getContext(), C1V + C2V); 1253 case Instruction::Sub: 1254 return ConstantInt::get(CI1->getContext(), C1V - C2V); 1255 case Instruction::Mul: 1256 return ConstantInt::get(CI1->getContext(), C1V * C2V); 1257 case Instruction::UDiv: 1258 assert(!CI2->isZero() && "Div by zero handled above"); 1259 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 1260 case Instruction::SDiv: 1261 assert(!CI2->isZero() && "Div by zero handled above"); 1262 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1263 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef 1264 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 1265 case Instruction::URem: 1266 assert(!CI2->isZero() && "Div by zero handled above"); 1267 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 1268 case Instruction::SRem: 1269 assert(!CI2->isZero() && "Div by zero handled above"); 1270 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1271 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef 1272 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 1273 case Instruction::And: 1274 return ConstantInt::get(CI1->getContext(), C1V & C2V); 1275 case Instruction::Or: 1276 return ConstantInt::get(CI1->getContext(), C1V | C2V); 1277 case Instruction::Xor: 1278 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 1279 case Instruction::Shl: 1280 if (C2V.ult(C1V.getBitWidth())) 1281 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 1282 return UndefValue::get(C1->getType()); // too big shift is undef 1283 case Instruction::LShr: 1284 if (C2V.ult(C1V.getBitWidth())) 1285 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 1286 return UndefValue::get(C1->getType()); // too big shift is undef 1287 case Instruction::AShr: 1288 if (C2V.ult(C1V.getBitWidth())) 1289 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 1290 return UndefValue::get(C1->getType()); // too big shift is undef 1291 } 1292 } 1293 1294 switch (Opcode) { 1295 case Instruction::SDiv: 1296 case Instruction::UDiv: 1297 case Instruction::URem: 1298 case Instruction::SRem: 1299 case Instruction::LShr: 1300 case Instruction::AShr: 1301 case Instruction::Shl: 1302 if (CI1->isZero()) return C1; 1303 break; 1304 default: 1305 break; 1306 } 1307 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 1308 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 1309 const APFloat &C1V = CFP1->getValueAPF(); 1310 const APFloat &C2V = CFP2->getValueAPF(); 1311 APFloat C3V = C1V; // copy for modification 1312 switch (Opcode) { 1313 default: 1314 break; 1315 case Instruction::FAdd: 1316 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 1317 return ConstantFP::get(C1->getContext(), C3V); 1318 case Instruction::FSub: 1319 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 1320 return ConstantFP::get(C1->getContext(), C3V); 1321 case Instruction::FMul: 1322 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 1323 return ConstantFP::get(C1->getContext(), C3V); 1324 case Instruction::FDiv: 1325 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 1326 return ConstantFP::get(C1->getContext(), C3V); 1327 case Instruction::FRem: 1328 (void)C3V.mod(C2V); 1329 return ConstantFP::get(C1->getContext(), C3V); 1330 } 1331 } 1332 } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) { 1333 // Fold each element and create a vector constant from those constants. 1334 SmallVector<Constant*, 16> Result; 1335 Type *Ty = IntegerType::get(VTy->getContext(), 32); 1336 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 1337 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1338 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 1339 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 1340 1341 // If any element of a divisor vector is zero, the whole op is undef. 1342 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) 1343 return UndefValue::get(VTy); 1344 1345 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); 1346 } 1347 1348 return ConstantVector::get(Result); 1349 } 1350 1351 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1352 // There are many possible foldings we could do here. We should probably 1353 // at least fold add of a pointer with an integer into the appropriate 1354 // getelementptr. This will improve alias analysis a bit. 1355 1356 // Given ((a + b) + c), if (b + c) folds to something interesting, return 1357 // (a + (b + c)). 1358 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 1359 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 1360 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 1361 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 1362 } 1363 } else if (isa<ConstantExpr>(C2)) { 1364 // If C2 is a constant expr and C1 isn't, flop them around and fold the 1365 // other way if possible. 1366 if (Instruction::isCommutative(Opcode)) 1367 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 1368 } 1369 1370 // i1 can be simplified in many cases. 1371 if (C1->getType()->isIntegerTy(1)) { 1372 switch (Opcode) { 1373 case Instruction::Add: 1374 case Instruction::Sub: 1375 return ConstantExpr::getXor(C1, C2); 1376 case Instruction::Mul: 1377 return ConstantExpr::getAnd(C1, C2); 1378 case Instruction::Shl: 1379 case Instruction::LShr: 1380 case Instruction::AShr: 1381 // We can assume that C2 == 0. If it were one the result would be 1382 // undefined because the shift value is as large as the bitwidth. 1383 return C1; 1384 case Instruction::SDiv: 1385 case Instruction::UDiv: 1386 // We can assume that C2 == 1. If it were zero the result would be 1387 // undefined through division by zero. 1388 return C1; 1389 case Instruction::URem: 1390 case Instruction::SRem: 1391 // We can assume that C2 == 1. If it were zero the result would be 1392 // undefined through division by zero. 1393 return ConstantInt::getFalse(C1->getContext()); 1394 default: 1395 break; 1396 } 1397 } 1398 1399 // We don't know how to fold this. 1400 return nullptr; 1401 } 1402 1403 /// This type is zero-sized if it's an array or structure of zero-sized types. 1404 /// The only leaf zero-sized type is an empty structure. 