1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This library implements `print` family of functions in classes like 10 // Module, Function, Value, etc. In-memory representation of those classes is 11 // converted to IR strings. 12 // 13 // Note that these routines must be extremely tolerant of various errors in the 14 // LLVM code, because it can be used for debugging transformations. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/iterator_range.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Argument.h" 34 #include "llvm/IR/AssemblyAnnotationWriter.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Comdat.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalIFunc.h" 47 #include "llvm/IR/GlobalIndirectSymbol.h" 48 #include "llvm/IR/GlobalObject.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/IRPrintingPasses.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSlotTracker.h" 60 #include "llvm/IR/ModuleSummaryIndex.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/Statepoint.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/TypeFinder.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/UseListOrder.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/Support/AtomicOrdering.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/Format.h" 75 #include "llvm/Support/FormattedStream.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cctype> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <memory> 84 #include <string> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 // Make virtual table appear in this compilation unit. 92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default; 93 94 //===----------------------------------------------------------------------===// 95 // Helper Functions 96 //===----------------------------------------------------------------------===// 97 98 namespace { 99 100 struct OrderMap { 101 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 102 103 unsigned size() const { return IDs.size(); } 104 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 105 106 std::pair<unsigned, bool> lookup(const Value *V) const { 107 return IDs.lookup(V); 108 } 109 110 void index(const Value *V) { 111 // Explicitly sequence get-size and insert-value operations to avoid UB. 112 unsigned ID = IDs.size() + 1; 113 IDs[V].first = ID; 114 } 115 }; 116 117 } // end anonymous namespace 118 119 static void orderValue(const Value *V, OrderMap &OM) { 120 if (OM.lookup(V).first) 121 return; 122 123 if (const Constant *C = dyn_cast<Constant>(V)) 124 if (C->getNumOperands() && !isa<GlobalValue>(C)) 125 for (const Value *Op : C->operands()) 126 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 127 orderValue(Op, OM); 128 129 // Note: we cannot cache this lookup above, since inserting into the map 130 // changes the map's size, and thus affects the other IDs. 131 OM.index(V); 132 } 133 134 static OrderMap orderModule(const Module *M) { 135 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 136 // and ValueEnumerator::incorporateFunction(). 137 OrderMap OM; 138 139 for (const GlobalVariable &G : M->globals()) { 140 if (G.hasInitializer()) 141 if (!isa<GlobalValue>(G.getInitializer())) 142 orderValue(G.getInitializer(), OM); 143 orderValue(&G, OM); 144 } 145 for (const GlobalAlias &A : M->aliases()) { 146 if (!isa<GlobalValue>(A.getAliasee())) 147 orderValue(A.getAliasee(), OM); 148 orderValue(&A, OM); 149 } 150 for (const GlobalIFunc &I : M->ifuncs()) { 151 if (!isa<GlobalValue>(I.getResolver())) 152 orderValue(I.getResolver(), OM); 153 orderValue(&I, OM); 154 } 155 for (const Function &F : *M) { 156 for (const Use &U : F.operands()) 157 if (!isa<GlobalValue>(U.get())) 158 orderValue(U.get(), OM); 159 160 orderValue(&F, OM); 161 162 if (F.isDeclaration()) 163 continue; 164 165 for (const Argument &A : F.args()) 166 orderValue(&A, OM); 167 for (const BasicBlock &BB : F) { 168 orderValue(&BB, OM); 169 for (const Instruction &I : BB) { 170 for (const Value *Op : I.operands()) 171 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 172 isa<InlineAsm>(*Op)) 173 orderValue(Op, OM); 174 orderValue(&I, OM); 175 } 176 } 177 } 178 return OM; 179 } 180 181 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 182 unsigned ID, const OrderMap &OM, 183 UseListOrderStack &Stack) { 184 // Predict use-list order for this one. 185 using Entry = std::pair<const Use *, unsigned>; 186 SmallVector<Entry, 64> List; 187 for (const Use &U : V->uses()) 188 // Check if this user will be serialized. 189 if (OM.lookup(U.getUser()).first) 190 List.push_back(std::make_pair(&U, List.size())); 191 192 if (List.size() < 2) 193 // We may have lost some users. 194 return; 195 196 bool GetsReversed = 197 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V); 198 if (auto *BA = dyn_cast<BlockAddress>(V)) 199 ID = OM.lookup(BA->getBasicBlock()).first; 200 llvm::sort(List, [&](const Entry &L, const Entry &R) { 201 const Use *LU = L.first; 202 const Use *RU = R.first; 203 if (LU == RU) 204 return false; 205 206 auto LID = OM.lookup(LU->getUser()).first; 207 auto RID = OM.lookup(RU->getUser()).first; 208 209 // If ID is 4, then expect: 7 6 5 1 2 3. 210 if (LID < RID) { 211 if (GetsReversed) 212 if (RID <= ID) 213 return true; 214 return false; 215 } 216 if (RID < LID) { 217 if (GetsReversed) 218 if (LID <= ID) 219 return false; 220 return true; 221 } 222 223 // LID and RID are equal, so we have different operands of the same user. 224 // Assume operands are added in order for all instructions. 225 if (GetsReversed) 226 if (LID <= ID) 227 return LU->getOperandNo() < RU->getOperandNo(); 228 return LU->getOperandNo() > RU->getOperandNo(); 229 }); 230 231 if (std::is_sorted( 232 List.begin(), List.end(), 233 [](const Entry &L, const Entry &R) { return L.second < R.second; })) 234 // Order is already correct. 235 return; 236 237 // Store the shuffle. 238 Stack.emplace_back(V, F, List.size()); 239 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 240 for (size_t I = 0, E = List.size(); I != E; ++I) 241 Stack.back().Shuffle[I] = List[I].second; 242 } 243 244 static void predictValueUseListOrder(const Value *V, const Function *F, 245 OrderMap &OM, UseListOrderStack &Stack) { 246 auto &IDPair = OM[V]; 247 assert(IDPair.first && "Unmapped value"); 248 if (IDPair.second) 249 // Already predicted. 250 return; 251 252 // Do the actual prediction. 253 IDPair.second = true; 254 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 255 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 256 257 // Recursive descent into constants. 258 if (const Constant *C = dyn_cast<Constant>(V)) 259 if (C->getNumOperands()) // Visit GlobalValues. 260 for (const Value *Op : C->operands()) 261 if (isa<Constant>(Op)) // Visit GlobalValues. 262 predictValueUseListOrder(Op, F, OM, Stack); 263 } 264 265 static UseListOrderStack predictUseListOrder(const Module *M) { 266 OrderMap OM = orderModule(M); 267 268 // Use-list orders need to be serialized after all the users have been added 269 // to a value, or else the shuffles will be incomplete. Store them per 270 // function in a stack. 271 // 272 // Aside from function order, the order of values doesn't matter much here. 273 UseListOrderStack Stack; 274 275 // We want to visit the functions backward now so we can list function-local 276 // constants in the last Function they're used in. Module-level constants 277 // have already been visited above. 278 for (const Function &F : make_range(M->rbegin(), M->rend())) { 279 if (F.isDeclaration()) 280 continue; 281 for (const BasicBlock &BB : F) 282 predictValueUseListOrder(&BB, &F, OM, Stack); 283 for (const Argument &A : F.args()) 284 predictValueUseListOrder(&A, &F, OM, Stack); 285 for (const BasicBlock &BB : F) 286 for (const Instruction &I : BB) 287 for (const Value *Op : I.operands()) 288 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 289 predictValueUseListOrder(Op, &F, OM, Stack); 290 for (const BasicBlock &BB : F) 291 for (const Instruction &I : BB) 292 predictValueUseListOrder(&I, &F, OM, Stack); 293 } 294 295 // Visit globals last. 296 for (const GlobalVariable &G : M->globals()) 297 predictValueUseListOrder(&G, nullptr, OM, Stack); 298 for (const Function &F : *M) 299 predictValueUseListOrder(&F, nullptr, OM, Stack); 300 for (const GlobalAlias &A : M->aliases()) 301 predictValueUseListOrder(&A, nullptr, OM, Stack); 302 for (const GlobalIFunc &I : M->ifuncs()) 303 predictValueUseListOrder(&I, nullptr, OM, Stack); 304 for (const GlobalVariable &G : M->globals()) 305 if (G.hasInitializer()) 306 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 307 for (const GlobalAlias &A : M->aliases()) 308 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 309 for (const GlobalIFunc &I : M->ifuncs()) 310 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 311 for (const Function &F : *M) 312 for (const Use &U : F.operands()) 313 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 314 315 return Stack; 316 } 317 318 static const Module *getModuleFromVal(const Value *V) { 319 if (const Argument *MA = dyn_cast<Argument>(V)) 320 return MA->getParent() ? MA->getParent()->getParent() : nullptr; 321 322 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 323 return BB->getParent() ? BB->getParent()->getParent() : nullptr; 324 325 if (const Instruction *I = dyn_cast<Instruction>(V)) { 326 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr; 327 return M ? M->getParent() : nullptr; 328 } 329 330 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 331 return GV->getParent(); 332 333 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 334 for (const User *U : MAV->users()) 335 if (isa<Instruction>(U)) 336 if (const Module *M = getModuleFromVal(U)) 337 return M; 338 return nullptr; 339 } 340 341 return nullptr; 342 } 343 344 static void PrintCallingConv(unsigned cc, raw_ostream &Out) { 345 switch (cc) { 346 default: Out << "cc" << cc; break; 347 case CallingConv::Fast: Out << "fastcc"; break; 348 case CallingConv::Cold: Out << "coldcc"; break; 349 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break; 350 case CallingConv::AnyReg: Out << "anyregcc"; break; 351 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break; 352 case CallingConv::PreserveAll: Out << "preserve_allcc"; break; 353 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break; 354 case CallingConv::GHC: Out << "ghccc"; break; 355 case CallingConv::Tail: Out << "tailcc"; break; 356 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break; 357 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; 358 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; 359 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; 360 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break; 361 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break; 362 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; 363 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; 364 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; 365 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; 366 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break; 367 case CallingConv::AArch64_SVE_VectorCall: 368 Out << "aarch64_sve_vector_pcs"; 369 break; 370 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; 371 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break; 372 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break; 373 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; 374 case CallingConv::PTX_Device: Out << "ptx_device"; break; 375 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break; 376 case CallingConv::Win64: Out << "win64cc"; break; 377 case CallingConv::SPIR_FUNC: Out << "spir_func"; break; 378 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break; 379 case CallingConv::Swift: Out << "swiftcc"; break; 380 case CallingConv::X86_INTR: Out << "x86_intrcc"; break; 381 case CallingConv::HHVM: Out << "hhvmcc"; break; 382 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break; 383 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break; 384 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break; 385 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break; 386 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break; 387 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break; 388 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break; 389 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break; 390 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break; 391 } 392 } 393 394 enum PrefixType { 395 GlobalPrefix, 396 ComdatPrefix, 397 LabelPrefix, 398 LocalPrefix, 399 NoPrefix 400 }; 401 402 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) { 403 assert(!Name.empty() && "Cannot get empty name!"); 404 405 // Scan the name to see if it needs quotes first. 