xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantFold.cpp (revision 6966ac055c3b7a39266fb982493330df7a097997)
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM.  This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 //===----------------------------------------------------------------------===//
39 //                ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
41 
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
46 
47   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49 
50   // If this cast changes element count then we can't handle it here:
51   // doing so requires endianness information.  This should be handled by
52   // Analysis/ConstantFolding.cpp
53   unsigned NumElts = DstTy->getNumElements();
54   if (NumElts != CV->getType()->getVectorNumElements())
55     return nullptr;
56 
57   Type *DstEltTy = DstTy->getElementType();
58 
59   SmallVector<Constant*, 16> Result;
60   Type *Ty = IntegerType::get(CV->getContext(), 32);
61   for (unsigned i = 0; i != NumElts; ++i) {
62     Constant *C =
63       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
64     C = ConstantExpr::getBitCast(C, DstEltTy);
65     Result.push_back(C);
66   }
67 
68   return ConstantVector::get(Result);
69 }
70 
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
75 static unsigned
76 foldConstantCastPair(
77   unsigned opc,          ///< opcode of the second cast constant expression
78   ConstantExpr *Op,      ///< the first cast constant expression
79   Type *DstTy            ///< destination type of the first cast
80 ) {
81   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
82   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
83   assert(CastInst::isCast(opc) && "Invalid cast opcode");
84 
85   // The types and opcodes for the two Cast constant expressions
86   Type *SrcTy = Op->getOperand(0)->getType();
87   Type *MidTy = Op->getType();
88   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
89   Instruction::CastOps secondOp = Instruction::CastOps(opc);
90 
91   // Assume that pointers are never more than 64 bits wide, and only use this
92   // for the middle type. Otherwise we could end up folding away illegal
93   // bitcasts between address spaces with different sizes.
94   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
95 
96   // Let CastInst::isEliminableCastPair do the heavy lifting.
97   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
98                                         nullptr, FakeIntPtrTy, nullptr);
99 }
100 
101 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
102   Type *SrcTy = V->getType();
103   if (SrcTy == DestTy)
104     return V; // no-op cast
105 
106   // Check to see if we are casting a pointer to an aggregate to a pointer to
107   // the first element.  If so, return the appropriate GEP instruction.
108   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
109     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
110       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
111           && PTy->getElementType()->isSized()) {
112         SmallVector<Value*, 8> IdxList;
113         Value *Zero =
114           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
115         IdxList.push_back(Zero);
116         Type *ElTy = PTy->getElementType();
117         while (ElTy != DPTy->getElementType()) {
118           if (StructType *STy = dyn_cast<StructType>(ElTy)) {
119             if (STy->getNumElements() == 0) break;
120             ElTy = STy->getElementType(0);
121             IdxList.push_back(Zero);
122           } else if (SequentialType *STy =
123                      dyn_cast<SequentialType>(ElTy)) {
124             ElTy = STy->getElementType();
125             IdxList.push_back(Zero);
126           } else {
127             break;
128           }
129         }
130 
131         if (ElTy == DPTy->getElementType())
132           // This GEP is inbounds because all indices are zero.
133           return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
134                                                         V, IdxList);
135       }
136 
137   // Handle casts from one vector constant to another.  We know that the src
138   // and dest type have the same size (otherwise its an illegal cast).
139   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
140     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
141       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
142              "Not cast between same sized vectors!");
143       SrcTy = nullptr;
144       // First, check for null.  Undef is already handled.
145       if (isa<ConstantAggregateZero>(V))
146         return Constant::getNullValue(DestTy);
147 
148       // Handle ConstantVector and ConstantAggregateVector.
149       return BitCastConstantVector(V, DestPTy);
150     }
151 
152     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153     // This allows for other simplifications (although some of them
154     // can only be handled by Analysis/ConstantFolding.cpp).
155     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
156       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
157   }
158 
159   // Finally, implement bitcast folding now.   The code below doesn't handle
160   // bitcast right.
161   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
162     return ConstantPointerNull::get(cast<PointerType>(DestTy));
163 
164   // Handle integral constant input.
165   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
166     if (DestTy->isIntegerTy())
167       // Integral -> Integral. This is a no-op because the bit widths must
168       // be the same. Consequently, we just fold to V.
169       return V;
170 
171     // See note below regarding the PPC_FP128 restriction.
172     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
173       return ConstantFP::get(DestTy->getContext(),
174                              APFloat(DestTy->getFltSemantics(),
175                                      CI->getValue()));
176 
177     // Otherwise, can't fold this (vector?)
178     return nullptr;
179   }
180 
181   // Handle ConstantFP input: FP -> Integral.
182   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
183     // PPC_FP128 is really the sum of two consecutive doubles, where the first
184     // double is always stored first in memory, regardless of the target
185     // endianness. The memory layout of i128, however, depends on the target
186     // endianness, and so we can't fold this without target endianness
187     // information. This should instead be handled by
188     // Analysis/ConstantFolding.cpp
189     if (FP->getType()->isPPC_FP128Ty())
190       return nullptr;
191 
192     // Make sure dest type is compatible with the folded integer constant.
193     if (!DestTy->isIntegerTy())
194       return nullptr;
195 
196     return ConstantInt::get(FP->getContext(),
197                             FP->getValueAPF().bitcastToAPInt());
198   }
199 
200   return nullptr;
201 }
202 
203 
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
207 /// of bytes used.
208 ///
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant.  If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
213                                       unsigned ByteSize) {
214   assert(C->getType()->isIntegerTy() &&
215          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
216          "Non-byte sized integer input");
217   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
218   assert(ByteSize && "Must be accessing some piece");
219   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
220   assert(ByteSize != CSize && "Should not extract everything");
221 
222   // Constant Integers are simple.
223   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
224     APInt V = CI->getValue();
225     if (ByteStart)
226       V.lshrInPlace(ByteStart*8);
227     V = V.trunc(ByteSize*8);
228     return ConstantInt::get(CI->getContext(), V);
229   }
230 
231   // In the input is a constant expr, we might be able to recursively simplify.
232   // If not, we definitely can't do anything.
233   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234   if (!CE) return nullptr;
235 
236   switch (CE->getOpcode()) {
237   default: return nullptr;
238   case Instruction::Or: {
239     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240     if (!RHS)
241       return nullptr;
242 
243     // X | -1 -> -1.
244     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
245       if (RHSC->isMinusOne())
246         return RHSC;
247 
248     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
249     if (!LHS)
250       return nullptr;
251     return ConstantExpr::getOr(LHS, RHS);
252   }
253   case Instruction::And: {
254     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
255     if (!RHS)
256       return nullptr;
257 
258     // X & 0 -> 0.
259     if (RHS->isNullValue())
260       return RHS;
261 
262     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
263     if (!LHS)
264       return nullptr;
265     return ConstantExpr::getAnd(LHS, RHS);
266   }
267   case Instruction::LShr: {
268     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269     if (!Amt)
270       return nullptr;
271     APInt ShAmt = Amt->getValue();
272     // Cannot analyze non-byte shifts.
273     if ((ShAmt & 7) != 0)
274       return nullptr;
275     ShAmt.lshrInPlace(3);
276 
277     // If the extract is known to be all zeros, return zero.
278     if (ShAmt.uge(CSize - ByteStart))
279       return Constant::getNullValue(
280           IntegerType::get(CE->getContext(), ByteSize * 8));
281     // If the extract is known to be fully in the input, extract it.
282     if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
283       return ExtractConstantBytes(CE->getOperand(0),
284                                   ByteStart + ShAmt.getZExtValue(), ByteSize);
285 
286     // TODO: Handle the 'partially zero' case.
287     return nullptr;
288   }
289 
290   case Instruction::Shl: {
291     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
292     if (!Amt)
293       return nullptr;
294     APInt ShAmt = Amt->getValue();
295     // Cannot analyze non-byte shifts.
296     if ((ShAmt & 7) != 0)
297       return nullptr;
298     ShAmt.lshrInPlace(3);
299 
300     // If the extract is known to be all zeros, return zero.
301     if (ShAmt.uge(ByteStart + ByteSize))
302       return Constant::getNullValue(
303           IntegerType::get(CE->getContext(), ByteSize * 8));
304     // If the extract is known to be fully in the input, extract it.
305     if (ShAmt.ule(ByteStart))
306       return ExtractConstantBytes(CE->getOperand(0),
307                                   ByteStart - ShAmt.getZExtValue(), ByteSize);
308 
309     // TODO: Handle the 'partially zero' case.
310     return nullptr;
311   }
312 
313   case Instruction::ZExt: {
314     unsigned SrcBitSize =
315       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
316 
317     // If extracting something that is completely zero, return 0.
318     if (ByteStart*8 >= SrcBitSize)
319       return Constant::getNullValue(IntegerType::get(CE->getContext(),
320                                                      ByteSize*8));
321 
322     // If exactly extracting the input, return it.
323     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
324       return CE->getOperand(0);
325 
326     // If extracting something completely in the input, if the input is a
327     // multiple of 8 bits, recurse.
328     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
329       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
330 
331     // Otherwise, if extracting a subset of the input, which is not multiple of
332     // 8 bits, do a shift and trunc to get the bits.
333     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
334       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
335       Constant *Res = CE->getOperand(0);
336       if (ByteStart)
337         Res = ConstantExpr::getLShr(Res,
338                                  ConstantInt::get(Res->getType(), ByteStart*8));
339       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
340                                                           ByteSize*8));
341     }
342 
343     // TODO: Handle the 'partially zero' case.
344     return nullptr;
345   }
346   }
347 }
348 
349 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
350 /// factors factored out. If Folded is false, return null if no factoring was
351 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
352 /// top-level folder.
353 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) {
354   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
355     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
356     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
357     return ConstantExpr::getNUWMul(E, N);
358   }
359 
360   if (StructType *STy = dyn_cast<StructType>(Ty))
361     if (!STy->isPacked()) {
362       unsigned NumElems = STy->getNumElements();
363       // An empty struct has size zero.