1405 static bool isMaybeZeroSizedType(Type *Ty) { 1406 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1407 if (STy->isOpaque()) return true; // Can't say. 1408 1409 // If all of elements have zero size, this does too. 1410 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1411 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; 1412 return true; 1413 1414 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1415 return isMaybeZeroSizedType(ATy->getElementType()); 1416 } 1417 return false; 1418 } 1419 1420 /// Compare the two constants as though they were getelementptr indices. 1421 /// This allows coercion of the types to be the same thing. 1422 /// 1423 /// If the two constants are the "same" (after coercion), return 0. If the 1424 /// first is less than the second, return -1, if the second is less than the 1425 /// first, return 1. If the constants are not integral, return -2. 1426 /// 1427 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { 1428 if (C1 == C2) return 0; 1429 1430 // Ok, we found a different index. If they are not ConstantInt, we can't do 1431 // anything with them. 1432 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) 1433 return -2; // don't know! 1434 1435 // We cannot compare the indices if they don't fit in an int64_t. 1436 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 || 1437 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64) 1438 return -2; // don't know! 1439 1440 // Ok, we have two differing integer indices. Sign extend them to be the same 1441 // type. 1442 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue(); 1443 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue(); 1444 1445 if (C1Val == C2Val) return 0; // They are equal 1446 1447 // If the type being indexed over is really just a zero sized type, there is 1448 // no pointer difference being made here. 1449 if (isMaybeZeroSizedType(ElTy)) 1450 return -2; // dunno. 1451 1452 // If they are really different, now that they are the same type, then we 1453 // found a difference! 1454 if (C1Val < C2Val) 1455 return -1; 1456 else 1457 return 1; 1458 } 1459 1460 /// This function determines if there is anything we can decide about the two 1461 /// constants provided. This doesn't need to handle simple things like 1462 /// ConstantFP comparisons, but should instead handle ConstantExprs. 1463 /// If we can determine that the two constants have a particular relation to 1464 /// each other, we should return the corresponding FCmpInst predicate, 1465 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in 1466 /// ConstantFoldCompareInstruction. 1467 /// 1468 /// To simplify this code we canonicalize the relation so that the first 1469 /// operand is always the most "complex" of the two. We consider ConstantFP 1470 /// to be the simplest, and ConstantExprs to be the most complex. 1471 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { 1472 assert(V1->getType() == V2->getType() && 1473 "Cannot compare values of different types!"); 1474 1475 // We do not know if a constant expression will evaluate to a number or NaN. 1476 // Therefore, we can only say that the relation is unordered or equal. 1477 if (V1 == V2) return FCmpInst::FCMP_UEQ; 1478 1479 if (!isa<ConstantExpr>(V1)) { 1480 if (!isa<ConstantExpr>(V2)) { 1481 // Simple case, use the standard constant folder. 1482 ConstantInt *R = nullptr; 1483 R = dyn_cast<ConstantInt>( 1484 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); 1485 if (R && !R->isZero()) 1486 return FCmpInst::FCMP_OEQ; 1487 R = dyn_cast<ConstantInt>( 1488 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); 1489 if (R && !R->isZero()) 1490 return FCmpInst::FCMP_OLT; 1491 R = dyn_cast<ConstantInt>( 1492 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); 1493 if (R && !R->isZero()) 1494 return FCmpInst::FCMP_OGT; 1495 1496 // Nothing more we can do 1497 return FCmpInst::BAD_FCMP_PREDICATE; 1498 } 1499 1500 // If the first operand is simple and second is ConstantExpr, swap operands. 1501 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); 1502 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) 1503 return FCmpInst::getSwappedPredicate(SwappedRelation); 1504 } else { 1505 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1506 // constantexpr or a simple constant. 1507 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1508 switch (CE1->getOpcode()) { 1509 case Instruction::FPTrunc: 1510 case Instruction::FPExt: 1511 case Instruction::UIToFP: 1512 case Instruction::SIToFP: 1513 // We might be able to do something with these but we don't right now. 1514 break; 1515 default: 1516 break; 1517 } 1518 } 1519 // There are MANY other foldings that we could perform here. They will 1520 // probably be added on demand, as they seem needed. 1521 return FCmpInst::BAD_FCMP_PREDICATE; 1522 } 1523 1524 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 1525 const GlobalValue *GV2) { 1526 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 1527 if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage()) 1528 return true; 1529 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 1530 Type *Ty = GVar->getValueType(); 1531 // A global with opaque type might end up being zero sized. 1532 if (!Ty->isSized()) 1533 return true; 1534 // A global with an empty type might lie at the address of any other 1535 // global. 1536 if (Ty->isEmptyTy()) 1537 return true; 1538 } 1539 return false; 1540 }; 1541 // Don't try to decide equality of aliases. 1542 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 1543 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 1544 return ICmpInst::ICMP_NE; 1545 return ICmpInst::BAD_ICMP_PREDICATE; 1546 } 1547 1548 /// This function determines if there is anything we can decide about the two 1549 /// constants provided. This doesn't need to handle simple things like integer 1550 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 1551 /// If we can determine that the two constants have a particular relation to 1552 /// each other, we should return the corresponding ICmp predicate, otherwise 1553 /// return ICmpInst::BAD_ICMP_PREDICATE. 1554 /// 1555 /// To simplify this code we canonicalize the relation so that the first 1556 /// operand is always the most "complex" of the two. We consider simple 1557 /// constants (like ConstantInt) to be the simplest, followed by 1558 /// GlobalValues, followed by ConstantExpr's (the most complex). 