406 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); 407 if (!NeedsQuotes) { 408 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 409 // By making this unsigned, the value passed in to isalnum will always be 410 // in the range 0-255. This is important when building with MSVC because 411 // its implementation will assert. This situation can arise when dealing 412 // with UTF-8 multibyte characters. 413 unsigned char C = Name[i]; 414 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && 415 C != '_') { 416 NeedsQuotes = true; 417 break; 418 } 419 } 420 } 421 422 // If we didn't need any quotes, just write out the name in one blast. 423 if (!NeedsQuotes) { 424 OS << Name; 425 return; 426 } 427 428 // Okay, we need quotes. Output the quotes and escape any scary characters as 429 // needed. 430 OS << '"'; 431 printEscapedString(Name, OS); 432 OS << '"'; 433 } 434 435 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 436 /// (if the string only contains simple characters) or is surrounded with ""'s 437 /// (if it has special chars in it). Print it out. 438 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { 439 switch (Prefix) { 440 case NoPrefix: 441 break; 442 case GlobalPrefix: 443 OS << '@'; 444 break; 445 case ComdatPrefix: 446 OS << '$'; 447 break; 448 case LabelPrefix: 449 break; 450 case LocalPrefix: 451 OS << '%'; 452 break; 453 } 454 printLLVMNameWithoutPrefix(OS, Name); 455 } 456 457 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 458 /// (if the string only contains simple characters) or is surrounded with ""'s 459 /// (if it has special chars in it). Print it out. 460 static void PrintLLVMName(raw_ostream &OS, const Value *V) { 461 PrintLLVMName(OS, V->getName(), 462 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); 463 } 464 465 namespace { 466 467 class TypePrinting { 468 public: 469 TypePrinting(const Module *M = nullptr) : DeferredM(M) {} 470 471 TypePrinting(const TypePrinting &) = delete; 472 TypePrinting &operator=(const TypePrinting &) = delete; 473 474 /// The named types that are used by the current module. 475 TypeFinder &getNamedTypes(); 476 477 /// The numbered types, number to type mapping. 478 std::vector<StructType *> &getNumberedTypes(); 479 480 bool empty(); 481 482 void print(Type *Ty, raw_ostream &OS); 483 484 void printStructBody(StructType *Ty, raw_ostream &OS); 485 486 private: 487 void incorporateTypes(); 488 489 /// A module to process lazily when needed. Set to nullptr as soon as used. 490 const Module *DeferredM; 491 492 TypeFinder NamedTypes; 493 494 // The numbered types, along with their value. 495 DenseMap<StructType *, unsigned> Type2Number; 496 497 std::vector<StructType *> NumberedTypes; 498 }; 499 500 } // end anonymous namespace 501 502 TypeFinder &TypePrinting::getNamedTypes() { 503 incorporateTypes(); 504 return NamedTypes; 505 } 506 507 std::vector<StructType *> &TypePrinting::getNumberedTypes() { 508 incorporateTypes(); 509 510 // We know all the numbers that each type is used and we know that it is a 511 // dense assignment. Convert the map to an index table, if it's not done 512 // already (judging from the sizes): 513 if (NumberedTypes.size() == Type2Number.size()) 514 return NumberedTypes; 515 516 NumberedTypes.resize(Type2Number.size()); 517 for (const auto &P : Type2Number) { 518 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?"); 519 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?"); 520 NumberedTypes[P.second] = P.first; 521 } 522 return NumberedTypes; 523 } 524 525 bool TypePrinting::empty() { 526 incorporateTypes(); 527 return NamedTypes.empty() && Type2Number.empty(); 528 } 529 530 void TypePrinting::incorporateTypes() { 531 if (!DeferredM) 532 return; 533 534 NamedTypes.run(*DeferredM, false); 535 DeferredM = nullptr; 536 537 // The list of struct types we got back includes all the struct types, split 538 // the unnamed ones out to a numbering and remove the anonymous structs. 539 unsigned NextNumber = 0; 540 541 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; 542 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { 543 StructType *STy = *I; 544 545 // Ignore anonymous types. 546 if (STy->isLiteral()) 547 continue; 548 549 if (STy->getName().empty()) 550 Type2Number[STy] = NextNumber++; 551 else 552 *NextToUse++ = STy; 553 } 554 555 NamedTypes.erase(NextToUse, NamedTypes.end()); 556 } 557 558 /// Write the specified type to the specified raw_ostream, making use of type 559 /// names or up references to shorten the type name where possible. 560 void TypePrinting::print(Type *Ty, raw_ostream &OS) { 561 switch (Ty->getTypeID()) { 562 case Type::VoidTyID: OS << "void"; return; 563 case Type::HalfTyID: OS << "half"; return; 564 case Type::FloatTyID: OS << "float"; return; 565 case Type::DoubleTyID: OS << "double"; return; 566 case Type::X86_FP80TyID: OS << "x86_fp80"; return; 567 case Type::FP128TyID: OS << "fp128"; return; 568 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return; 569 case Type::LabelTyID: OS << "label"; return; 570 case Type::MetadataTyID: OS << "metadata"; return; 571 case Type::X86_MMXTyID: OS << "x86_mmx"; return; 572 case Type::TokenTyID: OS << "token"; return; 573 case Type::IntegerTyID: 574 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); 575 return; 576 577 case Type::FunctionTyID: { 578 FunctionType *FTy = cast<FunctionType>(Ty); 579 print(FTy->getReturnType(), OS); 580 OS << " ("; 581 for (FunctionType::param_iterator I = FTy->param_begin(), 582 E = FTy->param_end(); I != E; ++I) { 583 if (I != FTy->param_begin()) 584 OS << ", "; 585 print(*I, OS); 586 } 587 if (FTy->isVarArg()) { 588 if (FTy->getNumParams()) OS << ", "; 589 OS << "..."; 590 } 591 OS << ')'; 592 return; 593 } 594 case Type::StructTyID: { 595 StructType *STy = cast<StructType>(Ty); 596 597 if (STy->isLiteral()) 598 return printStructBody(STy, OS); 599 600 if (!STy->getName().empty()) 601 return PrintLLVMName(OS, STy->getName(), LocalPrefix); 602 603 incorporateTypes(); 604 const auto I = Type2Number.find(STy); 605 if (I != Type2Number.end()) 606 OS << '%' << I->second; 607 else // Not enumerated, print the hex address. 608 OS << "%\"type " << STy << '\"'; 609 return; 610 } 611 case Type::PointerTyID: { 612 PointerType *PTy = cast<PointerType>(Ty); 613 print(PTy->getElementType(), OS); 614 if (unsigned AddressSpace = PTy->getAddressSpace()) 615 OS << " addrspace(" << AddressSpace << ')'; 616 OS << '*'; 617 return; 618 } 619 case Type::ArrayTyID: { 620 ArrayType *ATy = cast<ArrayType>(Ty); 621 OS << '[' << ATy->getNumElements() << " x "; 622 print(ATy->getElementType(), OS); 623 OS << ']'; 624 return; 625 } 626 case Type::VectorTyID: { 627 VectorType *PTy = cast<VectorType>(Ty); 628 OS << "<"; 629 if (PTy->isScalable()) 630 OS << "vscale x "; 631 OS << PTy->getNumElements() << " x "; 632 print(PTy->getElementType(), OS); 633 OS << '>'; 634 return; 635 } 636 } 637 llvm_unreachable("Invalid TypeID"); 638 } 639 640 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { 641 if (STy->isOpaque()) { 642 OS << "opaque"; 643 return; 644 } 645 646 if (STy->isPacked()) 647 OS << '<'; 648 649 if (STy->getNumElements() == 0) { 650 OS << "{}"; 651 } else { 652 StructType::element_iterator I = STy->element_begin(); 653 OS << "{ "; 654 print(*I++, OS); 655 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { 656 OS << ", "; 657 print(*I, OS); 658 } 659 660 OS << " }"; 661 } 662 if (STy->isPacked()) 663 OS << '>'; 664 } 665 666 namespace llvm { 667 668 //===----------------------------------------------------------------------===// 669 // SlotTracker Class: Enumerate slot numbers for unnamed values 670 //===----------------------------------------------------------------------===// 671 /// This class provides computation of slot numbers for LLVM Assembly writing. 672 /// 673 class SlotTracker { 674 public: 675 /// ValueMap - A mapping of Values to slot numbers. 676 using ValueMap = DenseMap<const Value *, unsigned>; 677 678 private: 679 /// TheModule - The module for which we are holding slot numbers. 680 const Module* TheModule; 681 682 /// TheFunction - The function for which we are holding slot numbers. 683 const Function* TheFunction = nullptr; 684 bool FunctionProcessed = false; 685 bool ShouldInitializeAllMetadata; 686 687 /// The summary index for which we are holding slot numbers. 688 const ModuleSummaryIndex *TheIndex = nullptr; 689 690 /// mMap - The slot map for the module level data. 691 ValueMap mMap; 692 unsigned mNext = 0; 693 694 /// fMap - The slot map for the function level data. 695 ValueMap fMap; 696 unsigned fNext = 0; 697 698 /// mdnMap - Map for MDNodes. 699 DenseMap<const MDNode*, unsigned> mdnMap; 700 unsigned mdnNext = 0; 701 702 /// asMap - The slot map for attribute sets. 703 DenseMap<AttributeSet, unsigned> asMap; 704 unsigned asNext = 0; 705 706 /// ModulePathMap - The slot map for Module paths used in the summary index. 707 StringMap<unsigned> ModulePathMap; 708 unsigned ModulePathNext = 0; 709 710 /// GUIDMap - The slot map for GUIDs used in the summary index. 711 DenseMap<GlobalValue::GUID, unsigned> GUIDMap; 712 unsigned GUIDNext = 0; 713 714 /// TypeIdMap - The slot map for type ids used in the summary index. 715 StringMap<unsigned> TypeIdMap; 716 unsigned TypeIdNext = 0; 717 718 public: 719 /// Construct from a module. 720 /// 721 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 722 /// functions, giving correct numbering for metadata referenced only from 723 /// within a function (even if no functions have been initialized). 724 explicit SlotTracker(const Module *M, 725 bool ShouldInitializeAllMetadata = false); 726 727 /// Construct from a function, starting out in incorp state. 728 /// 729 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 730 /// functions, giving correct numbering for metadata referenced only from 731 /// within a function (even if no functions have been initialized). 732 explicit SlotTracker(const Function *F, 733 bool ShouldInitializeAllMetadata = false); 734 735 /// Construct from a module summary index. 736 explicit SlotTracker(const ModuleSummaryIndex *Index); 737 738 SlotTracker(const SlotTracker &) = delete; 739 SlotTracker &operator=(const SlotTracker &) = delete; 740 741 /// Return the slot number of the specified value in it's type 742 /// plane. If something is not in the SlotTracker, return -1. 743 int getLocalSlot(const Value *V); 744 int getGlobalSlot(const GlobalValue *V); 745 int getMetadataSlot(const MDNode *N); 746 int getAttributeGroupSlot(AttributeSet AS); 747 int getModulePathSlot(StringRef Path); 748 int getGUIDSlot(GlobalValue::GUID GUID); 749 int getTypeIdSlot(StringRef Id); 750 751 /// If you'd like to deal with a function instead of just a module, use 752 /// this method to get its data into the SlotTracker. 753 void incorporateFunction(const Function *F) { 754 TheFunction = F; 755 FunctionProcessed = false; 756 } 757 758 const Function *getFunction() const { return TheFunction; } 759 760 /// After calling incorporateFunction, use this method to remove the 761 /// most recently incorporated function from the SlotTracker. This 762 /// will reset the state of the machine back to just the module contents. 763 void purgeFunction(); 764 765 /// MDNode map iterators. 766 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator; 767 768 mdn_iterator mdn_begin() { return mdnMap.begin(); } 769 mdn_iterator mdn_end() { return mdnMap.end(); } 770 unsigned mdn_size() const { return mdnMap.size(); } 771 bool mdn_empty() const { return mdnMap.empty(); } 772 773 /// AttributeSet map iterators. 774 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator; 775 776 as_iterator as_begin() { return asMap.begin(); } 777 as_iterator as_end() { return asMap.end(); } 778 unsigned as_size() const { return asMap.size(); } 779 bool as_empty() const { return asMap.empty(); } 780 781 /// GUID map iterators. 782 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator; 783 784 /// These functions do the actual initialization. 785 inline void initializeIfNeeded(); 786 void initializeIndexIfNeeded(); 787 788 // Implementation Details 789 private: 790 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 791 void CreateModuleSlot(const GlobalValue *V); 792 793 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. 794 void CreateMetadataSlot(const MDNode *N); 795 796 /// CreateFunctionSlot - Insert the specified Value* into the slot table. 797 void CreateFunctionSlot(const Value *V); 798 799 /// Insert the specified AttributeSet into the slot table. 800 void CreateAttributeSetSlot(AttributeSet AS); 801 802 inline void CreateModulePathSlot(StringRef Path); 803 void CreateGUIDSlot(GlobalValue::GUID GUID); 804 void CreateTypeIdSlot(StringRef Id); 805 806 /// Add all of the module level global variables (and their initializers) 807 /// and function declarations, but not the contents of those functions. 