364       if (NumElems == 0)
365         return ConstantExpr::getNullValue(DestTy);
366       // Check for a struct with all members having the same size.
367       Constant *MemberSize =
368         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
369       bool AllSame = true;
370       for (unsigned i = 1; i != NumElems; ++i)
371         if (MemberSize !=
372             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
373           AllSame = false;
374           break;
375         }
376       if (AllSame) {
377         Constant *N = ConstantInt::get(DestTy, NumElems);
378         return ConstantExpr::getNUWMul(MemberSize, N);
379       }
380     }
381 
382   // Pointer size doesn't depend on the pointee type, so canonicalize them
383   // to an arbitrary pointee.
384   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
385     if (!PTy->getElementType()->isIntegerTy(1))
386       return
387         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
388                                          PTy->getAddressSpace()),
389                         DestTy, true);
390 
391   // If there's no interesting folding happening, bail so that we don't create
392   // a constant that looks like it needs folding but really doesn't.
393   if (!Folded)
394     return nullptr;
395 
396   // Base case: Get a regular sizeof expression.
397   Constant *C = ConstantExpr::getSizeOf(Ty);
398   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
399                                                     DestTy, false),
400                             C, DestTy);
401   return C;
402 }
403 
404 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
405 /// factors factored out. If Folded is false, return null if no factoring was
406 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
407 /// top-level folder.
408 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) {
409   // The alignment of an array is equal to the alignment of the
410   // array element. Note that this is not always true for vectors.
411   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
412     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
413     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
414                                                       DestTy,
415                                                       false),
416                               C, DestTy);
417     return C;
418   }
419 
420   if (StructType *STy = dyn_cast<StructType>(Ty)) {
421     // Packed structs always have an alignment of 1.
422     if (STy->isPacked())
423       return ConstantInt::get(DestTy, 1);
424 
425     // Otherwise, struct alignment is the maximum alignment of any member.
426     // Without target data, we can't compare much, but we can check to see
427     // if all the members have the same alignment.
428     unsigned NumElems = STy->getNumElements();
429     // An empty struct has minimal alignment.
430     if (NumElems == 0)
431       return ConstantInt::get(DestTy, 1);
432     // Check for a struct with all members having the same alignment.
433     Constant *MemberAlign =
434       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
435     bool AllSame = true;
436     for (unsigned i = 1; i != NumElems; ++i)
437       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
438         AllSame = false;
439         break;
440       }
441     if (AllSame)
442       return MemberAlign;
443   }
444 
445   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446   // to an arbitrary pointee.
447   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
448     if (!PTy->getElementType()->isIntegerTy(1))
449       return
450         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
451                                                            1),
452                                           PTy->getAddressSpace()),
453                          DestTy, true);
454 
455   // If there's no interesting folding happening, bail so that we don't create
456   // a constant that looks like it needs folding but really doesn't.
457   if (!Folded)
458     return nullptr;
459 
460   // Base case: Get a regular alignof expression.
461   Constant *C = ConstantExpr::getAlignOf(Ty);
462   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
463                                                     DestTy, false),
464                             C, DestTy);
465   return C;
466 }
467 
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
472 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy,
473                                    bool Folded) {
474   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
475     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
476                                                                 DestTy, false),
477                                         FieldNo, DestTy);
478     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
479     return ConstantExpr::getNUWMul(E, N);
480   }
481 
482   if (StructType *STy = dyn_cast<StructType>(Ty))
483     if (!STy->isPacked()) {
484       unsigned NumElems = STy->getNumElements();
485       // An empty struct has no members.
486       if (NumElems == 0)
487         return nullptr;
488       // Check for a struct with all members having the same size.
489       Constant *MemberSize =
490         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
491       bool AllSame = true;
492       for (unsigned i = 1; i != NumElems; ++i)
493         if (MemberSize !=
494             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
495           AllSame = false;
496           break;
497         }
498       if (AllSame) {
499         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
500                                                                     false,
501                                                                     DestTy,
502                                                                     false),
503                                             FieldNo, DestTy);
504         return ConstantExpr::getNUWMul(MemberSize, N);
505       }
506     }
507 
508   // If there's no interesting folding happening, bail so that we don't create
509   // a constant that looks like it needs folding but really doesn't.
510   if (!Folded)
511     return nullptr;
512 
513   // Base case: Get a regular offsetof expression.
514   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
515   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
516                                                     DestTy, false),
517                             C, DestTy);
518   return C;
519 }
520 
521 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
522                                             Type *DestTy) {
523   if (isa<UndefValue>(V)) {
524     // zext(undef) = 0, because the top bits will be zero.
525     // sext(undef) = 0, because the top bits will all be the same.
526     // [us]itofp(undef) = 0, because the result value is bounded.
527     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
528         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
529       return Constant::getNullValue(DestTy);
530     return UndefValue::get(DestTy);
531   }
532 
533   if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
534       opc != Instruction::AddrSpaceCast)
535     return Constant::getNullValue(DestTy);
536 
537   // If the cast operand is a constant expression, there's a few things we can
538   // do to try to simplify it.
539   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
540     if (CE->isCast()) {
541       // Try hard to fold cast of cast because they are often eliminable.
542       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
543         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
544     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
545                // Do not fold addrspacecast (gep 0, .., 0). It might make the
546                // addrspacecast uncanonicalized.
547                opc != Instruction::AddrSpaceCast &&
548                // Do not fold bitcast (gep) with inrange index, as this loses
549                // information.
550                !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
551                // Do not fold if the gep type is a vector, as bitcasting
552                // operand 0 of a vector gep will result in a bitcast between
553                // different sizes.
554                !CE->getType()->isVectorTy()) {
555       // If all of the indexes in the GEP are null values, there is no pointer
556       // adjustment going on.  We might as well cast the source pointer.
557       bool isAllNull = true;
558       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
559         if (!CE->getOperand(i)->isNullValue()) {
560           isAllNull = false;
561           break;
562         }
563       if (isAllNull)
564         // This is casting one pointer type to another, always BitCast
565         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
566     }
567   }
568 
569   // If the cast operand is a constant vector, perform the cast by
570   // operating on each element. In the cast of bitcasts, the element
571   // count may be mismatched; don't attempt to handle that here.
572   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
573       DestTy->isVectorTy() &&
574       DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
575     SmallVector<Constant*, 16> res;
576     VectorType *DestVecTy = cast<VectorType>(DestTy);
577     Type *DstEltTy = DestVecTy->getElementType();
578     Type *Ty = IntegerType::get(V->getContext(), 32);
579     for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
580       Constant *C =
581         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
582       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
583     }
584     return ConstantVector::get(res);
585   }
586 
587   // We actually have to do a cast now. Perform the cast according to the
588   // opcode specified.
589   switch (opc) {
590   default:
591     llvm_unreachable("Failed to cast constant expression");
592   case Instruction::FPTrunc:
593   case Instruction::FPExt:
594     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
595       bool ignored;
596       APFloat Val = FPC->getValueAPF();
597       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
598                   DestTy->isFloatTy() ? APFloat::IEEEsingle() :
599                   DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
600                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
601                   DestTy->isFP128Ty() ? APFloat::IEEEquad() :
602                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
603                   APFloat::Bogus(),
604                   APFloat::rmNearestTiesToEven, &ignored);
605       return ConstantFP::get(V->getContext(), Val);
606     }
607     return nullptr; // Can't fold.
608   case Instruction::FPToUI:
609   case Instruction::FPToSI:
610     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
611       const APFloat &V = FPC->getValueAPF();
612       bool ignored;
613       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
614       APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
615       if (APFloat::opInvalidOp ==
616           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
617         // Undefined behavior invoked - the destination type can't represent
618         // the input constant.
619         return UndefValue::get(DestTy);
620       }
621       return ConstantInt::get(FPC->getContext(), IntVal);
622     }
623     return nullptr; // Can't fold.
624   case Instruction::IntToPtr:   //always treated as unsigned
625     if (V->isNullValue())       // Is it an integral null value?
626       return ConstantPointerNull::get(cast<PointerType>(DestTy));
627     return nullptr;                   // Other pointer types cannot be casted
628   case Instruction::PtrToInt:   // always treated as unsigned
629     // Is it a null pointer value?
630     if (V->isNullValue())
631       return ConstantInt::get(DestTy, 0);
632     // If this is a sizeof-like expression, pull out multiplications by
633     // known factors to expose them to subsequent folding. If it's an
634     // alignof-like expression, factor out known factors.
635     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
636       if (CE->getOpcode() == Instruction::GetElementPtr &&
637           CE->getOperand(0)->isNullValue()) {
638         // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
639         // getFoldedAlignOf() don't handle the case when DestTy is a vector of
640         // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
641         // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
642         // happen in one "real" C-code test case, so it does not seem to be an
643         // important optimization to handle vectors here. For now, simply bail
644         // out.
645         if (DestTy->isVectorTy())
646           return nullptr;
647         GEPOperator *GEPO = cast<GEPOperator>(CE);
648         Type *Ty = GEPO->getSourceElementType();
649         if (CE->getNumOperands() == 2) {
650           // Handle a sizeof-like expression.
651           Constant *Idx = CE->getOperand(1);
652           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
653           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
654             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
655                                                                 DestTy, false),
656                                         Idx, DestTy);
657             return ConstantExpr::getMul(C, Idx);
658           }
659         } else if (CE->getNumOperands() == 3 &&
660                    CE->getOperand(1)->isNullValue()) {
661           // Handle an alignof-like expression.
662           if (StructType *STy = dyn_cast<StructType>(Ty))
663             if (!STy->isPacked()) {
664               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
665               if (CI->isOne() &&
666                   STy->getNumElements() == 2 &&
667                   STy->getElementType(0)->isIntegerTy(1)) {
668                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
669               }
670             }
671           // Handle an offsetof-like expression.