1559 /// 1560 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, 1561 bool isSigned) { 1562 assert(V1->getType() == V2->getType() && 1563 "Cannot compare different types of values!"); 1564 if (V1 == V2) return ICmpInst::ICMP_EQ; 1565 1566 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && 1567 !isa<BlockAddress>(V1)) { 1568 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && 1569 !isa<BlockAddress>(V2)) { 1570 // We distilled this down to a simple case, use the standard constant 1571 // folder. 1572 ConstantInt *R = nullptr; 1573 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; 1574 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1575 if (R && !R->isZero()) 1576 return pred; 1577 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1578 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1579 if (R && !R->isZero()) 1580 return pred; 1581 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1582 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1583 if (R && !R->isZero()) 1584 return pred; 1585 1586 // If we couldn't figure it out, bail. 1587 return ICmpInst::BAD_ICMP_PREDICATE; 1588 } 1589 1590 // If the first operand is simple, swap operands. 1591 ICmpInst::Predicate SwappedRelation = 1592 evaluateICmpRelation(V2, V1, isSigned); 1593 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1594 return ICmpInst::getSwappedPredicate(SwappedRelation); 1595 1596 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1597 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1598 ICmpInst::Predicate SwappedRelation = 1599 evaluateICmpRelation(V2, V1, isSigned); 1600 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1601 return ICmpInst::getSwappedPredicate(SwappedRelation); 1602 return ICmpInst::BAD_ICMP_PREDICATE; 1603 } 1604 1605 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1606 // constant (which, since the types must match, means that it's a 1607 // ConstantPointerNull). 1608 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1609 return areGlobalsPotentiallyEqual(GV, GV2); 1610 } else if (isa<BlockAddress>(V2)) { 1611 return ICmpInst::ICMP_NE; // Globals never equal labels. 1612 } else { 1613 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); 1614 // GlobalVals can never be null unless they have external weak linkage. 1615 // We don't try to evaluate aliases here. 1616 // NOTE: We should not be doing this constant folding if null pointer 1617 // is considered valid for the function. But currently there is no way to 1618 // query it from the Constant type. 1619 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1620 !NullPointerIsDefined(nullptr /* F */, 1621 GV->getType()->getAddressSpace())) 1622 return ICmpInst::ICMP_NE; 1623 } 1624 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1625 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1626 ICmpInst::Predicate SwappedRelation = 1627 evaluateICmpRelation(V2, V1, isSigned); 1628 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1629 return ICmpInst::getSwappedPredicate(SwappedRelation); 1630 return ICmpInst::BAD_ICMP_PREDICATE; 1631 } 1632 1633 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1634 // constant (which, since the types must match, means that it is a 1635 // ConstantPointerNull). 1636 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1637 // Block address in another function can't equal this one, but block 1638 // addresses in the current function might be the same if blocks are 1639 // empty. 1640 if (BA2->getFunction() != BA->getFunction()) 1641 return ICmpInst::ICMP_NE; 1642 } else { 1643 // Block addresses aren't null, don't equal the address of globals. 1644 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && 1645 "Canonicalization guarantee!"); 1646 return ICmpInst::ICMP_NE; 1647 } 1648 } else { 1649 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1650 // constantexpr, a global, block address, or a simple constant. 1651 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1652 Constant *CE1Op0 = CE1->getOperand(0); 1653 1654 switch (CE1->getOpcode()) { 1655 case Instruction::Trunc: 1656 case Instruction::FPTrunc: 1657 case Instruction::FPExt: 1658 case Instruction::FPToUI: 1659 case Instruction::FPToSI: 1660 break; // We can't evaluate floating point casts or truncations. 1661 1662 case Instruction::UIToFP: 1663 case Instruction::SIToFP: 1664 case Instruction::BitCast: 1665 case Instruction::ZExt: 1666 case Instruction::SExt: 1667 // We can't evaluate floating point casts or truncations. 1668 if (CE1Op0->getType()->isFPOrFPVectorTy()) 1669 break; 1670 1671 // If the cast is not actually changing bits, and the second operand is a 1672 // null pointer, do the comparison with the pre-casted value. 1673 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) { 1674 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; 1675 if (CE1->getOpcode() == Instruction::SExt) isSigned = true; 1676 return evaluateICmpRelation(CE1Op0, 1677 Constant::getNullValue(CE1Op0->getType()), 1678 isSigned); 1679 } 1680 break; 1681 1682 case Instruction::GetElementPtr: { 1683 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1684 // Ok, since this is a getelementptr, we know that the constant has a 1685 // pointer type. Check the various cases. 1686 if (isa<ConstantPointerNull>(V2)) { 1687 // If we are comparing a GEP to a null pointer, check to see if the base 1688 // of the GEP equals the null pointer. 1689 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1690 if (GV->hasExternalWeakLinkage()) 1691 // Weak linkage GVals could be zero or not. We're comparing that 1692 // to null pointer so its greater-or-equal 1693 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 1694 else 1695 // If its not weak linkage, the GVal must have a non-zero address 1696 // so the result is greater-than 1697 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1698 } else if (isa<ConstantPointerNull>(CE1Op0)) { 1699 // If we are indexing from a null pointer, check to see if we have any 1700 // non-zero indices. 1701 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) 1702 if (!CE1->getOperand(i)->isNullValue()) 1703 // Offsetting from null, must not be equal. 