808 void processModule(); 809 void processIndex(); 810 811 /// Add all of the functions arguments, basic blocks, and instructions. 812 void processFunction(); 813 814 /// Add the metadata directly attached to a GlobalObject. 815 void processGlobalObjectMetadata(const GlobalObject &GO); 816 817 /// Add all of the metadata from a function. 818 void processFunctionMetadata(const Function &F); 819 820 /// Add all of the metadata from an instruction. 821 void processInstructionMetadata(const Instruction &I); 822 }; 823 824 } // end namespace llvm 825 826 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M, 827 const Function *F) 828 : M(M), F(F), Machine(&Machine) {} 829 830 ModuleSlotTracker::ModuleSlotTracker(const Module *M, 831 bool ShouldInitializeAllMetadata) 832 : ShouldCreateStorage(M), 833 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {} 834 835 ModuleSlotTracker::~ModuleSlotTracker() = default; 836 837 SlotTracker *ModuleSlotTracker::getMachine() { 838 if (!ShouldCreateStorage) 839 return Machine; 840 841 ShouldCreateStorage = false; 842 MachineStorage = 843 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata); 844 Machine = MachineStorage.get(); 845 return Machine; 846 } 847 848 void ModuleSlotTracker::incorporateFunction(const Function &F) { 849 // Using getMachine() may lazily create the slot tracker. 850 if (!getMachine()) 851 return; 852 853 // Nothing to do if this is the right function already. 854 if (this->F == &F) 855 return; 856 if (this->F) 857 Machine->purgeFunction(); 858 Machine->incorporateFunction(&F); 859 this->F = &F; 860 } 861 862 int ModuleSlotTracker::getLocalSlot(const Value *V) { 863 assert(F && "No function incorporated"); 864 return Machine->getLocalSlot(V); 865 } 866 867 static SlotTracker *createSlotTracker(const Value *V) { 868 if (const Argument *FA = dyn_cast<Argument>(V)) 869 return new SlotTracker(FA->getParent()); 870 871 if (const Instruction *I = dyn_cast<Instruction>(V)) 872 if (I->getParent()) 873 return new SlotTracker(I->getParent()->getParent()); 874 875 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 876 return new SlotTracker(BB->getParent()); 877 878 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 879 return new SlotTracker(GV->getParent()); 880 881 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 882 return new SlotTracker(GA->getParent()); 883 884 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V)) 885 return new SlotTracker(GIF->getParent()); 886 887 if (const Function *Func = dyn_cast<Function>(V)) 888 return new SlotTracker(Func); 889 890 return nullptr; 891 } 892 893 #if 0 894 #define ST_DEBUG(X) dbgs() << X 895 #else 896 #define ST_DEBUG(X) 897 #endif 898 899 // Module level constructor. Causes the contents of the Module (sans functions) 900 // to be added to the slot table. 901 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) 902 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 903 904 // Function level constructor. Causes the contents of the Module and the one 905 // function provided to be added to the slot table. 906 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) 907 : TheModule(F ? F->getParent() : nullptr), TheFunction(F), 908 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 909 910 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index) 911 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {} 912 913 inline void SlotTracker::initializeIfNeeded() { 914 if (TheModule) { 915 processModule(); 916 TheModule = nullptr; ///< Prevent re-processing next time we're called. 917 } 918 919 if (TheFunction && !FunctionProcessed) 920 processFunction(); 921 } 922 923 void SlotTracker::initializeIndexIfNeeded() { 924 if (!TheIndex) 925 return; 926 processIndex(); 927 TheIndex = nullptr; ///< Prevent re-processing next time we're called. 928 } 929 930 // Iterate through all the global variables, functions, and global 931 // variable initializers and create slots for them. 932 void SlotTracker::processModule() { 933 ST_DEBUG("begin processModule!\n"); 934 935 // Add all of the unnamed global variables to the value table. 936 for (const GlobalVariable &Var : TheModule->globals()) { 937 if (!Var.hasName()) 938 CreateModuleSlot(&Var); 939 processGlobalObjectMetadata(Var); 940 auto Attrs = Var.getAttributes(); 941 if (Attrs.hasAttributes()) 942 CreateAttributeSetSlot(Attrs); 943 } 944 945 for (const GlobalAlias &A : TheModule->aliases()) { 946 if (!A.hasName()) 947 CreateModuleSlot(&A); 948 } 949 950 for (const GlobalIFunc &I : TheModule->ifuncs()) { 951 if (!I.hasName()) 952 CreateModuleSlot(&I); 953 } 954 955 // Add metadata used by named metadata. 956 for (const NamedMDNode &NMD : TheModule->named_metadata()) { 957 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) 958 CreateMetadataSlot(NMD.getOperand(i)); 959 } 960 961 for (const Function &F : *TheModule) { 962 if (!F.hasName()) 963 // Add all the unnamed functions to the table. 964 CreateModuleSlot(&F); 965 966 if (ShouldInitializeAllMetadata) 967 processFunctionMetadata(F); 968 969 // Add all the function attributes to the table. 970 // FIXME: Add attributes of other objects? 971 AttributeSet FnAttrs = F.getAttributes().getFnAttributes(); 972 if (FnAttrs.hasAttributes()) 973 CreateAttributeSetSlot(FnAttrs); 974 } 975 976 ST_DEBUG("end processModule!\n"); 977 } 978 979 // Process the arguments, basic blocks, and instructions of a function. 980 void SlotTracker::processFunction() { 981 ST_DEBUG("begin processFunction!\n"); 982 fNext = 0; 983 984 // Process function metadata if it wasn't hit at the module-level. 985 if (!ShouldInitializeAllMetadata) 986 processFunctionMetadata(*TheFunction); 987 988 // Add all the function arguments with no names. 989 for(Function::const_arg_iterator AI = TheFunction->arg_begin(), 990 AE = TheFunction->arg_end(); AI != AE; ++AI) 991 if (!AI->hasName()) 992 CreateFunctionSlot(&*AI); 993 994 ST_DEBUG("Inserting Instructions:\n"); 995 996 // Add all of the basic blocks and instructions with no names. 997 for (auto &BB : *TheFunction) { 998 if (!BB.hasName()) 999 CreateFunctionSlot(&BB); 1000 1001 for (auto &I : BB) { 1002 if (!I.getType()->isVoidTy() && !I.hasName()) 1003 CreateFunctionSlot(&I); 1004 1005 // We allow direct calls to any llvm.foo function here, because the 1006 // target may not be linked into the optimizer. 1007 if (const auto *Call = dyn_cast<CallBase>(&I)) { 1008 // Add all the call attributes to the table. 1009 AttributeSet Attrs = Call->getAttributes().getFnAttributes(); 1010 if (Attrs.hasAttributes()) 1011 CreateAttributeSetSlot(Attrs); 1012 } 1013 } 1014 } 1015 1016 FunctionProcessed = true; 1017 1018 ST_DEBUG("end processFunction!\n"); 1019 } 1020 1021 // Iterate through all the GUID in the index and create slots for them. 1022 void SlotTracker::processIndex() { 1023 ST_DEBUG("begin processIndex!\n"); 1024 assert(TheIndex); 1025 1026 // The first block of slots are just the module ids, which start at 0 and are 1027 // assigned consecutively. Since the StringMap iteration order isn't 1028 // guaranteed, use a std::map to order by module ID before assigning slots. 1029 std::map<uint64_t, StringRef> ModuleIdToPathMap; 1030 for (auto &ModPath : TheIndex->modulePaths()) 1031 ModuleIdToPathMap[ModPath.second.first] = ModPath.first(); 1032 for (auto &ModPair : ModuleIdToPathMap) 1033 CreateModulePathSlot(ModPair.second); 1034 1035 // Start numbering the GUIDs after the module ids. 1036 GUIDNext = ModulePathNext; 1037 1038 for (auto &GlobalList : *TheIndex) 1039 CreateGUIDSlot(GlobalList.first); 1040 1041 // Start numbering the TypeIds after the GUIDs. 1042 TypeIdNext = GUIDNext; 1043 1044 for (auto TidIter = TheIndex->typeIds().begin(); 1045 TidIter != TheIndex->typeIds().end(); TidIter++) 1046 CreateTypeIdSlot(TidIter->second.first); 1047 1048 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) 1049 CreateGUIDSlot(GlobalValue::getGUID(TId.first)); 1050 1051 ST_DEBUG("end processIndex!\n"); 1052 } 1053 1054 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) { 1055 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1056 GO.getAllMetadata(MDs); 1057 for (auto &MD : MDs) 1058 CreateMetadataSlot(MD.second); 1059 } 1060 1061 void SlotTracker::processFunctionMetadata(const Function &F) { 1062 processGlobalObjectMetadata(F); 1063 for (auto &BB : F) { 1064 for (auto &I : BB) 1065 processInstructionMetadata(I); 1066 } 1067 } 1068 1069 void SlotTracker::processInstructionMetadata(const Instruction &I) { 1070 // Process metadata used directly by intrinsics. 1071 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1072 if (Function *F = CI->getCalledFunction()) 1073 if (F->isIntrinsic()) 1074 for (auto &Op : I.operands()) 1075 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 1076 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) 1077 CreateMetadataSlot(N); 1078 1079 // Process metadata attached to this instruction. 1080 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1081 I.getAllMetadata(MDs); 1082 for (auto &MD : MDs) 1083 CreateMetadataSlot(MD.second); 1084 } 1085 1086 /// Clean up after incorporating a function. This is the only way to get out of 1087 /// the function incorporation state that affects get*Slot/Create*Slot. Function 1088 /// incorporation state is indicated by TheFunction != 0. 1089 void SlotTracker::purgeFunction() { 1090 ST_DEBUG("begin purgeFunction!\n"); 1091 fMap.clear(); // Simply discard the function level map 1092 TheFunction = nullptr; 1093 FunctionProcessed = false; 1094 ST_DEBUG("end purgeFunction!\n"); 1095 } 1096 1097 /// getGlobalSlot - Get the slot number of a global value. 1098 int SlotTracker::getGlobalSlot(const GlobalValue *V) { 1099 // Check for uninitialized state and do lazy initialization. 1100 initializeIfNeeded(); 1101 1102 // Find the value in the module map 1103 ValueMap::iterator MI = mMap.find(V); 1104 return MI == mMap.end() ? -1 : (int)MI->second; 1105 } 1106 1107 /// getMetadataSlot - Get the slot number of a MDNode. 1108 int SlotTracker::getMetadataSlot(const MDNode *N) { 1109 // Check for uninitialized state and do lazy initialization. 1110 initializeIfNeeded(); 1111 1112 // Find the MDNode in the module map 1113 mdn_iterator MI = mdnMap.find(N); 1114 return MI == mdnMap.end() ? -1 : (int)MI->second; 1115 } 1116 1117 /// getLocalSlot - Get the slot number for a value that is local to a function. 1118 int SlotTracker::getLocalSlot(const Value *V) { 1119 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); 1120 1121 // Check for uninitialized state and do lazy initialization. 1122 initializeIfNeeded(); 1123 1124 ValueMap::iterator FI = fMap.find(V); 1125 return FI == fMap.end() ? -1 : (int)FI->second; 1126 } 1127 1128 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { 1129 // Check for uninitialized state and do lazy initialization. 1130 initializeIfNeeded(); 1131 1132 // Find the AttributeSet in the module map. 1133 as_iterator AI = asMap.find(AS); 1134 return AI == asMap.end() ? -1 : (int)AI->second; 1135 } 1136 1137 int SlotTracker::getModulePathSlot(StringRef Path) { 1138 // Check for uninitialized state and do lazy initialization. 1139 initializeIndexIfNeeded(); 1140 1141 // Find the Module path in the map 1142 auto I = ModulePathMap.find(Path); 1143 return I == ModulePathMap.end() ? -1 : (int)I->second; 1144 } 1145 1146 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) { 1147 // Check for uninitialized state and do lazy initialization. 1148 initializeIndexIfNeeded(); 1149 1150 // Find the GUID in the map 1151 guid_iterator I = GUIDMap.find(GUID); 1152 return I == GUIDMap.end() ? -1 : (int)I->second; 1153 } 1154 1155 int SlotTracker::getTypeIdSlot(StringRef Id) { 1156 // Check for uninitialized state and do lazy initialization. 1157 initializeIndexIfNeeded(); 1158 1159 // Find the TypeId string in the map 1160 auto I = TypeIdMap.find(Id); 1161 return I == TypeIdMap.end() ? -1 : (int)I->second; 1162 } 1163 1164 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 1165 void SlotTracker::CreateModuleSlot(const GlobalValue *V) { 1166 assert(V && "Can't insert a null Value into SlotTracker!"); 1167 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); 1168 assert(!V->hasName() && "Doesn't need a slot!"); 1169 1170 unsigned DestSlot = mNext++; 1171 mMap[V] = DestSlot; 1172 1173 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1174 DestSlot << " ["); 1175 // G = Global, F = Function, A = Alias, I = IFunc, o = other 1176 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : 1177 (isa<Function>(V) ? 'F' : 1178 (isa<GlobalAlias>(V) ? 