1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/IR/ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/ErrorHandling.h" 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 //===----------------------------------------------------------------------===// 37 // ConstantFold*Instruction Implementations 38 //===----------------------------------------------------------------------===// 39 40 /// This function determines which opcode to use to fold two constant cast 41 /// expressions together. It uses CastInst::isEliminableCastPair to determine 42 /// the opcode. Consequently its just a wrapper around that function. 43 /// Determine if it is valid to fold a cast of a cast 44 static unsigned 45 foldConstantCastPair( 46 unsigned opc, ///< opcode of the second cast constant expression 47 ConstantExpr *Op, ///< the first cast constant expression 48 Type *DstTy ///< destination type of the first cast 49 ) { 50 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 51 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 52 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 53 54 // The types and opcodes for the two Cast constant expressions 55 Type *SrcTy = Op->getOperand(0)->getType(); 56 Type *MidTy = Op->getType(); 57 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 58 Instruction::CastOps secondOp = Instruction::CastOps(opc); 59 60 // Assume that pointers are never more than 64 bits wide, and only use this 61 // for the middle type. Otherwise we could end up folding away illegal 62 // bitcasts between address spaces with different sizes. 63 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 64 65 // Let CastInst::isEliminableCastPair do the heavy lifting. 66 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 67 nullptr, FakeIntPtrTy, nullptr); 68 } 69 70 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 71 Type *SrcTy = V->getType(); 72 if (SrcTy == DestTy) 73 return V; // no-op cast 74 75 // Handle casts from one vector constant to another. We know that the src 76 // and dest type have the same size (otherwise its an illegal cast). 77 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 78 if (V->isAllOnesValue()) 79 return Constant::getAllOnesValue(DestTy); 80 81 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 82 // This allows for other simplifications (although some of them 83 // can only be handled by Analysis/ConstantFolding.cpp). 84 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 85 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 86 return nullptr; 87 } 88 89 // Handle integral constant input. 90 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 91 // See note below regarding the PPC_FP128 restriction. 92 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 93 return ConstantFP::get(DestTy->getContext(), 94 APFloat(DestTy->getFltSemantics(), 95 CI->getValue())); 96 97 // Otherwise, can't fold this (vector?) 98 return nullptr; 99 } 100 101 // Handle ConstantFP input: FP -> Integral. 102 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 103 // PPC_FP128 is really the sum of two consecutive doubles, where the first 104 // double is always stored first in memory, regardless of the target 105 // endianness. The memory layout of i128, however, depends on the target 106 // endianness, and so we can't fold this without target endianness 107 // information. This should instead be handled by 108 // Analysis/ConstantFolding.cpp 109 if (FP->getType()->isPPC_FP128Ty()) 110 return nullptr; 111 112 // Make sure dest type is compatible with the folded integer constant. 113 if (!DestTy->isIntegerTy()) 114 return nullptr; 115 116 return ConstantInt::get(FP->getContext(), 117 FP->getValueAPF().bitcastToAPInt()); 118 } 119 120 return nullptr; 121 } 122 123 static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V, 124 Type *DestTy) { 125 return ConstantExpr::isDesirableCastOp(opc) 126 ? ConstantExpr::getCast(opc, V, DestTy) 127 : ConstantFoldCastInstruction(opc, V, DestTy); 128 } 129 130 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 131 Type *DestTy) { 132 if (isa<PoisonValue>(V)) 133 return PoisonValue::get(DestTy); 134 135 if (isa<UndefValue>(V)) { 136 // zext(undef) = 0, because the top bits will be zero. 137 // sext(undef) = 0, because the top bits will all be the same. 138 // [us]itofp(undef) = 0, because the result value is bounded. 139 if (opc == Instruction::ZExt || opc == Instruction::SExt || 140 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 141 return Constant::getNullValue(DestTy); 142 return UndefValue::get(DestTy); 143 } 144 145 if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 146 opc != Instruction::AddrSpaceCast) 147 return Constant::getNullValue(DestTy); 148 149 // If the cast operand is a constant expression, there's a few things we can 150 // do to try to simplify it. 151 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 152 if (CE->isCast()) { 153 // Try hard to fold cast of cast because they are often eliminable. 154 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 155 return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy); 156 } 157 } 158 159 // If the cast operand is a constant vector, perform the cast by 160 // operating on each element. In the cast of bitcasts, the element 161 // count may be mismatched; don't attempt to handle that here. 162 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 163 DestTy->isVectorTy() && 164 cast<FixedVectorType>(DestTy)->getNumElements() == 165 cast<FixedVectorType>(V->getType())->getNumElements()) { 166 VectorType *DestVecTy = cast<VectorType>(DestTy); 167 Type *DstEltTy = DestVecTy->getElementType(); 168 // Fast path for splatted constants. 