672           if (Ty->isStructTy() || Ty->isArrayTy()) {
673             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
674                                                 DestTy, false))
675               return C;
676           }
677         }
678       }
679     // Other pointer types cannot be casted
680     return nullptr;
681   case Instruction::UIToFP:
682   case Instruction::SIToFP:
683     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
684       const APInt &api = CI->getValue();
685       APFloat apf(DestTy->getFltSemantics(),
686                   APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
687       apf.convertFromAPInt(api, opc==Instruction::SIToFP,
688                            APFloat::rmNearestTiesToEven);
689       return ConstantFP::get(V->getContext(), apf);
690     }
691     return nullptr;
692   case Instruction::ZExt:
693     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
694       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
695       return ConstantInt::get(V->getContext(),
696                               CI->getValue().zext(BitWidth));
697     }
698     return nullptr;
699   case Instruction::SExt:
700     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
701       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
702       return ConstantInt::get(V->getContext(),
703                               CI->getValue().sext(BitWidth));
704     }
705     return nullptr;
706   case Instruction::Trunc: {
707     if (V->getType()->isVectorTy())
708       return nullptr;
709 
710     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
711     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
712       return ConstantInt::get(V->getContext(),
713                               CI->getValue().trunc(DestBitWidth));
714     }
715 
716     // The input must be a constantexpr.  See if we can simplify this based on
717     // the bytes we are demanding.  Only do this if the source and dest are an
718     // even multiple of a byte.
719     if ((DestBitWidth & 7) == 0 &&
720         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
721       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
722         return Res;
723 
724     return nullptr;
725   }
726   case Instruction::BitCast:
727     return FoldBitCast(V, DestTy);
728   case Instruction::AddrSpaceCast:
729     return nullptr;
730   }
731 }
732 
733 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
734                                               Constant *V1, Constant *V2) {
735   // Check for i1 and vector true/false conditions.
736   if (Cond->isNullValue()) return V2;
737   if (Cond->isAllOnesValue()) return V1;
738 
739   // If the condition is a vector constant, fold the result elementwise.
740   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
741     SmallVector<Constant*, 16> Result;
742     Type *Ty = IntegerType::get(CondV->getContext(), 32);
743     for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
744       Constant *V;
745       Constant *V1Element = ConstantExpr::getExtractElement(V1,
746                                                     ConstantInt::get(Ty, i));
747       Constant *V2Element = ConstantExpr::getExtractElement(V2,
748                                                     ConstantInt::get(Ty, i));
749       Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
750       if (V1Element == V2Element) {
751         V = V1Element;
752       } else if (isa<UndefValue>(Cond)) {
753         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
754       } else {
755         if (!isa<ConstantInt>(Cond)) break;
756         V = Cond->isNullValue() ? V2Element : V1Element;
757       }
758       Result.push_back(V);
759     }
760 
761     // If we were able to build the vector, return it.
762     if (Result.size() == V1->getType()->getVectorNumElements())
763       return ConstantVector::get(Result);
764   }
765 
766   if (isa<UndefValue>(Cond)) {
767     if (isa<UndefValue>(V1)) return V1;
768     return V2;
769   }
770   if (isa<UndefValue>(V1)) return V2;
771   if (isa<UndefValue>(V2)) return V1;
772   if (V1 == V2) return V1;
773 
774   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
775     if (TrueVal->getOpcode() == Instruction::Select)
776       if (TrueVal->getOperand(0) == Cond)
777         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
778   }
779   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
780     if (FalseVal->getOpcode() == Instruction::Select)
781       if (FalseVal->getOperand(0) == Cond)
782         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
783   }
784 
785   return nullptr;
786 }
787 
788 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
789                                                       Constant *Idx) {
790   if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
791     return UndefValue::get(Val->getType()->getVectorElementType());
792   if (Val->isNullValue())  // ee(zero, x) -> zero
793     return Constant::getNullValue(Val->getType()->getVectorElementType());
794   // ee({w,x,y,z}, undef) -> undef
795   if (isa<UndefValue>(Idx))
796     return UndefValue::get(Val->getType()->getVectorElementType());
797 
798   if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
799     // ee({w,x,y,z}, wrong_value) -> undef
800     if (CIdx->uge(Val->getType()->getVectorNumElements()))
801       return UndefValue::get(Val->getType()->getVectorElementType());
802     return Val->getAggregateElement(CIdx->getZExtValue());
803   }
804   return nullptr;
805 }
806 
807 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
808                                                      Constant *Elt,
809                                                      Constant *Idx) {
810   if (isa<UndefValue>(Idx))
811     return UndefValue::get(Val->getType());
812 
813   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
814   if (!CIdx) return nullptr;
815 
816   unsigned NumElts = Val->getType()->getVectorNumElements();
817   if (CIdx->uge(NumElts))
818     return UndefValue::get(Val->getType());
819 
820   SmallVector<Constant*, 16> Result;
821   Result.reserve(NumElts);
822   auto *Ty = Type::getInt32Ty(Val->getContext());
823   uint64_t IdxVal = CIdx->getZExtValue();
824   for (unsigned i = 0; i != NumElts; ++i) {
825     if (i == IdxVal) {
826       Result.push_back(Elt);
827       continue;
828     }
829 
830     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
831     Result.push_back(C);
832   }
833 
834   return ConstantVector::get(Result);
835 }
836 
837 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
838                                                      Constant *V2,
839                                                      Constant *Mask) {
840   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
841   Type *EltTy = V1->getType()->getVectorElementType();
842 
843   // Undefined shuffle mask -> undefined value.
844   if (isa<UndefValue>(Mask))
845     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
846 
847   // Don't break the bitcode reader hack.
848   if (isa<ConstantExpr>(Mask)) return nullptr;
849 
850   unsigned SrcNumElts = V1->getType()->getVectorNumElements();
851 
852   // Loop over the shuffle mask, evaluating each element.
853   SmallVector<Constant*, 32> Result;
854   for (unsigned i = 0; i != MaskNumElts; ++i) {
855     int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
856     if (Elt == -1) {
857       Result.push_back(UndefValue::get(EltTy));
858       continue;
859     }
860     Constant *InElt;
861     if (unsigned(Elt) >= SrcNumElts*2)
862       InElt = UndefValue::get(EltTy);
863     else if (unsigned(Elt) >= SrcNumElts) {
864       Type *Ty = IntegerType::get(V2->getContext(), 32);
865       InElt =
866         ConstantExpr::getExtractElement(V2,
867                                         ConstantInt::get(Ty, Elt - SrcNumElts));
868     } else {
869       Type *Ty = IntegerType::get(V1->getContext(), 32);
870       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
871     }
872     Result.push_back(InElt);
873   }
874 
875   return ConstantVector::get(Result);
876 }
877 
878 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
879                                                     ArrayRef<unsigned> Idxs) {
880   // Base case: no indices, so return the entire value.
881   if (Idxs.empty())
882     return Agg;
883 
884   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
885     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
886 
887   return nullptr;
888 }
889 
890 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
891                                                    Constant *Val,
892                                                    ArrayRef<unsigned> Idxs) {
893   // Base case: no indices, so replace the entire value.
894   if (Idxs.empty())
895     return Val;
896 
897   unsigned NumElts;
898   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
899     NumElts = ST->getNumElements();
900   else
901     NumElts = cast<SequentialType>(Agg->getType())->getNumElements();
902 
903   SmallVector<Constant*, 32> Result;
904   for (unsigned i = 0; i != NumElts; ++i) {
905     Constant *C = Agg->getAggregateElement(i);
906     if (!C) return nullptr;
907 
908     if (Idxs[0] == i)
909       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
910 
911     Result.push_back(C);
912   }
913 
914   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
915     return ConstantStruct::get(ST, Result);
916   if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
917     return ConstantArray::get(AT, Result);
918   return ConstantVector::get(Result);
919 }
920 
921 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
922   assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
923 
924   // Handle scalar UndefValue. Vectors are always evaluated per element.
925   bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C);
926 
927   if (HasScalarUndef) {
928     switch (static_cast<Instruction::UnaryOps>(Opcode)) {
929     case Instruction::FNeg:
930       return C; // -undef -> undef
931     case Instruction::UnaryOpsEnd:
932       llvm_unreachable("Invalid UnaryOp");
933     }
934   }
935 
936   // Constant should not be UndefValue, unless these are vector constants.
937   assert(!HasScalarUndef && "Unexpected UndefValue");
938   // We only have FP UnaryOps right now.
939   assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
940 
941   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
942     const APFloat &CV = CFP->getValueAPF();
943     switch (Opcode) {
944     default:
945       break;
946     case Instruction::FNeg:
947       return ConstantFP::get(C->getContext(), neg(CV));
948     }
949   } else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) {
950     // Fold each element and create a vector constant from those constants.
951     SmallVector<Constant*, 16> Result;
952     Type *Ty = IntegerType::get(VTy->getContext(), 32);
953     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
954       Constant *ExtractIdx = ConstantInt::get(Ty, i);
955       Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
956 
957       Result.push_back(ConstantExpr::get(Opcode, Elt));
958     }
959 
960     return ConstantVector::get(Result);
961   }
962 
963   // We don't know how to fold this.
964   return nullptr;
965 }
966 
967 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
968                                               Constant *C2) {
969   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
970 
971   // Handle scalar UndefValue. Vectors are always evaluated per element.
972   bool HasScalarUndef = !C1->getType()->isVectorTy() &&
973                         (isa<UndefValue>(C1) || isa<UndefValue>(C2));
974   if (HasScalarUndef) {
975     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
976     case Instruction::Xor:
977       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
978         // Handle undef ^ undef -> 0 special case. This is a common
979         // idiom (misuse).