'A' : 1179 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n"); 1180 } 1181 1182 /// CreateSlot - Create a new slot for the specified value if it has no name. 1183 void SlotTracker::CreateFunctionSlot(const Value *V) { 1184 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); 1185 1186 unsigned DestSlot = fNext++; 1187 fMap[V] = DestSlot; 1188 1189 // G = Global, F = Function, o = other 1190 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1191 DestSlot << " [o]\n"); 1192 } 1193 1194 /// CreateModuleSlot - Insert the specified MDNode* into the slot table. 1195 void SlotTracker::CreateMetadataSlot(const MDNode *N) { 1196 assert(N && "Can't insert a null Value into SlotTracker!"); 1197 1198 // Don't make slots for DIExpressions. We just print them inline everywhere. 1199 if (isa<DIExpression>(N)) 1200 return; 1201 1202 unsigned DestSlot = mdnNext; 1203 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second) 1204 return; 1205 ++mdnNext; 1206 1207 // Recursively add any MDNodes referenced by operands. 1208 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1209 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) 1210 CreateMetadataSlot(Op); 1211 } 1212 1213 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { 1214 assert(AS.hasAttributes() && "Doesn't need a slot!"); 1215 1216 as_iterator I = asMap.find(AS); 1217 if (I != asMap.end()) 1218 return; 1219 1220 unsigned DestSlot = asNext++; 1221 asMap[AS] = DestSlot; 1222 } 1223 1224 /// Create a new slot for the specified Module 1225 void SlotTracker::CreateModulePathSlot(StringRef Path) { 1226 ModulePathMap[Path] = ModulePathNext++; 1227 } 1228 1229 /// Create a new slot for the specified GUID 1230 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) { 1231 GUIDMap[GUID] = GUIDNext++; 1232 } 1233 1234 /// Create a new slot for the specified Id 1235 void SlotTracker::CreateTypeIdSlot(StringRef Id) { 1236 TypeIdMap[Id] = TypeIdNext++; 1237 } 1238 1239 //===----------------------------------------------------------------------===// 1240 // AsmWriter Implementation 1241 //===----------------------------------------------------------------------===// 1242 1243 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 1244 TypePrinting *TypePrinter, 1245 SlotTracker *Machine, 1246 const Module *Context); 1247 1248 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 1249 TypePrinting *TypePrinter, 1250 SlotTracker *Machine, const Module *Context, 1251 bool FromValue = false); 1252 1253 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { 1254 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) { 1255 // 'Fast' is an abbreviation for all fast-math-flags. 1256 if (FPO->isFast()) 1257 Out << " fast"; 1258 else { 1259 if (FPO->hasAllowReassoc()) 1260 Out << " reassoc"; 1261 if (FPO->hasNoNaNs()) 1262 Out << " nnan"; 1263 if (FPO->hasNoInfs()) 1264 Out << " ninf"; 1265 if (FPO->hasNoSignedZeros()) 1266 Out << " nsz"; 1267 if (FPO->hasAllowReciprocal()) 1268 Out << " arcp"; 1269 if (FPO->hasAllowContract()) 1270 Out << " contract"; 1271 if (FPO->hasApproxFunc()) 1272 Out << " afn"; 1273 } 1274 } 1275 1276 if (const OverflowingBinaryOperator *OBO = 1277 dyn_cast<OverflowingBinaryOperator>(U)) { 1278 if (OBO->hasNoUnsignedWrap()) 1279 Out << " nuw"; 1280 if (OBO->hasNoSignedWrap()) 1281 Out << " nsw"; 1282 } else if (const PossiblyExactOperator *Div = 1283 dyn_cast<PossiblyExactOperator>(U)) { 1284 if (Div->isExact()) 1285 Out << " exact"; 1286 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 1287 if (GEP->isInBounds()) 1288 Out << " inbounds"; 1289 } 1290 } 1291 1292 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, 1293 TypePrinting &TypePrinter, 1294 SlotTracker *Machine, 1295 const Module *Context) { 1296 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1297 if (CI->getType()->isIntegerTy(1)) { 1298 Out << (CI->getZExtValue() ? "true" : "false"); 1299 return; 1300 } 1301 Out << CI->getValue(); 1302 return; 1303 } 1304 1305 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1306 const APFloat &APF = CFP->getValueAPF(); 1307 if (&APF.getSemantics() == &APFloat::IEEEsingle() || 1308 &APF.getSemantics() == &APFloat::IEEEdouble()) { 1309 // We would like to output the FP constant value in exponential notation, 1310 // but we cannot do this if doing so will lose precision. Check here to 1311 // make sure that we only output it in exponential format if we can parse 1312 // the value back and get the same value. 1313 // 1314 bool ignored; 1315 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble(); 1316 bool isInf = APF.isInfinity(); 1317 bool isNaN = APF.isNaN(); 1318 if (!isInf && !isNaN) { 1319 double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat(); 1320 SmallString<128> StrVal; 1321 APF.toString(StrVal, 6, 0, false); 1322 // Check to make sure that the stringized number is not some string like 1323 // "Inf" or NaN, that atof will accept, but the lexer will not. Check 1324 // that the string matches the "[-+]?[0-9]" regex. 1325 // 1326 assert(((StrVal[0] >= '0' && StrVal[0] <= '9') || 1327 ((StrVal[0] == '-' || StrVal[0] == '+') && 1328 (StrVal[1] >= '0' && StrVal[1] <= '9'))) && 1329 "[-+]?[0-9] regex does not match!"); 1330 // Reparse stringized version! 1331 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) { 1332 Out << StrVal; 1333 return; 1334 } 1335 } 1336 // Otherwise we could not reparse it to exactly the same value, so we must 1337 // output the string in hexadecimal format! Note that loading and storing 1338 // floating point types changes the bits of NaNs on some hosts, notably 1339 // x86, so we must not use these types. 1340 static_assert(sizeof(double) == sizeof(uint64_t), 1341 "assuming that double is 64 bits!"); 1342 APFloat apf = APF; 1343 // Floats are represented in ASCII IR as double, convert. 1344 if (!isDouble) 1345 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1346 &ignored); 1347 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true); 1348 return; 1349 } 1350 1351 // Either half, or some form of long double. 1352 // These appear as a magic letter identifying the type, then a 1353 // fixed number of hex digits. 1354 Out << "0x"; 1355 APInt API = APF.bitcastToAPInt(); 1356 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) { 1357 Out << 'K'; 1358 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 1359 /*Upper=*/true); 1360 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1361 /*Upper=*/true); 1362 return; 1363 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) { 1364 Out << 'L'; 1365 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1366 /*Upper=*/true); 1367 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1368 /*Upper=*/true); 1369 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) { 1370 Out << 'M'; 1371 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1372 /*Upper=*/true); 1373 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1374 /*Upper=*/true); 1375 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) { 1376 Out << 'H'; 1377 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1378 /*Upper=*/true); 1379 } else 1380 llvm_unreachable("Unsupported floating point type"); 1381 return; 1382 } 1383 1384 if (isa<ConstantAggregateZero>(CV)) { 1385 Out << "zeroinitializer"; 1386 return; 1387 } 1388 1389 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 1390 Out << "blockaddress("; 1391 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, 1392 Context); 1393 Out << ", "; 1394 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, 1395 Context); 1396 Out << ")"; 1397 return; 1398 } 1399 1400 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 1401 Type *ETy = CA->getType()->getElementType(); 1402 Out << '['; 1403 TypePrinter.print(ETy, Out); 1404 Out << ' '; 1405 WriteAsOperandInternal(Out, CA->getOperand(0), 1406 &TypePrinter, Machine, 1407 Context); 1408 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1409 Out << ", "; 1410 TypePrinter.print(ETy, Out); 1411 Out << ' '; 1412 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, 1413 Context); 1414 } 1415 Out << ']'; 1416 return; 1417 } 1418 1419 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { 1420 // As a special case, print the array as a string if it is an array of 1421 // i8 with ConstantInt values. 1422 if (CA->isString()) { 1423 Out << "c\""; 1424 printEscapedString(CA->getAsString(), Out); 1425 Out << '"'; 1426 return; 1427 } 1428 1429 Type *ETy = CA->getType()->getElementType(); 1430 Out << '['; 1431 TypePrinter.print(ETy, Out); 1432 Out << ' '; 1433 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), 1434 &TypePrinter, Machine, 1435 Context); 1436 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { 1437 Out << ", "; 1438 TypePrinter.print(ETy, Out); 1439 Out << ' '; 1440 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, 1441 Machine, Context); 1442 } 1443 Out << ']'; 1444 return; 1445 } 1446 1447 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 1448 if (CS->getType()->isPacked()) 1449 Out << '<'; 1450 Out << '{'; 1451 unsigned N = CS->getNumOperands(); 1452 if (N) { 1453 Out << ' '; 1454 TypePrinter.print(CS->getOperand(0)->getType(), Out); 1455 Out << ' '; 1456 1457 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, 1458 Context); 1459 1460 for (unsigned i = 1; i < N; i++) { 1461 Out << ", "; 1462 TypePrinter.print(CS->getOperand(i)->getType(), Out); 1463 Out << ' '; 1464 1465 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, 1466 Context); 1467 } 1468 Out << ' '; 1469 } 1470 1471 Out << '}'; 1472 if (CS->getType()->isPacked()) 1473 Out << '>'; 1474 return; 1475 } 1476 1477 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { 1478 Type *ETy = CV->getType()->getVectorElementType(); 1479 Out << '<'; 1480 TypePrinter.print(ETy, Out); 1481 Out << ' '; 1482 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, 1483 Machine, Context); 1484 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){ 1485 Out << ", "; 1486 TypePrinter.print(ETy, Out); 1487 Out << ' '; 1488 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, 1489 Machine, Context); 1490 } 1491 Out << '>'; 1492 return; 1493 } 1494 1495 if (isa<ConstantPointerNull>(CV)) { 1496 Out << "null"; 1497 return; 1498 } 1499 1500 if (isa<ConstantTokenNone>(CV)) { 1501 Out << "none"; 1502 return; 1503 } 1504 1505 if (isa<UndefValue>(CV)) { 1506 Out << "undef"; 1507 return; 1508 } 1509 1510 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1511 Out << CE->getOpcodeName(); 1512 WriteOptimizationInfo(Out, CE); 1513 if (CE->isCompare()) 1514 Out << ' ' << CmpInst::getPredicateName( 1515 static_cast<CmpInst::Predicate>(CE->getPredicate())); 1516 Out << " ("; 1517 1518 Optional<unsigned> InRangeOp; 1519 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) { 1520 TypePrinter.print(GEP->getSourceElementType(), Out); 1521 Out << ", "; 1522 InRangeOp = GEP->getInRangeIndex(); 1523 if (InRangeOp) 1524 ++*InRangeOp; 1525 } 1526 1527 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { 1528 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp) 1529 Out << "inrange "; 1530 TypePrinter.print((*OI)->getType(), Out); 1531 Out << ' '; 1532 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); 1533 if (OI+1 != CE->op_end()) 1534 Out << ", "; 1535 } 1536 1537 if (CE->hasIndices()) { 1538 ArrayRef<unsigned> Indices = CE->getIndices(); 1539 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1540 Out << ", " << Indices[i]; 1541 } 1542 1543 if (CE->isCast()) { 1544 Out << " to "; 1545 TypePrinter.print(CE->getType(), Out); 1546 } 1547 1548 Out << ')'; 1549 return; 1550 } 1551 1552 Out << "<placeholder or erroneous Constant>"; 1553 } 1554 1555 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, 1556 TypePrinting *TypePrinter, SlotTracker *Machine, 1557 const Module *Context) { 1558 Out << "!