169 if (Constant *Splat = V->getSplatValue()) { 170 Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy); 171 if (!Res) 172 return nullptr; 173 return ConstantVector::getSplat( 174 cast<VectorType>(DestTy)->getElementCount(), Res); 175 } 176 SmallVector<Constant *, 16> res; 177 Type *Ty = IntegerType::get(V->getContext(), 32); 178 for (unsigned i = 0, 179 e = cast<FixedVectorType>(V->getType())->getNumElements(); 180 i != e; ++i) { 181 Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 182 Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy); 183 if (!Casted) 184 return nullptr; 185 res.push_back(Casted); 186 } 187 return ConstantVector::get(res); 188 } 189 190 // We actually have to do a cast now. Perform the cast according to the 191 // opcode specified. 192 switch (opc) { 193 default: 194 llvm_unreachable("Failed to cast constant expression"); 195 case Instruction::FPTrunc: 196 case Instruction::FPExt: 197 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 198 bool ignored; 199 APFloat Val = FPC->getValueAPF(); 200 Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven, 201 &ignored); 202 return ConstantFP::get(V->getContext(), Val); 203 } 204 return nullptr; // Can't fold. 205 case Instruction::FPToUI: 206 case Instruction::FPToSI: 207 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 208 const APFloat &V = FPC->getValueAPF(); 209 bool ignored; 210 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 211 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 212 if (APFloat::opInvalidOp == 213 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 214 // Undefined behavior invoked - the destination type can't represent 215 // the input constant. 216 return PoisonValue::get(DestTy); 217 } 218 return ConstantInt::get(FPC->getContext(), IntVal); 219 } 220 return nullptr; // Can't fold. 221 case Instruction::UIToFP: 222 case Instruction::SIToFP: 223 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 224 const APInt &api = CI->getValue(); 225 APFloat apf(DestTy->getFltSemantics(), 226 APInt::getZero(DestTy->getPrimitiveSizeInBits())); 227 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 228 APFloat::rmNearestTiesToEven); 229 return ConstantFP::get(V->getContext(), apf); 230 } 231 return nullptr; 232 case Instruction::ZExt: 233 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 234 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 235 return ConstantInt::get(V->getContext(), 236 CI->getValue().zext(BitWidth)); 237 } 238 return nullptr; 239 case Instruction::SExt: 240 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 241 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 242 return ConstantInt::get(V->getContext(), 243 CI->getValue().sext(BitWidth)); 244 } 245 return nullptr; 246 case Instruction::Trunc: { 247 if (V->getType()->isVectorTy()) 248 return nullptr; 249 250 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 251 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 252 return ConstantInt::get(V->getContext(), 253 CI->getValue().trunc(DestBitWidth)); 254 } 255 256 return nullptr; 257 } 258 case Instruction::BitCast: 259 return FoldBitCast(V, DestTy); 260 case Instruction::AddrSpaceCast: 261 case Instruction::IntToPtr: 262 case Instruction::PtrToInt: 263 return nullptr; 264 } 265 } 266 267 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 268 Constant *V1, Constant *V2) { 269 // Check for i1 and vector true/false conditions. 270 if (Cond->isNullValue()) return V2; 271 if (Cond->isAllOnesValue()) return V1; 272 273 // If the condition is a vector constant, fold the result elementwise. 274 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 275 auto *V1VTy = CondV->getType(); 276 SmallVector<Constant*, 16> Result; 277 Type *Ty = IntegerType::get(CondV->getContext(), 32); 278 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { 279 Constant *V; 280 Constant *V1Element = ConstantExpr::getExtractElement(V1, 281 ConstantInt::get(Ty, i)); 282 Constant *V2Element = ConstantExpr::getExtractElement(V2, 283 ConstantInt::get(Ty, i)); 284 auto *Cond = cast<Constant>(CondV->getOperand(i)); 285 if (isa<PoisonValue>(Cond)) { 286 V = PoisonValue::get(V1Element->getType()); 287 } else if (V1Element == V2Element) { 288 V = V1Element; 289 } else if (isa<UndefValue>(Cond)) { 290 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 291 } else { 292 if (!isa<ConstantInt>(Cond)) break; 293 V = Cond->isNullValue() ? V2Element : V1Element; 294 } 295 Result.push_back(V); 296 } 297 298 // If we were able to build the vector, return it. 299 if (Result.size() == V1VTy->getNumElements()) 300 return ConstantVector::get(Result); 301 } 302 303 if (isa<PoisonValue>(Cond)) 304 return PoisonValue::get(V1->getType()); 305 306 if (isa<UndefValue>(Cond)) { 307 if (isa<UndefValue>(V1)) return V1; 308 return V2; 309 } 310 311 if (V1 == V2) return V1; 312 313 if (isa<PoisonValue>(V1)) 314 return V2; 315 if (isa<PoisonValue>(V2)) 316 return V1; 317 318 // If the true or false value is undef, we can fold to the other value as 319 // long as the other value isn't poison. 320 auto NotPoison = [](Constant *C) { 321 if (isa<PoisonValue>(C)) 322 return false; 323 324 // TODO: We can analyze ConstExpr by opcode to determine if there is any 325 // possibility of poison. 326 if (isa<ConstantExpr>(C)) 327 return false; 328 329 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) || 330 isa<ConstantPointerNull>(C) || isa<Function>(C)) 331 return true; 332 333 if (C->getType()->isVectorTy()) 334 return !C->containsPoisonElement() && !C->containsConstantExpression(); 335 336 // TODO: Recursively analyze aggregates or other constants. 