1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BasicBlock class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/BasicBlock.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/IR/CFG.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Instructions.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Type.h" 22 #include <algorithm> 23 24 using namespace llvm; 25 26 ValueSymbolTable *BasicBlock::getValueSymbolTable() { 27 if (Function *F = getParent()) 28 return F->getValueSymbolTable(); 29 return nullptr; 30 } 31 32 LLVMContext &BasicBlock::getContext() const { 33 return getType()->getContext(); 34 } 35 36 // Explicit instantiation of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Instruction>; 39 40 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, 41 BasicBlock *InsertBefore) 42 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { 43 44 if (NewParent) 45 insertInto(NewParent, InsertBefore); 46 else 47 assert(!InsertBefore && 48 "Cannot insert block before another block with no function!"); 49 50 setName(Name); 51 } 52 53 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { 54 assert(NewParent && "Expected a parent"); 55 assert(!Parent && "Already has a parent"); 56 57 if (InsertBefore) 58 NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this); 59 else 60 NewParent->getBasicBlockList().push_back(this); 61 } 62 63 BasicBlock::~BasicBlock() { 64 // If the address of the block is taken and it is being deleted (e.g. because 65 // it is dead), this means that there is either a dangling constant expr 66 // hanging off the block, or an undefined use of the block (source code 67 // expecting the address of a label to keep the block alive even though there 68 // is no indirect branch). Handle these cases by zapping the BlockAddress 69 // nodes. There are no other possible uses at this point. 70 if (hasAddressTaken()) { 71 assert(!use_empty() && "There should be at least one blockaddress!"); 72 Constant *Replacement = 73 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); 74 while (!use_empty()) { 75 BlockAddress *BA = cast<BlockAddress>(user_back()); 76 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 77 BA->getType())); 78 BA->destroyConstant(); 79 } 80 } 81 82 assert(getParent() == nullptr && "BasicBlock still linked into the program!"); 83 dropAllReferences(); 84 InstList.clear(); 85 } 86 87 void BasicBlock::setParent(Function *parent) { 88 // Set Parent=parent, updating instruction symtab entries as appropriate. 89 InstList.setSymTabObject(&Parent, parent); 90 } 91 92 iterator_range<filter_iterator<BasicBlock::const_iterator, 93 std::function<bool(const Instruction &)>>> 94 BasicBlock::instructionsWithoutDebug() const { 95 std::function<bool(const Instruction &)> Fn = [](const Instruction &I) { 96 return !isa<DbgInfoIntrinsic>(I); 97 }; 98 return make_filter_range(*this, Fn); 99 } 100 101 iterator_range<filter_iterator<BasicBlock::iterator, 102 std::function<bool(Instruction &)>>> 103 BasicBlock::instructionsWithoutDebug() { 104 std::function<bool(Instruction &)> Fn = [](Instruction &I) { 105 return !isa<DbgInfoIntrinsic>(I); 106 }; 107 return make_filter_range(*this, Fn); 108 } 109 110 void BasicBlock::removeFromParent() { 111 getParent()->getBasicBlockList().remove(getIterator()); 112 } 113 114 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { 115 return getParent()->getBasicBlockList().erase(getIterator()); 116 } 117 118 /// Unlink this basic block from its current function and 119 /// insert it into the function that MovePos lives in, right before MovePos. 120 void BasicBlock::moveBefore(BasicBlock *MovePos) { 121 MovePos->getParent()->getBasicBlockList().splice( 122 MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); 123 } 124 125 /// Unlink this basic block from its current function and 126 /// insert it into the function that MovePos lives in, right after MovePos. 