xref: /freebsd/contrib/llvm-project/llvm/lib/IR/ConstantFold.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM.  This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 //===----------------------------------------------------------------------===//
39 //                ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
41 
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
46 
47   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49 
50   // Do not iterate on scalable vector. The num of elements is unknown at
51   // compile-time.
52   if (isa<ScalableVectorType>(DstTy))
53     return nullptr;
54 
55   // If this cast changes element count then we can't handle it here:
56   // doing so requires endianness information.  This should be handled by
57   // Analysis/ConstantFolding.cpp
58   unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements();
59   if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements())
60     return nullptr;
61 
62   Type *DstEltTy = DstTy->getElementType();
63   // Fast path for splatted constants.
64   if (Constant *Splat = CV->getSplatValue()) {
65     return ConstantVector::getSplat(DstTy->getElementCount(),
66                                     ConstantExpr::getBitCast(Splat, DstEltTy));
67   }
68 
69   SmallVector<Constant*, 16> Result;
70   Type *Ty = IntegerType::get(CV->getContext(), 32);
71   for (unsigned i = 0; i != NumElts; ++i) {
72     Constant *C =
73       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
74     C = ConstantExpr::getBitCast(C, DstEltTy);
75     Result.push_back(C);
76   }
77 
78   return ConstantVector::get(Result);
79 }
80 
81 /// This function determines which opcode to use to fold two constant cast
82 /// expressions together. It uses CastInst::isEliminableCastPair to determine
83 /// the opcode. Consequently its just a wrapper around that function.
84 /// Determine if it is valid to fold a cast of a cast
85 static unsigned
86 foldConstantCastPair(
87   unsigned opc,          ///< opcode of the second cast constant expression
88   ConstantExpr *Op,      ///< the first cast constant expression
89   Type *DstTy            ///< destination type of the first cast
90 ) {
91   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
92   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
93   assert(CastInst::isCast(opc) && "Invalid cast opcode");
94 
95   // The types and opcodes for the two Cast constant expressions
96   Type *SrcTy = Op->getOperand(0)->getType();
97   Type *MidTy = Op->getType();
98   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
99   Instruction::CastOps secondOp = Instruction::CastOps(opc);
100 
101   // Assume that pointers are never more than 64 bits wide, and only use this
102   // for the middle type. Otherwise we could end up folding away illegal
103   // bitcasts between address spaces with different sizes.
104   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
105 
106   // Let CastInst::isEliminableCastPair do the heavy lifting.
107   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
108                                         nullptr, FakeIntPtrTy, nullptr);
109 }
110 
111 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
112   Type *SrcTy = V->getType();
113   if (SrcTy == DestTy)
114     return V; // no-op cast
115 
116   // Check to see if we are casting a pointer to an aggregate to a pointer to
117   // the first element.  If so, return the appropriate GEP instruction.
118   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
119     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
120       if (PTy->getAddressSpace() == DPTy->getAddressSpace() &&
121           !PTy->isOpaque() && !DPTy->isOpaque() &&
122           PTy->getElementType()->isSized()) {
123         SmallVector<Value*, 8> IdxList;
124         Value *Zero =
125           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
126         IdxList.push_back(Zero);
127         Type *ElTy = PTy->getElementType();
128         while (ElTy && ElTy != DPTy->getElementType()) {
129           ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0);
130           IdxList.push_back(Zero);
131         }
132 
133         if (ElTy == DPTy->getElementType())
134           // This GEP is inbounds because all indices are zero.
135           return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
136                                                         V, IdxList);
137       }
138 
139   // Handle casts from one vector constant to another.  We know that the src
140   // and dest type have the same size (otherwise its an illegal cast).
141   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
142     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
143       assert(DestPTy->getPrimitiveSizeInBits() ==
144                  SrcTy->getPrimitiveSizeInBits() &&
145              "Not cast between same sized vectors!");
146       SrcTy = nullptr;
147       // First, check for null.  Undef is already handled.
148       if (isa<ConstantAggregateZero>(V))
149         return Constant::getNullValue(DestTy);
150 
151       // Handle ConstantVector and ConstantAggregateVector.
152       return BitCastConstantVector(V, DestPTy);
153     }
154 
155     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
156     // This allows for other simplifications (although some of them
157     // can only be handled by Analysis/ConstantFolding.cpp).
158     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
159       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
160   }
161 
162   // Finally, implement bitcast folding now.   The code below doesn't handle
163   // bitcast right.
164   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
165     return ConstantPointerNull::get(cast<PointerType>(DestTy));
166 
167   // Handle integral constant input.
168   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
169     if (DestTy->isIntegerTy())
170       // Integral -> Integral. This is a no-op because the bit widths must
171       // be the same. Consequently, we just fold to V.
172       return V;
173 
174     // See note below regarding the PPC_FP128 restriction.
175     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
176       return ConstantFP::get(DestTy->getContext(),
177                              APFloat(DestTy->getFltSemantics(),
178                                      CI->getValue()));
179 
180     // Otherwise, can't fold this (vector?)
181     return nullptr;
182   }
183 
184   // Handle ConstantFP input: FP -> Integral.
185   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
186     // PPC_FP128 is really the sum of two consecutive doubles, where the first
187     // double is always stored first in memory, regardless of the target
188     // endianness. The memory layout of i128, however, depends on the target
189     // endianness, and so we can't fold this without target endianness
190     // information. This should instead be handled by
191     // Analysis/ConstantFolding.cpp
192     if (FP->getType()->isPPC_FP128Ty())
193       return nullptr;
194 
195     // Make sure dest type is compatible with the folded integer constant.
196     if (!DestTy->isIntegerTy())
197       return nullptr;
198 
199     return ConstantInt::get(FP->getContext(),
200                             FP->getValueAPF().bitcastToAPInt());
201   }
202 
203   return nullptr;
204 }
205 
206 
207 /// V is an integer constant which only has a subset of its bytes used.
208 /// The bytes used are indicated by ByteStart (which is the first byte used,
209 /// counting from the least significant byte) and ByteSize, which is the number
210 /// of bytes used.
211 ///
212 /// This function analyzes the specified constant to see if the specified byte
213 /// range can be returned as a simplified constant.  If so, the constant is
214 /// returned, otherwise null is returned.
215 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
216                                       unsigned ByteSize) {
217   assert(C->getType()->isIntegerTy() &&
218          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
219          "Non-byte sized integer input");
220   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
221   assert(ByteSize && "Must be accessing some piece");
222   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
223   assert(ByteSize != CSize && "Should not extract everything");
224 
225   // Constant Integers are simple.
226   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
227     APInt V = CI->getValue();
228     if (ByteStart)
229       V.lshrInPlace(ByteStart*8);
230     V = V.trunc(ByteSize*8);
231     return ConstantInt::get(CI->getContext(), V);
232   }
233 
234   // In the input is a constant expr, we might be able to recursively simplify.
235   // If not, we definitely can't do anything.
236   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
237   if (!CE) return nullptr;
238 
239   switch (CE->getOpcode()) {
240   default: return nullptr;
241   case Instruction::Or: {
242     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
243     if (!RHS)
244       return nullptr;
245 
246     // X | -1 -> -1.
247     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
248       if (RHSC->isMinusOne())
249         return RHSC;
250 
251     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
252     if (!LHS)
253       return nullptr;
254     return ConstantExpr::getOr(LHS, RHS);
255   }
256   case Instruction::And: {
257     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
258     if (!RHS)
259       return nullptr;
260 
261     // X & 0 -> 0.
262     if (RHS->isNullValue())
263       return RHS;
264 
265     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
266     if (!LHS)
267       return nullptr;
268     return ConstantExpr::getAnd(LHS, RHS);
269   }
270   case Instruction::LShr: {
271     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
272     if (!Amt)
273       return nullptr;
274     APInt ShAmt = Amt->getValue();
275     // Cannot analyze non-byte shifts.
276     if ((ShAmt & 7) != 0)
277       return nullptr;
278     ShAmt.lshrInPlace(3);
279 
280     // If the extract is known to be all zeros, return zero.
281     if (ShAmt.uge(CSize - ByteStart))
282       return Constant::getNullValue(
283           IntegerType::get(CE->getContext(), ByteSize * 8));
284     // If the extract is known to be fully in the input, extract it.
285     if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
286       return ExtractConstantBytes(CE->getOperand(0),
287                                   ByteStart + ShAmt.getZExtValue(), ByteSize);
288 
289     // TODO: Handle the 'partially zero' case.
290     return nullptr;
291   }
292 
293   case Instruction::Shl: {
294     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
295     if (!Amt)
296       return nullptr;
297     APInt ShAmt = Amt->getValue();
298     // Cannot analyze non-byte shifts.
299     if ((ShAmt & 7) != 0)
300       return nullptr;
301     ShAmt.lshrInPlace(3);
302 
303     // If the extract is known to be all zeros, return zero.
304     if (ShAmt.uge(ByteStart + ByteSize))
305       return Constant::getNullValue(
306           IntegerType::get(CE->getContext(), ByteSize * 8));
307     // If the extract is known to be fully in the input, extract it.
308     if (ShAmt.ule(ByteStart))
309       return ExtractConstantBytes(CE->getOperand(0),
310                                   ByteStart - ShAmt.getZExtValue(), ByteSize);
311 
312     // TODO: Handle the 'partially zero' case.
313     return nullptr;
314   }
315 
316   case Instruction::ZExt: {
317     unsigned SrcBitSize =
318       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
319 
320     // If extracting something that is completely zero, return 0.
321     if (ByteStart*8 >= SrcBitSize)
322       return Constant::getNullValue(IntegerType::get(CE->getContext(),
323                                                      ByteSize*8));
324 
325     // If exactly extracting the input, return it.
326     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
327       return CE->getOperand(0);
328 
329     // If extracting something completely in the input, if the input is a
330     // multiple of 8 bits, recurse.
331     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
332       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
333 
334     // Otherwise, if extracting a subset of the input, which is not multiple of
335     // 8 bits, do a shift and trunc to get the bits.
336     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
337       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
338       Constant *Res = CE->getOperand(0);
339       if (ByteStart)
340         Res = ConstantExpr::getLShr(Res,
341                                  ConstantInt::get(Res->getType(), ByteStart*8));
342       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
343                                                           ByteSize*8));
344     }
345 
346     // TODO: Handle the 'partially zero' case.