{"; 1559 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { 1560 const Metadata *MD = Node->getOperand(mi); 1561 if (!MD) 1562 Out << "null"; 1563 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) { 1564 Value *V = MDV->getValue(); 1565 TypePrinter->print(V->getType(), Out); 1566 Out << ' '; 1567 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context); 1568 } else { 1569 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); 1570 } 1571 if (mi + 1 != me) 1572 Out << ", "; 1573 } 1574 1575 Out << "}"; 1576 } 1577 1578 namespace { 1579 1580 struct FieldSeparator { 1581 bool Skip = true; 1582 const char *Sep; 1583 1584 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {} 1585 }; 1586 1587 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { 1588 if (FS.Skip) { 1589 FS.Skip = false; 1590 return OS; 1591 } 1592 return OS << FS.Sep; 1593 } 1594 1595 struct MDFieldPrinter { 1596 raw_ostream &Out; 1597 FieldSeparator FS; 1598 TypePrinting *TypePrinter = nullptr; 1599 SlotTracker *Machine = nullptr; 1600 const Module *Context = nullptr; 1601 1602 explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {} 1603 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter, 1604 SlotTracker *Machine, const Module *Context) 1605 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) { 1606 } 1607 1608 void printTag(const DINode *N); 1609 void printMacinfoType(const DIMacroNode *N); 1610 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N); 1611 void printString(StringRef Name, StringRef Value, 1612 bool ShouldSkipEmpty = true); 1613 void printMetadata(StringRef Name, const Metadata *MD, 1614 bool ShouldSkipNull = true); 1615 template <class IntTy> 1616 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); 1617 void printBool(StringRef Name, bool Value, Optional<bool> Default = None); 1618 void printDIFlags(StringRef Name, DINode::DIFlags Flags); 1619 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags); 1620 template <class IntTy, class Stringifier> 1621 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, 1622 bool ShouldSkipZero = true); 1623 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK); 1624 void printNameTableKind(StringRef Name, 1625 DICompileUnit::DebugNameTableKind NTK); 1626 }; 1627 1628 } // end anonymous namespace 1629 1630 void MDFieldPrinter::printTag(const DINode *N) { 1631 Out << FS << "tag: "; 1632 auto Tag = dwarf::TagString(N->getTag()); 1633 if (!Tag.empty()) 1634 Out << Tag; 1635 else 1636 Out << N->getTag(); 1637 } 1638 1639 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) { 1640 Out << FS << "type: "; 1641 auto Type = dwarf::MacinfoString(N->getMacinfoType()); 1642 if (!Type.empty()) 1643 Out << Type; 1644 else 1645 Out << N->getMacinfoType(); 1646 } 1647 1648 void MDFieldPrinter::printChecksum( 1649 const DIFile::ChecksumInfo<StringRef> &Checksum) { 1650 Out << FS << "checksumkind: " << Checksum.getKindAsString(); 1651 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false); 1652 } 1653 1654 void MDFieldPrinter::printString(StringRef Name, StringRef Value, 1655 bool ShouldSkipEmpty) { 1656 if (ShouldSkipEmpty && Value.empty()) 1657 return; 1658 1659 Out << FS << Name << ": \""; 1660 printEscapedString(Value, Out); 1661 Out << "\""; 1662 } 1663 1664 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, 1665 TypePrinting *TypePrinter, 1666 SlotTracker *Machine, 1667 const Module *Context) { 1668 if (!MD) { 1669 Out << "null"; 1670 return; 1671 } 1672 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); 1673 } 1674 1675 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, 1676 bool ShouldSkipNull) { 1677 if (ShouldSkipNull && !MD) 1678 return; 1679 1680 Out << FS << Name << ": "; 1681 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context); 1682 } 1683 1684 template <class IntTy> 1685 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { 1686 if (ShouldSkipZero && !Int) 1687 return; 1688 1689 Out << FS << Name << ": " << Int; 1690 } 1691 1692 void MDFieldPrinter::printBool(StringRef Name, bool Value, 1693 Optional<bool> Default) { 1694 if (Default && Value == *Default) 1695 return; 1696 Out << FS << Name << ": " << (Value ? "true" : "false"); 1697 } 1698 1699 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) { 1700 if (!Flags) 1701 return; 1702 1703 Out << FS << Name << ": "; 1704 1705 SmallVector<DINode::DIFlags, 8> SplitFlags; 1706 auto Extra = DINode::splitFlags(Flags, SplitFlags); 1707 1708 FieldSeparator FlagsFS(" | "); 1709 for (auto F : SplitFlags) { 1710 auto StringF = DINode::getFlagString(F); 1711 assert(!StringF.empty() && "Expected valid flag"); 1712 Out << FlagsFS << StringF; 1713 } 1714 if (Extra || SplitFlags.empty()) 1715 Out << FlagsFS << Extra; 1716 } 1717 1718 void MDFieldPrinter::printDISPFlags(StringRef Name, 1719 DISubprogram::DISPFlags Flags) { 1720 // Always print this field, because no flags in the IR at all will be 1721 // interpreted as old-style isDefinition: true. 1722 Out << FS << Name << ": "; 1723 1724 if (!Flags) { 1725 Out << 0; 1726 return; 1727 } 1728 1729 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags; 1730 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags); 1731 1732 FieldSeparator FlagsFS(" | "); 1733 for (auto F : SplitFlags) { 1734 auto StringF = DISubprogram::getFlagString(F); 1735 assert(!StringF.empty() && "Expected valid flag"); 1736 Out << FlagsFS << StringF; 1737 } 1738 if (Extra || SplitFlags.empty()) 1739 Out << FlagsFS << Extra; 1740 } 1741 1742 void MDFieldPrinter::printEmissionKind(StringRef Name, 1743 DICompileUnit::DebugEmissionKind EK) { 1744 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK); 1745 } 1746 1747 void MDFieldPrinter::printNameTableKind(StringRef Name, 1748 DICompileUnit::DebugNameTableKind NTK) { 1749 if (NTK == DICompileUnit::DebugNameTableKind::Default) 1750 return; 1751 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK); 1752 } 1753 1754 template <class IntTy, class Stringifier> 1755 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, 1756 Stringifier toString, bool ShouldSkipZero) { 1757 if (!Value) 1758 return; 1759 1760 Out << FS << Name << ": "; 1761 auto S = toString(Value); 1762 if (!S.empty()) 1763 Out << S; 1764 else 1765 Out << Value; 1766 } 1767 1768 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, 1769 TypePrinting *TypePrinter, SlotTracker *Machine, 1770 const Module *Context) { 1771 Out << "!GenericDINode("; 1772 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1773 Printer.printTag(N); 1774 Printer.printString("header", N->getHeader()); 1775 if (N->getNumDwarfOperands()) { 1776 Out << Printer.FS << "operands: {"; 1777 FieldSeparator IFS; 1778 for (auto &I : N->dwarf_operands()) { 1779 Out << IFS; 1780 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context); 1781 } 1782 Out << "}"; 1783 } 1784 Out << ")"; 1785 } 1786 1787 static void writeDILocation(raw_ostream &Out, const DILocation *DL, 1788 TypePrinting *TypePrinter, SlotTracker *Machine, 1789 const Module *Context) { 1790 Out << "!DILocation("; 1791 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1792 // Always output the line, since 0 is a relevant and important value for it. 1793 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); 1794 Printer.printInt("column", DL->getColumn()); 1795 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); 1796 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); 1797 Printer.printBool("isImplicitCode", DL->isImplicitCode(), 1798 /* Default */ false); 1799 Out << ")"; 1800 } 1801 1802 static void writeDISubrange(raw_ostream &Out, const DISubrange *N, 1803 TypePrinting *TypePrinter, SlotTracker *Machine, 1804 const Module *Context) { 1805 Out << "!DISubrange("; 1806 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1807 if (auto *CE = N->getCount().dyn_cast<ConstantInt*>()) 1808 Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false); 1809 else 1810 Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(), 1811 /*ShouldSkipNull */ false); 1812 Printer.printInt("lowerBound", N->getLowerBound()); 1813 Out << ")"; 1814 } 1815 1816 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, 1817 TypePrinting *, SlotTracker *, const Module *) { 1818 Out << "!DIEnumerator("; 1819 MDFieldPrinter Printer(Out); 1820 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); 1821 if (N->isUnsigned()) { 1822 auto Value = static_cast<uint64_t>(N->getValue()); 1823 Printer.printInt("value", Value, /* ShouldSkipZero */ false); 1824 Printer.printBool("isUnsigned", true); 1825 } else { 1826 Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false); 1827 } 1828 Out << ")"; 1829 } 1830 1831 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, 1832 TypePrinting *, SlotTracker *, const Module *) { 1833 Out << "!DIBasicType("; 1834 MDFieldPrinter Printer(Out); 1835 if (N->getTag() != dwarf::DW_TAG_base_type) 1836 Printer.printTag(N); 1837 Printer.printString("name", N->getName()); 1838 Printer.printInt("size", N->getSizeInBits()); 1839 Printer.printInt("align", N->getAlignInBits()); 1840 Printer.printDwarfEnum("encoding", N->getEncoding(), 1841 dwarf::AttributeEncodingString); 1842 Printer.printDIFlags("flags", N->getFlags()); 1843 Out << ")"; 1844 } 1845 1846 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, 1847 TypePrinting *TypePrinter, SlotTracker *Machine, 1848 const Module *Context) { 1849 Out << "!DIDerivedType("; 1850 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1851 Printer.printTag(N); 1852 Printer.printString("name", N->getName()); 1853 Printer.printMetadata("scope", N->getRawScope()); 1854 Printer.printMetadata("file", N->getRawFile()); 1855 Printer.printInt("line", N->getLine()); 1856 Printer.printMetadata("baseType", N->getRawBaseType(), 1857 /* ShouldSkipNull */ false); 1858 Printer.printInt("size", N->getSizeInBits()); 1859 Printer.printInt("align", N->getAlignInBits()); 1860 Printer.printInt("offset", N->getOffsetInBits()); 1861 Printer.printDIFlags("flags", N->getFlags()); 1862 Printer.printMetadata("extraData", N->getRawExtraData()); 1863 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1864 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace, 1865 /* ShouldSkipZero */ false); 1866 Out << ")"; 1867 } 1868 1869 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, 1870 TypePrinting *TypePrinter, 1871 SlotTracker *Machine, const Module *Context) { 1872 Out << "!DICompositeType("; 1873 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1874 Printer.printTag(N); 1875 Printer.printString("name", N->getName()); 1876 Printer.printMetadata("scope", N->getRawScope()); 1877 Printer.printMetadata("file", N->getRawFile()); 1878 Printer.printInt("line", N->getLine()); 1879 Printer.printMetadata("baseType", N->getRawBaseType()); 1880 Printer.printInt("size", N->getSizeInBits()); 1881 Printer.printInt("align", N->getAlignInBits()); 1882 Printer.printInt("offset", N->getOffsetInBits()); 1883 Printer.printDIFlags("flags", N->getFlags()); 1884 Printer.printMetadata("elements", N->getRawElements()); 1885 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), 1886 dwarf::LanguageString); 1887 Printer.printMetadata("vtableHolder", N->getRawVTableHolder()); 1888 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 1889 Printer.printString("identifier", N->getIdentifier()); 1890 Printer.printMetadata("discriminator", N->getRawDiscriminator()); 1891 Out << ")"; 1892 } 1893 1894 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, 1895 TypePrinting *TypePrinter, 1896 SlotTracker *Machine, const Module *Context) { 1897 Out << "!DISubroutineType("; 1898 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1899 Printer.printDIFlags("flags", N->getFlags()); 1900 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString); 1901 Printer.printMetadata("types", N->getRawTypeArray(), 1902 /* ShouldSkipNull */ false); 1903 Out << ")"; 1904 } 1905 1906 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *, 1907 SlotTracker *, const Module *) { 1908 Out << "!DIFile("; 1909 MDFieldPrinter Printer(Out); 1910 Printer.printString("filename", N->getFilename(), 1911 /* ShouldSkipEmpty */ false); 1912 Printer.printString("directory", N->getDirectory(), 1913 /* ShouldSkipEmpty */ false); 1914 // Print all values for checksum together, or not at all. 1915 if (N->getChecksum()) 1916 Printer.printChecksum(*N->getChecksum()); 1917 Printer.printString("source", N->getSource().getValueOr(StringRef()), 1918 /* ShouldSkipEmpty */ true); 1919 Out << ")"; 1920 } 1921 1922 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, 1923 TypePrinting *TypePrinter, SlotTracker *Machine, 1924 const Module *Context) { 1925 Out << "!DICompileUnit("; 1926 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1927 Printer.printDwarfEnum("language", N->getSourceLanguage(), 1928 dwarf::LanguageString, /* ShouldSkipZero */ false); 1929 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 1930 Printer.printString("producer", N->getProducer()); 1931 Printer.printBool("isOptimized", N->isOptimized()); 1932 Printer.printString("flags", N->getFlags()); 1933 Printer.printInt("runtimeVersion", N->getRuntimeVersion(), 1934 /* ShouldSkipZero */ false); 1935 Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); 1936 Printer.printEmissionKind("emissionKind", N->getEmissionKind()); 1937 Printer.printMetadata("enums", N->getRawEnumTypes()); 1938 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes()); 1939 Printer.printMetadata("globals", N->getRawGlobalVariables()); 1940 Printer.printMetadata("imports", N->getRawImportedEntities()); 1941 Printer.printMetadata("macros", N->getRawMacros()); 1942 Printer.printInt("dwoId", N->getDWOId()); 1943 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true); 1944 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(), 1945 false); 1946 Printer.printNameTableKind("nameTableKind", N->getNameTableKind()); 1947 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false); 1948 Out << ")"; 1949 } 1950 