980         return Constant::getNullValue(C1->getType());
981       LLVM_FALLTHROUGH;
982     case Instruction::Add:
983     case Instruction::Sub:
984       return UndefValue::get(C1->getType());
985     case Instruction::And:
986       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
987         return C1;
988       return Constant::getNullValue(C1->getType());   // undef & X -> 0
989     case Instruction::Mul: {
990       // undef * undef -> undef
991       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
992         return C1;
993       const APInt *CV;
994       // X * undef -> undef   if X is odd
995       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
996         if ((*CV)[0])
997           return UndefValue::get(C1->getType());
998 
999       // X * undef -> 0       otherwise
1000       return Constant::getNullValue(C1->getType());
1001     }
1002     case Instruction::SDiv:
1003     case Instruction::UDiv:
1004       // X / undef -> undef
1005       if (isa<UndefValue>(C2))
1006         return C2;
1007       // undef / 0 -> undef
1008       // undef / 1 -> undef
1009       if (match(C2, m_Zero()) || match(C2, m_One()))
1010         return C1;
1011       // undef / X -> 0       otherwise
1012       return Constant::getNullValue(C1->getType());
1013     case Instruction::URem:
1014     case Instruction::SRem:
1015       // X % undef -> undef
1016       if (match(C2, m_Undef()))
1017         return C2;
1018       // undef % 0 -> undef
1019       if (match(C2, m_Zero()))
1020         return C1;
1021       // undef % X -> 0       otherwise
1022       return Constant::getNullValue(C1->getType());
1023     case Instruction::Or:                          // X | undef -> -1
1024       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1025         return C1;
1026       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1027     case Instruction::LShr:
1028       // X >>l undef -> undef
1029       if (isa<UndefValue>(C2))
1030         return C2;
1031       // undef >>l 0 -> undef
1032       if (match(C2, m_Zero()))
1033         return C1;
1034       // undef >>l X -> 0
1035       return Constant::getNullValue(C1->getType());
1036     case Instruction::AShr:
1037       // X >>a undef -> undef
1038       if (isa<UndefValue>(C2))
1039         return C2;
1040       // undef >>a 0 -> undef
1041       if (match(C2, m_Zero()))
1042         return C1;
1043       // TODO: undef >>a X -> undef if the shift is exact
1044       // undef >>a X -> 0
1045       return Constant::getNullValue(C1->getType());
1046     case Instruction::Shl:
1047       // X << undef -> undef
1048       if (isa<UndefValue>(C2))
1049         return C2;
1050       // undef << 0 -> undef
1051       if (match(C2, m_Zero()))
1052         return C1;
1053       // undef << X -> 0
1054       return Constant::getNullValue(C1->getType());
1055     case Instruction::FAdd:
1056     case Instruction::FSub:
1057     case Instruction::FMul:
1058     case Instruction::FDiv:
1059     case Instruction::FRem:
1060       // [any flop] undef, undef -> undef
1061       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1062         return C1;
1063       // [any flop] C, undef -> NaN
1064       // [any flop] undef, C -> NaN
1065       // We could potentially specialize NaN/Inf constants vs. 'normal'
1066       // constants (possibly differently depending on opcode and operand). This
1067       // would allow returning undef sometimes. But it is always safe to fold to
1068       // NaN because we can choose the undef operand as NaN, and any FP opcode
1069       // with a NaN operand will propagate NaN.
1070       return ConstantFP::getNaN(C1->getType());
1071     case Instruction::BinaryOpsEnd:
1072       llvm_unreachable("Invalid BinaryOp");
1073     }
1074   }
1075 
1076   // Neither constant should be UndefValue, unless these are vector constants.
1077   assert(!HasScalarUndef && "Unexpected UndefValue");
1078 
1079   // Handle simplifications when the RHS is a constant int.
1080   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1081     switch (Opcode) {
1082     case Instruction::Add:
1083       if (CI2->isZero()) return C1;                             // X + 0 == X
1084       break;
1085     case Instruction::Sub:
1086       if (CI2->isZero()) return C1;                             // X - 0 == X
1087       break;
1088     case Instruction::Mul:
1089       if (CI2->isZero()) return C2;                             // X * 0 == 0
1090       if (CI2->isOne())
1091         return C1;                                              // X * 1 == X
1092       break;
1093     case Instruction::UDiv:
1094     case Instruction::SDiv:
1095       if (CI2->isOne())
1096         return C1;                                            // X / 1 == X
1097       if (CI2->isZero())
1098         return UndefValue::get(CI2->getType());               // X / 0 == undef
1099       break;
1100     case Instruction::URem:
1101     case Instruction::SRem:
1102       if (CI2->isOne())
1103         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1104       if (CI2->isZero())
1105         return UndefValue::get(CI2->getType());               // X % 0 == undef
1106       break;
1107     case Instruction::And:
1108       if (CI2->isZero()) return C2;                           // X & 0 == 0
1109       if (CI2->isMinusOne())
1110         return C1;                                            // X & -1 == X
1111 
1112       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1113         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1114         if (CE1->getOpcode() == Instruction::ZExt) {
1115           unsigned DstWidth = CI2->getType()->getBitWidth();
1116           unsigned SrcWidth =
1117             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1118           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1119           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1120             return C1;
1121         }
1122 
1123         // If and'ing the address of a global with a constant, fold it.
1124         if (CE1->getOpcode() == Instruction::PtrToInt &&
1125             isa<GlobalValue>(CE1->getOperand(0))) {
1126           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1127 
1128           unsigned GVAlign;
1129 
1130           if (Module *TheModule = GV->getParent()) {
1131             GVAlign = GV->getPointerAlignment(TheModule->getDataLayout());
1132 
1133             // If the function alignment is not specified then assume that it
1134             // is 4.
1135             // This is dangerous; on x86, the alignment of the pointer
1136             // corresponds to the alignment of the function, but might be less
1137             // than 4 if it isn't explicitly specified.
1138             // However, a fix for this behaviour was reverted because it
1139             // increased code size (see https://reviews.llvm.org/D55115)
1140             // FIXME: This code should be deleted once existing targets have
1141             // appropriate defaults
1142             if (GVAlign == 0U && isa<Function>(GV))
1143               GVAlign = 4U;
1144           } else if (isa<Function>(GV)) {
1145             // Without a datalayout we have to assume the worst case: that the
1146             // function pointer isn't aligned at all.
1147             GVAlign = 0U;
1148           } else {
1149             GVAlign = GV->getAlignment();
1150           }
1151 
1152           if (GVAlign > 1) {
1153             unsigned DstWidth = CI2->getType()->getBitWidth();
1154             unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1155             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1156 
1157             // If checking bits we know are clear, return zero.
1158             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1159               return Constant::getNullValue(CI2->getType());
1160           }
1161         }
1162       }
1163       break;
1164     case Instruction::Or:
1165       if (CI2->isZero()) return C1;        // X | 0 == X
1166       if (CI2->isMinusOne())
1167         return C2;                         // X | -1 == -1
1168       break;
1169     case Instruction::Xor:
1170       if (CI2->isZero()) return C1;        // X ^ 0 == X
1171 
1172       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1173         switch (CE1->getOpcode()) {
1174         default: break;
1175         case Instruction::ICmp:
1176         case Instruction::FCmp:
1177           // cmp pred ^ true -> cmp !pred
1178           assert(CI2->isOne());
1179           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1180           pred = CmpInst::getInversePredicate(pred);
1181           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1182                                           CE1->getOperand(1));
1183         }
1184       }
1185       break;
1186     case Instruction::AShr:
1187       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1188       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1189         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1190           return ConstantExpr::getLShr(C1, C2);
1191       break;
1192     }
1193   } else if (isa<ConstantInt>(C1)) {
1194     // If C1 is a ConstantInt and C2 is not, swap the operands.
1195     if (Instruction::isCommutative(Opcode))
1196       return ConstantExpr::get(Opcode, C2, C1);
1197   }
1198 
1199   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1200     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1201       const APInt &C1V = CI1->getValue();
1202       const APInt &C2V = CI2->getValue();
1203       switch (Opcode) {
1204       default:
1205         break;
1206       case Instruction::Add:
1207         return ConstantInt::get(CI1->getContext(), C1V + C2V);
1208       case Instruction::Sub:
1209         return ConstantInt::get(CI1->getContext(), C1V - C2V);
1210       case Instruction::Mul:
1211         return ConstantInt::get(CI1->getContext(), C1V * C2V);
1212       case Instruction::UDiv:
1213         assert(!CI2->isZero() && "Div by zero handled above");
1214         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1215       case Instruction::SDiv:
1216         assert(!CI2->isZero() && "Div by zero handled above");
1217         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1218           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1219         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1220       case Instruction::URem:
1221         assert(!CI2->isZero() && "Div by zero handled above");
1222         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1223       case Instruction::SRem:
1224         assert(!CI2->isZero() && "Div by zero handled above");
1225         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1226           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1227         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1228       case Instruction::And:
1229         return ConstantInt::get(CI1->getContext(), C1V & C2V);
1230       case Instruction::Or:
1231         return ConstantInt::get(CI1->getContext(), C1V | C2V);
1232       case Instruction::Xor:
1233         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1234       case Instruction::Shl:
1235         if (C2V.ult(C1V.getBitWidth()))
1236           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1237         return UndefValue::get(C1->getType()); // too big shift is undef
1238       case Instruction::LShr:
1239         if (C2V.ult(C1V.getBitWidth()))
1240           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1241         return UndefValue::get(C1->getType()); // too big shift is undef
1242       case Instruction::AShr:
1243         if (C2V.ult(C1V.getBitWidth()))
1244           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1245         return UndefValue::get(C1->getType()); // too big shift is undef
1246       }
1247     }
1248 
1249     switch (Opcode) {
1250     case Instruction::SDiv:
1251     case Instruction::UDiv:
1252     case Instruction::URem:
1253     case Instruction::SRem:
1254     case Instruction::LShr:
1255     case Instruction::AShr:
1256     case Instruction::Shl:
1257       if (CI1->isZero()) return C1;
1258       break;
1259     default:
1260       break;
1261     }
1262   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1263     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1264       const APFloat &C1V = CFP1->getValueAPF();
1265       const APFloat &C2V = CFP2->getValueAPF();
1266       APFloat C3V = C1V;  // copy for modification
1267       switch (Opcode) {
1268       default:
1269         break;
1270       case Instruction::FAdd:
1271         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1272         return ConstantFP::get(C1->getContext(), C3V);
1273       case Instruction::FSub:
1274         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1275         return ConstantFP::get(C1->getContext(), C3V);
1276       case Instruction::FMul:
1277         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1278         return ConstantFP::get(C1->getContext(), C3V);
1279       case Instruction::FDiv:
1280         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1281         return ConstantFP::get(C1->getContext(), C3V);
1282       case Instruction::FRem:
1283         (void)C3V.mod(C2V);
1284         return ConstantFP::get(C1->getContext(), C3V);
1285       }
1286     }
1287   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1288     // Fold each element and create a vector constant from those constants.