347     return nullptr;
348   }
349   }
350 }
351 
352 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
353                                             Type *DestTy) {
354   if (isa<PoisonValue>(V))
355     return PoisonValue::get(DestTy);
356 
357   if (isa<UndefValue>(V)) {
358     // zext(undef) = 0, because the top bits will be zero.
359     // sext(undef) = 0, because the top bits will all be the same.
360     // [us]itofp(undef) = 0, because the result value is bounded.
361     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
362         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
363       return Constant::getNullValue(DestTy);
364     return UndefValue::get(DestTy);
365   }
366 
367   if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
368       opc != Instruction::AddrSpaceCast)
369     return Constant::getNullValue(DestTy);
370 
371   // If the cast operand is a constant expression, there's a few things we can
372   // do to try to simplify it.
373   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
374     if (CE->isCast()) {
375       // Try hard to fold cast of cast because they are often eliminable.
376       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
377         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
378     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
379                // Do not fold addrspacecast (gep 0, .., 0). It might make the
380                // addrspacecast uncanonicalized.
381                opc != Instruction::AddrSpaceCast &&
382                // Do not fold bitcast (gep) with inrange index, as this loses
383                // information.
384                !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
385                // Do not fold if the gep type is a vector, as bitcasting
386                // operand 0 of a vector gep will result in a bitcast between
387                // different sizes.
388                !CE->getType()->isVectorTy()) {
389       // If all of the indexes in the GEP are null values, there is no pointer
390       // adjustment going on.  We might as well cast the source pointer.
391       bool isAllNull = true;
392       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
393         if (!CE->getOperand(i)->isNullValue()) {
394           isAllNull = false;
395           break;
396         }
397       if (isAllNull)
398         // This is casting one pointer type to another, always BitCast
399         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
400     }
401   }
402 
403   // If the cast operand is a constant vector, perform the cast by
404   // operating on each element. In the cast of bitcasts, the element
405   // count may be mismatched; don't attempt to handle that here.
406   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
407       DestTy->isVectorTy() &&
408       cast<FixedVectorType>(DestTy)->getNumElements() ==
409           cast<FixedVectorType>(V->getType())->getNumElements()) {
410     VectorType *DestVecTy = cast<VectorType>(DestTy);
411     Type *DstEltTy = DestVecTy->getElementType();
412     // Fast path for splatted constants.
413     if (Constant *Splat = V->getSplatValue()) {
414       return ConstantVector::getSplat(
415           cast<VectorType>(DestTy)->getElementCount(),
416           ConstantExpr::getCast(opc, Splat, DstEltTy));
417     }
418     SmallVector<Constant *, 16> res;
419     Type *Ty = IntegerType::get(V->getContext(), 32);
420     for (unsigned i = 0,
421                   e = cast<FixedVectorType>(V->getType())->getNumElements();
422          i != e; ++i) {
423       Constant *C =
424         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
425       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
426     }
427     return ConstantVector::get(res);
428   }
429 
430   // We actually have to do a cast now. Perform the cast according to the
431   // opcode specified.
432   switch (opc) {
433   default:
434     llvm_unreachable("Failed to cast constant expression");
435   case Instruction::FPTrunc:
436   case Instruction::FPExt:
437     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
438       bool ignored;
439       APFloat Val = FPC->getValueAPF();
440       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
441                   DestTy->isFloatTy() ? APFloat::IEEEsingle() :
442                   DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
443                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
444                   DestTy->isFP128Ty() ? APFloat::IEEEquad() :
445                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
446                   APFloat::Bogus(),
447                   APFloat::rmNearestTiesToEven, &ignored);
448       return ConstantFP::get(V->getContext(), Val);
449     }
450     return nullptr; // Can't fold.
451   case Instruction::FPToUI:
452   case Instruction::FPToSI:
453     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
454       const APFloat &V = FPC->getValueAPF();
455       bool ignored;
456       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
457       APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
458       if (APFloat::opInvalidOp ==
459           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
460         // Undefined behavior invoked - the destination type can't represent
461         // the input constant.
462         return PoisonValue::get(DestTy);
463       }
464       return ConstantInt::get(FPC->getContext(), IntVal);
465     }
466     return nullptr; // Can't fold.
467   case Instruction::IntToPtr:   //always treated as unsigned
468     if (V->isNullValue())       // Is it an integral null value?
469       return ConstantPointerNull::get(cast<PointerType>(DestTy));
470     return nullptr;                   // Other pointer types cannot be casted
471   case Instruction::PtrToInt:   // always treated as unsigned
472     // Is it a null pointer value?
473     if (V->isNullValue())
474       return ConstantInt::get(DestTy, 0);
475     // Other pointer types cannot be casted
476     return nullptr;
477   case Instruction::UIToFP:
478   case Instruction::SIToFP:
479     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
480       const APInt &api = CI->getValue();
481       APFloat apf(DestTy->getFltSemantics(),
482                   APInt::getZero(DestTy->getPrimitiveSizeInBits()));
483       apf.convertFromAPInt(api, opc==Instruction::SIToFP,
484                            APFloat::rmNearestTiesToEven);
485       return ConstantFP::get(V->getContext(), apf);
486     }
487     return nullptr;
488   case Instruction::ZExt:
489     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
490       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
491       return ConstantInt::get(V->getContext(),
492                               CI->getValue().zext(BitWidth));
493     }
494     return nullptr;
495   case Instruction::SExt:
496     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
497       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
498       return ConstantInt::get(V->getContext(),
499                               CI->getValue().sext(BitWidth));
500     }
501     return nullptr;
502   case Instruction::Trunc: {
503     if (V->getType()->isVectorTy())
504       return nullptr;
505 
506     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
507     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
508       return ConstantInt::get(V->getContext(),
509                               CI->getValue().trunc(DestBitWidth));
510     }
511 
512     // The input must be a constantexpr.  See if we can simplify this based on
513     // the bytes we are demanding.  Only do this if the source and dest are an
514     // even multiple of a byte.
515     if ((DestBitWidth & 7) == 0 &&
516         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
517       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
518         return Res;
519 
520     return nullptr;
521   }
522   case Instruction::BitCast:
523     return FoldBitCast(V, DestTy);
524   case Instruction::AddrSpaceCast:
525     return nullptr;
526   }
527 }
528 
529 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
530                                               Constant *V1, Constant *V2) {
531   // Check for i1 and vector true/false conditions.
532   if (Cond->isNullValue()) return V2;
533   if (Cond->isAllOnesValue()) return V1;
534 
535   // If the condition is a vector constant, fold the result elementwise.
536   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
537     auto *V1VTy = CondV->getType();
538     SmallVector<Constant*, 16> Result;
539     Type *Ty = IntegerType::get(CondV->getContext(), 32);
540     for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
541       Constant *V;
542       Constant *V1Element = ConstantExpr::getExtractElement(V1,
543                                                     ConstantInt::get(Ty, i));
544       Constant *V2Element = ConstantExpr::getExtractElement(V2,
545                                                     ConstantInt::get(Ty, i));
546       auto *Cond = cast<Constant>(CondV->getOperand(i));
547       if (isa<PoisonValue>(Cond)) {
548         V = PoisonValue::get(V1Element->getType());
549       } else if (V1Element == V2Element) {
550         V = V1Element;
551       } else if (isa<UndefValue>(Cond)) {
552         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
553       } else {
554         if (!isa<ConstantInt>(Cond)) break;
555         V = Cond->isNullValue() ? V2Element : V1Element;
556       }
557       Result.push_back(V);
558     }
559 
560     // If we were able to build the vector, return it.
561     if (Result.size() == V1VTy->getNumElements())
562       return ConstantVector::get(Result);
563   }
564 
565   if (isa<PoisonValue>(Cond))
566     return PoisonValue::get(V1->getType());
567 
568   if (isa<UndefValue>(Cond)) {
569     if (isa<UndefValue>(V1)) return V1;
570     return V2;
571   }
572 
573   if (V1 == V2) return V1;
574 
575   if (isa<PoisonValue>(V1))
576     return V2;
577   if (isa<PoisonValue>(V2))
578     return V1;
579 
580   // If the true or false value is undef, we can fold to the other value as
581   // long as the other value isn't poison.
582   auto NotPoison = [](Constant *C) {
583     if (isa<PoisonValue>(C))
584       return false;
585 
586     // TODO: We can analyze ConstExpr by opcode to determine if there is any
587     //       possibility of poison.
588     if (isa<ConstantExpr>(C))
589       return false;
590 
591     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) ||
592         isa<ConstantPointerNull>(C) || isa<Function>(C))
593       return true;
594 
595     if (C->getType()->isVectorTy())
596       return !C->containsPoisonElement() && !C->containsConstantExpression();
597 
598     // TODO: Recursively analyze aggregates or other constants.