1951 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, 1952 TypePrinting *TypePrinter, SlotTracker *Machine, 1953 const Module *Context) { 1954 Out << "!DISubprogram("; 1955 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1956 Printer.printString("name", N->getName()); 1957 Printer.printString("linkageName", N->getLinkageName()); 1958 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 1959 Printer.printMetadata("file", N->getRawFile()); 1960 Printer.printInt("line", N->getLine()); 1961 Printer.printMetadata("type", N->getRawType()); 1962 Printer.printInt("scopeLine", N->getScopeLine()); 1963 Printer.printMetadata("containingType", N->getRawContainingType()); 1964 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none || 1965 N->getVirtualIndex() != 0) 1966 Printer.printInt("virtualIndex", N->getVirtualIndex(), false); 1967 Printer.printInt("thisAdjustment", N->getThisAdjustment()); 1968 Printer.printDIFlags("flags", N->getFlags()); 1969 Printer.printDISPFlags("spFlags", N->getSPFlags()); 1970 Printer.printMetadata("unit", N->getRawUnit()); 1971 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 1972 Printer.printMetadata("declaration", N->getRawDeclaration()); 1973 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes()); 1974 Printer.printMetadata("thrownTypes", N->getRawThrownTypes()); 1975 Out << ")"; 1976 } 1977 1978 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, 1979 TypePrinting *TypePrinter, SlotTracker *Machine, 1980 const Module *Context) { 1981 Out << "!DILexicalBlock("; 1982 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1983 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 1984 Printer.printMetadata("file", N->getRawFile()); 1985 Printer.printInt("line", N->getLine()); 1986 Printer.printInt("column", N->getColumn()); 1987 Out << ")"; 1988 } 1989 1990 static void writeDILexicalBlockFile(raw_ostream &Out, 1991 const DILexicalBlockFile *N, 1992 TypePrinting *TypePrinter, 1993 SlotTracker *Machine, 1994 const Module *Context) { 1995 Out << "!DILexicalBlockFile("; 1996 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1997 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 1998 Printer.printMetadata("file", N->getRawFile()); 1999 Printer.printInt("discriminator", N->getDiscriminator(), 2000 /* ShouldSkipZero */ false); 2001 Out << ")"; 2002 } 2003 2004 static void writeDINamespace(raw_ostream &Out, const DINamespace *N, 2005 TypePrinting *TypePrinter, SlotTracker *Machine, 2006 const Module *Context) { 2007 Out << "!DINamespace("; 2008 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2009 Printer.printString("name", N->getName()); 2010 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2011 Printer.printBool("exportSymbols", N->getExportSymbols(), false); 2012 Out << ")"; 2013 } 2014 2015 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, 2016 TypePrinting *TypePrinter, SlotTracker *Machine, 2017 const Module *Context) { 2018 Out << "!DICommonBlock("; 2019 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2020 Printer.printMetadata("scope", N->getRawScope(), false); 2021 Printer.printMetadata("declaration", N->getRawDecl(), false); 2022 Printer.printString("name", N->getName()); 2023 Printer.printMetadata("file", N->getRawFile()); 2024 Printer.printInt("line", N->getLineNo()); 2025 Out << ")"; 2026 } 2027 2028 static void writeDIMacro(raw_ostream &Out, const DIMacro *N, 2029 TypePrinting *TypePrinter, SlotTracker *Machine, 2030 const Module *Context) { 2031 Out << "!DIMacro("; 2032 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2033 Printer.printMacinfoType(N); 2034 Printer.printInt("line", N->getLine()); 2035 Printer.printString("name", N->getName()); 2036 Printer.printString("value", N->getValue()); 2037 Out << ")"; 2038 } 2039 2040 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, 2041 TypePrinting *TypePrinter, SlotTracker *Machine, 2042 const Module *Context) { 2043 Out << "!DIMacroFile("; 2044 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2045 Printer.printInt("line", N->getLine()); 2046 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2047 Printer.printMetadata("nodes", N->getRawElements()); 2048 Out << ")"; 2049 } 2050 2051 static void writeDIModule(raw_ostream &Out, const DIModule *N, 2052 TypePrinting *TypePrinter, SlotTracker *Machine, 2053 const Module *Context) { 2054 Out << "!DIModule("; 2055 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2056 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2057 Printer.printString("name", N->getName()); 2058 Printer.printString("configMacros", N->getConfigurationMacros()); 2059 Printer.printString("includePath", N->getIncludePath()); 2060 Printer.printString("sysroot", N->getSysRoot()); 2061 Out << ")"; 2062 } 2063 2064 2065 static void writeDITemplateTypeParameter(raw_ostream &Out, 2066 const DITemplateTypeParameter *N, 2067 TypePrinting *TypePrinter, 2068 SlotTracker *Machine, 2069 const Module *Context) { 2070 Out << "!DITemplateTypeParameter("; 2071 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2072 Printer.printString("name", N->getName()); 2073 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false); 2074 Out << ")"; 2075 } 2076 2077 static void writeDITemplateValueParameter(raw_ostream &Out, 2078 const DITemplateValueParameter *N, 2079 TypePrinting *TypePrinter, 2080 SlotTracker *Machine, 2081 const Module *Context) { 2082 Out << "!DITemplateValueParameter("; 2083 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2084 if (N->getTag() != dwarf::DW_TAG_template_value_parameter) 2085 Printer.printTag(N); 2086 Printer.printString("name", N->getName()); 2087 Printer.printMetadata("type", N->getRawType()); 2088 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); 2089 Out << ")"; 2090 } 2091 2092 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, 2093 TypePrinting *TypePrinter, 2094 SlotTracker *Machine, const Module *Context) { 2095 Out << "!DIGlobalVariable("; 2096 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2097 Printer.printString("name", N->getName()); 2098 Printer.printString("linkageName", N->getLinkageName()); 2099 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2100 Printer.printMetadata("file", N->getRawFile()); 2101 Printer.printInt("line", N->getLine()); 2102 Printer.printMetadata("type", N->getRawType()); 2103 Printer.printBool("isLocal", N->isLocalToUnit()); 2104 Printer.printBool("isDefinition", N->isDefinition()); 2105 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration()); 2106 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2107 Printer.printInt("align", N->getAlignInBits()); 2108 Out << ")"; 2109 } 2110 2111 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, 2112 TypePrinting *TypePrinter, 2113 SlotTracker *Machine, const Module *Context) { 2114 Out << "!DILocalVariable("; 2115 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2116 Printer.printString("name", N->getName()); 2117 Printer.printInt("arg", N->getArg()); 2118 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2119 Printer.printMetadata("file", N->getRawFile()); 2120 Printer.printInt("line", N->getLine()); 2121 Printer.printMetadata("type", N->getRawType()); 2122 Printer.printDIFlags("flags", N->getFlags()); 2123 Printer.printInt("align", N->getAlignInBits()); 2124 Out << ")"; 2125 } 2126 2127 static void writeDILabel(raw_ostream &Out, const DILabel *N, 2128 TypePrinting *TypePrinter, 2129 SlotTracker *Machine, const Module *Context) { 2130 Out << "!DILabel("; 2131 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2132 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2133 Printer.printString("name", N->getName()); 2134 Printer.printMetadata("file", N->getRawFile()); 2135 Printer.printInt("line", N->getLine()); 2136 Out << ")"; 2137 } 2138 2139 static void writeDIExpression(raw_ostream &Out, const DIExpression *N, 2140 TypePrinting *TypePrinter, SlotTracker *Machine, 2141 const Module *Context) { 2142 Out << "!DIExpression("; 2143 FieldSeparator FS; 2144 if (N->isValid()) { 2145 for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) { 2146 auto OpStr = dwarf::OperationEncodingString(I->getOp()); 2147 assert(!OpStr.empty() && "Expected valid opcode"); 2148 2149 Out << FS << OpStr; 2150 if (I->getOp() == dwarf::DW_OP_LLVM_convert) { 2151 Out << FS << I->getArg(0); 2152 Out << FS << dwarf::AttributeEncodingString(I->getArg(1)); 2153 } else { 2154 for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A) 2155 Out << FS << I->getArg(A); 2156 } 2157 } 2158 } else { 2159 for (const auto &I : N->getElements()) 2160 Out << FS << I; 2161 } 2162 Out << ")"; 2163 } 2164 2165 static void writeDIGlobalVariableExpression(raw_ostream &Out, 2166 const DIGlobalVariableExpression *N, 2167 TypePrinting *TypePrinter, 2168 SlotTracker *Machine, 2169 const Module *Context) { 2170 Out << "!DIGlobalVariableExpression("; 2171 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2172 Printer.printMetadata("var", N->getVariable()); 2173 Printer.printMetadata("expr", N->getExpression()); 2174 Out << ")"; 2175 } 2176 2177 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, 2178 TypePrinting *TypePrinter, SlotTracker *Machine, 2179 const Module *Context) { 2180 Out << "!DIObjCProperty("; 2181 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2182 Printer.printString("name", N->getName()); 2183 Printer.printMetadata("file", N->getRawFile()); 2184 Printer.printInt("line", N->getLine()); 2185 Printer.printString("setter", N->getSetterName()); 2186 Printer.printString("getter", N->getGetterName()); 2187 Printer.printInt("attributes", N->getAttributes()); 2188 Printer.printMetadata("type", N->getRawType()); 2189 Out << ")"; 2190 } 2191 2192 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, 2193 TypePrinting *TypePrinter, 2194 SlotTracker *Machine, const Module *Context) { 2195 Out << "!DIImportedEntity("; 2196 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2197 Printer.printTag(N); 2198 Printer.printString("name", N->getName()); 2199 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2200 Printer.printMetadata("entity", N->getRawEntity()); 2201 Printer.printMetadata("file", N->getRawFile()); 2202 Printer.printInt("line", N->getLine()); 2203 Out << ")"; 2204 } 2205 2206 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, 2207 TypePrinting *TypePrinter, 2208 SlotTracker *Machine, 2209 const Module *Context) { 2210 if (Node->isDistinct()) 2211 Out << "distinct "; 2212 else if (Node->isTemporary()) 2213 Out << "<temporary!> "; // Handle broken code. 2214 2215 switch (Node->getMetadataID()) { 2216 default: 2217 llvm_unreachable("Expected uniquable MDNode"); 2218 #define HANDLE_MDNODE_LEAF(CLASS) \ 2219 case Metadata::CLASS##Kind: \ 2220 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \ 2221 break; 2222 #include "llvm/IR/Metadata.def" 2223 } 2224 } 2225 2226 // Full implementation of printing a Value as an operand with support for 2227 // TypePrinting, etc. 2228 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 2229 TypePrinting *TypePrinter, 2230 SlotTracker *Machine, 2231 const Module *Context) { 2232 if (V->hasName()) { 2233 PrintLLVMName(Out, V); 2234 return; 2235 } 2236 2237 const Constant *CV = dyn_cast<Constant>(V); 2238 if (CV && !isa<GlobalValue>(CV)) { 2239 assert(TypePrinter && "Constants require TypePrinting!"); 2240 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); 2241 return; 2242 } 2243 2244 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2245 Out << "asm "; 2246 if (IA->hasSideEffects()) 2247 Out << "sideeffect "; 2248 if (IA->isAlignStack()) 2249 Out << "alignstack "; 2250 // We don't emit the AD_ATT dialect as it's the assumed default. 2251 if (IA->getDialect() == InlineAsm::AD_Intel) 2252 Out << "inteldialect "; 2253 Out << '"'; 2254 printEscapedString(IA->getAsmString(), Out); 2255 Out << "\", \""; 2256 printEscapedString(IA->getConstraintString(), Out); 2257 Out << '"'; 2258 return; 2259 } 2260 2261 if (auto *MD = dyn_cast<MetadataAsValue>(V)) { 2262 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine, 2263 Context, /* FromValue */ true); 2264 return; 2265 } 2266 2267 char Prefix = '%'; 2268 int Slot; 2269 // If we have a SlotTracker, use it. 2270 if (Machine) { 2271 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2272 Slot = Machine->getGlobalSlot(GV); 2273 Prefix = '@'; 2274 } else { 2275 Slot = Machine->getLocalSlot(V); 2276 2277 // If the local value didn't succeed, then we may be referring to a value 2278 // from a different function. Translate it, as this can happen when using 2279 // address of blocks. 