337 return false; 338 }; 339 if (isa<UndefValue>(V1) && NotPoison(V2)) return V2; 340 if (isa<UndefValue>(V2) && NotPoison(V1)) return V1; 341 342 return nullptr; 343 } 344 345 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 346 Constant *Idx) { 347 auto *ValVTy = cast<VectorType>(Val->getType()); 348 349 // extractelt poison, C -> poison 350 // extractelt C, undef -> poison 351 if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx)) 352 return PoisonValue::get(ValVTy->getElementType()); 353 354 // extractelt undef, C -> undef 355 if (isa<UndefValue>(Val)) 356 return UndefValue::get(ValVTy->getElementType()); 357 358 auto *CIdx = dyn_cast<ConstantInt>(Idx); 359 if (!CIdx) 360 return nullptr; 361 362 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { 363 // ee({w,x,y,z}, wrong_value) -> poison 364 if (CIdx->uge(ValFVTy->getNumElements())) 365 return PoisonValue::get(ValFVTy->getElementType()); 366 } 367 368 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 369 if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 370 if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 371 SmallVector<Constant *, 8> Ops; 372 Ops.reserve(CE->getNumOperands()); 373 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 374 Constant *Op = CE->getOperand(i); 375 if (Op->getType()->isVectorTy()) { 376 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 377 if (!ScalarOp) 378 return nullptr; 379 Ops.push_back(ScalarOp); 380 } else 381 Ops.push_back(Op); 382 } 383 return CE->getWithOperands(Ops, ValVTy->getElementType(), false, 384 GEP->getSourceElementType()); 385 } else if (CE->getOpcode() == Instruction::InsertElement) { 386 if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) { 387 if (APSInt::isSameValue(APSInt(IEIdx->getValue()), 388 APSInt(CIdx->getValue()))) { 389 return CE->getOperand(1); 390 } else { 391 return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx); 392 } 393 } 394 } 395 } 396 397 if (Constant *C = Val->getAggregateElement(CIdx)) 398 return C; 399 400 // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x 401 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) { 402 if (Constant *SplatVal = Val->getSplatValue()) 403 return SplatVal; 404 } 405 406 return nullptr; 407 } 408 409 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 410 Constant *Elt, 411 Constant *Idx) { 412 if (isa<UndefValue>(Idx)) 413 return PoisonValue::get(Val->getType()); 414 415 // Inserting null into all zeros is still all zeros. 416 // TODO: This is true for undef and poison splats too. 417 if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue()) 418 return Val; 419 420 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 421 if (!CIdx) return nullptr; 422 423 // Do not iterate on scalable vector. The num of elements is unknown at 424 // compile-time. 425 if (isa<ScalableVectorType>(Val->getType())) 426 return nullptr; 427 428 auto *ValTy = cast<FixedVectorType>(Val->getType()); 429 430 unsigned NumElts = ValTy->getNumElements(); 431 if (CIdx->uge(NumElts)) 432 return PoisonValue::get(Val->getType()); 433 434 SmallVector<Constant*, 16> Result; 435 Result.reserve(NumElts); 436 auto *Ty = Type::getInt32Ty(Val->getContext()); 437 uint64_t IdxVal = CIdx->getZExtValue(); 438 for (unsigned i = 0; i != NumElts; ++i) { 439 if (i == IdxVal) { 440 Result.push_back(Elt); 441 continue; 442 } 443 444 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 445 Result.push_back(C); 446 } 447 448 return ConstantVector::get(Result); 449 } 450 451 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, 452 ArrayRef<int> Mask) { 453 auto *V1VTy = cast<VectorType>(V1->getType()); 454 unsigned MaskNumElts = Mask.size(); 455 auto MaskEltCount = 456 ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy)); 457 Type *EltTy = V1VTy->getElementType(); 458 459 // Poison shuffle mask -> poison value. 460 if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) { 461 return PoisonValue::get(VectorType::get(EltTy, MaskEltCount)); 462 } 463 464 // If the mask is all zeros this is a splat, no need to go through all 465 // elements. 466 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 467 Type *Ty = IntegerType::get(V1->getContext(), 32); 468 Constant *Elt = 469 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); 470 471 if (Elt->isNullValue()) { 472 auto *VTy = VectorType::get(EltTy, MaskEltCount); 473 return ConstantAggregateZero::get(VTy); 474 } else if (!MaskEltCount.isScalable()) 475 return ConstantVector::getSplat(MaskEltCount, Elt); 476 } 477 478 // Do not iterate on scalable vector. The num of elements is unknown at 479 // compile-time. 480 if (isa<ScalableVectorType>(V1VTy)) 481 return nullptr; 482 483 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue(); 484 485 // Loop over the shuffle mask, evaluating each element. 486 SmallVector<Constant*, 32> Result; 487 for (unsigned i = 0; i != MaskNumElts; ++i) { 488 int Elt = Mask[i]; 489 if (Elt == -1) { 490 Result.push_back(UndefValue::get(EltTy)); 491 continue; 492 } 493 Constant *InElt; 494 if (unsigned(Elt) >= SrcNumElts*2) 495 InElt = UndefValue::get(EltTy); 496 else if (unsigned(Elt) >= SrcNumElts) { 497 Type *Ty = IntegerType::get(V2->getContext(), 32); 498 InElt = 499 ConstantExpr::getExtractElement(V2, 500 ConstantInt::get(Ty, Elt - SrcNumElts)); 501 } else { 502 Type *Ty = IntegerType::get(V1->getContext(), 32); 503 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 504 } 505 Result.push_back(InElt); 506 } 507 508 return ConstantVector::get(Result); 509 } 510 511 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 512 ArrayRef<unsigned> Idxs) { 513 // Base case: no indices, so return the entire value. 514 if (Idxs.empty()) 515 return Agg; 516 517 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 518 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 519 520 return nullptr; 521 } 522 523 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 524 Constant *Val, 525 ArrayRef<unsigned> Idxs) { 526 // Base case: no indices, so replace the entire value. 527 if (Idxs.empty()) 528 return Val; 529 530 unsigned NumElts; 531 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 532 NumElts = ST->getNumElements(); 533 else 534 NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); 535 536 SmallVector<Constant*, 32> Result; 537 for (unsigned i = 0; i != NumElts; ++i) { 538 Constant *C = Agg->getAggregateElement(i); 539 if (!C) return nullptr; 540 541 if (Idxs[0] == i) 542 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 543 544 Result.push_back(C); 545 } 546 547 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 548 return ConstantStruct::get(ST, Result); 549 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); 550 } 551 552 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 553 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 554 555 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 556 // vectors are always evaluated per element. 