599     return false;
600   };
601   if (isa<UndefValue>(V1) && NotPoison(V2)) return V2;
602   if (isa<UndefValue>(V2) && NotPoison(V1)) return V1;
603 
604   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
605     if (TrueVal->getOpcode() == Instruction::Select)
606       if (TrueVal->getOperand(0) == Cond)
607         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
608   }
609   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
610     if (FalseVal->getOpcode() == Instruction::Select)
611       if (FalseVal->getOperand(0) == Cond)
612         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
613   }
614 
615   return nullptr;
616 }
617 
618 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
619                                                       Constant *Idx) {
620   auto *ValVTy = cast<VectorType>(Val->getType());
621 
622   // extractelt poison, C -> poison
623   // extractelt C, undef -> poison
624   if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx))
625     return PoisonValue::get(ValVTy->getElementType());
626 
627   // extractelt undef, C -> undef
628   if (isa<UndefValue>(Val))
629     return UndefValue::get(ValVTy->getElementType());
630 
631   auto *CIdx = dyn_cast<ConstantInt>(Idx);
632   if (!CIdx)
633     return nullptr;
634 
635   if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
636     // ee({w,x,y,z}, wrong_value) -> poison
637     if (CIdx->uge(ValFVTy->getNumElements()))
638       return PoisonValue::get(ValFVTy->getElementType());
639   }
640 
641   // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
642   if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
643     if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
644       SmallVector<Constant *, 8> Ops;
645       Ops.reserve(CE->getNumOperands());
646       for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
647         Constant *Op = CE->getOperand(i);
648         if (Op->getType()->isVectorTy()) {
649           Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
650           if (!ScalarOp)
651             return nullptr;
652           Ops.push_back(ScalarOp);
653         } else
654           Ops.push_back(Op);
655       }
656       return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
657                                  GEP->getSourceElementType());
658     } else if (CE->getOpcode() == Instruction::InsertElement) {
659       if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) {
660         if (APSInt::isSameValue(APSInt(IEIdx->getValue()),
661                                 APSInt(CIdx->getValue()))) {
662           return CE->getOperand(1);
663         } else {
664           return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx);
665         }
666       }
667     }
668   }
669 
670   if (Constant *C = Val->getAggregateElement(CIdx))
671     return C;
672 
673   // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
674   if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
675     if (Constant *SplatVal = Val->getSplatValue())
676       return SplatVal;
677   }
678 
679   return nullptr;
680 }
681 
682 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
683                                                      Constant *Elt,
684                                                      Constant *Idx) {
685   if (isa<UndefValue>(Idx))
686     return PoisonValue::get(Val->getType());
687 
688   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
689   if (!CIdx) return nullptr;
690 
691   // Do not iterate on scalable vector. The num of elements is unknown at
692   // compile-time.
693   if (isa<ScalableVectorType>(Val->getType()))
694     return nullptr;
695 
696   auto *ValTy = cast<FixedVectorType>(Val->getType());
697 
698   unsigned NumElts = ValTy->getNumElements();
699   if (CIdx->uge(NumElts))
700     return PoisonValue::get(Val->getType());
701 
702   SmallVector<Constant*, 16> Result;
703   Result.reserve(NumElts);
704   auto *Ty = Type::getInt32Ty(Val->getContext());
705   uint64_t IdxVal = CIdx->getZExtValue();
706   for (unsigned i = 0; i != NumElts; ++i) {
707     if (i == IdxVal) {
708       Result.push_back(Elt);
709       continue;
710     }
711 
712     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
713     Result.push_back(C);
714   }
715 
716   return ConstantVector::get(Result);
717 }
718 
719 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
720                                                      ArrayRef<int> Mask) {
721   auto *V1VTy = cast<VectorType>(V1->getType());
722   unsigned MaskNumElts = Mask.size();
723   auto MaskEltCount =
724       ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy));
725   Type *EltTy = V1VTy->getElementType();
726 
727   // Undefined shuffle mask -> undefined value.
728   if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
729     return UndefValue::get(FixedVectorType::get(EltTy, MaskNumElts));
730   }
731 
732   // If the mask is all zeros this is a splat, no need to go through all
733   // elements.
734   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
735     Type *Ty = IntegerType::get(V1->getContext(), 32);
736     Constant *Elt =
737         ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
738 
739     if (Elt->isNullValue()) {
740       auto *VTy = VectorType::get(EltTy, MaskEltCount);
741       return ConstantAggregateZero::get(VTy);
742     } else if (!MaskEltCount.isScalable())
743       return ConstantVector::getSplat(MaskEltCount, Elt);
744   }
745   // Do not iterate on scalable vector. The num of elements is unknown at
746   // compile-time.
747   if (isa<ScalableVectorType>(V1VTy))
748     return nullptr;
749 
750   unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
751 
752   // Loop over the shuffle mask, evaluating each element.
753   SmallVector<Constant*, 32> Result;
754   for (unsigned i = 0; i != MaskNumElts; ++i) {
755     int Elt = Mask[i];
756     if (Elt == -1) {
757       Result.push_back(UndefValue::get(EltTy));
758       continue;
759     }
760     Constant *InElt;
761     if (unsigned(Elt) >= SrcNumElts*2)
762       InElt = UndefValue::get(EltTy);
763     else if (unsigned(Elt) >= SrcNumElts) {
764       Type *Ty = IntegerType::get(V2->getContext(), 32);
765       InElt =
766         ConstantExpr::getExtractElement(V2,
767                                         ConstantInt::get(Ty, Elt - SrcNumElts));
768     } else {
769       Type *Ty = IntegerType::get(V1->getContext(), 32);
770       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
771     }
772     Result.push_back(InElt);
773   }
774 
775   return ConstantVector::get(Result);
776 }
777 
778 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
779                                                     ArrayRef<unsigned> Idxs) {
780   // Base case: no indices, so return the entire value.
781   if (Idxs.empty())
782     return Agg;
783 
784   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
785     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
786 
787   return nullptr;
788 }
789 
790 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
791                                                    Constant *Val,
792                                                    ArrayRef<unsigned> Idxs) {
793   // Base case: no indices, so replace the entire value.
794   if (Idxs.empty())
795     return Val;
796 
797   unsigned NumElts;
798   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
799     NumElts = ST->getNumElements();
800   else
801     NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
802 
803   SmallVector<Constant*, 32> Result;
804   for (unsigned i = 0; i != NumElts; ++i) {
805     Constant *C = Agg->getAggregateElement(i);
806     if (!C) return nullptr;
807 
808     if (Idxs[0] == i)
809       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
810 
811     Result.push_back(C);
812   }
813 
814   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
815     return ConstantStruct::get(ST, Result);
816   return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
817 }
818 
819 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
820   assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
821 
822   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
823   // vectors are always evaluated per element.
824   bool IsScalableVector = isa<ScalableVectorType>(C->getType());
825   bool HasScalarUndefOrScalableVectorUndef =
826       (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
827 
828   if (HasScalarUndefOrScalableVectorUndef) {
829     switch (static_cast<Instruction::UnaryOps>(Opcode)) {
830     case Instruction::FNeg:
831       return C; // -undef -> undef
832     case Instruction::UnaryOpsEnd:
833       llvm_unreachable("Invalid UnaryOp");
834     }
835   }
836 
837   // Constant should not be UndefValue, unless these are vector constants.
838   assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
839   // We only have FP UnaryOps right now.
840   assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
841 
842   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
843     const APFloat &CV = CFP->getValueAPF();
844     switch (Opcode) {
845     default:
846       break;
847     case Instruction::FNeg:
848       return ConstantFP::get(C->getContext(), neg(CV));
849     }
850   } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) {
851 
852     Type *Ty = IntegerType::get(VTy->getContext(), 32);
853     // Fast path for splatted constants.
854     if (Constant *Splat = C->getSplatValue()) {
855       Constant *Elt = ConstantExpr::get(Opcode, Splat);
856       return ConstantVector::getSplat(VTy->getElementCount(), Elt);
857     }
858 
859     // Fold each element and create a vector constant from those constants.
860     SmallVector<Constant *, 16> Result;
861     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
862       Constant *ExtractIdx = ConstantInt::get(Ty, i);
863       Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
864 
865       Result.push_back(ConstantExpr::get(Opcode, Elt));
866     }
867 
868     return ConstantVector::get(Result);
869   }
870 
871   // We don't know how to fold this.
872   return nullptr;
873 }
874 
875 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
876                                               Constant *C2) {
877   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
878 
879   // Simplify BinOps with their identity values first. They are no-ops and we
880   // can always return the other value, including undef or poison values.
881   // FIXME: remove unnecessary duplicated identity patterns below.
882   // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops,
883   //        like X << 0 = X.
884   Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType());
885   if (Identity) {
886     if (C1 == Identity)
887       return C2;
888     if (C2 == Identity)
889       return C1;
890   }
891 
892   // Binary operations propagate poison.
893   if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
894     return PoisonValue::get(C1->getType());
895 
896   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
897   // vectors are always evaluated per element.
898   bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
899   bool HasScalarUndefOrScalableVectorUndef =
900       (!C1->getType()->isVectorTy() || IsScalableVector) &&
901       (isa<UndefValue>(C1) || isa<UndefValue>(C2));
902   if (HasScalarUndefOrScalableVectorUndef) {
903     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
904     case Instruction::Xor:
905       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
906         // Handle undef ^ undef -> 0 special case. This is a common
907         // idiom (misuse).
908         return Constant::getNullValue(C1->getType());
909       LLVM_FALLTHROUGH;
910     case Instruction::Add:
911     case Instruction::Sub:
912       return UndefValue::get(C1->getType());
913     case Instruction::And:
914       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
915         return C1;
916       return Constant::getNullValue(C1->getType());   // undef & X -> 0
917     case Instruction::Mul: {
918       // undef * undef -> undef
919       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
920         return C1;
921       const APInt *CV;
922       // X * undef -> undef   if X is odd
923       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
924         if ((*CV)[0])
925           return UndefValue::get(C1->getType());
926 
927       // X * undef -> 0       otherwise
928       return Constant::getNullValue(C1->getType());
929     }
930     case Instruction::SDiv:
931     case Instruction::UDiv:
932       // X / undef -> poison
933       // X / 0 -> poison
934       if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
935         return PoisonValue::get(C2->getType());
936       // undef / 1 -> undef
937       if (match(C2, m_One()))
938         return C1;
939       // undef / X -> 0       otherwise
940       return Constant::getNullValue(C1->getType());
941     case Instruction::URem:
942     case Instruction::SRem:
943       // X % undef -> poison
944       // X % 0 -> poison
945       if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
946         return PoisonValue::get(C2->getType());
947       // undef % X -> 0       otherwise
948       return Constant::getNullValue(C1->getType());
949     case Instruction::Or:                          // X | undef -> -1
950       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
951         return C1;
952       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
953     case Instruction::LShr:
954       // X >>l undef -> poison
955       if (isa<UndefValue>(C2))
956         return PoisonValue::get(C2->getType());
957       // undef >>l 0 -> undef
958       if (match(C2, m_Zero()))
959         return C1;
960       // undef >>l X -> 0
961       return Constant::getNullValue(C1->getType());
962     case Instruction::AShr:
963       // X >>a undef -> poison
964       if (isa<UndefValue>(C2))
965         return PoisonValue::get(C2->getType());
966       // undef >>a 0 -> undef
967       if (match(C2, m_Zero()))
968         return C1;
969       // TODO: undef >>a X -> poison if the shift is exact
970       // undef >>a X -> 0
971       return Constant::getNullValue(C1->getType());
972     case Instruction::Shl:
973       // X << undef -> undef
974       if (isa<UndefValue>(C2))
975         return PoisonValue::get(C2->getType());
976       // undef << 0 -> undef
977       if (match(C2, m_Zero()))
978         return C1;
979       // undef << X -> 0
980       return Constant::getNullValue(C1->getType());
981     case Instruction::FSub:
982       // -0.0 - undef --> undef (consistent with "fneg undef")
983       if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
984         return C2;
985       LLVM_FALLTHROUGH;
986     case Instruction::FAdd:
987     case Instruction::FMul:
988     case Instruction::FDiv:
989     case Instruction::FRem:
990       // [any flop] undef, undef -> undef
991       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
992         return C1;
993       // [any flop] C, undef -> NaN
994       // [any flop] undef, C -> NaN
995       // We could potentially specialize NaN/Inf constants vs. 'normal'
996       // constants (possibly differently depending on opcode and operand). This
997       // would allow returning undef sometimes. But it is always safe to fold to
998       // NaN because we can choose the undef operand as NaN, and any FP opcode
999       // with a NaN operand will propagate NaN.