1704 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1705 // Only zero indexes from null, must still be zero. 1706 return ICmpInst::ICMP_EQ; 1707 } 1708 // Otherwise, we can't really say if the first operand is null or not. 1709 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1710 if (isa<ConstantPointerNull>(CE1Op0)) { 1711 if (GV2->hasExternalWeakLinkage()) 1712 // Weak linkage GVals could be zero or not. We're comparing it to 1713 // a null pointer, so its less-or-equal 1714 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1715 else 1716 // If its not weak linkage, the GVal must have a non-zero address 1717 // so the result is less-than 1718 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1719 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1720 if (GV == GV2) { 1721 // If this is a getelementptr of the same global, then it must be 1722 // different. Because the types must match, the getelementptr could 1723 // only have at most one index, and because we fold getelementptr's 1724 // with a single zero index, it must be nonzero. 1725 assert(CE1->getNumOperands() == 2 && 1726 !CE1->getOperand(1)->isNullValue() && 1727 "Surprising getelementptr!"); 1728 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1729 } else { 1730 if (CE1GEP->hasAllZeroIndices()) 1731 return areGlobalsPotentiallyEqual(GV, GV2); 1732 return ICmpInst::BAD_ICMP_PREDICATE; 1733 } 1734 } 1735 } else { 1736 ConstantExpr *CE2 = cast<ConstantExpr>(V2); 1737 Constant *CE2Op0 = CE2->getOperand(0); 1738 1739 // There are MANY other foldings that we could perform here. They will 1740 // probably be added on demand, as they seem needed. 1741 switch (CE2->getOpcode()) { 1742 default: break; 1743 case Instruction::GetElementPtr: 1744 // By far the most common case to handle is when the base pointers are 1745 // obviously to the same global. 1746 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1747 // Don't know relative ordering, but check for inequality. 1748 if (CE1Op0 != CE2Op0) { 1749 GEPOperator *CE2GEP = cast<GEPOperator>(CE2); 1750 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1751 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1752 cast<GlobalValue>(CE2Op0)); 1753 return ICmpInst::BAD_ICMP_PREDICATE; 1754 } 1755 // Ok, we know that both getelementptr instructions are based on the 1756 // same global. From this, we can precisely determine the relative 1757 // ordering of the resultant pointers. 1758 unsigned i = 1; 1759 1760 // The logic below assumes that the result of the comparison 1761 // can be determined by finding the first index that differs. 1762 // This doesn't work if there is over-indexing in any 1763 // subsequent indices, so check for that case first. 1764 if (!CE1->isGEPWithNoNotionalOverIndexing() || 1765 !CE2->isGEPWithNoNotionalOverIndexing()) 1766 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1767 1768 // Compare all of the operands the GEP's have in common. 1769 gep_type_iterator GTI = gep_type_begin(CE1); 1770 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); 1771 ++i, ++GTI) 1772 switch (IdxCompare(CE1->getOperand(i), 1773 CE2->getOperand(i), GTI.getIndexedType())) { 1774 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; 1775 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; 1776 case -2: return ICmpInst::BAD_ICMP_PREDICATE; 1777 } 1778 1779 // Ok, we ran out of things they have in common. If any leftovers 1780 // are non-zero then we have a difference, otherwise we are equal. 1781 for (; i < CE1->getNumOperands(); ++i) 1782 if (!CE1->getOperand(i)->isNullValue()) { 1783 if (isa<ConstantInt>(CE1->getOperand(i))) 1784 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1785 else 1786 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1787 } 1788 1789 for (; i < CE2->getNumOperands(); ++i) 1790 if (!CE2->getOperand(i)->isNullValue()) { 1791 if (isa<ConstantInt>(CE2->getOperand(i))) 1792 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1793 else 1794 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1795 } 1796 return ICmpInst::ICMP_EQ; 1797 } 1798 } 1799 } 1800 break; 1801 } 1802 default: 1803 break; 1804 } 1805 } 1806 1807 return ICmpInst::BAD_ICMP_PREDICATE; 1808 } 1809 1810 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 1811 Constant *C1, Constant *C2) { 1812 Type *ResultTy; 1813 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1814 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1815 VT->getNumElements()); 1816 else 1817 ResultTy = Type::getInt1Ty(C1->getContext()); 1818 1819 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1820 if (pred == FCmpInst::FCMP_FALSE) 1821 return Constant::getNullValue(ResultTy); 1822 1823 if (pred == FCmpInst::FCMP_TRUE) 1824 return Constant::getAllOnesValue(ResultTy); 1825 1826 // Handle some degenerate cases first 1827 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1828 CmpInst::Predicate Predicate = CmpInst::Predicate(pred); 1829 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1830 // For EQ and NE, we can always pick a value for the undef to make the 1831 // predicate pass or fail, so we can return undef. 1832 // Also, if both operands are undef, we can return undef for int comparison. 1833 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1834 return UndefValue::get(ResultTy); 1835 1836 // Otherwise, for integer compare, pick the same value as the non-undef 1837 // operand, and fold it to true or false. 1838 if (isIntegerPredicate) 1839 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1840 1841 // Choosing NaN for the undef will always make unordered comparison succeed 1842 // and ordered comparison fails. 