557 bool IsScalableVector = isa<ScalableVectorType>(C->getType()); 558 bool HasScalarUndefOrScalableVectorUndef = 559 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); 560 561 if (HasScalarUndefOrScalableVectorUndef) { 562 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 563 case Instruction::FNeg: 564 return C; // -undef -> undef 565 case Instruction::UnaryOpsEnd: 566 llvm_unreachable("Invalid UnaryOp"); 567 } 568 } 569 570 // Constant should not be UndefValue, unless these are vector constants. 571 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); 572 // We only have FP UnaryOps right now. 573 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 574 575 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 576 const APFloat &CV = CFP->getValueAPF(); 577 switch (Opcode) { 578 default: 579 break; 580 case Instruction::FNeg: 581 return ConstantFP::get(C->getContext(), neg(CV)); 582 } 583 } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) { 584 585 Type *Ty = IntegerType::get(VTy->getContext(), 32); 586 // Fast path for splatted constants. 587 if (Constant *Splat = C->getSplatValue()) 588 if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat)) 589 return ConstantVector::getSplat(VTy->getElementCount(), Elt); 590 591 // Fold each element and create a vector constant from those constants. 592 SmallVector<Constant *, 16> Result; 593 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 594 Constant *ExtractIdx = ConstantInt::get(Ty, i); 595 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 596 Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt); 597 if (!Res) 598 return nullptr; 599 Result.push_back(Res); 600 } 601 602 return ConstantVector::get(Result); 603 } 604 605 // We don't know how to fold this. 606 return nullptr; 607 } 608 609 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 610 Constant *C2) { 611 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 612 613 // Simplify BinOps with their identity values first. They are no-ops and we 614 // can always return the other value, including undef or poison values. 615 if (Constant *Identity = ConstantExpr::getBinOpIdentity( 616 Opcode, C1->getType(), /*AllowRHSIdentity*/ false)) { 617 if (C1 == Identity) 618 return C2; 619 if (C2 == Identity) 620 return C1; 621 } else if (Constant *Identity = ConstantExpr::getBinOpIdentity( 622 Opcode, C1->getType(), /*AllowRHSIdentity*/ true)) { 623 if (C2 == Identity) 624 return C1; 625 } 626 627 // Binary operations propagate poison. 628 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 629 return PoisonValue::get(C1->getType()); 630 631 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 632 // vectors are always evaluated per element. 633 bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); 634 bool HasScalarUndefOrScalableVectorUndef = 635 (!C1->getType()->isVectorTy() || IsScalableVector) && 636 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 637 if (HasScalarUndefOrScalableVectorUndef) { 638 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 639 case Instruction::Xor: 640 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 641 // Handle undef ^ undef -> 0 special case. This is a common 642 // idiom (misuse). 643 return Constant::getNullValue(C1->getType()); 644 [[fallthrough]]; 645 case Instruction::Add: 646 case Instruction::Sub: 647 return UndefValue::get(C1->getType()); 648 case Instruction::And: 649 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 650 return C1; 651 return Constant::getNullValue(C1->getType()); // undef & X -> 0 652 case Instruction::Mul: { 653 // undef * undef -> undef 654 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 655 return C1; 656 const APInt *CV; 657 // X * undef -> undef if X is odd 658 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 659 if ((*CV)[0]) 660 return UndefValue::get(C1->getType()); 661 662 // X * undef -> 0 otherwise 663 return Constant::getNullValue(C1->getType()); 664 } 665 case Instruction::SDiv: 666 case Instruction::UDiv: 667 // X / undef -> poison 668 // X / 0 -> poison 669 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 670 return PoisonValue::get(C2->getType()); 671 // undef / X -> 0 otherwise 672 return Constant::getNullValue(C1->getType()); 673 case Instruction::URem: 674 case Instruction::SRem: 675 // X % undef -> poison 676 // X % 0 -> poison 677 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 678 return PoisonValue::get(C2->getType()); 679 // undef % X -> 0 otherwise 680 return Constant::getNullValue(C1->getType()); 681 case Instruction::Or: // X | undef -> -1 682 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 683 return C1; 684 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 685 case Instruction::LShr: 686 // X >>l undef -> poison 687 if (isa<UndefValue>(C2)) 688 return PoisonValue::get(C2->getType()); 689 // undef >>l X -> 0 690 return Constant::getNullValue(C1->getType()); 691 case Instruction::AShr: 692 // X >>a undef -> poison 693 if (isa<UndefValue>(C2)) 694 return PoisonValue::get(C2->getType()); 695 // TODO: undef >>a X -> poison if the shift is exact 696 // undef >>a X -> 0 697 return Constant::getNullValue(C1->getType()); 698 case Instruction::Shl: 699 // X << undef -> undef 700 if (isa<UndefValue>(C2)) 701 return PoisonValue::get(C2->getType()); 702 // undef << X -> 0 703 return Constant::getNullValue(C1->getType()); 704 case Instruction::FSub: 705 // -0.0 - undef --> undef (consistent with "fneg undef") 706 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) 707 return C2; 708 [[fallthrough]]; 709 case Instruction::FAdd: 710 case Instruction::FMul: 711 case Instruction::FDiv: 712 case Instruction::FRem: 713 // [any flop] undef, undef -> undef 714 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 715 return C1; 716 // [any flop] C, undef -> NaN 717 // [any flop] undef, C -> NaN 718 // We could potentially specialize NaN/Inf constants vs. 