1000       return ConstantFP::getNaN(C1->getType());
1001     case Instruction::BinaryOpsEnd:
1002       llvm_unreachable("Invalid BinaryOp");
1003     }
1004   }
1005 
1006   // Neither constant should be UndefValue, unless these are vector constants.
1007   assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
1008 
1009   // Handle simplifications when the RHS is a constant int.
1010   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1011     switch (Opcode) {
1012     case Instruction::Add:
1013       if (CI2->isZero()) return C1;                             // X + 0 == X
1014       break;
1015     case Instruction::Sub:
1016       if (CI2->isZero()) return C1;                             // X - 0 == X
1017       break;
1018     case Instruction::Mul:
1019       if (CI2->isZero()) return C2;                             // X * 0 == 0
1020       if (CI2->isOne())
1021         return C1;                                              // X * 1 == X
1022       break;
1023     case Instruction::UDiv:
1024     case Instruction::SDiv:
1025       if (CI2->isOne())
1026         return C1;                                            // X / 1 == X
1027       if (CI2->isZero())
1028         return PoisonValue::get(CI2->getType());              // X / 0 == poison
1029       break;
1030     case Instruction::URem:
1031     case Instruction::SRem:
1032       if (CI2->isOne())
1033         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1034       if (CI2->isZero())
1035         return PoisonValue::get(CI2->getType());              // X % 0 == poison
1036       break;
1037     case Instruction::And:
1038       if (CI2->isZero()) return C2;                           // X & 0 == 0
1039       if (CI2->isMinusOne())
1040         return C1;                                            // X & -1 == X
1041 
1042       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1043         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1044         if (CE1->getOpcode() == Instruction::ZExt) {
1045           unsigned DstWidth = CI2->getType()->getBitWidth();
1046           unsigned SrcWidth =
1047             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1048           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1049           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1050             return C1;
1051         }
1052 
1053         // If and'ing the address of a global with a constant, fold it.
1054         if (CE1->getOpcode() == Instruction::PtrToInt &&
1055             isa<GlobalValue>(CE1->getOperand(0))) {
1056           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1057 
1058           MaybeAlign GVAlign;
1059 
1060           if (Module *TheModule = GV->getParent()) {
1061             const DataLayout &DL = TheModule->getDataLayout();
1062             GVAlign = GV->getPointerAlignment(DL);
1063 
1064             // If the function alignment is not specified then assume that it
1065             // is 4.
1066             // This is dangerous; on x86, the alignment of the pointer
1067             // corresponds to the alignment of the function, but might be less
1068             // than 4 if it isn't explicitly specified.
1069             // However, a fix for this behaviour was reverted because it
1070             // increased code size (see https://reviews.llvm.org/D55115)
1071             // FIXME: This code should be deleted once existing targets have
1072             // appropriate defaults
1073             if (isa<Function>(GV) && !DL.getFunctionPtrAlign())
1074               GVAlign = Align(4);
1075           } else if (isa<Function>(GV)) {
1076             // Without a datalayout we have to assume the worst case: that the
1077             // function pointer isn't aligned at all.
1078             GVAlign = llvm::None;
1079           } else if (isa<GlobalVariable>(GV)) {
1080             GVAlign = cast<GlobalVariable>(GV)->getAlign();
1081           }
1082 
1083           if (GVAlign && *GVAlign > 1) {
1084             unsigned DstWidth = CI2->getType()->getBitWidth();
1085             unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
1086             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1087 
1088             // If checking bits we know are clear, return zero.
1089             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1090               return Constant::getNullValue(CI2->getType());
1091           }
1092         }
1093       }
1094       break;
1095     case Instruction::Or:
1096       if (CI2->isZero()) return C1;        // X | 0 == X
1097       if (CI2->isMinusOne())
1098         return C2;                         // X | -1 == -1
1099       break;
1100     case Instruction::Xor:
1101       if (CI2->isZero()) return C1;        // X ^ 0 == X
1102 
1103       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1104         switch (CE1->getOpcode()) {
1105         default: break;
1106         case Instruction::ICmp:
1107         case Instruction::FCmp:
1108           // cmp pred ^ true -> cmp !pred
1109           assert(CI2->isOne());
1110           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1111           pred = CmpInst::getInversePredicate(pred);
1112           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1113                                           CE1->getOperand(1));
1114         }
1115       }
1116       break;
1117     case Instruction::AShr:
1118       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1119       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1120         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1121           return ConstantExpr::getLShr(C1, C2);
1122       break;
1123     }
1124   } else if (isa<ConstantInt>(C1)) {
1125     // If C1 is a ConstantInt and C2 is not, swap the operands.
1126     if (Instruction::isCommutative(Opcode))
1127       return ConstantExpr::get(Opcode, C2, C1);
1128   }
1129 
1130   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1131     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1132       const APInt &C1V = CI1->getValue();
1133       const APInt &C2V = CI2->getValue();
1134       switch (Opcode) {
1135       default:
1136         break;
1137       case Instruction::Add:
1138         return ConstantInt::get(CI1->getContext(), C1V + C2V);
1139       case Instruction::Sub:
1140         return ConstantInt::get(CI1->getContext(), C1V - C2V);
1141       case Instruction::Mul:
1142         return ConstantInt::get(CI1->getContext(), C1V * C2V);
1143       case Instruction::UDiv:
1144         assert(!CI2->isZero() && "Div by zero handled above");
1145         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1146       case Instruction::SDiv:
1147         assert(!CI2->isZero() && "Div by zero handled above");
1148         if (C2V.isAllOnes() && C1V.isMinSignedValue())
1149           return PoisonValue::get(CI1->getType());   // MIN_INT / -1 -> poison
1150         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1151       case Instruction::URem:
1152         assert(!CI2->isZero() && "Div by zero handled above");
1153         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1154       case Instruction::SRem:
1155         assert(!CI2->isZero() && "Div by zero handled above");
1156         if (C2V.isAllOnes() && C1V.isMinSignedValue())
1157           return PoisonValue::get(CI1->getType());   // MIN_INT % -1 -> poison
1158         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1159       case Instruction::And:
1160         return ConstantInt::get(CI1->getContext(), C1V & C2V);
1161       case Instruction::Or:
1162         return ConstantInt::get(CI1->getContext(), C1V | C2V);
1163       case Instruction::Xor:
1164         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1165       case Instruction::Shl:
1166         if (C2V.ult(C1V.getBitWidth()))
1167           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1168         return PoisonValue::get(C1->getType()); // too big shift is poison
1169       case Instruction::LShr:
1170         if (C2V.ult(C1V.getBitWidth()))
1171           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1172         return PoisonValue::get(C1->getType()); // too big shift is poison
1173       case Instruction::AShr:
1174         if (C2V.ult(C1V.getBitWidth()))
1175           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1176         return PoisonValue::get(C1->getType()); // too big shift is poison
1177       }
1178     }
1179 
1180     switch (Opcode) {
1181     case Instruction::SDiv:
1182     case Instruction::UDiv:
1183     case Instruction::URem:
1184     case Instruction::SRem:
1185     case Instruction::LShr:
1186     case Instruction::AShr:
1187     case Instruction::Shl:
1188       if (CI1->isZero()) return C1;
1189       break;
1190     default:
1191       break;
1192     }
1193   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1194     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1195       const APFloat &C1V = CFP1->getValueAPF();
1196       const APFloat &C2V = CFP2->getValueAPF();
1197       APFloat C3V = C1V;  // copy for modification
1198       switch (Opcode) {
1199       default:
1200         break;
1201       case Instruction::FAdd:
1202         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1203         return ConstantFP::get(C1->getContext(), C3V);
1204       case Instruction::FSub:
1205         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1206         return ConstantFP::get(C1->getContext(), C3V);
1207       case Instruction::FMul:
1208         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1209         return ConstantFP::get(C1->getContext(), C3V);
1210       case Instruction::FDiv:
1211         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1212         return ConstantFP::get(C1->getContext(), C3V);
1213       case Instruction::FRem:
1214         (void)C3V.mod(C2V);
1215         return ConstantFP::get(C1->getContext(), C3V);
1216       }
1217     }
1218   } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) {
1219     // Fast path for splatted constants.
1220     if (Constant *C2Splat = C2->getSplatValue()) {
1221       if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
1222         return PoisonValue::get(VTy);
1223       if (Constant *C1Splat = C1->getSplatValue()) {
1224         return ConstantVector::getSplat(
1225             VTy->getElementCount(),
1226             ConstantExpr::get(Opcode, C1Splat, C2Splat));
1227       }
1228     }
1229 
1230     if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
1231       // Fold each element and create a vector constant from those constants.
1232       SmallVector<Constant*, 16> Result;
1233       Type *Ty = IntegerType::get(FVTy->getContext(), 32);
1234       for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
1235         Constant *ExtractIdx = ConstantInt::get(Ty, i);
1236         Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1237         Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1238 
1239         // If any element of a divisor vector is zero, the whole op is poison.