1843 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1844 } 1845 1846 // icmp eq/ne(null,GV) -> false/true 1847 if (C1->isNullValue()) { 1848 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) 1849 // Don't try to evaluate aliases. External weak GV can be null. 1850 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1851 !NullPointerIsDefined(nullptr /* F */, 1852 GV->getType()->getAddressSpace())) { 1853 if (pred == ICmpInst::ICMP_EQ) 1854 return ConstantInt::getFalse(C1->getContext()); 1855 else if (pred == ICmpInst::ICMP_NE) 1856 return ConstantInt::getTrue(C1->getContext()); 1857 } 1858 // icmp eq/ne(GV,null) -> false/true 1859 } else if (C2->isNullValue()) { 1860 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) 1861 // Don't try to evaluate aliases. External weak GV can be null. 1862 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1863 !NullPointerIsDefined(nullptr /* F */, 1864 GV->getType()->getAddressSpace())) { 1865 if (pred == ICmpInst::ICMP_EQ) 1866 return ConstantInt::getFalse(C1->getContext()); 1867 else if (pred == ICmpInst::ICMP_NE) 1868 return ConstantInt::getTrue(C1->getContext()); 1869 } 1870 } 1871 1872 // If the comparison is a comparison between two i1's, simplify it. 1873 if (C1->getType()->isIntegerTy(1)) { 1874 switch(pred) { 1875 case ICmpInst::ICMP_EQ: 1876 if (isa<ConstantInt>(C2)) 1877 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1878 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1879 case ICmpInst::ICMP_NE: 1880 return ConstantExpr::getXor(C1, C2); 1881 default: 1882 break; 1883 } 1884 } 1885 1886 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1887 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 1888 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 1889 switch (pred) { 1890 default: llvm_unreachable("Invalid ICmp Predicate"); 1891 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2); 1892 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2); 1893 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); 1894 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); 1895 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); 1896 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); 1897 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); 1898 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); 1899 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); 1900 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); 1901 } 1902 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1903 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 1904 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 1905 APFloat::cmpResult R = C1V.compare(C2V); 1906 switch (pred) { 1907 default: llvm_unreachable("Invalid FCmp Predicate"); 1908 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); 1909 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy); 1910 case FCmpInst::FCMP_UNO: 1911 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); 1912 case FCmpInst::FCMP_ORD: 1913 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); 1914 case FCmpInst::FCMP_UEQ: 1915 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1916 R==APFloat::cmpEqual); 1917 case FCmpInst::FCMP_OEQ: 1918 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); 1919 case FCmpInst::FCMP_UNE: 1920 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); 1921 case FCmpInst::FCMP_ONE: 1922 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 1923 R==APFloat::cmpGreaterThan); 1924 case FCmpInst::FCMP_ULT: 1925 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1926 R==APFloat::cmpLessThan); 1927 case FCmpInst::FCMP_OLT: 1928 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); 1929 case FCmpInst::FCMP_UGT: 1930 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 1931 R==APFloat::cmpGreaterThan); 1932 case FCmpInst::FCMP_OGT: 1933 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); 1934 case FCmpInst::FCMP_ULE: 1935 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); 1936 case FCmpInst::FCMP_OLE: 1937 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 1938 R==APFloat::cmpEqual); 1939 case FCmpInst::FCMP_UGE: 1940 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); 1941 case FCmpInst::FCMP_OGE: 1942 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || 1943 R==APFloat::cmpEqual); 1944 } 1945 } else if (C1->getType()->isVectorTy()) { 1946 // If we can constant fold the comparison of each element, constant fold 1947 // the whole vector comparison. 1948 SmallVector<Constant*, 4> ResElts; 1949 Type *Ty = IntegerType::get(C1->getContext(), 32); 1950 // Compare the elements, producing an i1 result or constant expr. 1951 for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){ 1952 Constant *C1E = 1953 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i)); 1954 Constant *C2E = 1955 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i)); 1956 1957 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); 1958 } 1959 1960 return ConstantVector::get(ResElts); 1961 } 1962 1963 if (C1->getType()->isFloatingPointTy() && 1964 // Only call evaluateFCmpRelation if we have a constant expr to avoid 1965 // infinite recursive loop 1966 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { 1967 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1968 switch (evaluateFCmpRelation(C1, C2)) { 1969 default: llvm_unreachable("Unknown relation!"); 1970 case FCmpInst::FCMP_UNO: 1971 case FCmpInst::FCMP_ORD: 1972 case FCmpInst::FCMP_UNE: 1973 case FCmpInst::FCMP_ULT: 1974 case FCmpInst::FCMP_UGT: 1975 case FCmpInst::FCMP_ULE: 1976 case FCmpInst::FCMP_UGE: 1977 case FCmpInst::FCMP_TRUE: 1978 case FCmpInst::FCMP_FALSE: 1979 case FCmpInst::BAD_FCMP_PREDICATE: 1980 break; // Couldn't determine anything about these constants. 1981 case FCmpInst::FCMP_OEQ: // We know that C1 == C2 1982 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || 1983 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || 1984 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 1985 break; 1986 case FCmpInst::FCMP_OLT: // We know that C1 < C2 1987 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 1988 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || 1989 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); 1990 break; 1991 case FCmpInst::FCMP_OGT: // We know that C1 > C2 1992 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 1993 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || 1994 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 1995 break; 1996 case FCmpInst::FCMP_OLE: // We know that C1 <= C2 1997 // We can only partially decide this relation. 