'normal' 719 // constants (possibly differently depending on opcode and operand). This 720 // would allow returning undef sometimes. But it is always safe to fold to 721 // NaN because we can choose the undef operand as NaN, and any FP opcode 722 // with a NaN operand will propagate NaN. 723 return ConstantFP::getNaN(C1->getType()); 724 case Instruction::BinaryOpsEnd: 725 llvm_unreachable("Invalid BinaryOp"); 726 } 727 } 728 729 // Neither constant should be UndefValue, unless these are vector constants. 730 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); 731 732 // Handle simplifications when the RHS is a constant int. 733 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 734 switch (Opcode) { 735 case Instruction::Mul: 736 if (CI2->isZero()) 737 return C2; // X * 0 == 0 738 break; 739 case Instruction::UDiv: 740 case Instruction::SDiv: 741 if (CI2->isZero()) 742 return PoisonValue::get(CI2->getType()); // X / 0 == poison 743 break; 744 case Instruction::URem: 745 case Instruction::SRem: 746 if (CI2->isOne()) 747 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 748 if (CI2->isZero()) 749 return PoisonValue::get(CI2->getType()); // X % 0 == poison 750 break; 751 case Instruction::And: 752 if (CI2->isZero()) 753 return C2; // X & 0 == 0 754 755 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 756 // If and'ing the address of a global with a constant, fold it. 757 if (CE1->getOpcode() == Instruction::PtrToInt && 758 isa<GlobalValue>(CE1->getOperand(0))) { 759 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 760 761 Align GVAlign; // defaults to 1 762 763 if (Module *TheModule = GV->getParent()) { 764 const DataLayout &DL = TheModule->getDataLayout(); 765 GVAlign = GV->getPointerAlignment(DL); 766 767 // If the function alignment is not specified then assume that it 768 // is 4. 769 // This is dangerous; on x86, the alignment of the pointer 770 // corresponds to the alignment of the function, but might be less 771 // than 4 if it isn't explicitly specified. 772 // However, a fix for this behaviour was reverted because it 773 // increased code size (see https://reviews.llvm.org/D55115) 774 // FIXME: This code should be deleted once existing targets have 775 // appropriate defaults 776 if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) 777 GVAlign = Align(4); 778 } else if (isa<GlobalVariable>(GV)) { 779 GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne(); 780 } 781 782 if (GVAlign > 1) { 783 unsigned DstWidth = CI2->getBitWidth(); 784 unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign)); 785 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 786 787 // If checking bits we know are clear, return zero. 788 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 789 return Constant::getNullValue(CI2->getType()); 790 } 791 } 792 } 793 break; 794 case Instruction::Or: 795 if (CI2->isMinusOne()) 796 return C2; // X | -1 == -1 797 break; 798 } 799 } else if (isa<ConstantInt>(C1)) { 800 // If C1 is a ConstantInt and C2 is not, swap the operands. 801 if (Instruction::isCommutative(Opcode)) 802 return ConstantExpr::isDesirableBinOp(Opcode) 803 ? ConstantExpr::get(Opcode, C2, C1) 804 : ConstantFoldBinaryInstruction(Opcode, C2, C1); 805 } 806 807 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 808 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 809 const APInt &C1V = CI1->getValue(); 810 const APInt &C2V = CI2->getValue(); 811 switch (Opcode) { 812 default: 813 break; 814 case Instruction::Add: 815 return ConstantInt::get(CI1->getContext(), C1V + C2V); 816 case Instruction::Sub: 817 return ConstantInt::get(CI1->getContext(), C1V - C2V); 818 case Instruction::Mul: 819 return ConstantInt::get(CI1->getContext(), C1V * C2V); 820 case Instruction::UDiv: 821 assert(!CI2->isZero() && "Div by zero handled above"); 822 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 823 case Instruction::SDiv: 824 assert(!CI2->isZero() && "Div by zero handled above"); 825 if (C2V.isAllOnes() && C1V.isMinSignedValue()) 826 return PoisonValue::get(CI1->getType()); // MIN_INT / -1 -> poison 827 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 828 case Instruction::URem: 829 assert(!CI2->isZero() && "Div by zero handled above"); 830 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 831 case Instruction::SRem: 832 assert(!CI2->isZero() && "Div by zero handled above"); 833 if (C2V.isAllOnes() && C1V.isMinSignedValue()) 834 return PoisonValue::get(CI1->getType()); // MIN_INT % -1 -> poison 835 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 836 case Instruction::And: 837 return ConstantInt::get(CI1->getContext(), C1V & C2V); 838 case Instruction::Or: 839 return ConstantInt::get(CI1->getContext(), C1V | C2V); 840 case Instruction::Xor: 841 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 842 case Instruction::Shl: 843 if (C2V.ult(C1V.getBitWidth())) 844 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 845 return PoisonValue::get(C1->getType()); // too big shift is poison 846 case Instruction::LShr: 847 if (C2V.ult(C1V.getBitWidth())) 848 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 849 return PoisonValue::get(C1->getType()); // too big shift is poison 850 case Instruction::AShr: 851 if (C2V.ult(C1V.getBitWidth())) 852 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 853 return PoisonValue::get(C1->getType()); // too big shift is poison 854 } 855 } 856 857 switch (Opcode) { 858 case Instruction::SDiv: 859 case Instruction::UDiv: 860 case Instruction::URem: 861 case Instruction::SRem: 862 case Instruction::LShr: 863 case Instruction::AShr: 864 case Instruction::Shl: 865 if (CI1->isZero()) return C1; 866 break; 867 default: 868 break; 869 } 870 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 871 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 872 const APFloat &C1V = CFP1->getValueAPF(); 873 const APFloat &C2V = CFP2->getValueAPF(); 874 APFloat C3V = C1V; // copy for modification 875 switch (Opcode) { 876 default: 877 break; 878 case Instruction::FAdd: 879 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 880 return ConstantFP::get(C1->getContext(), C3V); 881 case Instruction::FSub: 882 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 883 return ConstantFP::get(C1->getContext(), C3V); 884 case Instruction::FMul: 885 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 886 return ConstantFP::get(C1->getContext(), C3V); 887 case Instruction::FDiv: 888 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 889 return ConstantFP::get(C1->getContext(), C3V); 890 case Instruction::FRem: 891 (void)C3V.mod(C2V); 892 return ConstantFP::get(C1->getContext(), C3V); 893 } 894 } 895 } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) { 896 // Fast path for splatted constants. 