1289     SmallVector<Constant*, 16> Result;
1290     Type *Ty = IntegerType::get(VTy->getContext(), 32);
1291     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1292       Constant *ExtractIdx = ConstantInt::get(Ty, i);
1293       Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1294       Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1295 
1296       // If any element of a divisor vector is zero, the whole op is undef.
1297       if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1298         return UndefValue::get(VTy);
1299 
1300       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1301     }
1302 
1303     return ConstantVector::get(Result);
1304   }
1305 
1306   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1307     // There are many possible foldings we could do here.  We should probably
1308     // at least fold add of a pointer with an integer into the appropriate
1309     // getelementptr.  This will improve alias analysis a bit.
1310 
1311     // Given ((a + b) + c), if (b + c) folds to something interesting, return
1312     // (a + (b + c)).
1313     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1314       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1315       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1316         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1317     }
1318   } else if (isa<ConstantExpr>(C2)) {
1319     // If C2 is a constant expr and C1 isn't, flop them around and fold the
1320     // other way if possible.
1321     if (Instruction::isCommutative(Opcode))
1322       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1323   }
1324 
1325   // i1 can be simplified in many cases.
1326   if (C1->getType()->isIntegerTy(1)) {
1327     switch (Opcode) {
1328     case Instruction::Add:
1329     case Instruction::Sub:
1330       return ConstantExpr::getXor(C1, C2);
1331     case Instruction::Mul:
1332       return ConstantExpr::getAnd(C1, C2);
1333     case Instruction::Shl:
1334     case Instruction::LShr:
1335     case Instruction::AShr:
1336       // We can assume that C2 == 0.  If it were one the result would be
1337       // undefined because the shift value is as large as the bitwidth.
1338       return C1;
1339     case Instruction::SDiv:
1340     case Instruction::UDiv:
1341       // We can assume that C2 == 1.  If it were zero the result would be
1342       // undefined through division by zero.
1343       return C1;
1344     case Instruction::URem:
1345     case Instruction::SRem:
1346       // We can assume that C2 == 1.  If it were zero the result would be
1347       // undefined through division by zero.
1348       return ConstantInt::getFalse(C1->getContext());
1349     default:
1350       break;
1351     }
1352   }
1353 
1354   // We don't know how to fold this.
1355   return nullptr;
1356 }
1357 
1358 /// This type is zero-sized if it's an array or structure of zero-sized types.
1359 /// The only leaf zero-sized type is an empty structure.
1360 static bool isMaybeZeroSizedType(Type *Ty) {
1361   if (StructType *STy = dyn_cast<StructType>(Ty)) {
1362     if (STy->isOpaque()) return true;  // Can't say.
1363 
1364     // If all of elements have zero size, this does too.
1365     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1366       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1367     return true;
1368 
1369   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1370     return isMaybeZeroSizedType(ATy->getElementType());
1371   }
1372   return false;
1373 }
1374 
1375 /// Compare the two constants as though they were getelementptr indices.
1376 /// This allows coercion of the types to be the same thing.
1377 ///
1378 /// If the two constants are the "same" (after coercion), return 0.  If the
1379 /// first is less than the second, return -1, if the second is less than the
1380 /// first, return 1.  If the constants are not integral, return -2.
1381 ///
1382 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1383   if (C1 == C2) return 0;
1384 
1385   // Ok, we found a different index.  If they are not ConstantInt, we can't do
1386   // anything with them.
1387   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1388     return -2; // don't know!
1389 
1390   // We cannot compare the indices if they don't fit in an int64_t.
1391   if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1392       cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1393     return -2; // don't know!
1394 
1395   // Ok, we have two differing integer indices.  Sign extend them to be the same
1396   // type.
1397   int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1398   int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1399 
1400   if (C1Val == C2Val) return 0;  // They are equal
1401 
1402   // If the type being indexed over is really just a zero sized type, there is
1403   // no pointer difference being made here.
1404   if (isMaybeZeroSizedType(ElTy))
1405     return -2; // dunno.
1406 
1407   // If they are really different, now that they are the same type, then we
1408   // found a difference!
1409   if (C1Val < C2Val)
1410     return -1;
1411   else
1412     return 1;
1413 }
1414 
1415 /// This function determines if there is anything we can decide about the two
1416 /// constants provided. This doesn't need to handle simple things like
1417 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1418 /// If we can determine that the two constants have a particular relation to
1419 /// each other, we should return the corresponding FCmpInst predicate,
1420 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1421 /// ConstantFoldCompareInstruction.
1422 ///
1423 /// To simplify this code we canonicalize the relation so that the first
1424 /// operand is always the most "complex" of the two.  We consider ConstantFP
1425 /// to be the simplest, and ConstantExprs to be the most complex.
1426 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1427   assert(V1->getType() == V2->getType() &&
1428          "Cannot compare values of different types!");
1429 
1430   // We do not know if a constant expression will evaluate to a number or NaN.
1431   // Therefore, we can only say that the relation is unordered or equal.
1432   if (V1 == V2) return FCmpInst::FCMP_UEQ;
1433 
1434   if (!isa<ConstantExpr>(V1)) {
1435     if (!isa<ConstantExpr>(V2)) {
1436       // Simple case, use the standard constant folder.
1437       ConstantInt *R = nullptr;
1438       R = dyn_cast<ConstantInt>(
1439                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1440       if (R && !R->isZero())
1441         return FCmpInst::FCMP_OEQ;
1442       R = dyn_cast<ConstantInt>(
1443                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1444       if (R && !R->isZero())
1445         return FCmpInst::FCMP_OLT;
1446       R = dyn_cast<ConstantInt>(
1447                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1448       if (R && !R->isZero())
1449         return FCmpInst::FCMP_OGT;
1450 
1451       // Nothing more we can do
1452       return FCmpInst::BAD_FCMP_PREDICATE;
1453     }
1454 
1455     // If the first operand is simple and second is ConstantExpr, swap operands.
1456     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1457     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1458       return FCmpInst::getSwappedPredicate(SwappedRelation);
1459   } else {
1460     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1461     // constantexpr or a simple constant.
1462     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1463     switch (CE1->getOpcode()) {
1464     case Instruction::FPTrunc:
1465     case Instruction::FPExt:
1466     case Instruction::UIToFP:
1467     case Instruction::SIToFP:
1468       // We might be able to do something with these but we don't right now.
1469       break;
1470     default:
1471       break;
1472     }
1473   }
1474   // There are MANY other foldings that we could perform here.  They will
1475   // probably be added on demand, as they seem needed.
1476   return FCmpInst::BAD_FCMP_PREDICATE;
1477 }
1478 
1479 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1480                                                       const GlobalValue *GV2) {
1481   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1482     if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1483       return true;
1484     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1485       Type *Ty = GVar->getValueType();
1486       // A global with opaque type might end up being zero sized.
1487       if (!Ty->isSized())
1488         return true;
1489       // A global with an empty type might lie at the address of any other
1490       // global.
1491       if (Ty->isEmptyTy())
1492         return true;
1493     }
1494     return false;
1495   };
1496   // Don't try to decide equality of aliases.
1497   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1498     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1499       return ICmpInst::ICMP_NE;
1500   return ICmpInst::BAD_ICMP_PREDICATE;
1501 }
1502 
1503 /// This function determines if there is anything we can decide about the two
1504 /// constants provided. This doesn't need to handle simple things like integer
1505 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1506 /// If we can determine that the two constants have a particular relation to
1507 /// each other, we should return the corresponding ICmp predicate, otherwise
1508 /// return ICmpInst::BAD_ICMP_PREDICATE.
1509 ///
1510 /// To simplify this code we canonicalize the relation so that the first
1511 /// operand is always the most "complex" of the two.  We consider simple
1512 /// constants (like ConstantInt) to be the simplest, followed by
1513 /// GlobalValues, followed by ConstantExpr's (the most complex).
1514 ///
1515 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1516                                                 bool isSigned) {
1517   assert(V1->getType() == V2->getType() &&
1518          "Cannot compare different types of values!");
1519   if (V1 == V2) return ICmpInst::ICMP_EQ;
1520 
1521   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1522       !isa<BlockAddress>(V1)) {
1523     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1524         !isa<BlockAddress>(V2)) {
1525       // We distilled this down to a simple case, use the standard constant
1526       // folder.
1527       ConstantInt *R = nullptr;
1528       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1529       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1530       if (R && !R->isZero())
1531         return pred;
1532       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1533       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1534       if (R && !R->isZero())
1535         return pred;
1536       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1537       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1538       if (R && !R->isZero())
1539         return pred;
1540 
1541       // If we couldn't figure it out, bail.
1542       return ICmpInst::BAD_ICMP_PREDICATE;
1543     }
1544 
1545     // If the first operand is simple, swap operands.
1546     ICmpInst::Predicate SwappedRelation =
1547       evaluateICmpRelation(V2, V1, isSigned);
1548     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1549       return ICmpInst::getSwappedPredicate(SwappedRelation);
1550 
1551   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1552     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1553       ICmpInst::Predicate SwappedRelation =
1554         evaluateICmpRelation(V2, V1, isSigned);
1555       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1556         return ICmpInst::getSwappedPredicate(SwappedRelation);
1557       return ICmpInst::BAD_ICMP_PREDICATE;
1558     }
1559 
1560     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1561     // constant (which, since the types must match, means that it's a
1562     // ConstantPointerNull).