2280 if (Slot == -1) 2281 if ((Machine = createSlotTracker(V))) { 2282 Slot = Machine->getLocalSlot(V); 2283 delete Machine; 2284 } 2285 } 2286 } else if ((Machine = createSlotTracker(V))) { 2287 // Otherwise, create one to get the # and then destroy it. 2288 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2289 Slot = Machine->getGlobalSlot(GV); 2290 Prefix = '@'; 2291 } else { 2292 Slot = Machine->getLocalSlot(V); 2293 } 2294 delete Machine; 2295 Machine = nullptr; 2296 } else { 2297 Slot = -1; 2298 } 2299 2300 if (Slot != -1) 2301 Out << Prefix << Slot; 2302 else 2303 Out << "<badref>"; 2304 } 2305 2306 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 2307 TypePrinting *TypePrinter, 2308 SlotTracker *Machine, const Module *Context, 2309 bool FromValue) { 2310 // Write DIExpressions inline when used as a value. Improves readability of 2311 // debug info intrinsics. 2312 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) { 2313 writeDIExpression(Out, Expr, TypePrinter, Machine, Context); 2314 return; 2315 } 2316 2317 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2318 std::unique_ptr<SlotTracker> MachineStorage; 2319 if (!Machine) { 2320 MachineStorage = std::make_unique<SlotTracker>(Context); 2321 Machine = MachineStorage.get(); 2322 } 2323 int Slot = Machine->getMetadataSlot(N); 2324 if (Slot == -1) { 2325 if (const DILocation *Loc = dyn_cast<DILocation>(N)) { 2326 writeDILocation(Out, Loc, TypePrinter, Machine, Context); 2327 return; 2328 } 2329 // Give the pointer value instead of "badref", since this comes up all 2330 // the time when debugging. 2331 Out << "<" << N << ">"; 2332 } else 2333 Out << '!' << Slot; 2334 return; 2335 } 2336 2337 if (const MDString *MDS = dyn_cast<MDString>(MD)) { 2338 Out << "!\""; 2339 printEscapedString(MDS->getString(), Out); 2340 Out << '"'; 2341 return; 2342 } 2343 2344 auto *V = cast<ValueAsMetadata>(MD); 2345 assert(TypePrinter && "TypePrinter required for metadata values"); 2346 assert((FromValue || !isa<LocalAsMetadata>(V)) && 2347 "Unexpected function-local metadata outside of value argument"); 2348 2349 TypePrinter->print(V->getValue()->getType(), Out); 2350 Out << ' '; 2351 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context); 2352 } 2353 2354 namespace { 2355 2356 class AssemblyWriter { 2357 formatted_raw_ostream &Out; 2358 const Module *TheModule = nullptr; 2359 const ModuleSummaryIndex *TheIndex = nullptr; 2360 std::unique_ptr<SlotTracker> SlotTrackerStorage; 2361 SlotTracker &Machine; 2362 TypePrinting TypePrinter; 2363 AssemblyAnnotationWriter *AnnotationWriter = nullptr; 2364 SetVector<const Comdat *> Comdats; 2365 bool IsForDebug; 2366 bool ShouldPreserveUseListOrder; 2367 UseListOrderStack UseListOrders; 2368 SmallVector<StringRef, 8> MDNames; 2369 /// Synchronization scope names registered with LLVMContext. 2370 SmallVector<StringRef, 8> SSNs; 2371 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap; 2372 2373 public: 2374 /// Construct an AssemblyWriter with an external SlotTracker 2375 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, 2376 AssemblyAnnotationWriter *AAW, bool IsForDebug, 2377 bool ShouldPreserveUseListOrder = false); 2378 2379 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2380 const ModuleSummaryIndex *Index, bool IsForDebug); 2381 2382 void printMDNodeBody(const MDNode *MD); 2383 void printNamedMDNode(const NamedMDNode *NMD); 2384 2385 void printModule(const Module *M); 2386 2387 void writeOperand(const Value *Op, bool PrintType); 2388 void writeParamOperand(const Value *Operand, AttributeSet Attrs); 2389 void writeOperandBundles(const CallBase *Call); 2390 void writeSyncScope(const LLVMContext &Context, 2391 SyncScope::ID SSID); 2392 void writeAtomic(const LLVMContext &Context, 2393 AtomicOrdering Ordering, 2394 SyncScope::ID SSID); 2395 void writeAtomicCmpXchg(const LLVMContext &Context, 2396 AtomicOrdering SuccessOrdering, 2397 AtomicOrdering FailureOrdering, 2398 SyncScope::ID SSID); 2399 2400 void writeAllMDNodes(); 2401 void writeMDNode(unsigned Slot, const MDNode *Node); 2402 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false); 2403 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false); 2404 void writeAllAttributeGroups(); 2405 2406 void printTypeIdentities(); 2407 void printGlobal(const GlobalVariable *GV); 2408 void printIndirectSymbol(const GlobalIndirectSymbol *GIS); 2409 void printComdat(const Comdat *C); 2410 void printFunction(const Function *F); 2411 void printArgument(const Argument *FA, AttributeSet Attrs); 2412 void printBasicBlock(const BasicBlock *BB); 2413 void printInstructionLine(const Instruction &I); 2414 void printInstruction(const Instruction &I); 2415 2416 void printUseListOrder(const UseListOrder &Order); 2417 void printUseLists(const Function *F); 2418 2419 void printModuleSummaryIndex(); 2420 void printSummaryInfo(unsigned Slot, const ValueInfo &VI); 2421 void printSummary(const GlobalValueSummary &Summary); 2422 void printAliasSummary(const AliasSummary *AS); 2423 void printGlobalVarSummary(const GlobalVarSummary *GS); 2424 void printFunctionSummary(const FunctionSummary *FS); 2425 void printTypeIdSummary(const TypeIdSummary &TIS); 2426 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI); 2427 void printTypeTestResolution(const TypeTestResolution &TTRes); 2428 void printArgs(const std::vector<uint64_t> &Args); 2429 void printWPDRes(const WholeProgramDevirtResolution &WPDRes); 2430 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo); 2431 void printVFuncId(const FunctionSummary::VFuncId VFId); 2432 void 2433 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList, 2434 const char *Tag); 2435 void 2436 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList, 2437 const char *Tag); 2438 2439 private: 2440 /// Print out metadata attachments. 2441 void printMetadataAttachments( 2442 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 2443 StringRef Separator); 2444 2445 // printInfoComment - Print a little comment after the instruction indicating 2446 // which slot it occupies. 2447 void printInfoComment(const Value &V); 2448 2449 // printGCRelocateComment - print comment after call to the gc.relocate 2450 // intrinsic indicating base and derived pointer names. 2451 void printGCRelocateComment(const GCRelocateInst &Relocate); 2452 }; 2453 2454 } // end anonymous namespace 2455 2456 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2457 const Module *M, AssemblyAnnotationWriter *AAW, 2458 bool IsForDebug, bool ShouldPreserveUseListOrder) 2459 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW), 2460 IsForDebug(IsForDebug), 2461 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 2462 if (!TheModule) 2463 return; 2464 for (const GlobalObject &GO : TheModule->global_objects()) 2465 if (const Comdat *C = GO.getComdat()) 2466 Comdats.insert(C); 2467 } 2468 2469 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2470 const ModuleSummaryIndex *Index, bool IsForDebug) 2471 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr), 2472 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {} 2473 2474 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { 2475 if (!Operand) { 2476 Out << "<null operand!>"; 2477 return; 2478 } 2479 if (PrintType) { 2480 TypePrinter.print(Operand->getType(), Out); 2481 Out << ' '; 2482 } 2483 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 2484 } 2485 2486 void AssemblyWriter::writeSyncScope(const LLVMContext &Context, 2487 SyncScope::ID SSID) { 2488 switch (SSID) { 2489 case SyncScope::System: { 2490 break; 2491 } 2492 default: { 2493 if (SSNs.empty()) 2494 Context.getSyncScopeNames(SSNs); 2495 2496 Out << " syncscope(\""; 2497 printEscapedString(SSNs[SSID], Out); 2498 Out << "\")"; 2499 break; 2500 } 2501 } 2502 } 2503 2504 void AssemblyWriter::writeAtomic(const LLVMContext &Context, 2505 AtomicOrdering Ordering, 2506 SyncScope::ID SSID) { 2507 if (Ordering == AtomicOrdering::NotAtomic) 2508 return; 2509 2510 writeSyncScope(Context, SSID); 2511 Out << " " << toIRString(Ordering); 2512 } 2513 2514 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, 2515 AtomicOrdering SuccessOrdering, 2516 AtomicOrdering FailureOrdering, 2517 SyncScope::ID SSID) { 2518 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 2519 FailureOrdering != AtomicOrdering::NotAtomic); 2520 2521 writeSyncScope(Context, SSID); 2522 Out << " " << toIRString(SuccessOrdering); 2523 Out << " " << toIRString(FailureOrdering); 2524 } 2525 2526 void AssemblyWriter::writeParamOperand(const Value *Operand, 2527 AttributeSet Attrs) { 2528 if (!Operand) { 2529 Out << "<null operand!>"; 2530 return; 2531 } 2532 2533 // Print the type 2534 TypePrinter.print(Operand->getType(), Out); 2535 // Print parameter attributes list 2536 if (Attrs.hasAttributes()) { 2537 Out << ' '; 2538 writeAttributeSet(Attrs); 2539 } 2540 Out << ' '; 2541 // Print the operand 2542 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 2543 } 2544 2545 void AssemblyWriter::writeOperandBundles(const CallBase *Call) { 2546 if (!Call->hasOperandBundles()) 2547 return; 2548 2549 Out << " [ "; 2550 2551 bool FirstBundle = true; 2552 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) { 2553 OperandBundleUse BU = Call->getOperandBundleAt(i); 2554 2555 if (!FirstBundle) 2556 Out << ", "; 2557 FirstBundle = false; 2558 2559 Out << '"'; 2560 printEscapedString(BU.getTagName(), Out); 2561 Out << '"'; 2562 2563 Out << '('; 2564 2565 bool FirstInput = true; 2566 for (const auto &Input : BU.Inputs) { 2567 if (!FirstInput) 2568 Out << ", "; 2569 FirstInput = false; 2570 2571 TypePrinter.print(Input->getType(), Out); 2572 Out << " "; 2573 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule); 2574 } 2575 2576 Out << ')'; 2577 } 2578 2579 Out << " ]"; 2580 } 2581 2582 void AssemblyWriter::printModule(const Module *M) { 2583 Machine.initializeIfNeeded(); 2584 2585 if (ShouldPreserveUseListOrder) 2586 UseListOrders = predictUseListOrder(M); 2587 2588 if (!M->getModuleIdentifier().empty() && 2589 // Don't print the ID if it will start a new line (which would 2590 // require a comment char before it). 2591 M->getModuleIdentifier().find('\n') == std::string::npos) 2592 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 2593 2594 if (!M->getSourceFileName().empty()) { 2595 Out << "source_filename = \""; 2596 printEscapedString(M->getSourceFileName(), Out); 2597 Out << "\"\n"; 2598 } 2599 2600 const std::string &DL = M->getDataLayoutStr(); 2601 if (!DL.empty()) 2602 Out << "target datalayout = \"" << DL << "\"\n"; 2603 if (!M->getTargetTriple().empty()) 2604 Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; 2605 2606 if (!M->getModuleInlineAsm().empty()) { 2607 Out << '\n'; 2608 2609 // Split the string into lines, to make it easier to read the .ll file. 2610 StringRef Asm = M->getModuleInlineAsm(); 2611 do { 2612 StringRef Front; 2613 std::tie(Front, Asm) = Asm.split('\n'); 2614 2615 // We found a newline, print the portion of the asm string from the 2616 // last newline up to this newline. 2617 Out << "module asm \""; 2618 printEscapedString(Front, Out); 2619 Out << "\"\n"; 2620 } while (!Asm.empty()); 2621 } 2622 2623 printTypeIdentities(); 2624 2625 // Output all comdats. 2626 if (!Comdats.empty()) 2627 Out << '\n'; 2628 for (const Comdat *C : Comdats) { 2629 printComdat(C); 2630 if (C != Comdats.back()) 2631 Out << '\n'; 2632 } 2633 2634 // Output all globals. 2635 if (!M->global_empty()) Out << '\n'; 2636 for (const GlobalVariable &GV : M->globals()) { 2637 printGlobal(&GV); Out << '\n'; 2638 } 2639 2640 // Output all aliases. 2641 if (!M->alias_empty()) Out << "\n"; 2642 for (const GlobalAlias &GA : M->aliases()) 2643 printIndirectSymbol(&GA); 2644 2645 // Output all ifuncs. 2646 if (!M->ifunc_empty()) Out << "\n"; 2647 for (const GlobalIFunc &GI : M->ifuncs()) 2648 printIndirectSymbol(&GI); 2649 2650 // Output global use-lists. 2651 printUseLists(nullptr); 2652 2653 // Output all of the functions. 2654 for (const Function &F : *M) { 2655 Out << '\n'; 2656 printFunction(&F); 2657 } 2658 assert(UseListOrders.empty() && "All use-lists should have been consumed"); 2659 2660 // Output all attribute groups. 2661 if (!Machine.as_empty()) { 2662 Out << '\n'; 2663 writeAllAttributeGroups(); 2664 } 2665 2666 // Output named metadata. 2667 if (!M->named_metadata_empty()) Out << '\n'; 2668 2669 for (const NamedMDNode &Node : M->named_metadata()) 2670 printNamedMDNode(&Node); 2671 2672 // Output metadata. 