897 if (Constant *C2Splat = C2->getSplatValue()) { 898 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) 899 return PoisonValue::get(VTy); 900 if (Constant *C1Splat = C1->getSplatValue()) { 901 Constant *Res = 902 ConstantExpr::isDesirableBinOp(Opcode) 903 ? ConstantExpr::get(Opcode, C1Splat, C2Splat) 904 : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat); 905 if (!Res) 906 return nullptr; 907 return ConstantVector::getSplat(VTy->getElementCount(), Res); 908 } 909 } 910 911 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 912 // Fold each element and create a vector constant from those constants. 913 SmallVector<Constant*, 16> Result; 914 Type *Ty = IntegerType::get(FVTy->getContext(), 32); 915 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { 916 Constant *ExtractIdx = ConstantInt::get(Ty, i); 917 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 918 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 919 920 // If any element of a divisor vector is zero, the whole op is poison. 921 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) 922 return PoisonValue::get(VTy); 923 924 Constant *Res = ConstantExpr::isDesirableBinOp(Opcode) 925 ? ConstantExpr::get(Opcode, LHS, RHS) 926 : ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 927 if (!Res) 928 return nullptr; 929 Result.push_back(Res); 930 } 931 932 return ConstantVector::get(Result); 933 } 934 } 935 936 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 937 // There are many possible foldings we could do here. We should probably 938 // at least fold add of a pointer with an integer into the appropriate 939 // getelementptr. This will improve alias analysis a bit. 940 941 // Given ((a + b) + c), if (b + c) folds to something interesting, return 942 // (a + (b + c)). 943 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 944 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 945 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 946 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 947 } 948 } else if (isa<ConstantExpr>(C2)) { 949 // If C2 is a constant expr and C1 isn't, flop them around and fold the 950 // other way if possible. 951 if (Instruction::isCommutative(Opcode)) 952 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 953 } 954 955 // i1 can be simplified in many cases. 956 if (C1->getType()->isIntegerTy(1)) { 957 switch (Opcode) { 958 case Instruction::Add: 959 case Instruction::Sub: 960 return ConstantExpr::getXor(C1, C2); 961 case Instruction::Shl: 962 case Instruction::LShr: 963 case Instruction::AShr: 964 // We can assume that C2 == 0. If it were one the result would be 965 // undefined because the shift value is as large as the bitwidth. 966 return C1; 967 case Instruction::SDiv: 968 case Instruction::UDiv: 969 // We can assume that C2 == 1. If it were zero the result would be 970 // undefined through division by zero. 971 return C1; 972 case Instruction::URem: 973 case Instruction::SRem: 974 // We can assume that C2 == 1. If it were zero the result would be 975 // undefined through division by zero. 976 return ConstantInt::getFalse(C1->getContext()); 977 default: 978 break; 979 } 980 } 981 982 // We don't know how to fold this. 983 return nullptr; 984 } 985 986 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 987 const GlobalValue *GV2) { 988 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 989 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr()) 990 return true; 991 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 992 Type *Ty = GVar->getValueType(); 993 // A global with opaque type might end up being zero sized. 994 if (!Ty->isSized()) 995 return true; 996 // A global with an empty type might lie at the address of any other 997 // global. 998 if (Ty->isEmptyTy()) 999 return true; 1000 } 1001 return false; 1002 }; 1003 // Don't try to decide equality of aliases. 1004 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 1005 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 1006 return ICmpInst::ICMP_NE; 1007 return ICmpInst::BAD_ICMP_PREDICATE; 1008 } 1009 1010 /// This function determines if there is anything we can decide about the two 1011 /// constants provided. This doesn't need to handle simple things like integer 1012 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 1013 /// If we can determine that the two constants have a particular relation to 1014 /// each other, we should return the corresponding ICmp predicate, otherwise 1015 /// return ICmpInst::BAD_ICMP_PREDICATE. 1016 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) { 1017 assert(V1->getType() == V2->getType() && 1018 "Cannot compare different types of values!"); 1019 if (V1 == V2) return ICmpInst::ICMP_EQ; 1020 1021 // The following folds only apply to pointers. 1022 if (!V1->getType()->isPointerTy()) 1023 return ICmpInst::BAD_ICMP_PREDICATE; 1024 1025 // To simplify this code we canonicalize the relation so that the first 1026 // operand is always the most "complex" of the two. We consider simple 1027 // constants (like ConstantPointerNull) to be the simplest, followed by 1028 // BlockAddress, GlobalValues, and ConstantExpr's (the most complex). 