1998 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 1999 Result = 0; 2000 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 2001 Result = 1; 2002 break; 2003 case FCmpInst::FCMP_OGE: // We known that C1 >= C2 2004 // We can only partially decide this relation. 2005 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 2006 Result = 0; 2007 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 2008 Result = 1; 2009 break; 2010 case FCmpInst::FCMP_ONE: // We know that C1 != C2 2011 // We can only partially decide this relation. 2012 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 2013 Result = 0; 2014 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 2015 Result = 1; 2016 break; 2017 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2). 2018 // We can only partially decide this relation. 2019 if (pred == FCmpInst::FCMP_ONE) 2020 Result = 0; 2021 else if (pred == FCmpInst::FCMP_UEQ) 2022 Result = 1; 2023 break; 2024 } 2025 2026 // If we evaluated the result, return it now. 2027 if (Result != -1) 2028 return ConstantInt::get(ResultTy, Result); 2029 2030 } else { 2031 // Evaluate the relation between the two constants, per the predicate. 2032 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 2033 switch (evaluateICmpRelation(C1, C2, 2034 CmpInst::isSigned((CmpInst::Predicate)pred))) { 2035 default: llvm_unreachable("Unknown relational!"); 2036 case ICmpInst::BAD_ICMP_PREDICATE: 2037 break; // Couldn't determine anything about these constants. 2038 case ICmpInst::ICMP_EQ: // We know the constants are equal! 2039 // If we know the constants are equal, we can decide the result of this 2040 // computation precisely. 2041 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); 2042 break; 2043 case ICmpInst::ICMP_ULT: 2044 switch (pred) { 2045 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 2046 Result = 1; break; 2047 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 2048 Result = 0; break; 2049 } 2050 break; 2051 case ICmpInst::ICMP_SLT: 2052 switch (pred) { 2053 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 2054 Result = 1; break; 2055 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 2056 Result = 0; break; 2057 } 2058 break; 2059 case ICmpInst::ICMP_UGT: 2060 switch (pred) { 2061 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 2062 Result = 1; break; 2063 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 2064 Result = 0; break; 2065 } 2066 break; 2067 case ICmpInst::ICMP_SGT: 2068 switch (pred) { 2069 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 2070 Result = 1; break; 2071 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 2072 Result = 0; break; 2073 } 2074 break; 2075 case ICmpInst::ICMP_ULE: 2076 if (pred == ICmpInst::ICMP_UGT) Result = 0; 2077 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; 2078 break; 2079 case ICmpInst::ICMP_SLE: 2080 if (pred == ICmpInst::ICMP_SGT) Result = 0; 2081 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; 2082 break; 2083 case ICmpInst::ICMP_UGE: 2084 if (pred == ICmpInst::ICMP_ULT) Result = 0; 2085 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; 2086 break; 2087 case ICmpInst::ICMP_SGE: 2088 if (pred == ICmpInst::ICMP_SLT) Result = 0; 2089 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; 2090 break; 2091 case ICmpInst::ICMP_NE: 2092 if (pred == ICmpInst::ICMP_EQ) Result = 0; 2093 if (pred == ICmpInst::ICMP_NE) Result = 1; 2094 break; 2095 } 2096 2097 // If we evaluated the result, return it now. 2098 if (Result != -1) 2099 return ConstantInt::get(ResultTy, Result); 2100 2101 // If the right hand side is a bitcast, try using its inverse to simplify 2102 // it by moving it to the left hand side. We can't do this if it would turn 2103 // a vector compare into a scalar compare or visa versa, or if it would turn 2104 // the operands into FP values. 2105 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { 2106 Constant *CE2Op0 = CE2->getOperand(0); 2107 if (CE2->getOpcode() == Instruction::BitCast && 2108 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() && 2109 !CE2Op0->getType()->isFPOrFPVectorTy()) { 2110 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); 2111 return ConstantExpr::getICmp(pred, Inverse, CE2Op0); 2112 } 2113 } 2114 2115 // If the left hand side is an extension, try eliminating it. 2116 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 2117 if ((CE1->getOpcode() == Instruction::SExt && 2118 ICmpInst::isSigned((ICmpInst::Predicate)pred)) || 2119 (CE1->getOpcode() == Instruction::ZExt && 2120 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){ 2121 Constant *CE1Op0 = CE1->getOperand(0); 2122 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); 2123 if (CE1Inverse == CE1Op0) { 2124 // Check whether we can safely truncate the right hand side. 2125 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); 2126 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, 2127 C2->getType()) == C2) 2128 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); 2129 } 2130 } 2131 } 2132 2133 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 2134 (C1->isNullValue() && !C2->isNullValue())) { 2135 // If C2 is a constant expr and C1 isn't, flip them around and fold the 2136 // other way if possible. 2137 // Also, if C1 is null and C2 isn't, flip them around. 2138 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); 2139 return ConstantExpr::getICmp(pred, C2, C1); 2140 } 2141 } 2142 return nullptr; 2143 } 2144 2145 /// Test whether the given sequence of *normalized* indices is "inbounds". 2146 template<typename IndexTy> 2147 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { 2148 // No indices means nothing that could be out of bounds. 2149 if (Idxs.empty()) return true; 2150 2151 // If the first index is zero, it's in bounds. 2152 if (cast<Constant>(Idxs[0])->isNullValue()) return true; 2153 2154 // If the first index is one and all the rest are zero, it's in bounds, 2155 // by the one-past-the-end rule. 2156 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { 2157 if (!CI->isOne()) 2158 return false; 2159 } else { 2160 auto *CV = cast<ConstantDataVector>(Idxs[0]); 2161 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); 2162 if (!CI || !CI->isOne()) 2163 return false; 2164 } 2165 2166 for (unsigned i = 1, e = Idxs.size(); i != e; ++i) 2167 if (!cast<Constant>(Idxs[i])->isNullValue()) 2168 return false; 2169 return true; 2170 } 2171 2172 /// Test whether a given ConstantInt is in-range for a SequentialType. 