127 void BasicBlock::moveAfter(BasicBlock *MovePos) { 128 MovePos->getParent()->getBasicBlockList().splice( 129 ++MovePos->getIterator(), getParent()->getBasicBlockList(), 130 getIterator()); 131 } 132 133 const Module *BasicBlock::getModule() const { 134 return getParent()->getParent(); 135 } 136 137 const Instruction *BasicBlock::getTerminator() const { 138 if (InstList.empty() || !InstList.back().isTerminator()) 139 return nullptr; 140 return &InstList.back(); 141 } 142 143 const CallInst *BasicBlock::getTerminatingMustTailCall() const { 144 if (InstList.empty()) 145 return nullptr; 146 const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); 147 if (!RI || RI == &InstList.front()) 148 return nullptr; 149 150 const Instruction *Prev = RI->getPrevNode(); 151 if (!Prev) 152 return nullptr; 153 154 if (Value *RV = RI->getReturnValue()) { 155 if (RV != Prev) 156 return nullptr; 157 158 // Look through the optional bitcast. 159 if (auto *BI = dyn_cast<BitCastInst>(Prev)) { 160 RV = BI->getOperand(0); 161 Prev = BI->getPrevNode(); 162 if (!Prev || RV != Prev) 163 return nullptr; 164 } 165 } 166 167 if (auto *CI = dyn_cast<CallInst>(Prev)) { 168 if (CI->isMustTailCall()) 169 return CI; 170 } 171 return nullptr; 172 } 173 174 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const { 175 if (InstList.empty()) 176 return nullptr; 177 auto *RI = dyn_cast<ReturnInst>(&InstList.back()); 178 if (!RI || RI == &InstList.front()) 179 return nullptr; 180 181 if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode())) 182 if (Function *F = CI->getCalledFunction()) 183 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) 184 return CI; 185 186 return nullptr; 187 } 188 189 const Instruction* BasicBlock::getFirstNonPHI() const { 190 for (const Instruction &I : *this) 191 if (!isa<PHINode>(I)) 192 return &I; 193 return nullptr; 194 } 195 196 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const { 197 for (const Instruction &I : *this) 198 if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I)) 199 return &I; 200 return nullptr; 201 } 202 203 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const { 204 for (const Instruction &I : *this) { 205 if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) 206 continue; 207 208 if (I.isLifetimeStartOrEnd()) 209 continue; 210 211 return &I; 212 } 213 return nullptr; 214 } 215 216 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const { 217 const Instruction *FirstNonPHI = getFirstNonPHI(); 218 if (!FirstNonPHI) 219 return end(); 220 221 const_iterator InsertPt = FirstNonPHI->getIterator(); 222 if (InsertPt->isEHPad()) ++InsertPt; 223 return InsertPt; 224 } 225 226 void BasicBlock::dropAllReferences() { 227 for (Instruction &I : *this) 228 I.dropAllReferences(); 229 } 230 231 /// If this basic block has a single predecessor block, 232 /// return the block, otherwise return a null pointer. 233 const BasicBlock *BasicBlock::getSinglePredecessor() const { 234 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 235 if (PI == E) return nullptr; // No preds. 236 const BasicBlock *ThePred = *PI; 237 ++PI; 238 return (PI == E) ? ThePred : nullptr /*multiple preds*/; 239 } 240 241 /// If this basic block has a unique predecessor block, 242 /// return the block, otherwise return a null pointer. 243 /// Note that unique predecessor doesn't mean single edge, there can be 244 /// multiple edges from the unique predecessor to this block (for example 245 /// a switch statement with multiple cases having the same destination). 246 const BasicBlock *BasicBlock::getUniquePredecessor() const { 247 const_pred_iterator PI = pred_begin(this), E = pred_end(this); 248 if (PI == E) return nullptr; // No preds. 249 const BasicBlock *PredBB = *PI; 250 ++PI; 251 for (;PI != E; ++PI) { 252 if (*PI != PredBB) 253 return nullptr; 254 // The same predecessor appears multiple times in the predecessor list. 255 // This is OK. 256 } 257 return PredBB; 258 } 259 260 bool BasicBlock::hasNPredecessors(unsigned N) const { 261 return hasNItems(pred_begin(this), pred_end(this), N); 262 } 263 264 bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const { 265 return hasNItemsOrMore(pred_begin(this), pred_end(this), N); 266 } 267 268 const BasicBlock *BasicBlock::getSingleSuccessor() const { 269 succ_const_iterator SI = succ_begin(this), E = succ_end(this); 270 if (SI == E) return nullptr; // no successors 