1240         if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1241           return PoisonValue::get(VTy);
1242 
1243         Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1244       }
1245 
1246       return ConstantVector::get(Result);
1247     }
1248   }
1249 
1250   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1251     // There are many possible foldings we could do here.  We should probably
1252     // at least fold add of a pointer with an integer into the appropriate
1253     // getelementptr.  This will improve alias analysis a bit.
1254 
1255     // Given ((a + b) + c), if (b + c) folds to something interesting, return
1256     // (a + (b + c)).
1257     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1258       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1259       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1260         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1261     }
1262   } else if (isa<ConstantExpr>(C2)) {
1263     // If C2 is a constant expr and C1 isn't, flop them around and fold the
1264     // other way if possible.
1265     if (Instruction::isCommutative(Opcode))
1266       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1267   }
1268 
1269   // i1 can be simplified in many cases.
1270   if (C1->getType()->isIntegerTy(1)) {
1271     switch (Opcode) {
1272     case Instruction::Add:
1273     case Instruction::Sub:
1274       return ConstantExpr::getXor(C1, C2);
1275     case Instruction::Mul:
1276       return ConstantExpr::getAnd(C1, C2);
1277     case Instruction::Shl:
1278     case Instruction::LShr:
1279     case Instruction::AShr:
1280       // We can assume that C2 == 0.  If it were one the result would be
1281       // undefined because the shift value is as large as the bitwidth.
1282       return C1;
1283     case Instruction::SDiv:
1284     case Instruction::UDiv:
1285       // We can assume that C2 == 1.  If it were zero the result would be
1286       // undefined through division by zero.
1287       return C1;
1288     case Instruction::URem:
1289     case Instruction::SRem:
1290       // We can assume that C2 == 1.  If it were zero the result would be
1291       // undefined through division by zero.
1292       return ConstantInt::getFalse(C1->getContext());
1293     default:
1294       break;
1295     }
1296   }
1297 
1298   // We don't know how to fold this.
1299   return nullptr;
1300 }
1301 
1302 /// This type is zero-sized if it's an array or structure of zero-sized types.
1303 /// The only leaf zero-sized type is an empty structure.
1304 static bool isMaybeZeroSizedType(Type *Ty) {
1305   if (StructType *STy = dyn_cast<StructType>(Ty)) {
1306     if (STy->isOpaque()) return true;  // Can't say.
1307 
1308     // If all of elements have zero size, this does too.
1309     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1310       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1311     return true;
1312 
1313   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1314     return isMaybeZeroSizedType(ATy->getElementType());
1315   }
1316   return false;
1317 }
1318 
1319 /// Compare the two constants as though they were getelementptr indices.
1320 /// This allows coercion of the types to be the same thing.
1321 ///
1322 /// If the two constants are the "same" (after coercion), return 0.  If the
1323 /// first is less than the second, return -1, if the second is less than the
1324 /// first, return 1.  If the constants are not integral, return -2.
1325 ///
1326 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1327   if (C1 == C2) return 0;
1328 
1329   // Ok, we found a different index.  If they are not ConstantInt, we can't do
1330   // anything with them.
1331   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1332     return -2; // don't know!
1333 
1334   // We cannot compare the indices if they don't fit in an int64_t.
1335   if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1336       cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1337     return -2; // don't know!
1338 
1339   // Ok, we have two differing integer indices.  Sign extend them to be the same
1340   // type.
1341   int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1342   int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1343 
1344   if (C1Val == C2Val) return 0;  // They are equal
1345 
1346   // If the type being indexed over is really just a zero sized type, there is
1347   // no pointer difference being made here.
1348   if (isMaybeZeroSizedType(ElTy))
1349     return -2; // dunno.
1350 
1351   // If they are really different, now that they are the same type, then we
1352   // found a difference!
1353   if (C1Val < C2Val)
1354     return -1;
1355   else
1356     return 1;
1357 }
1358 
1359 /// This function determines if there is anything we can decide about the two
1360 /// constants provided. This doesn't need to handle simple things like
1361 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1362 /// If we can determine that the two constants have a particular relation to
1363 /// each other, we should return the corresponding FCmpInst predicate,
1364 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1365 /// ConstantFoldCompareInstruction.
1366 ///
1367 /// To simplify this code we canonicalize the relation so that the first
1368 /// operand is always the most "complex" of the two.  We consider ConstantFP
1369 /// to be the simplest, and ConstantExprs to be the most complex.
1370 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1371   assert(V1->getType() == V2->getType() &&
1372          "Cannot compare values of different types!");
1373 
1374   // We do not know if a constant expression will evaluate to a number or NaN.
1375   // Therefore, we can only say that the relation is unordered or equal.
1376   if (V1 == V2) return FCmpInst::FCMP_UEQ;
1377 
1378   if (!isa<ConstantExpr>(V1)) {
1379     if (!isa<ConstantExpr>(V2)) {
1380       // Simple case, use the standard constant folder.
1381       ConstantInt *R = nullptr;
1382       R = dyn_cast<ConstantInt>(
1383                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1384       if (R && !R->isZero())
1385         return FCmpInst::FCMP_OEQ;
1386       R = dyn_cast<ConstantInt>(
1387                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1388       if (R && !R->isZero())
1389         return FCmpInst::FCMP_OLT;
1390       R = dyn_cast<ConstantInt>(
1391                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1392       if (R && !R->isZero())
1393         return FCmpInst::FCMP_OGT;
1394 
1395       // Nothing more we can do
1396       return FCmpInst::BAD_FCMP_PREDICATE;
1397     }
1398 
1399     // If the first operand is simple and second is ConstantExpr, swap operands.
1400     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1401     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1402       return FCmpInst::getSwappedPredicate(SwappedRelation);
1403   } else {
1404     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1405     // constantexpr or a simple constant.
1406     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1407     switch (CE1->getOpcode()) {
1408     case Instruction::FPTrunc:
1409     case Instruction::FPExt:
1410     case Instruction::UIToFP:
1411     case Instruction::SIToFP:
1412       // We might be able to do something with these but we don't right now.
1413       break;
1414     default:
1415       break;
1416     }
1417   }
1418   // There are MANY other foldings that we could perform here.  They will
1419   // probably be added on demand, as they seem needed.
1420   return FCmpInst::BAD_FCMP_PREDICATE;
1421 }
1422 
1423 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1424                                                       const GlobalValue *GV2) {
1425   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1426     if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
1427       return true;
1428     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1429       Type *Ty = GVar->getValueType();
1430       // A global with opaque type might end up being zero sized.
1431       if (!Ty->isSized())
1432         return true;
1433       // A global with an empty type might lie at the address of any other
1434       // global.
1435       if (Ty->isEmptyTy())
1436         return true;
1437     }
1438     return false;
1439   };
1440   // Don't try to decide equality of aliases.
1441   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1442     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1443       return ICmpInst::ICMP_NE;
1444   return ICmpInst::BAD_ICMP_PREDICATE;
1445 }
1446 
1447 /// This function determines if there is anything we can decide about the two
1448 /// constants provided. This doesn't need to handle simple things like integer
1449 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1450 /// If we can determine that the two constants have a particular relation to
1451 /// each other, we should return the corresponding ICmp predicate, otherwise
1452 /// return ICmpInst::BAD_ICMP_PREDICATE.
1453 ///
1454 /// To simplify this code we canonicalize the relation so that the first
1455 /// operand is always the most "complex" of the two.  We consider simple
1456 /// constants (like ConstantInt) to be the simplest, followed by
1457 /// GlobalValues, followed by ConstantExpr's (the most complex).
1458 ///
1459 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1460                                                 bool isSigned) {
1461   assert(V1->getType() == V2->getType() &&
1462          "Cannot compare different types of values!");
1463   if (V1 == V2) return ICmpInst::ICMP_EQ;
1464 
1465   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1466       !isa<BlockAddress>(V1)) {
1467     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1468         !isa<BlockAddress>(V2)) {
1469       // We distilled this down to a simple case, use the standard constant
1470       // folder.
1471       ConstantInt *R = nullptr;
1472       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1473       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1474       if (R && !R->isZero())
1475         return pred;
1476       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1477       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1478       if (R && !R->isZero())
1479         return pred;
1480       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1481       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1482       if (R && !R->isZero())
1483         return pred;
1484 
1485       // If we couldn't figure it out, bail.
1486       return ICmpInst::BAD_ICMP_PREDICATE;
1487     }
1488 
1489     // If the first operand is simple, swap operands.
1490     ICmpInst::Predicate SwappedRelation =
1491       evaluateICmpRelation(V2, V1, isSigned);
1492     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1493       return ICmpInst::getSwappedPredicate(SwappedRelation);
1494 
1495   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1496     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1497       ICmpInst::Predicate SwappedRelation =
1498         evaluateICmpRelation(V2, V1, isSigned);
1499       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1500         return ICmpInst::getSwappedPredicate(SwappedRelation);
1501       return ICmpInst::BAD_ICMP_PREDICATE;
1502     }
1503 
1504     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1505     // constant (which, since the types must match, means that it's a
1506     // ConstantPointerNull).
1507     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1508       return areGlobalsPotentiallyEqual(GV, GV2);
1509     } else if (isa<BlockAddress>(V2)) {
1510       return ICmpInst::ICMP_NE; // Globals never equal labels.
1511     } else {
1512       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1513       // GlobalVals can never be null unless they have external weak linkage.
1514       // We don't try to evaluate aliases here.
1515       // NOTE: We should not be doing this constant folding if null pointer
1516       // is considered valid for the function. But currently there is no way to
1517       // query it from the Constant type.
1518       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1519           !NullPointerIsDefined(nullptr /* F */,
1520                                 GV->getType()->getAddressSpace()))
1521         return ICmpInst::ICMP_UGT;
1522     }
1523   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1524     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1525       ICmpInst::Predicate SwappedRelation =
1526         evaluateICmpRelation(V2, V1, isSigned);
1527       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1528         return ICmpInst::getSwappedPredicate(SwappedRelation);
1529       return ICmpInst::BAD_ICMP_PREDICATE;
1530     }
1531 
1532     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1533     // constant (which, since the types must match, means that it is a
1534     // ConstantPointerNull).
1535     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1536       // Block address in another function can't equal this one, but block
1537       // addresses in the current function might be the same if blocks are
1538       // empty.
1539       if (BA2->getFunction() != BA->getFunction())
1540         return ICmpInst::ICMP_NE;
1541     } else {
1542       // Block addresses aren't null, don't equal the address of globals.