1563     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1564       return areGlobalsPotentiallyEqual(GV, GV2);
1565     } else if (isa<BlockAddress>(V2)) {
1566       return ICmpInst::ICMP_NE; // Globals never equal labels.
1567     } else {
1568       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1569       // GlobalVals can never be null unless they have external weak linkage.
1570       // We don't try to evaluate aliases here.
1571       // NOTE: We should not be doing this constant folding if null pointer
1572       // is considered valid for the function. But currently there is no way to
1573       // query it from the Constant type.
1574       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1575           !NullPointerIsDefined(nullptr /* F */,
1576                                 GV->getType()->getAddressSpace()))
1577         return ICmpInst::ICMP_NE;
1578     }
1579   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1580     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1581       ICmpInst::Predicate SwappedRelation =
1582         evaluateICmpRelation(V2, V1, isSigned);
1583       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1584         return ICmpInst::getSwappedPredicate(SwappedRelation);
1585       return ICmpInst::BAD_ICMP_PREDICATE;
1586     }
1587 
1588     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1589     // constant (which, since the types must match, means that it is a
1590     // ConstantPointerNull).
1591     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1592       // Block address in another function can't equal this one, but block
1593       // addresses in the current function might be the same if blocks are
1594       // empty.
1595       if (BA2->getFunction() != BA->getFunction())
1596         return ICmpInst::ICMP_NE;
1597     } else {
1598       // Block addresses aren't null, don't equal the address of globals.
1599       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1600              "Canonicalization guarantee!");
1601       return ICmpInst::ICMP_NE;
1602     }
1603   } else {
1604     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1605     // constantexpr, a global, block address, or a simple constant.
1606     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1607     Constant *CE1Op0 = CE1->getOperand(0);
1608 
1609     switch (CE1->getOpcode()) {
1610     case Instruction::Trunc:
1611     case Instruction::FPTrunc:
1612     case Instruction::FPExt:
1613     case Instruction::FPToUI:
1614     case Instruction::FPToSI:
1615       break; // We can't evaluate floating point casts or truncations.
1616 
1617     case Instruction::UIToFP:
1618     case Instruction::SIToFP:
1619     case Instruction::BitCast:
1620     case Instruction::ZExt:
1621     case Instruction::SExt:
1622       // We can't evaluate floating point casts or truncations.
1623       if (CE1Op0->getType()->isFPOrFPVectorTy())
1624         break;
1625 
1626       // If the cast is not actually changing bits, and the second operand is a
1627       // null pointer, do the comparison with the pre-casted value.
1628       if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1629         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1630         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1631         return evaluateICmpRelation(CE1Op0,
1632                                     Constant::getNullValue(CE1Op0->getType()),
1633                                     isSigned);
1634       }
1635       break;
1636 
1637     case Instruction::GetElementPtr: {
1638       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1639       // Ok, since this is a getelementptr, we know that the constant has a
1640       // pointer type.  Check the various cases.
1641       if (isa<ConstantPointerNull>(V2)) {
1642         // If we are comparing a GEP to a null pointer, check to see if the base
1643         // of the GEP equals the null pointer.
1644         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1645           if (GV->hasExternalWeakLinkage())
1646             // Weak linkage GVals could be zero or not. We're comparing that
1647             // to null pointer so its greater-or-equal
1648             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1649           else
1650             // If its not weak linkage, the GVal must have a non-zero address
1651             // so the result is greater-than
1652             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1653         } else if (isa<ConstantPointerNull>(CE1Op0)) {
1654           // If we are indexing from a null pointer, check to see if we have any
1655           // non-zero indices.
1656           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1657             if (!CE1->getOperand(i)->isNullValue())
1658               // Offsetting from null, must not be equal.
1659               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1660           // Only zero indexes from null, must still be zero.
1661           return ICmpInst::ICMP_EQ;
1662         }
1663         // Otherwise, we can't really say if the first operand is null or not.
1664       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1665         if (isa<ConstantPointerNull>(CE1Op0)) {
1666           if (GV2->hasExternalWeakLinkage())
1667             // Weak linkage GVals could be zero or not. We're comparing it to
1668             // a null pointer, so its less-or-equal
1669             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1670           else
1671             // If its not weak linkage, the GVal must have a non-zero address
1672             // so the result is less-than
1673             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1674         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1675           if (GV == GV2) {
1676             // If this is a getelementptr of the same global, then it must be
1677             // different.  Because the types must match, the getelementptr could
1678             // only have at most one index, and because we fold getelementptr's
1679             // with a single zero index, it must be nonzero.
1680             assert(CE1->getNumOperands() == 2 &&
1681                    !CE1->getOperand(1)->isNullValue() &&
1682                    "Surprising getelementptr!");
1683             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1684           } else {
1685             if (CE1GEP->hasAllZeroIndices())
1686               return areGlobalsPotentiallyEqual(GV, GV2);
1687             return ICmpInst::BAD_ICMP_PREDICATE;
1688           }
1689         }
1690       } else {
1691         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1692         Constant *CE2Op0 = CE2->getOperand(0);
1693 
1694         // There are MANY other foldings that we could perform here.  They will
1695         // probably be added on demand, as they seem needed.
1696         switch (CE2->getOpcode()) {
1697         default: break;
1698         case Instruction::GetElementPtr:
1699           // By far the most common case to handle is when the base pointers are
1700           // obviously to the same global.
1701           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1702             // Don't know relative ordering, but check for inequality.
1703             if (CE1Op0 != CE2Op0) {
1704               GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1705               if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1706                 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1707                                                   cast<GlobalValue>(CE2Op0));
1708               return ICmpInst::BAD_ICMP_PREDICATE;
1709             }
1710             // Ok, we know that both getelementptr instructions are based on the
1711             // same global.  From this, we can precisely determine the relative
1712             // ordering of the resultant pointers.
1713             unsigned i = 1;
1714 
1715             // The logic below assumes that the result of the comparison
1716             // can be determined by finding the first index that differs.
1717             // This doesn't work if there is over-indexing in any
1718             // subsequent indices, so check for that case first.
1719             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1720                 !CE2->isGEPWithNoNotionalOverIndexing())
1721                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1722 
1723             // Compare all of the operands the GEP's have in common.
1724             gep_type_iterator GTI = gep_type_begin(CE1);
1725             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1726                  ++i, ++GTI)
1727               switch (IdxCompare(CE1->getOperand(i),
1728                                  CE2->getOperand(i), GTI.getIndexedType())) {
1729               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1730               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1731               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1732               }
1733 
1734             // Ok, we ran out of things they have in common.  If any leftovers
1735             // are non-zero then we have a difference, otherwise we are equal.
1736             for (; i < CE1->getNumOperands(); ++i)
1737               if (!CE1->getOperand(i)->isNullValue()) {
1738                 if (isa<ConstantInt>(CE1->getOperand(i)))
1739                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1740                 else
1741                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1742               }
1743 
1744             for (; i < CE2->getNumOperands(); ++i)
1745               if (!CE2->getOperand(i)->isNullValue()) {
1746                 if (isa<ConstantInt>(CE2->getOperand(i)))
1747                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1748                 else
1749                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1750               }
1751             return ICmpInst::ICMP_EQ;
1752           }
1753         }
1754       }
1755       break;
1756     }
1757     default:
1758       break;
1759     }
1760   }
1761 
1762   return ICmpInst::BAD_ICMP_PREDICATE;
1763 }
1764 
1765 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1766                                                Constant *C1, Constant *C2) {
1767   Type *ResultTy;
1768   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1769     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1770                                VT->getNumElements());
1771   else
1772     ResultTy = Type::getInt1Ty(C1->getContext());
1773 
1774   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1775   if (pred == FCmpInst::FCMP_FALSE)
1776     return Constant::getNullValue(ResultTy);
1777 
1778   if (pred == FCmpInst::FCMP_TRUE)
1779     return Constant::getAllOnesValue(ResultTy);
1780 
1781   // Handle some degenerate cases first
1782   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1783     CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1784     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1785     // For EQ and NE, we can always pick a value for the undef to make the
1786     // predicate pass or fail, so we can return undef.
1787     // Also, if both operands are undef, we can return undef for int comparison.
1788     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1789       return UndefValue::get(ResultTy);
1790 
1791     // Otherwise, for integer compare, pick the same value as the non-undef
1792     // operand, and fold it to true or false.
1793     if (isIntegerPredicate)
1794       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1795 
1796     // Choosing NaN for the undef will always make unordered comparison succeed
1797     // and ordered comparison fails.
1798     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1799   }
1800 
1801   // icmp eq/ne(null,GV) -> false/true
1802   if (C1->isNullValue()) {
1803     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1804       // Don't try to evaluate aliases.  External weak GV can be null.
1805       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1806           !NullPointerIsDefined(nullptr /* F */,
1807                                 GV->getType()->getAddressSpace())) {
1808         if (pred == ICmpInst::ICMP_EQ)
1809           return ConstantInt::getFalse(C1->getContext());
1810         else if (pred == ICmpInst::ICMP_NE)
1811           return ConstantInt::getTrue(C1->getContext());
1812       }
1813   // icmp eq/ne(GV,null) -> false/true
1814   } else if (C2->isNullValue()) {
1815     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1816       // Don't try to evaluate aliases.  External weak GV can be null.
1817       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1818           !NullPointerIsDefined(nullptr /* F */,
1819                                 GV->getType()->getAddressSpace())) {
1820         if (pred == ICmpInst::ICMP_EQ)
1821           return ConstantInt::getFalse(C1->getContext());
1822         else if (pred == ICmpInst::ICMP_NE)
1823           return ConstantInt::getTrue(C1->getContext());
1824       }
1825   }
1826 
1827   // If the comparison is a comparison between two i1's, simplify it.