1029 auto GetComplexity = [](Constant *V) { 1030 if (isa<ConstantExpr>(V)) 1031 return 3; 1032 if (isa<GlobalValue>(V)) 1033 return 2; 1034 if (isa<BlockAddress>(V)) 1035 return 1; 1036 return 0; 1037 }; 1038 if (GetComplexity(V1) < GetComplexity(V2)) { 1039 ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1); 1040 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1041 return ICmpInst::getSwappedPredicate(SwappedRelation); 1042 return ICmpInst::BAD_ICMP_PREDICATE; 1043 } 1044 1045 if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1046 // Now we know that the RHS is a BlockAddress or simple constant. 1047 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1048 // Block address in another function can't equal this one, but block 1049 // addresses in the current function might be the same if blocks are 1050 // empty. 1051 if (BA2->getFunction() != BA->getFunction()) 1052 return ICmpInst::ICMP_NE; 1053 } else if (isa<ConstantPointerNull>(V2)) { 1054 return ICmpInst::ICMP_NE; 1055 } 1056 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1057 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1058 // constant. 1059 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1060 return areGlobalsPotentiallyEqual(GV, GV2); 1061 } else if (isa<BlockAddress>(V2)) { 1062 return ICmpInst::ICMP_NE; // Globals never equal labels. 1063 } else if (isa<ConstantPointerNull>(V2)) { 1064 // GlobalVals can never be null unless they have external weak linkage. 1065 // We don't try to evaluate aliases here. 1066 // NOTE: We should not be doing this constant folding if null pointer 1067 // is considered valid for the function. But currently there is no way to 1068 // query it from the Constant type. 1069 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1070 !NullPointerIsDefined(nullptr /* F */, 1071 GV->getType()->getAddressSpace())) 1072 return ICmpInst::ICMP_UGT; 1073 } 1074 } else if (auto *CE1 = dyn_cast<ConstantExpr>(V1)) { 1075 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1076 // constantexpr, a global, block address, or a simple constant. 1077 Constant *CE1Op0 = CE1->getOperand(0); 1078 1079 switch (CE1->getOpcode()) { 1080 case Instruction::GetElementPtr: { 1081 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1082 // Ok, since this is a getelementptr, we know that the constant has a 1083 // pointer type. Check the various cases. 1084 if (isa<ConstantPointerNull>(V2)) { 1085 // If we are comparing a GEP to a null pointer, check to see if the base 1086 // of the GEP equals the null pointer. 1087 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1088 // If its not weak linkage, the GVal must have a non-zero address 1089 // so the result is greater-than 1090 if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds()) 1091 return ICmpInst::ICMP_UGT; 1092 } 1093 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1094 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1095 if (GV != GV2) { 1096 if (CE1GEP->hasAllZeroIndices()) 1097 return areGlobalsPotentiallyEqual(GV, GV2); 1098 return ICmpInst::BAD_ICMP_PREDICATE; 1099 } 1100 } 1101 } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) { 1102 // By far the most common case to handle is when the base pointers are 1103 // obviously to the same global. 1104 const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand()); 1105 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1106 // Don't know relative ordering, but check for inequality. 1107 if (CE1Op0 != CE2Op0) { 1108 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1109 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1110 cast<GlobalValue>(CE2Op0)); 1111 return ICmpInst::BAD_ICMP_PREDICATE; 1112 } 1113 } 1114 } 1115 break; 1116 } 1117 default: 1118 break; 1119 } 1120 } 1121 1122 return ICmpInst::BAD_ICMP_PREDICATE; 1123 } 1124 1125 Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, 1126 Constant *C1, Constant *C2) { 1127 Type *ResultTy; 1128 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1129 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1130 VT->getElementCount()); 1131 else 1132 ResultTy = Type::getInt1Ty(C1->getContext()); 1133 1134 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1135 if (Predicate == FCmpInst::FCMP_FALSE) 1136 return Constant::getNullValue(ResultTy); 1137 1138 if (Predicate == FCmpInst::FCMP_TRUE) 1139 return Constant::getAllOnesValue(ResultTy); 1140 1141 // Handle some degenerate cases first 1142 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 1143 return PoisonValue::get(ResultTy); 1144 1145 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1146 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1147 // For EQ and NE, we can always pick a value for the undef to make the 1148 // predicate pass or fail, so we can return undef. 1149 // Also, if both operands are undef, we can return undef for int comparison. 1150 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1151 return UndefValue::get(ResultTy); 1152 1153 // Otherwise, for integer compare, pick the same value as the non-undef 1154 // operand, and fold it to true or false. 1155 if (isIntegerPredicate) 1156 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1157 1158 // Choosing NaN for the undef will always make unordered comparison succeed 1159 // and ordered comparison fails. 1160 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1161 } 1162 1163 if (C2->isNullValue()) { 1164 // The caller is expected to commute the operands if the constant expression 1165 // is C2. 1166 // C1 >= 0 --> true 1167 if (Predicate == ICmpInst::ICMP_UGE) 1168 return Constant::getAllOnesValue(ResultTy); 1169 // C1 < 0 --> false 1170 if (Predicate == ICmpInst::ICMP_ULT) 1171 return Constant::getNullValue(ResultTy); 1172 } 1173 1174 // If the comparison is a comparison between two i1's, simplify it. 1175 if (C1->getType()->isIntegerTy(1)) { 1176 switch (Predicate) { 1177 case ICmpInst::ICMP_EQ: 1178 if (isa<ConstantInt>(C2)) 1179 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1180 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1181 case ICmpInst::ICMP_NE: 1182 return ConstantExpr::getXor(C1, C2); 1183 default: 1184 break; 1185 } 1186 } 1187 1188 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1189 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 1190 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 1191 return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate)); 1192 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1193 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 1194 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 1195 return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate)); 1196 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { 1197 1198 // Fast path for splatted constants. 