1543       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1544              "Canonicalization guarantee!");
1545       return ICmpInst::ICMP_NE;
1546     }
1547   } else {
1548     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1549     // constantexpr, a global, block address, or a simple constant.
1550     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1551     Constant *CE1Op0 = CE1->getOperand(0);
1552 
1553     switch (CE1->getOpcode()) {
1554     case Instruction::Trunc:
1555     case Instruction::FPTrunc:
1556     case Instruction::FPExt:
1557     case Instruction::FPToUI:
1558     case Instruction::FPToSI:
1559       break; // We can't evaluate floating point casts or truncations.
1560 
1561     case Instruction::BitCast:
1562       // If this is a global value cast, check to see if the RHS is also a
1563       // GlobalValue.
1564       if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0))
1565         if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2))
1566           return areGlobalsPotentiallyEqual(GV, GV2);
1567       LLVM_FALLTHROUGH;
1568     case Instruction::UIToFP:
1569     case Instruction::SIToFP:
1570     case Instruction::ZExt:
1571     case Instruction::SExt:
1572       // We can't evaluate floating point casts or truncations.
1573       if (CE1Op0->getType()->isFPOrFPVectorTy())
1574         break;
1575 
1576       // If the cast is not actually changing bits, and the second operand is a
1577       // null pointer, do the comparison with the pre-casted value.
1578       if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1579         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1580         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1581         return evaluateICmpRelation(CE1Op0,
1582                                     Constant::getNullValue(CE1Op0->getType()),
1583                                     isSigned);
1584       }
1585       break;
1586 
1587     case Instruction::GetElementPtr: {
1588       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1589       // Ok, since this is a getelementptr, we know that the constant has a
1590       // pointer type.  Check the various cases.
1591       if (isa<ConstantPointerNull>(V2)) {
1592         // If we are comparing a GEP to a null pointer, check to see if the base
1593         // of the GEP equals the null pointer.
1594         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1595           // If its not weak linkage, the GVal must have a non-zero address
1596           // so the result is greater-than
1597           if (!GV->hasExternalWeakLinkage())
1598             return ICmpInst::ICMP_UGT;
1599         } else if (isa<ConstantPointerNull>(CE1Op0)) {
1600           // If we are indexing from a null pointer, check to see if we have any
1601           // non-zero indices.
1602           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1603             if (!CE1->getOperand(i)->isNullValue())
1604               // Offsetting from null, must not be equal.
1605               return ICmpInst::ICMP_UGT;
1606           // Only zero indexes from null, must still be zero.
1607           return ICmpInst::ICMP_EQ;
1608         }
1609         // Otherwise, we can't really say if the first operand is null or not.
1610       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1611         if (isa<ConstantPointerNull>(CE1Op0)) {
1612           // If its not weak linkage, the GVal must have a non-zero address
1613           // so the result is less-than
1614           if (!GV2->hasExternalWeakLinkage())
1615             return ICmpInst::ICMP_ULT;
1616         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1617           if (GV == GV2) {
1618             // If this is a getelementptr of the same global, then it must be
1619             // different.  Because the types must match, the getelementptr could
1620             // only have at most one index, and because we fold getelementptr's
1621             // with a single zero index, it must be nonzero.
1622             assert(CE1->getNumOperands() == 2 &&
1623                    !CE1->getOperand(1)->isNullValue() &&
1624                    "Surprising getelementptr!");
1625             return ICmpInst::ICMP_UGT;
1626           } else {
1627             if (CE1GEP->hasAllZeroIndices())
1628               return areGlobalsPotentiallyEqual(GV, GV2);
1629             return ICmpInst::BAD_ICMP_PREDICATE;
1630           }
1631         }
1632       } else {
1633         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1634         Constant *CE2Op0 = CE2->getOperand(0);
1635 
1636         // There are MANY other foldings that we could perform here.  They will
1637         // probably be added on demand, as they seem needed.
1638         switch (CE2->getOpcode()) {
1639         default: break;
1640         case Instruction::GetElementPtr:
1641           // By far the most common case to handle is when the base pointers are
1642           // obviously to the same global.
1643           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1644             // Don't know relative ordering, but check for inequality.
1645             if (CE1Op0 != CE2Op0) {
1646               GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1647               if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1648                 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1649                                                   cast<GlobalValue>(CE2Op0));
1650               return ICmpInst::BAD_ICMP_PREDICATE;
1651             }
1652             // Ok, we know that both getelementptr instructions are based on the
1653             // same global.  From this, we can precisely determine the relative
1654             // ordering of the resultant pointers.
1655             unsigned i = 1;
1656 
1657             // The logic below assumes that the result of the comparison
1658             // can be determined by finding the first index that differs.
1659             // This doesn't work if there is over-indexing in any
1660             // subsequent indices, so check for that case first.
1661             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1662                 !CE2->isGEPWithNoNotionalOverIndexing())
1663                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1664 
1665             // Compare all of the operands the GEP's have in common.
1666             gep_type_iterator GTI = gep_type_begin(CE1);
1667             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1668                  ++i, ++GTI)
1669               switch (IdxCompare(CE1->getOperand(i),
1670                                  CE2->getOperand(i), GTI.getIndexedType())) {
1671               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1672               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1673               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1674               }
1675 
1676             // Ok, we ran out of things they have in common.  If any leftovers
1677             // are non-zero then we have a difference, otherwise we are equal.
1678             for (; i < CE1->getNumOperands(); ++i)
1679               if (!CE1->getOperand(i)->isNullValue()) {
1680                 if (isa<ConstantInt>(CE1->getOperand(i)))
1681                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1682                 else
1683                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1684               }
1685 
1686             for (; i < CE2->getNumOperands(); ++i)
1687               if (!CE2->getOperand(i)->isNullValue()) {
1688                 if (isa<ConstantInt>(CE2->getOperand(i)))
1689                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1690                 else
1691                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1692               }
1693             return ICmpInst::ICMP_EQ;
1694           }
1695         }
1696       }
1697       break;
1698     }
1699     default:
1700       break;
1701     }
1702   }
1703 
1704   return ICmpInst::BAD_ICMP_PREDICATE;
1705 }
1706 
1707 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1708                                                Constant *C1, Constant *C2) {
1709   Type *ResultTy;
1710   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1711     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1712                                VT->getElementCount());
1713   else
1714     ResultTy = Type::getInt1Ty(C1->getContext());
1715 
1716   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1717   if (pred == FCmpInst::FCMP_FALSE)
1718     return Constant::getNullValue(ResultTy);
1719 
1720   if (pred == FCmpInst::FCMP_TRUE)
1721     return Constant::getAllOnesValue(ResultTy);
1722 
1723   // Handle some degenerate cases first
1724   if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
1725     return PoisonValue::get(ResultTy);
1726 
1727   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1728     CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1729     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1730     // For EQ and NE, we can always pick a value for the undef to make the
1731     // predicate pass or fail, so we can return undef.
1732     // Also, if both operands are undef, we can return undef for int comparison.
1733     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1734       return UndefValue::get(ResultTy);
1735 
1736     // Otherwise, for integer compare, pick the same value as the non-undef
1737     // operand, and fold it to true or false.
1738     if (isIntegerPredicate)
1739       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1740 
1741     // Choosing NaN for the undef will always make unordered comparison succeed
1742     // and ordered comparison fails.
1743     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1744   }
1745 
1746   // icmp eq/ne(null,GV) -> false/true
1747   if (C1->isNullValue()) {
1748     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1749       // Don't try to evaluate aliases.  External weak GV can be null.
1750       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1751           !NullPointerIsDefined(nullptr /* F */,
1752                                 GV->getType()->getAddressSpace())) {
1753         if (pred == ICmpInst::ICMP_EQ)
1754           return ConstantInt::getFalse(C1->getContext());
1755         else if (pred == ICmpInst::ICMP_NE)
1756           return ConstantInt::getTrue(C1->getContext());
1757       }
1758   // icmp eq/ne(GV,null) -> false/true
1759   } else if (C2->isNullValue()) {
1760     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) {
1761       // Don't try to evaluate aliases.  External weak GV can be null.
1762       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1763           !NullPointerIsDefined(nullptr /* F */,
1764                                 GV->getType()->getAddressSpace())) {
1765         if (pred == ICmpInst::ICMP_EQ)
1766           return ConstantInt::getFalse(C1->getContext());
1767         else if (pred == ICmpInst::ICMP_NE)
1768           return ConstantInt::getTrue(C1->getContext());
1769       }
1770     }
1771 
1772     // The caller is expected to commute the operands if the constant expression
1773     // is C2.
1774     // C1 >= 0 --> true
1775     if (pred == ICmpInst::ICMP_UGE)
1776       return Constant::getAllOnesValue(ResultTy);
1777     // C1 < 0 --> false
1778     if (pred == ICmpInst::ICMP_ULT)
1779       return Constant::getNullValue(ResultTy);
1780   }
1781 
1782   // If the comparison is a comparison between two i1's, simplify it.
1783   if (C1->getType()->isIntegerTy(1)) {
1784     switch(pred) {
1785     case ICmpInst::ICMP_EQ:
1786       if (isa<ConstantInt>(C2))
1787         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1788       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1789     case ICmpInst::ICMP_NE:
1790       return ConstantExpr::getXor(C1, C2);
1791     default:
1792       break;
1793     }
1794   }
1795 
1796   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1797     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1798     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1799     return ConstantInt::get(
1800         ResultTy, ICmpInst::compare(V1, V2, (ICmpInst::Predicate)pred));
1801   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1802     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1803     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1804     APFloat::cmpResult R = C1V.compare(C2V);
1805     switch (pred) {
1806     default: llvm_unreachable("Invalid FCmp Predicate");
1807     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1808     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1809     case FCmpInst::FCMP_UNO:
1810       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1811     case FCmpInst::FCMP_ORD:
1812       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1813     case FCmpInst::FCMP_UEQ:
1814       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1815                                         R==APFloat::cmpEqual);
1816     case FCmpInst::FCMP_OEQ:
1817       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1818     case FCmpInst::FCMP_UNE:
1819       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1820     case FCmpInst::FCMP_ONE:
1821       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1822                                         R==APFloat::cmpGreaterThan);
1823     case FCmpInst::FCMP_ULT:
1824       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1825                                         R==APFloat::cmpLessThan);
1826     case FCmpInst::FCMP_OLT:
1827       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1828     case FCmpInst::FCMP_UGT:
1829       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1830                                         R==APFloat::cmpGreaterThan);
1831     case FCmpInst::FCMP_OGT:
1832       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1833     case FCmpInst::FCMP_ULE:
1834       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1835     case FCmpInst::FCMP_OLE:
1836       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1837                                         R==APFloat::cmpEqual);
1838     case FCmpInst::FCMP_UGE:
1839       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1840     case FCmpInst::FCMP_OGE:
1841       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1842                                         R==APFloat::cmpEqual);
1843     }
1844   } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
1845 
1846     // Fast path for splatted constants.