1828   if (C1->getType()->isIntegerTy(1)) {
1829     switch(pred) {
1830     case ICmpInst::ICMP_EQ:
1831       if (isa<ConstantInt>(C2))
1832         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1833       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1834     case ICmpInst::ICMP_NE:
1835       return ConstantExpr::getXor(C1, C2);
1836     default:
1837       break;
1838     }
1839   }
1840 
1841   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1842     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1843     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1844     switch (pred) {
1845     default: llvm_unreachable("Invalid ICmp Predicate");
1846     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1847     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1848     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1849     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1850     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1851     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1852     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1853     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1854     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1855     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1856     }
1857   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1858     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1859     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1860     APFloat::cmpResult R = C1V.compare(C2V);
1861     switch (pred) {
1862     default: llvm_unreachable("Invalid FCmp Predicate");
1863     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1864     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1865     case FCmpInst::FCMP_UNO:
1866       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1867     case FCmpInst::FCMP_ORD:
1868       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1869     case FCmpInst::FCMP_UEQ:
1870       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1871                                         R==APFloat::cmpEqual);
1872     case FCmpInst::FCMP_OEQ:
1873       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1874     case FCmpInst::FCMP_UNE:
1875       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1876     case FCmpInst::FCMP_ONE:
1877       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1878                                         R==APFloat::cmpGreaterThan);
1879     case FCmpInst::FCMP_ULT:
1880       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1881                                         R==APFloat::cmpLessThan);
1882     case FCmpInst::FCMP_OLT:
1883       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1884     case FCmpInst::FCMP_UGT:
1885       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1886                                         R==APFloat::cmpGreaterThan);
1887     case FCmpInst::FCMP_OGT:
1888       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1889     case FCmpInst::FCMP_ULE:
1890       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1891     case FCmpInst::FCMP_OLE:
1892       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1893                                         R==APFloat::cmpEqual);
1894     case FCmpInst::FCMP_UGE:
1895       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1896     case FCmpInst::FCMP_OGE:
1897       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1898                                         R==APFloat::cmpEqual);
1899     }
1900   } else if (C1->getType()->isVectorTy()) {
1901     // If we can constant fold the comparison of each element, constant fold
1902     // the whole vector comparison.
1903     SmallVector<Constant*, 4> ResElts;
1904     Type *Ty = IntegerType::get(C1->getContext(), 32);
1905     // Compare the elements, producing an i1 result or constant expr.
1906     for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1907       Constant *C1E =
1908         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1909       Constant *C2E =
1910         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1911 
1912       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1913     }
1914 
1915     return ConstantVector::get(ResElts);
1916   }
1917 
1918   if (C1->getType()->isFloatingPointTy() &&
1919       // Only call evaluateFCmpRelation if we have a constant expr to avoid
1920       // infinite recursive loop
1921       (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1922     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1923     switch (evaluateFCmpRelation(C1, C2)) {
1924     default: llvm_unreachable("Unknown relation!");
1925     case FCmpInst::FCMP_UNO:
1926     case FCmpInst::FCMP_ORD:
1927     case FCmpInst::FCMP_UNE:
1928     case FCmpInst::FCMP_ULT:
1929     case FCmpInst::FCMP_UGT:
1930     case FCmpInst::FCMP_ULE:
1931     case FCmpInst::FCMP_UGE:
1932     case FCmpInst::FCMP_TRUE:
1933     case FCmpInst::FCMP_FALSE:
1934     case FCmpInst::BAD_FCMP_PREDICATE:
1935       break; // Couldn't determine anything about these constants.
1936     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1937       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1938                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1939                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1940       break;
1941     case FCmpInst::FCMP_OLT: // We know that C1 < C2
1942       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1943                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1944                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1945       break;
1946     case FCmpInst::FCMP_OGT: // We know that C1 > C2
1947       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1948                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1949                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1950       break;
1951     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1952       // We can only partially decide this relation.
1953       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1954         Result = 0;
1955       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1956         Result = 1;
1957       break;
1958     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1959       // We can only partially decide this relation.
1960       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1961         Result = 0;
1962       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1963         Result = 1;
1964       break;
1965     case FCmpInst::FCMP_ONE: // We know that C1 != C2
1966       // We can only partially decide this relation.
1967       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1968         Result = 0;
1969       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1970         Result = 1;
1971       break;
1972     case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
1973       // We can only partially decide this relation.
1974       if (pred == FCmpInst::FCMP_ONE)
1975         Result = 0;
1976       else if (pred == FCmpInst::FCMP_UEQ)
1977         Result = 1;
1978       break;
1979     }
1980 
1981     // If we evaluated the result, return it now.
1982     if (Result != -1)
1983       return ConstantInt::get(ResultTy, Result);
1984 
1985   } else {
1986     // Evaluate the relation between the two constants, per the predicate.
1987     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1988     switch (evaluateICmpRelation(C1, C2,
1989                                  CmpInst::isSigned((CmpInst::Predicate)pred))) {
1990     default: llvm_unreachable("Unknown relational!");
1991     case ICmpInst::BAD_ICMP_PREDICATE:
1992       break;  // Couldn't determine anything about these constants.
1993     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1994       // If we know the constants are equal, we can decide the result of this
1995       // computation precisely.
1996       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1997       break;
1998     case ICmpInst::ICMP_ULT:
1999       switch (pred) {
2000       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2001         Result = 1; break;
2002       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2003         Result = 0; break;
2004       }
2005       break;
2006     case ICmpInst::ICMP_SLT:
2007       switch (pred) {
2008       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2009         Result = 1; break;
2010       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2011         Result = 0; break;
2012       }
2013       break;
2014     case ICmpInst::ICMP_UGT:
2015       switch (pred) {
2016       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2017         Result = 1; break;
2018       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2019         Result = 0; break;
2020       }
2021       break;
2022     case ICmpInst::ICMP_SGT:
2023       switch (pred) {
2024       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2025         Result = 1; break;
2026       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2027         Result = 0; break;
2028       }
2029       break;
2030     case ICmpInst::ICMP_ULE:
2031       if (pred == ICmpInst::ICMP_UGT) Result = 0;
2032       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2033       break;
2034     case ICmpInst::ICMP_SLE:
2035       if (pred == ICmpInst::ICMP_SGT) Result = 0;
2036       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2037       break;
2038     case ICmpInst::ICMP_UGE:
2039       if (pred == ICmpInst::ICMP_ULT) Result = 0;
2040       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2041       break;
2042     case ICmpInst::ICMP_SGE:
2043       if (pred == ICmpInst::ICMP_SLT) Result = 0;
2044       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2045       break;
2046     case ICmpInst::ICMP_NE:
2047       if (pred == ICmpInst::ICMP_EQ) Result = 0;
2048       if (pred == ICmpInst::ICMP_NE) Result = 1;
2049       break;
2050     }
2051 
2052     // If we evaluated the result, return it now.
2053     if (Result != -1)
2054       return ConstantInt::get(ResultTy, Result);
2055 
2056     // If the right hand side is a bitcast, try using its inverse to simplify
2057     // it by moving it to the left hand side.  We can't do this if it would turn
2058     // a vector compare into a scalar compare or visa versa, or if it would turn
2059     // the operands into FP values.
2060     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2061       Constant *CE2Op0 = CE2->getOperand(0);
2062       if (CE2->getOpcode() == Instruction::BitCast &&
2063           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
2064           !CE2Op0->getType()->isFPOrFPVectorTy()) {
2065         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2066         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2067       }
2068     }
2069 
2070     // If the left hand side is an extension, try eliminating it.
2071     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2072       if ((CE1->getOpcode() == Instruction::SExt &&
2073            ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
2074           (CE1->getOpcode() == Instruction::ZExt &&
2075            !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2076         Constant *CE1Op0 = CE1->getOperand(0);
2077         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2078         if (CE1Inverse == CE1Op0) {
2079           // Check whether we can safely truncate the right hand side.
2080           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2081           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2082                                     C2->getType()) == C2)
2083             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2084         }
2085       }
2086     }
2087 
2088     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2089         (C1->isNullValue() && !C2->isNullValue())) {
2090       // If C2 is a constant expr and C1 isn't, flip them around and fold the
2091       // other way if possible.
2092       // Also, if C1 is null and C2 isn't, flip them around.
2093       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2094       return ConstantExpr::getICmp(pred, C2, C1);
2095     }
2096   }
2097   return nullptr;
2098 }
2099 
2100 /// Test whether the given sequence of *normalized* indices is "inbounds".
2101 template<typename IndexTy>
2102 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2103   // No indices means nothing that could be out of bounds.
2104   if (Idxs.empty()) return true;
2105 
2106   // If the first index is zero, it's in bounds.
2107   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2108 
2109   // If the first index is one and all the rest are zero, it's in bounds,
2110   // by the one-past-the-end rule.
2111   if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2112     if (!CI->isOne())
2113       return false;
2114   } else {
2115     auto *CV = cast<ConstantDataVector>(Idxs[0]);
2116     CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2117     if (!CI || !CI->isOne())
2118       return false;
2119   }
2120 
2121   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2122     if (!cast<Constant>(Idxs[i])->isNullValue())
2123       return false;
2124   return true;
2125 }
2126 
2127 /// Test whether a given ConstantInt is in-range for a SequentialType.
2128 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2129                                       const ConstantInt *CI) {
2130   // We cannot bounds check the index if it doesn't fit in an int64_t.
2131   if (CI->getValue().getMinSignedBits() > 64)
2132     return false;
2133 
2134   // A negative index or an index past the end of our sequential type is
2135   // considered out-of-range.
2136   int64_t IndexVal = CI->getSExtValue();
2137   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2138     return false;
2139 
2140   // Otherwise, it is in-range.