2173 static bool isIndexInRangeOfArrayType(uint64_t NumElements, 2174 const ConstantInt *CI) { 2175 // We cannot bounds check the index if it doesn't fit in an int64_t. 2176 if (CI->getValue().getMinSignedBits() > 64) 2177 return false; 2178 2179 // A negative index or an index past the end of our sequential type is 2180 // considered out-of-range. 2181 int64_t IndexVal = CI->getSExtValue(); 2182 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements)) 2183 return false; 2184 2185 // Otherwise, it is in-range. 2186 return true; 2187 } 2188 2189 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 2190 bool InBounds, 2191 Optional<unsigned> InRangeIndex, 2192 ArrayRef<Value *> Idxs) { 2193 if (Idxs.empty()) return C; 2194 2195 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 2196 PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size())); 2197 2198 if (isa<UndefValue>(C)) 2199 return UndefValue::get(GEPTy); 2200 2201 Constant *Idx0 = cast<Constant>(Idxs[0]); 2202 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0))) 2203 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 2204 ? ConstantVector::getSplat( 2205 cast<VectorType>(GEPTy)->getNumElements(), C) 2206 : C; 2207 2208 if (C->isNullValue()) { 2209 bool isNull = true; 2210 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2211 if (!isa<UndefValue>(Idxs[i]) && 2212 !cast<Constant>(Idxs[i])->isNullValue()) { 2213 isNull = false; 2214 break; 2215 } 2216 if (isNull) { 2217 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType()); 2218 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs); 2219 2220 assert(Ty && "Invalid indices for GEP!"); 2221 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2222 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2223 if (VectorType *VT = dyn_cast<VectorType>(C->getType())) 2224 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); 2225 2226 // The GEP returns a vector of pointers when one of more of 2227 // its arguments is a vector. 2228 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 2229 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) { 2230 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); 2231 break; 2232 } 2233 } 2234 2235 return Constant::getNullValue(GEPTy); 2236 } 2237 } 2238 2239 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2240 // Combine Indices - If the source pointer to this getelementptr instruction 2241 // is a getelementptr instruction, combine the indices of the two 2242 // getelementptr instructions into a single instruction. 2243 // 2244 if (CE->getOpcode() == Instruction::GetElementPtr) { 2245 gep_type_iterator LastI = gep_type_end(CE); 2246 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); 2247 I != E; ++I) 2248 LastI = I; 2249 2250 // We cannot combine indices if doing so would take us outside of an 2251 // array or vector. Doing otherwise could trick us if we evaluated such a 2252 // GEP as part of a load. 2253 // 2254 // e.g. Consider if the original GEP was: 2255 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2256 // i32 0, i32 0, i64 0) 2257 // 2258 // If we then tried to offset it by '8' to get to the third element, 2259 // an i8, we should *not* get: 2260 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2261 // i32 0, i32 0, i64 8) 2262 // 2263 // This GEP tries to index array element '8 which runs out-of-bounds. 2264 // Subsequent evaluation would get confused and produce erroneous results. 2265 // 2266 // The following prohibits such a GEP from being formed by checking to see 2267 // if the index is in-range with respect to an array. 2268 // TODO: This code may be extended to handle vectors as well. 2269 bool PerformFold = false; 2270 if (Idx0->isNullValue()) 2271 PerformFold = true; 2272 else if (LastI.isSequential()) 2273 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0)) 2274 PerformFold = (!LastI.isBoundedSequential() || 2275 isIndexInRangeOfArrayType( 2276 LastI.getSequentialNumElements(), CI)) && 2277 !CE->getOperand(CE->getNumOperands() - 1) 2278 ->getType() 2279 ->isVectorTy(); 2280 2281 if (PerformFold) { 2282 SmallVector<Value*, 16> NewIndices; 2283 NewIndices.reserve(Idxs.size() + CE->getNumOperands()); 2284 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1); 2285 2286 // Add the last index of the source with the first index of the new GEP. 2287 // Make sure to handle the case when they are actually different types. 2288 Constant *Combined = CE->getOperand(CE->getNumOperands()-1); 2289 // Otherwise it must be an array. 2290 if (!Idx0->isNullValue()) { 2291 Type *IdxTy = Combined->getType(); 2292 if (IdxTy != Idx0->getType()) { 2293 unsigned CommonExtendedWidth = 2294 std::max(IdxTy->getIntegerBitWidth(), 2295 Idx0->getType()->getIntegerBitWidth()); 2296 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2297 2298 Type *CommonTy = 2299 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth); 2300 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy); 2301 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy); 2302 Combined = ConstantExpr::get(Instruction::Add, C1, C2); 2303 } else { 2304 Combined = 2305 ConstantExpr::get(Instruction::Add, Idx0, Combined); 2306 } 2307 } 2308 2309 NewIndices.push_back(Combined); 2310 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 2311 2312 // The combined GEP normally inherits its index inrange attribute from 2313 // the inner GEP, but if the inner GEP's last index was adjusted by the 2314 // outer GEP, any inbounds attribute on that index is invalidated. 2315 Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex(); 2316 if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue()) 2317 IRIndex = None; 2318 2319 return ConstantExpr::getGetElementPtr( 2320 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0), 2321 NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(), 2322 IRIndex); 2323 } 2324 } 2325 2326 // Attempt to fold casts to the same type away. For example, folding: 2327 // 2328 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), 2329 // i64 0, i64 0) 2330 // into: 2331 // 2332 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) 2333 // 2334 // Don't fold if the cast is changing address spaces. 