271 const BasicBlock *TheSucc = *SI; 272 ++SI; 273 return (SI == E) ? TheSucc : nullptr /* multiple successors */; 274 } 275 276 const BasicBlock *BasicBlock::getUniqueSuccessor() const { 277 succ_const_iterator SI = succ_begin(this), E = succ_end(this); 278 if (SI == E) return nullptr; // No successors 279 const BasicBlock *SuccBB = *SI; 280 ++SI; 281 for (;SI != E; ++SI) { 282 if (*SI != SuccBB) 283 return nullptr; 284 // The same successor appears multiple times in the successor list. 285 // This is OK. 286 } 287 return SuccBB; 288 } 289 290 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() { 291 PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin()); 292 return make_range<phi_iterator>(P, nullptr); 293 } 294 295 /// This method is used to notify a BasicBlock that the 296 /// specified Predecessor of the block is no longer able to reach it. This is 297 /// actually not used to update the Predecessor list, but is actually used to 298 /// update the PHI nodes that reside in the block. Note that this should be 299 /// called while the predecessor still refers to this block. 300 /// 301 void BasicBlock::removePredecessor(BasicBlock *Pred, 302 bool KeepOneInputPHIs) { 303 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. 304 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && 305 "removePredecessor: BB is not a predecessor!"); 306 307 if (InstList.empty()) return; 308 PHINode *APN = dyn_cast<PHINode>(&front()); 309 if (!APN) return; // Quick exit. 310 311 // If there are exactly two predecessors, then we want to nuke the PHI nodes 312 // altogether. However, we cannot do this, if this in this case: 313 // 314 // Loop: 315 // %x = phi [X, Loop] 316 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 317 // br Loop ;; %x2 does not dominate all uses 318 // 319 // This is because the PHI node input is actually taken from the predecessor 320 // basic block. The only case this can happen is with a self loop, so we 321 // check for this case explicitly now. 322 // 323 unsigned max_idx = APN->getNumIncomingValues(); 324 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); 325 if (max_idx == 2) { 326 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); 327 328 // Disable PHI elimination! 329 if (this == Other) max_idx = 3; 330 } 331 332 // <= Two predecessors BEFORE I remove one? 333 if (max_idx <= 2 && !KeepOneInputPHIs) { 334 // Yup, loop through and nuke the PHI nodes 335 while (PHINode *PN = dyn_cast<PHINode>(&front())) { 336 // Remove the predecessor first. 337 PN->removeIncomingValue(Pred, !KeepOneInputPHIs); 338 339 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value 340 if (max_idx == 2) { 341 if (PN->getIncomingValue(0) != PN) 342 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 343 else 344 // We are left with an infinite loop with no entries: kill the PHI. 345 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 346 getInstList().pop_front(); // Remove the PHI node 347 } 348 349 // If the PHI node already only had one entry, it got deleted by 350 // removeIncomingValue. 351 } 352 } else { 353 // Okay, now we know that we need to remove predecessor #pred_idx from all 354 // PHI nodes. Iterate over each PHI node fixing them up 355 PHINode *PN; 356 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { 357 ++II; 358 PN->removeIncomingValue(Pred, false); 359 // If all incoming values to the Phi are the same, we can replace the Phi 360 // with that value. 361 Value* PNV = nullptr; 362 if (!KeepOneInputPHIs && (PNV = PN->hasConstantValue())) 363 if (PNV != PN) { 364 PN->replaceAllUsesWith(PNV); 365 PN->eraseFromParent(); 366 } 367 } 368 } 369 } 370 371 bool BasicBlock::canSplitPredecessors() const { 372 const Instruction *FirstNonPHI = getFirstNonPHI(); 373 if (isa<LandingPadInst>(FirstNonPHI)) 374 return true; 375 // This is perhaps a little conservative because constructs like 376 // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors 377 // cannot handle such things just yet. 378 if (FirstNonPHI->isEHPad()) 379 return false; 380 return true; 381 } 382 383 bool BasicBlock::isLegalToHoistInto() const { 384 auto *Term = getTerminator(); 385 // No terminator means the block is under construction. 