1847     if (Constant *C1Splat = C1->getSplatValue())
1848       if (Constant *C2Splat = C2->getSplatValue())
1849         return ConstantVector::getSplat(
1850             C1VTy->getElementCount(),
1851             ConstantExpr::getCompare(pred, C1Splat, C2Splat));
1852 
1853     // Do not iterate on scalable vector. The number of elements is unknown at
1854     // compile-time.
1855     if (isa<ScalableVectorType>(C1VTy))
1856       return nullptr;
1857 
1858     // If we can constant fold the comparison of each element, constant fold
1859     // the whole vector comparison.
1860     SmallVector<Constant*, 4> ResElts;
1861     Type *Ty = IntegerType::get(C1->getContext(), 32);
1862     // Compare the elements, producing an i1 result or constant expr.
1863     for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1864          I != E; ++I) {
1865       Constant *C1E =
1866           ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I));
1867       Constant *C2E =
1868           ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I));
1869 
1870       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1871     }
1872 
1873     return ConstantVector::get(ResElts);
1874   }
1875 
1876   if (C1->getType()->isFloatingPointTy() &&
1877       // Only call evaluateFCmpRelation if we have a constant expr to avoid
1878       // infinite recursive loop
1879       (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1880     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1881     switch (evaluateFCmpRelation(C1, C2)) {
1882     default: llvm_unreachable("Unknown relation!");
1883     case FCmpInst::FCMP_UNO:
1884     case FCmpInst::FCMP_ORD:
1885     case FCmpInst::FCMP_UNE:
1886     case FCmpInst::FCMP_ULT:
1887     case FCmpInst::FCMP_UGT:
1888     case FCmpInst::FCMP_ULE:
1889     case FCmpInst::FCMP_UGE:
1890     case FCmpInst::FCMP_TRUE:
1891     case FCmpInst::FCMP_FALSE:
1892     case FCmpInst::BAD_FCMP_PREDICATE:
1893       break; // Couldn't determine anything about these constants.
1894     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1895       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1896                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1897                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1898       break;
1899     case FCmpInst::FCMP_OLT: // We know that C1 < C2
1900       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1901                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1902                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1903       break;
1904     case FCmpInst::FCMP_OGT: // We know that C1 > C2
1905       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1906                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1907                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1908       break;
1909     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1910       // We can only partially decide this relation.
1911       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1912         Result = 0;
1913       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1914         Result = 1;
1915       break;
1916     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1917       // We can only partially decide this relation.
1918       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1919         Result = 0;
1920       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1921         Result = 1;
1922       break;
1923     case FCmpInst::FCMP_ONE: // We know that C1 != C2
1924       // We can only partially decide this relation.
1925       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1926         Result = 0;
1927       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1928         Result = 1;
1929       break;
1930     case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
1931       // We can only partially decide this relation.
1932       if (pred == FCmpInst::FCMP_ONE)
1933         Result = 0;
1934       else if (pred == FCmpInst::FCMP_UEQ)
1935         Result = 1;
1936       break;
1937     }
1938 
1939     // If we evaluated the result, return it now.
1940     if (Result != -1)
1941       return ConstantInt::get(ResultTy, Result);
1942 
1943   } else {
1944     // Evaluate the relation between the two constants, per the predicate.
1945     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1946     switch (evaluateICmpRelation(C1, C2,
1947                                  CmpInst::isSigned((CmpInst::Predicate)pred))) {
1948     default: llvm_unreachable("Unknown relational!");
1949     case ICmpInst::BAD_ICMP_PREDICATE:
1950       break;  // Couldn't determine anything about these constants.
1951     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1952       // If we know the constants are equal, we can decide the result of this
1953       // computation precisely.
1954       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1955       break;
1956     case ICmpInst::ICMP_ULT:
1957       switch (pred) {
1958       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1959         Result = 1; break;
1960       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1961         Result = 0; break;
1962       }
1963       break;
1964     case ICmpInst::ICMP_SLT:
1965       switch (pred) {
1966       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1967         Result = 1; break;
1968       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1969         Result = 0; break;
1970       }
1971       break;
1972     case ICmpInst::ICMP_UGT:
1973       switch (pred) {
1974       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1975         Result = 1; break;
1976       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1977         Result = 0; break;
1978       }
1979       break;
1980     case ICmpInst::ICMP_SGT:
1981       switch (pred) {
1982       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1983         Result = 1; break;
1984       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1985         Result = 0; break;
1986       }
1987       break;
1988     case ICmpInst::ICMP_ULE:
1989       if (pred == ICmpInst::ICMP_UGT) Result = 0;
1990       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1991       break;
1992     case ICmpInst::ICMP_SLE:
1993       if (pred == ICmpInst::ICMP_SGT) Result = 0;
1994       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1995       break;
1996     case ICmpInst::ICMP_UGE:
1997       if (pred == ICmpInst::ICMP_ULT) Result = 0;
1998       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1999       break;
2000     case ICmpInst::ICMP_SGE:
2001       if (pred == ICmpInst::ICMP_SLT) Result = 0;
2002       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2003       break;
2004     case ICmpInst::ICMP_NE:
2005       if (pred == ICmpInst::ICMP_EQ) Result = 0;
2006       if (pred == ICmpInst::ICMP_NE) Result = 1;
2007       break;
2008     }
2009 
2010     // If we evaluated the result, return it now.
2011     if (Result != -1)
2012       return ConstantInt::get(ResultTy, Result);
2013 
2014     // If the right hand side is a bitcast, try using its inverse to simplify
2015     // it by moving it to the left hand side.  We can't do this if it would turn
2016     // a vector compare into a scalar compare or visa versa, or if it would turn
2017     // the operands into FP values.
2018     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2019       Constant *CE2Op0 = CE2->getOperand(0);
2020       if (CE2->getOpcode() == Instruction::BitCast &&
2021           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
2022           !CE2Op0->getType()->isFPOrFPVectorTy()) {
2023         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2024         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2025       }
2026     }
2027 
2028     // If the left hand side is an extension, try eliminating it.
2029     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2030       if ((CE1->getOpcode() == Instruction::SExt &&
2031            ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
2032           (CE1->getOpcode() == Instruction::ZExt &&
2033            !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2034         Constant *CE1Op0 = CE1->getOperand(0);
2035         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2036         if (CE1Inverse == CE1Op0) {
2037           // Check whether we can safely truncate the right hand side.
2038           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2039           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2040                                     C2->getType()) == C2)
2041             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2042         }
2043       }
2044     }
2045 
2046     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2047         (C1->isNullValue() && !C2->isNullValue())) {
2048       // If C2 is a constant expr and C1 isn't, flip them around and fold the
2049       // other way if possible.
2050       // Also, if C1 is null and C2 isn't, flip them around.
2051       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2052       return ConstantExpr::getICmp(pred, C2, C1);
2053     }
2054   }
2055   return nullptr;
2056 }
2057 
2058 /// Test whether the given sequence of *normalized* indices is "inbounds".
2059 template<typename IndexTy>
2060 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2061   // No indices means nothing that could be out of bounds.
2062   if (Idxs.empty()) return true;
2063 
2064   // If the first index is zero, it's in bounds.
2065   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2066 
2067   // If the first index is one and all the rest are zero, it's in bounds,
2068   // by the one-past-the-end rule.
2069   if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2070     if (!CI->isOne())
2071       return false;
2072   } else {
2073     auto *CV = cast<ConstantDataVector>(Idxs[0]);
2074     CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2075     if (!CI || !CI->isOne())
2076       return false;
2077   }
2078 
2079   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2080     if (!cast<Constant>(Idxs[i])->isNullValue())
2081       return false;
2082   return true;
2083 }
2084 
2085 /// Test whether a given ConstantInt is in-range for a SequentialType.
2086 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2087                                       const ConstantInt *CI) {
2088   // We cannot bounds check the index if it doesn't fit in an int64_t.
2089   if (CI->getValue().getMinSignedBits() > 64)
2090     return false;
2091 
2092   // A negative index or an index past the end of our sequential type is
2093   // considered out-of-range.
2094   int64_t IndexVal = CI->getSExtValue();
2095   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2096     return false;
2097 
2098   // Otherwise, it is in-range.
2099   return true;
2100 }
2101 
2102 // Combine Indices - If the source pointer to this getelementptr instruction
2103 // is a getelementptr instruction, combine the indices of the two
2104 // getelementptr instructions into a single instruction.
2105 static Constant *foldGEPOfGEP(GEPOperator *GEP, Type *PointeeTy, bool InBounds,
2106                               ArrayRef<Value *> Idxs) {
2107   if (PointeeTy != GEP->getResultElementType())
2108     return nullptr;
2109 
2110   Constant *Idx0 = cast<Constant>(Idxs[0]);
2111   if (Idx0->isNullValue()) {
2112     // Handle the simple case of a zero index.
2113     SmallVector<Value*, 16> NewIndices;
2114     NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
2115     NewIndices.append(GEP->idx_begin(), GEP->idx_end());
2116     NewIndices.append(Idxs.begin() + 1, Idxs.end());
2117     return ConstantExpr::getGetElementPtr(
2118         GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
2119         NewIndices, InBounds && GEP->isInBounds(), GEP->getInRangeIndex());
2120   }
2121 
2122   gep_type_iterator LastI = gep_type_end(GEP);
2123   for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
2124        I != E; ++I)
2125     LastI = I;
2126 
2127   // We cannot combine indices if doing so would take us outside of an
2128   // array or vector.  Doing otherwise could trick us if we evaluated such a
2129   // GEP as part of a load.