2335 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { 2336 PointerType *SrcPtrTy = 2337 dyn_cast<PointerType>(CE->getOperand(0)->getType()); 2338 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); 2339 if (SrcPtrTy && DstPtrTy) { 2340 ArrayType *SrcArrayTy = 2341 dyn_cast<ArrayType>(SrcPtrTy->getElementType()); 2342 ArrayType *DstArrayTy = 2343 dyn_cast<ArrayType>(DstPtrTy->getElementType()); 2344 if (SrcArrayTy && DstArrayTy 2345 && SrcArrayTy->getElementType() == DstArrayTy->getElementType() 2346 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 2347 return ConstantExpr::getGetElementPtr(SrcArrayTy, 2348 (Constant *)CE->getOperand(0), 2349 Idxs, InBounds, InRangeIndex); 2350 } 2351 } 2352 } 2353 2354 // Check to see if any array indices are not within the corresponding 2355 // notional array or vector bounds. If so, try to determine if they can be 2356 // factored out into preceding dimensions. 2357 SmallVector<Constant *, 8> NewIdxs; 2358 Type *Ty = PointeeTy; 2359 Type *Prev = C->getType(); 2360 bool Unknown = 2361 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); 2362 for (unsigned i = 1, e = Idxs.size(); i != e; 2363 Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) { 2364 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { 2365 // We don't know if it's in range or not. 2366 Unknown = true; 2367 continue; 2368 } 2369 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) 2370 // Skip if the type of the previous index is not supported. 2371 continue; 2372 if (InRangeIndex && i == *InRangeIndex + 1) { 2373 // If an index is marked inrange, we cannot apply this canonicalization to 2374 // the following index, as that will cause the inrange index to point to 2375 // the wrong element. 2376 continue; 2377 } 2378 if (isa<StructType>(Ty)) { 2379 // The verify makes sure that GEPs into a struct are in range. 2380 continue; 2381 } 2382 auto *STy = cast<SequentialType>(Ty); 2383 if (isa<VectorType>(STy)) { 2384 // There can be awkward padding in after a non-power of two vector. 2385 Unknown = true; 2386 continue; 2387 } 2388 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { 2389 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) 2390 // It's in range, skip to the next index. 2391 continue; 2392 if (CI->getSExtValue() < 0) { 2393 // It's out of range and negative, don't try to factor it. 2394 Unknown = true; 2395 continue; 2396 } 2397 } else { 2398 auto *CV = cast<ConstantDataVector>(Idxs[i]); 2399 bool InRange = true; 2400 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { 2401 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); 2402 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); 2403 if (CI->getSExtValue() < 0) { 2404 Unknown = true; 2405 break; 2406 } 2407 } 2408 if (InRange || Unknown) 2409 // It's in range, skip to the next index. 2410 // It's out of range and negative, don't try to factor it. 2411 continue; 2412 } 2413 if (isa<StructType>(Prev)) { 2414 // It's out of range, but the prior dimension is a struct 2415 // so we can't do anything about it. 2416 Unknown = true; 2417 continue; 2418 } 2419 // It's out of range, but we can factor it into the prior 2420 // dimension. 2421 NewIdxs.resize(Idxs.size()); 2422 // Determine the number of elements in our sequential type. 2423 uint64_t NumElements = STy->getArrayNumElements(); 2424 2425 // Expand the current index or the previous index to a vector from a scalar 2426 // if necessary. 2427 Constant *CurrIdx = cast<Constant>(Idxs[i]); 2428 auto *PrevIdx = 2429 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); 2430 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); 2431 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); 2432 bool UseVector = IsCurrIdxVector || IsPrevIdxVector; 2433 2434 if (!IsCurrIdxVector && IsPrevIdxVector) 2435 CurrIdx = ConstantDataVector::getSplat( 2436 PrevIdx->getType()->getVectorNumElements(), CurrIdx); 2437 2438 if (!IsPrevIdxVector && IsCurrIdxVector) 2439 PrevIdx = ConstantDataVector::getSplat( 2440 CurrIdx->getType()->getVectorNumElements(), PrevIdx); 2441 2442 Constant *Factor = 2443 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); 2444 if (UseVector) 2445 Factor = ConstantDataVector::getSplat( 2446 IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements() 2447 : CurrIdx->getType()->getVectorNumElements(), 2448 Factor); 2449 2450 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor); 2451 2452 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor); 2453 2454 unsigned CommonExtendedWidth = 2455 std::max(PrevIdx->getType()->getScalarSizeInBits(), 2456 Div->getType()->getScalarSizeInBits()); 2457 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2458 2459 // Before adding, extend both operands to i64 to avoid 2460 // overflow trouble. 2461 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); 2462 if (UseVector) 2463 ExtendedTy = VectorType::get( 2464 ExtendedTy, IsPrevIdxVector 2465 ? PrevIdx->getType()->getVectorNumElements() 2466 : CurrIdx->getType()->getVectorNumElements()); 2467 2468 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2469 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy); 2470 2471 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2472 Div = ConstantExpr::getSExt(Div, ExtendedTy); 2473 2474 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); 2475 } 2476 2477 // If we did any factoring, start over with the adjusted indices. 2478 if (!NewIdxs.empty()) { 2479 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2480 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); 2481 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, 2482 InRangeIndex); 2483 } 2484 2485 // If all indices are known integers and normalized, we can do a simple 2486 // check for the "inbounds" property. 2487 if (!Unknown && !InBounds) 2488 if (auto *GV = dyn_cast<GlobalVariable>(C)) 2489 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs)) 2490 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, 2491 /*InBounds=*/true, InRangeIndex); 2492 2493 return nullptr; 2494 } 2495