2141   return true;
2142 }
2143 
2144 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2145                                           bool InBounds,
2146                                           Optional<unsigned> InRangeIndex,
2147                                           ArrayRef<Value *> Idxs) {
2148   if (Idxs.empty()) return C;
2149 
2150   Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2151       PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2152 
2153   if (isa<UndefValue>(C))
2154     return UndefValue::get(GEPTy);
2155 
2156   Constant *Idx0 = cast<Constant>(Idxs[0]);
2157   if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2158     return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2159                ? ConstantVector::getSplat(
2160                      cast<VectorType>(GEPTy)->getNumElements(), C)
2161                : C;
2162 
2163   if (C->isNullValue()) {
2164     bool isNull = true;
2165     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2166       if (!isa<UndefValue>(Idxs[i]) &&
2167           !cast<Constant>(Idxs[i])->isNullValue()) {
2168         isNull = false;
2169         break;
2170       }
2171     if (isNull) {
2172       PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2173       Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2174 
2175       assert(Ty && "Invalid indices for GEP!");
2176       Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2177       Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2178       if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2179         GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2180 
2181       // The GEP returns a vector of pointers when one of more of
2182       // its arguments is a vector.
2183       for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2184         if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2185           GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2186           break;
2187         }
2188       }
2189 
2190       return Constant::getNullValue(GEPTy);
2191     }
2192   }
2193 
2194   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2195     // Combine Indices - If the source pointer to this getelementptr instruction
2196     // is a getelementptr instruction, combine the indices of the two
2197     // getelementptr instructions into a single instruction.
2198     //
2199     if (CE->getOpcode() == Instruction::GetElementPtr) {
2200       gep_type_iterator LastI = gep_type_end(CE);
2201       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2202            I != E; ++I)
2203         LastI = I;
2204 
2205       // We cannot combine indices if doing so would take us outside of an
2206       // array or vector.  Doing otherwise could trick us if we evaluated such a
2207       // GEP as part of a load.
2208       //
2209       // e.g. Consider if the original GEP was:
2210       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2211       //                    i32 0, i32 0, i64 0)
2212       //
2213       // If we then tried to offset it by '8' to get to the third element,
2214       // an i8, we should *not* get:
2215       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2216       //                    i32 0, i32 0, i64 8)
2217       //
2218       // This GEP tries to index array element '8  which runs out-of-bounds.
2219       // Subsequent evaluation would get confused and produce erroneous results.
2220       //
2221       // The following prohibits such a GEP from being formed by checking to see
2222       // if the index is in-range with respect to an array.
2223       // TODO: This code may be extended to handle vectors as well.
2224       bool PerformFold = false;
2225       if (Idx0->isNullValue())
2226         PerformFold = true;
2227       else if (LastI.isSequential())
2228         if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2229           PerformFold = (!LastI.isBoundedSequential() ||
2230                          isIndexInRangeOfArrayType(
2231                              LastI.getSequentialNumElements(), CI)) &&
2232                         !CE->getOperand(CE->getNumOperands() - 1)
2233                              ->getType()
2234                              ->isVectorTy();
2235 
2236       if (PerformFold) {
2237         SmallVector<Value*, 16> NewIndices;
2238         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2239         NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2240 
2241         // Add the last index of the source with the first index of the new GEP.
2242         // Make sure to handle the case when they are actually different types.
2243         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2244         // Otherwise it must be an array.
2245         if (!Idx0->isNullValue()) {
2246           Type *IdxTy = Combined->getType();
2247           if (IdxTy != Idx0->getType()) {
2248             unsigned CommonExtendedWidth =
2249                 std::max(IdxTy->getIntegerBitWidth(),
2250                          Idx0->getType()->getIntegerBitWidth());
2251             CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2252 
2253             Type *CommonTy =
2254                 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2255             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2256             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2257             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2258           } else {
2259             Combined =
2260               ConstantExpr::get(Instruction::Add, Idx0, Combined);
2261           }
2262         }
2263 
2264         NewIndices.push_back(Combined);
2265         NewIndices.append(Idxs.begin() + 1, Idxs.end());
2266 
2267         // The combined GEP normally inherits its index inrange attribute from
2268         // the inner GEP, but if the inner GEP's last index was adjusted by the
2269         // outer GEP, any inbounds attribute on that index is invalidated.
2270         Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex();
2271         if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue())
2272           IRIndex = None;
2273 
2274         return ConstantExpr::getGetElementPtr(
2275             cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2276             NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(),
2277             IRIndex);
2278       }
2279     }
2280 
2281     // Attempt to fold casts to the same type away.  For example, folding:
2282     //
2283     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2284     //                       i64 0, i64 0)
2285     // into:
2286     //
2287     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2288     //
2289     // Don't fold if the cast is changing address spaces.
2290     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2291       PointerType *SrcPtrTy =
2292         dyn_cast<PointerType>(CE->getOperand(0)->getType());
2293       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2294       if (SrcPtrTy && DstPtrTy) {
2295         ArrayType *SrcArrayTy =
2296           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2297         ArrayType *DstArrayTy =
2298           dyn_cast<ArrayType>(DstPtrTy->getElementType());
2299         if (SrcArrayTy && DstArrayTy
2300             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2301             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2302           return ConstantExpr::getGetElementPtr(SrcArrayTy,
2303                                                 (Constant *)CE->getOperand(0),
2304                                                 Idxs, InBounds, InRangeIndex);
2305       }
2306     }
2307   }
2308 
2309   // Check to see if any array indices are not within the corresponding
2310   // notional array or vector bounds. If so, try to determine if they can be
2311   // factored out into preceding dimensions.
2312   SmallVector<Constant *, 8> NewIdxs;
2313   Type *Ty = PointeeTy;
2314   Type *Prev = C->getType();
2315   bool Unknown =
2316       !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2317   for (unsigned i = 1, e = Idxs.size(); i != e;
2318        Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2319     if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2320       // We don't know if it's in range or not.
2321       Unknown = true;
2322       continue;
2323     }
2324     if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2325       // Skip if the type of the previous index is not supported.
2326       continue;
2327     if (InRangeIndex && i == *InRangeIndex + 1) {
2328       // If an index is marked inrange, we cannot apply this canonicalization to
2329       // the following index, as that will cause the inrange index to point to
2330       // the wrong element.
2331       continue;
2332     }
2333     if (isa<StructType>(Ty)) {
2334       // The verify makes sure that GEPs into a struct are in range.
2335       continue;
2336     }
2337     auto *STy = cast<SequentialType>(Ty);
2338     if (isa<VectorType>(STy)) {
2339       // There can be awkward padding in after a non-power of two vector.
2340       Unknown = true;
2341       continue;
2342     }
2343     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2344       if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2345         // It's in range, skip to the next index.
2346         continue;
2347       if (CI->getSExtValue() < 0) {
2348         // It's out of range and negative, don't try to factor it.
2349         Unknown = true;
2350         continue;
2351       }
2352     } else {
2353       auto *CV = cast<ConstantDataVector>(Idxs[i]);
2354       bool InRange = true;
2355       for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2356         auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2357         InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2358         if (CI->getSExtValue() < 0) {
2359           Unknown = true;
2360           break;
2361         }
2362       }
2363       if (InRange || Unknown)
2364         // It's in range, skip to the next index.
2365         // It's out of range and negative, don't try to factor it.
2366         continue;
2367     }
2368     if (isa<StructType>(Prev)) {
2369       // It's out of range, but the prior dimension is a struct
2370       // so we can't do anything about it.
2371       Unknown = true;
2372       continue;
2373     }
2374     // It's out of range, but we can factor it into the prior
2375     // dimension.
2376     NewIdxs.resize(Idxs.size());
2377     // Determine the number of elements in our sequential type.
2378     uint64_t NumElements = STy->getArrayNumElements();
2379 
2380     // Expand the current index or the previous index to a vector from a scalar
2381     // if necessary.
2382     Constant *CurrIdx = cast<Constant>(Idxs[i]);
2383     auto *PrevIdx =
2384         NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2385     bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2386     bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2387     bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2388 
2389     if (!IsCurrIdxVector && IsPrevIdxVector)
2390       CurrIdx = ConstantDataVector::getSplat(
2391           PrevIdx->getType()->getVectorNumElements(), CurrIdx);
2392 
2393     if (!IsPrevIdxVector && IsCurrIdxVector)
2394       PrevIdx = ConstantDataVector::getSplat(
2395           CurrIdx->getType()->getVectorNumElements(), PrevIdx);
2396 
2397     Constant *Factor =
2398         ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2399     if (UseVector)
2400       Factor = ConstantDataVector::getSplat(
2401           IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements()
2402                           : CurrIdx->getType()->getVectorNumElements(),
2403           Factor);
2404 
2405     NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2406 
2407     Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2408 
2409     unsigned CommonExtendedWidth =
2410         std::max(PrevIdx->getType()->getScalarSizeInBits(),
2411                  Div->getType()->getScalarSizeInBits());
2412     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2413 
2414     // Before adding, extend both operands to i64 to avoid
2415     // overflow trouble.
2416     Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2417     if (UseVector)
2418       ExtendedTy = VectorType::get(
2419           ExtendedTy, IsPrevIdxVector
2420                           ? PrevIdx->getType()->getVectorNumElements()
2421                           : CurrIdx->getType()->getVectorNumElements());
2422 
2423     if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2424       PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2425 
2426     if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2427       Div = ConstantExpr::getSExt(Div, ExtendedTy);
2428 
2429     NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2430   }
2431 
2432   // If we did any factoring, start over with the adjusted indices.
2433   if (!NewIdxs.empty()) {
2434     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2435       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2436     return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2437                                           InRangeIndex);
2438   }
2439 
2440   // If all indices are known integers and normalized, we can do a simple
2441   // check for the "inbounds" property.
2442   if (!Unknown && !InBounds)
2443     if (auto *GV = dyn_cast<GlobalVariable>(C))
2444       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2445         return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2446                                               /*InBounds=*/true, InRangeIndex);
2447 
2448   return nullptr;
2449 }
2450