2130   //
2131   // e.g. Consider if the original GEP was:
2132   // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2133   //                    i32 0, i32 0, i64 0)
2134   //
2135   // If we then tried to offset it by '8' to get to the third element,
2136   // an i8, we should *not* get:
2137   // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2138   //                    i32 0, i32 0, i64 8)
2139   //
2140   // This GEP tries to index array element '8  which runs out-of-bounds.
2141   // Subsequent evaluation would get confused and produce erroneous results.
2142   //
2143   // The following prohibits such a GEP from being formed by checking to see
2144   // if the index is in-range with respect to an array.
2145   if (!LastI.isSequential())
2146     return nullptr;
2147   ConstantInt *CI = dyn_cast<ConstantInt>(Idx0);
2148   if (!CI)
2149     return nullptr;
2150   if (LastI.isBoundedSequential() &&
2151       !isIndexInRangeOfArrayType(LastI.getSequentialNumElements(), CI))
2152     return nullptr;
2153 
2154   // TODO: This code may be extended to handle vectors as well.
2155   auto *LastIdx = cast<Constant>(GEP->getOperand(GEP->getNumOperands()-1));
2156   Type *LastIdxTy = LastIdx->getType();
2157   if (LastIdxTy->isVectorTy())
2158     return nullptr;
2159 
2160   SmallVector<Value*, 16> NewIndices;
2161   NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
2162   NewIndices.append(GEP->idx_begin(), GEP->idx_end() - 1);
2163 
2164   // Add the last index of the source with the first index of the new GEP.
2165   // Make sure to handle the case when they are actually different types.
2166   if (LastIdxTy != Idx0->getType()) {
2167     unsigned CommonExtendedWidth =
2168         std::max(LastIdxTy->getIntegerBitWidth(),
2169                  Idx0->getType()->getIntegerBitWidth());
2170     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2171 
2172     Type *CommonTy =
2173         Type::getIntNTy(LastIdxTy->getContext(), CommonExtendedWidth);
2174     Idx0 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2175     LastIdx = ConstantExpr::getSExtOrBitCast(LastIdx, CommonTy);
2176   }
2177 
2178   NewIndices.push_back(ConstantExpr::get(Instruction::Add, Idx0, LastIdx));
2179   NewIndices.append(Idxs.begin() + 1, Idxs.end());
2180 
2181   // The combined GEP normally inherits its index inrange attribute from
2182   // the inner GEP, but if the inner GEP's last index was adjusted by the
2183   // outer GEP, any inbounds attribute on that index is invalidated.
2184   Optional<unsigned> IRIndex = GEP->getInRangeIndex();
2185   if (IRIndex && *IRIndex == GEP->getNumIndices() - 1)
2186     IRIndex = None;
2187 
2188   return ConstantExpr::getGetElementPtr(
2189       GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
2190       NewIndices, InBounds && GEP->isInBounds(), IRIndex);
2191 }
2192 
2193 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2194                                           bool InBounds,
2195                                           Optional<unsigned> InRangeIndex,
2196                                           ArrayRef<Value *> Idxs) {
2197   if (Idxs.empty()) return C;
2198 
2199   Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2200       PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2201 
2202   if (isa<PoisonValue>(C))
2203     return PoisonValue::get(GEPTy);
2204 
2205   if (isa<UndefValue>(C))
2206     // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
2207     return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
2208 
2209   Constant *Idx0 = cast<Constant>(Idxs[0]);
2210   if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2211     return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2212                ? ConstantVector::getSplat(
2213                      cast<VectorType>(GEPTy)->getElementCount(), C)
2214                : C;
2215 
2216   if (C->isNullValue()) {
2217     bool isNull = true;
2218     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2219       if (!isa<UndefValue>(Idxs[i]) &&
2220           !cast<Constant>(Idxs[i])->isNullValue()) {
2221         isNull = false;
2222         break;
2223       }
2224     if (isNull) {
2225       PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2226       Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2227 
2228       assert(Ty && "Invalid indices for GEP!");
2229       Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2230       Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2231       if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2232         GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2233 
2234       // The GEP returns a vector of pointers when one of more of
2235       // its arguments is a vector.
2236       for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2237         if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2238           assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) ==
2239                                                  isa<ScalableVectorType>(VT)) &&
2240                  "Mismatched GEPTy vector types");
2241           GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2242           break;
2243         }
2244       }
2245 
2246       return Constant::getNullValue(GEPTy);
2247     }
2248   }
2249 
2250   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2251     if (auto *GEP = dyn_cast<GEPOperator>(CE))
2252       if (Constant *C = foldGEPOfGEP(GEP, PointeeTy, InBounds, Idxs))
2253         return C;
2254 
2255     // Attempt to fold casts to the same type away.  For example, folding:
2256     //
2257     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2258     //                       i64 0, i64 0)
2259     // into:
2260     //
2261     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2262     //
2263     // Don't fold if the cast is changing address spaces.
2264     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2265       PointerType *SrcPtrTy =
2266         dyn_cast<PointerType>(CE->getOperand(0)->getType());
2267       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2268       if (SrcPtrTy && DstPtrTy) {
2269         ArrayType *SrcArrayTy =
2270           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2271         ArrayType *DstArrayTy =
2272           dyn_cast<ArrayType>(DstPtrTy->getElementType());
2273         if (SrcArrayTy && DstArrayTy
2274             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2275             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2276           return ConstantExpr::getGetElementPtr(SrcArrayTy,
2277                                                 (Constant *)CE->getOperand(0),
2278                                                 Idxs, InBounds, InRangeIndex);
2279       }
2280     }
2281   }
2282 
2283   // Check to see if any array indices are not within the corresponding
2284   // notional array or vector bounds. If so, try to determine if they can be
2285   // factored out into preceding dimensions.
2286   SmallVector<Constant *, 8> NewIdxs;
2287   Type *Ty = PointeeTy;
2288   Type *Prev = C->getType();
2289   auto GEPIter = gep_type_begin(PointeeTy, Idxs);
2290   bool Unknown =
2291       !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2292   for (unsigned i = 1, e = Idxs.size(); i != e;
2293        Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) {
2294     if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2295       // We don't know if it's in range or not.
2296       Unknown = true;
2297       continue;
2298     }
2299     if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2300       // Skip if the type of the previous index is not supported.
2301       continue;
2302     if (InRangeIndex && i == *InRangeIndex + 1) {
2303       // If an index is marked inrange, we cannot apply this canonicalization to
2304       // the following index, as that will cause the inrange index to point to
2305       // the wrong element.
2306       continue;
2307     }
2308     if (isa<StructType>(Ty)) {
2309       // The verify makes sure that GEPs into a struct are in range.
2310       continue;
2311     }
2312     if (isa<VectorType>(Ty)) {
2313       // There can be awkward padding in after a non-power of two vector.
2314       Unknown = true;
2315       continue;
2316     }
2317     auto *STy = cast<ArrayType>(Ty);
2318     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2319       if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2320         // It's in range, skip to the next index.
2321         continue;
2322       if (CI->isNegative()) {
2323         // It's out of range and negative, don't try to factor it.
2324         Unknown = true;
2325         continue;
2326       }
2327     } else {
2328       auto *CV = cast<ConstantDataVector>(Idxs[i]);
2329       bool InRange = true;
2330       for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2331         auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2332         InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2333         if (CI->isNegative()) {
2334           Unknown = true;
2335           break;
2336         }
2337       }
2338       if (InRange || Unknown)
2339         // It's in range, skip to the next index.
2340         // It's out of range and negative, don't try to factor it.
2341         continue;
2342     }
2343     if (isa<StructType>(Prev)) {
2344       // It's out of range, but the prior dimension is a struct
2345       // so we can't do anything about it.
2346       Unknown = true;
2347       continue;
2348     }
2349     // It's out of range, but we can factor it into the prior
2350     // dimension.
2351     NewIdxs.resize(Idxs.size());
2352     // Determine the number of elements in our sequential type.
2353     uint64_t NumElements = STy->getArrayNumElements();
2354 
2355     // Expand the current index or the previous index to a vector from a scalar
2356     // if necessary.
2357     Constant *CurrIdx = cast<Constant>(Idxs[i]);
2358     auto *PrevIdx =
2359         NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2360     bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2361     bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2362     bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2363 
2364     if (!IsCurrIdxVector && IsPrevIdxVector)
2365       CurrIdx = ConstantDataVector::getSplat(
2366           cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx);
2367 
2368     if (!IsPrevIdxVector && IsCurrIdxVector)
2369       PrevIdx = ConstantDataVector::getSplat(
2370           cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx);
2371 
2372     Constant *Factor =
2373         ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2374     if (UseVector)
2375       Factor = ConstantDataVector::getSplat(
2376           IsPrevIdxVector
2377               ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2378               : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(),
2379           Factor);
2380 
2381     NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2382 
2383     Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2384 
2385     unsigned CommonExtendedWidth =
2386         std::max(PrevIdx->getType()->getScalarSizeInBits(),
2387                  Div->getType()->getScalarSizeInBits());
2388     CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2389 
2390     // Before adding, extend both operands to i64 to avoid
2391     // overflow trouble.
2392     Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2393     if (UseVector)
2394       ExtendedTy = FixedVectorType::get(
2395           ExtendedTy,
2396           IsPrevIdxVector
2397               ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2398               : cast<FixedVectorType>(CurrIdx->getType())->getNumElements());
2399 
2400     if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2401       PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2402 
2403     if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2404       Div = ConstantExpr::getSExt(Div, ExtendedTy);
2405 
2406     NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2407   }
2408 
2409   // If we did any factoring, start over with the adjusted indices.
2410   if (!NewIdxs.empty()) {
2411     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2412       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2413     return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2414                                           InRangeIndex);
2415   }
2416 
2417   // If all indices are known integers and normalized, we can do a simple
2418   // check for the "inbounds" property.
2419   if (!Unknown && !InBounds)
2420     if (auto *GV = dyn_cast<GlobalVariable>(C))
2421       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2422         return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2423                                               /*InBounds=*/true, InRangeIndex);
2424 
2425   return nullptr;
2426 }
2427