386 if (!Term) 387 return true; 388 389 // If the block has no successors, there can be no instructions to hoist. 390 assert(Term->getNumSuccessors() > 0); 391 392 // Instructions should not be hoisted across exception handling boundaries. 393 return !Term->isExceptionalTerminator(); 394 } 395 396 /// This splits a basic block into two at the specified 397 /// instruction. Note that all instructions BEFORE the specified iterator stay 398 /// as part of the original basic block, an unconditional branch is added to 399 /// the new BB, and the rest of the instructions in the BB are moved to the new 400 /// BB, including the old terminator. This invalidates the iterator. 401 /// 402 /// Note that this only works on well formed basic blocks (must have a 403 /// terminator), and 'I' must not be the end of instruction list (which would 404 /// cause a degenerate basic block to be formed, having a terminator inside of 405 /// the basic block). 406 /// 407 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { 408 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); 409 assert(I != InstList.end() && 410 "Trying to get me to create degenerate basic block!"); 411 412 BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), 413 this->getNextNode()); 414 415 // Save DebugLoc of split point before invalidating iterator. 416 DebugLoc Loc = I->getDebugLoc(); 417 // Move all of the specified instructions from the original basic block into 418 // the new basic block. 419 New->getInstList().splice(New->end(), this->getInstList(), I, end()); 420 421 // Add a branch instruction to the newly formed basic block. 422 BranchInst *BI = BranchInst::Create(New, this); 423 BI->setDebugLoc(Loc); 424 425 // Now we must loop through all of the successors of the New block (which 426 // _were_ the successors of the 'this' block), and update any PHI nodes in 427 // successors. If there were PHI nodes in the successors, then they need to 428 // know that incoming branches will be from New, not from Old (this). 429 // 430 New->replaceSuccessorsPhiUsesWith(this, New); 431 return New; 432 } 433 434 void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) { 435 // N.B. This might not be a complete BasicBlock, so don't assume 436 // that it ends with a non-phi instruction. 437 for (iterator II = begin(), IE = end(); II != IE; ++II) { 438 PHINode *PN = dyn_cast<PHINode>(II); 439 if (!PN) 440 break; 441 PN->replaceIncomingBlockWith(Old, New); 442 } 443 } 444 445 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old, 446 BasicBlock *New) { 447 Instruction *TI = getTerminator(); 448 if (!TI) 449 // Cope with being called on a BasicBlock that doesn't have a terminator 450 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. 451 return; 452 llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) { 453 Succ->replacePhiUsesWith(Old, New); 454 }); 455 } 456 457 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { 458 this->replaceSuccessorsPhiUsesWith(this, New); 459 } 460 461 /// Return true if this basic block is a landing pad. I.e., it's 462 /// the destination of the 'unwind' edge of an invoke instruction. 463 bool BasicBlock::isLandingPad() const { 464 return isa<LandingPadInst>(getFirstNonPHI()); 465 } 466 467 /// Return the landingpad instruction associated with the landing pad. 468 const LandingPadInst *BasicBlock::getLandingPadInst() const { 469 return dyn_cast<LandingPadInst>(getFirstNonPHI()); 470 } 471 472 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const { 473 const Instruction *TI = getTerminator(); 474 if (MDNode *MDIrrLoopHeader = 475 TI->getMetadata(LLVMContext::MD_irr_loop)) { 476 MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0)); 477 if (MDName->getString().equals("loop_header_weight")) { 478 auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1)); 479 return Optional<uint64_t>(CI->getValue().getZExtValue()); 480 } 481 } 482 return Optional<uint64_t>(); 483 } 484 485 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) { 486 while (isa<DbgInfoIntrinsic>(It)) 487 ++It; 488 return It; 489 } 490