1199 if (Constant *C1Splat = C1->getSplatValue()) 1200 if (Constant *C2Splat = C2->getSplatValue()) 1201 if (Constant *Elt = 1202 ConstantFoldCompareInstruction(Predicate, C1Splat, C2Splat)) 1203 return ConstantVector::getSplat(C1VTy->getElementCount(), Elt); 1204 1205 // Do not iterate on scalable vector. The number of elements is unknown at 1206 // compile-time. 1207 if (isa<ScalableVectorType>(C1VTy)) 1208 return nullptr; 1209 1210 // If we can constant fold the comparison of each element, constant fold 1211 // the whole vector comparison. 1212 SmallVector<Constant*, 4> ResElts; 1213 Type *Ty = IntegerType::get(C1->getContext(), 32); 1214 // Compare the elements, producing an i1 result or constant expr. 1215 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue(); 1216 I != E; ++I) { 1217 Constant *C1E = 1218 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I)); 1219 Constant *C2E = 1220 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I)); 1221 Constant *Elt = ConstantFoldCompareInstruction(Predicate, C1E, C2E); 1222 if (!Elt) 1223 return nullptr; 1224 1225 ResElts.push_back(Elt); 1226 } 1227 1228 return ConstantVector::get(ResElts); 1229 } 1230 1231 if (C1->getType()->isFPOrFPVectorTy()) { 1232 if (C1 == C2) { 1233 // We know that C1 == C2 || isUnordered(C1, C2). 1234 if (Predicate == FCmpInst::FCMP_ONE) 1235 return ConstantInt::getFalse(ResultTy); 1236 else if (Predicate == FCmpInst::FCMP_UEQ) 1237 return ConstantInt::getTrue(ResultTy); 1238 } 1239 } else { 1240 // Evaluate the relation between the two constants, per the predicate. 1241 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1242 switch (evaluateICmpRelation(C1, C2)) { 1243 default: llvm_unreachable("Unknown relational!"); 1244 case ICmpInst::BAD_ICMP_PREDICATE: 1245 break; // Couldn't determine anything about these constants. 1246 case ICmpInst::ICMP_EQ: // We know the constants are equal! 1247 // If we know the constants are equal, we can decide the result of this 1248 // computation precisely. 1249 Result = ICmpInst::isTrueWhenEqual(Predicate); 1250 break; 1251 case ICmpInst::ICMP_ULT: 1252 switch (Predicate) { 1253 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 1254 Result = 1; break; 1255 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 1256 Result = 0; break; 1257 default: 1258 break; 1259 } 1260 break; 1261 case ICmpInst::ICMP_SLT: 1262 switch (Predicate) { 1263 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 1264 Result = 1; break; 1265 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 1266 Result = 0; break; 1267 default: 1268 break; 1269 } 1270 break; 1271 case ICmpInst::ICMP_UGT: 1272 switch (Predicate) { 1273 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 1274 Result = 1; break; 1275 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 1276 Result = 0; break; 1277 default: 1278 break; 1279 } 1280 break; 1281 case ICmpInst::ICMP_SGT: 1282 switch (Predicate) { 1283 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 1284 Result = 1; break; 1285 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 1286 Result = 0; break; 1287 default: 1288 break; 1289 } 1290 break; 1291 case ICmpInst::ICMP_ULE: 1292 if (Predicate == ICmpInst::ICMP_UGT) 1293 Result = 0; 1294 if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE) 1295 Result = 1; 1296 break; 1297 case ICmpInst::ICMP_SLE: 1298 if (Predicate == ICmpInst::ICMP_SGT) 1299 Result = 0; 1300 if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE) 1301 Result = 1; 1302 break; 1303 case ICmpInst::ICMP_UGE: 1304 if (Predicate == ICmpInst::ICMP_ULT) 1305 Result = 0; 1306 if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE) 1307 Result = 1; 1308 break; 1309 case ICmpInst::ICMP_SGE: 1310 if (Predicate == ICmpInst::ICMP_SLT) 1311 Result = 0; 1312 if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE) 1313 Result = 1; 1314 break; 1315 case ICmpInst::ICMP_NE: 1316 if (Predicate == ICmpInst::ICMP_EQ) 1317 Result = 0; 1318 if (Predicate == ICmpInst::ICMP_NE) 1319 Result = 1; 1320 break; 1321 } 1322 1323 // If we evaluated the result, return it now. 1324 if (Result != -1) 1325 return ConstantInt::get(ResultTy, Result); 1326 1327 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 1328 (C1->isNullValue() && !C2->isNullValue())) { 1329 // If C2 is a constant expr and C1 isn't, flip them around and fold the 1330 // other way if possible. 1331 // Also, if C1 is null and C2 isn't, flip them around. 1332 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1333 return ConstantFoldCompareInstruction(Predicate, C2, C1); 1334 } 1335 } 1336 return nullptr; 1337 } 1338 1339 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 1340 std::optional<ConstantRange> InRange, 1341 ArrayRef<Value *> Idxs) { 1342 if (Idxs.empty()) return C; 1343 1344 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 1345 C, ArrayRef((Value *const *)Idxs.data(), Idxs.size())); 1346 1347 if (isa<PoisonValue>(C)) 1348 return PoisonValue::get(GEPTy); 1349 1350 if (isa<UndefValue>(C)) 1351 return UndefValue::get(GEPTy); 1352 1353 auto IsNoOp = [&]() { 1354 // Avoid losing inrange information. 1355 if (InRange) 1356 return false; 1357 1358 return all_of(Idxs, [](Value *Idx) { 1359 Constant *IdxC = cast<Constant>(Idx); 1360 return IdxC->isNullValue() || isa<UndefValue>(IdxC); 1361 }); 1362 }; 1363 if (IsNoOp()) 1364 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 1365 ? ConstantVector::getSplat( 1366 cast<VectorType>(GEPTy)->getElementCount(), C) 1367 : C; 1368 1369 return nullptr; 1370 } 1371