2673 if (!Machine.mdn_empty()) { 2674 Out << '\n'; 2675 writeAllMDNodes(); 2676 } 2677 } 2678 2679 void AssemblyWriter::printModuleSummaryIndex() { 2680 assert(TheIndex); 2681 Machine.initializeIndexIfNeeded(); 2682 2683 Out << "\n"; 2684 2685 // Print module path entries. To print in order, add paths to a vector 2686 // indexed by module slot. 2687 std::vector<std::pair<std::string, ModuleHash>> moduleVec; 2688 std::string RegularLTOModuleName = "[Regular LTO]"; 2689 moduleVec.resize(TheIndex->modulePaths().size()); 2690 for (auto &ModPath : TheIndex->modulePaths()) 2691 moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair( 2692 // A module id of -1 is a special entry for a regular LTO module created 2693 // during the thin link. 2694 ModPath.second.first == -1u ? RegularLTOModuleName 2695 : (std::string)ModPath.first(), 2696 ModPath.second.second); 2697 2698 unsigned i = 0; 2699 for (auto &ModPair : moduleVec) { 2700 Out << "^" << i++ << " = module: ("; 2701 Out << "path: \""; 2702 printEscapedString(ModPair.first, Out); 2703 Out << "\", hash: ("; 2704 FieldSeparator FS; 2705 for (auto Hash : ModPair.second) 2706 Out << FS << Hash; 2707 Out << "))\n"; 2708 } 2709 2710 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer 2711 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID). 2712 for (auto &GlobalList : *TheIndex) { 2713 auto GUID = GlobalList.first; 2714 for (auto &Summary : GlobalList.second.SummaryList) 2715 SummaryToGUIDMap[Summary.get()] = GUID; 2716 } 2717 2718 // Print the global value summary entries. 2719 for (auto &GlobalList : *TheIndex) { 2720 auto GUID = GlobalList.first; 2721 auto VI = TheIndex->getValueInfo(GlobalList); 2722 printSummaryInfo(Machine.getGUIDSlot(GUID), VI); 2723 } 2724 2725 // Print the TypeIdMap entries. 2726 for (auto TidIter = TheIndex->typeIds().begin(); 2727 TidIter != TheIndex->typeIds().end(); TidIter++) { 2728 Out << "^" << Machine.getTypeIdSlot(TidIter->second.first) 2729 << " = typeid: (name: \"" << TidIter->second.first << "\""; 2730 printTypeIdSummary(TidIter->second.second); 2731 Out << ") ; guid = " << TidIter->first << "\n"; 2732 } 2733 2734 // Print the TypeIdCompatibleVtableMap entries. 2735 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) { 2736 auto GUID = GlobalValue::getGUID(TId.first); 2737 Out << "^" << Machine.getGUIDSlot(GUID) 2738 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\""; 2739 printTypeIdCompatibleVtableSummary(TId.second); 2740 Out << ") ; guid = " << GUID << "\n"; 2741 } 2742 } 2743 2744 static const char * 2745 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) { 2746 switch (K) { 2747 case WholeProgramDevirtResolution::Indir: 2748 return "indir"; 2749 case WholeProgramDevirtResolution::SingleImpl: 2750 return "singleImpl"; 2751 case WholeProgramDevirtResolution::BranchFunnel: 2752 return "branchFunnel"; 2753 } 2754 llvm_unreachable("invalid WholeProgramDevirtResolution kind"); 2755 } 2756 2757 static const char *getWholeProgDevirtResByArgKindName( 2758 WholeProgramDevirtResolution::ByArg::Kind K) { 2759 switch (K) { 2760 case WholeProgramDevirtResolution::ByArg::Indir: 2761 return "indir"; 2762 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 2763 return "uniformRetVal"; 2764 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: 2765 return "uniqueRetVal"; 2766 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: 2767 return "virtualConstProp"; 2768 } 2769 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind"); 2770 } 2771 2772 static const char *getTTResKindName(TypeTestResolution::Kind K) { 2773 switch (K) { 2774 case TypeTestResolution::Unsat: 2775 return "unsat"; 2776 case TypeTestResolution::ByteArray: 2777 return "byteArray"; 2778 case TypeTestResolution::Inline: 2779 return "inline"; 2780 case TypeTestResolution::Single: 2781 return "single"; 2782 case TypeTestResolution::AllOnes: 2783 return "allOnes"; 2784 } 2785 llvm_unreachable("invalid TypeTestResolution kind"); 2786 } 2787 2788 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) { 2789 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind) 2790 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth; 2791 2792 // The following fields are only used if the target does not support the use 2793 // of absolute symbols to store constants. Print only if non-zero. 2794 if (TTRes.AlignLog2) 2795 Out << ", alignLog2: " << TTRes.AlignLog2; 2796 if (TTRes.SizeM1) 2797 Out << ", sizeM1: " << TTRes.SizeM1; 2798 if (TTRes.BitMask) 2799 // BitMask is uint8_t which causes it to print the corresponding char. 2800 Out << ", bitMask: " << (unsigned)TTRes.BitMask; 2801 if (TTRes.InlineBits) 2802 Out << ", inlineBits: " << TTRes.InlineBits; 2803 2804 Out << ")"; 2805 } 2806 2807 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) { 2808 Out << ", summary: ("; 2809 printTypeTestResolution(TIS.TTRes); 2810 if (!TIS.WPDRes.empty()) { 2811 Out << ", wpdResolutions: ("; 2812 FieldSeparator FS; 2813 for (auto &WPDRes : TIS.WPDRes) { 2814 Out << FS; 2815 Out << "(offset: " << WPDRes.first << ", "; 2816 printWPDRes(WPDRes.second); 2817 Out << ")"; 2818 } 2819 Out << ")"; 2820 } 2821 Out << ")"; 2822 } 2823 2824 void AssemblyWriter::printTypeIdCompatibleVtableSummary( 2825 const TypeIdCompatibleVtableInfo &TI) { 2826 Out << ", summary: ("; 2827 FieldSeparator FS; 2828 for (auto &P : TI) { 2829 Out << FS; 2830 Out << "(offset: " << P.AddressPointOffset << ", "; 2831 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID()); 2832 Out << ")"; 2833 } 2834 Out << ")"; 2835 } 2836 2837 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) { 2838 Out << "args: ("; 2839 FieldSeparator FS; 2840 for (auto arg : Args) { 2841 Out << FS; 2842 Out << arg; 2843 } 2844 Out << ")"; 2845 } 2846 2847 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) { 2848 Out << "wpdRes: (kind: "; 2849 Out << getWholeProgDevirtResKindName(WPDRes.TheKind); 2850 2851 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl) 2852 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\""; 2853 2854 if (!WPDRes.ResByArg.empty()) { 2855 Out << ", resByArg: ("; 2856 FieldSeparator FS; 2857 for (auto &ResByArg : WPDRes.ResByArg) { 2858 Out << FS; 2859 printArgs(ResByArg.first); 2860 Out << ", byArg: (kind: "; 2861 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind); 2862 if (ResByArg.second.TheKind == 2863 WholeProgramDevirtResolution::ByArg::UniformRetVal || 2864 ResByArg.second.TheKind == 2865 WholeProgramDevirtResolution::ByArg::UniqueRetVal) 2866 Out << ", info: " << ResByArg.second.Info; 2867 2868 // The following fields are only used if the target does not support the 2869 // use of absolute symbols to store constants. Print only if non-zero. 2870 if (ResByArg.second.Byte || ResByArg.second.Bit) 2871 Out << ", byte: " << ResByArg.second.Byte 2872 << ", bit: " << ResByArg.second.Bit; 2873 2874 Out << ")"; 2875 } 2876 Out << ")"; 2877 } 2878 Out << ")"; 2879 } 2880 2881 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) { 2882 switch (SK) { 2883 case GlobalValueSummary::AliasKind: 2884 return "alias"; 2885 case GlobalValueSummary::FunctionKind: 2886 return "function"; 2887 case GlobalValueSummary::GlobalVarKind: 2888 return "variable"; 2889 } 2890 llvm_unreachable("invalid summary kind"); 2891 } 2892 2893 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) { 2894 Out << ", aliasee: "; 2895 // The indexes emitted for distributed backends may not include the 2896 // aliasee summary (only if it is being imported directly). Handle 2897 // that case by just emitting "null" as the aliasee. 2898 if (AS->hasAliasee()) 2899 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]); 2900 else 2901 Out << "null"; 2902 } 2903 2904 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) { 2905 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", " 2906 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ")"; 2907 2908 auto VTableFuncs = GS->vTableFuncs(); 2909 if (!VTableFuncs.empty()) { 2910 Out << ", vTableFuncs: ("; 2911 FieldSeparator FS; 2912 for (auto &P : VTableFuncs) { 2913 Out << FS; 2914 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID()) 2915 << ", offset: " << P.VTableOffset; 2916 Out << ")"; 2917 } 2918 Out << ")"; 2919 } 2920 } 2921 2922 static std::string getLinkageName(GlobalValue::LinkageTypes LT) { 2923 switch (LT) { 2924 case GlobalValue::ExternalLinkage: 2925 return "external"; 2926 case GlobalValue::PrivateLinkage: 2927 return "private"; 2928 case GlobalValue::InternalLinkage: 2929 return "internal"; 2930 case GlobalValue::LinkOnceAnyLinkage: 2931 return "linkonce"; 2932 case GlobalValue::LinkOnceODRLinkage: 2933 return "linkonce_odr"; 2934 case GlobalValue::WeakAnyLinkage: 2935 return "weak"; 2936 case GlobalValue::WeakODRLinkage: 2937 return "weak_odr"; 2938 case GlobalValue::CommonLinkage: 2939 return "common"; 2940 case GlobalValue::AppendingLinkage: 2941 return "appending"; 2942 case GlobalValue::ExternalWeakLinkage: 2943 return "extern_weak"; 2944 case GlobalValue::AvailableExternallyLinkage: 2945 return "available_externally"; 2946 } 2947 llvm_unreachable("invalid linkage"); 2948 } 2949 2950 // When printing the linkage types in IR where the ExternalLinkage is 2951 // not printed, and other linkage types are expected to be printed with 2952 // a space after the name. 2953 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) { 2954 if (LT == GlobalValue::ExternalLinkage) 2955 return ""; 2956 return getLinkageName(LT) + " "; 2957 } 2958 2959 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) { 2960 Out << ", insts: " << FS->instCount(); 2961 2962 FunctionSummary::FFlags FFlags = FS->fflags(); 2963 if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse | 2964 FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) { 2965 Out << ", funcFlags: ("; 2966 Out << "readNone: " << FFlags.ReadNone; 2967 Out << ", readOnly: " << FFlags.ReadOnly; 2968 Out << ", noRecurse: " << FFlags.NoRecurse; 2969 Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias; 2970 Out << ", noInline: " << FFlags.NoInline; 2971 Out << ", alwaysInline: " << FFlags.AlwaysInline; 2972 Out << ")"; 2973 } 2974 if (!FS->calls().empty()) { 2975 Out << ", calls: ("; 2976 FieldSeparator IFS; 2977 for (auto &Call : FS->calls()) { 2978 Out << IFS; 2979 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID()); 2980 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown) 2981 Out << ", hotness: " << getHotnessName(Call.second.getHotness()); 2982 else if (Call.second.RelBlockFreq) 2983 Out << ", relbf: " << Call.second.RelBlockFreq; 2984 Out << ")"; 2985 } 2986 Out << ")"; 2987 } 2988 2989 if (const auto *TIdInfo = FS->getTypeIdInfo()) 2990 printTypeIdInfo(*TIdInfo); 2991 } 2992 2993 void AssemblyWriter::printTypeIdInfo( 2994 const FunctionSummary::TypeIdInfo &TIDInfo) { 2995 Out << ", typeIdInfo: ("; 2996 FieldSeparator TIDFS; 2997 if (!TIDInfo.TypeTests.empty()) { 2998 Out << TIDFS; 2999 Out << "typeTests: ("; 3000 FieldSeparator FS; 3001 for (auto &GUID : TIDInfo.TypeTests) { 3002 auto TidIter = TheIndex->typeIds().equal_range(GUID); 3003 if (TidIter.first == TidIter.second) { 3004 Out << FS; 3005 Out << GUID; 3006 continue; 3007 } 3008 // Print all type id that correspond to this GUID. 3009 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3010 Out << FS; 3011 auto Slot = Machine.getTypeIdSlot(It->second.first); 3012 assert(Slot != -1); 3013 Out << "^" << Slot; 3014 } 3015 } 3016 Out << ")"; 3017 } 3018 if (!TIDInfo.TypeTestAssumeVCalls.empty()) { 3019 Out << TIDFS; 3020 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls"); 3021 } 3022 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) { 3023 Out << TIDFS; 3024 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls"); 3025 } 3026 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) { 3027 Out << TIDFS; 3028 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls, 3029 "typeTestAssumeConstVCalls"); 3030 } 3031 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) { 3032 Out << TIDFS; 3033 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls, 3034 "typeCheckedLoadConstVCalls"); 3035 } 3036 Out << ")"; 3037 } 3038 3039 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) { 3040 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID); 3041 if (TidIter.first == TidIter.second) { 3042 Out << "vFuncId: ("; 3043 Out << "guid: " << VFId.GUID; 3044 Out << ", offset: " << VFId.Offset; 3045 Out << ")"; 3046 return; 3047 } 3048 // Print all type id that correspond to this GUID. 3049 FieldSeparator FS; 3050 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3051 Out << FS; 3052 Out << "vFuncId: ("; 3053 auto Slot = Machine.getTypeIdSlot(It->second.first); 3054 assert(Slot != -1); 3055 Out << "^" << Slot; 3056 Out << ", offset: " << VFId.Offset; 3057 Out << ")"; 3058 } 3059 } 3060 3061 void AssemblyWriter::printNonConstVCalls( 3062 const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) { 3063 Out << Tag << ": ("; 3064 FieldSeparator FS; 3065 for (auto &VFuncId : VCallList) { 3066 Out << FS; 3067 printVFuncId(VFuncId); 3068 } 3069 Out << ")"; 3070 } 3071 3072 void AssemblyWriter::printConstVCalls( 3073 const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) { 3074 Out << Tag << ": ("; 3075 FieldSeparator FS; 3076 for (auto &ConstVCall : VCallList) { 3077 Out << FS; 3078 Out << "("; 3079 printVFuncId(ConstVCall.VFunc); 3080 if (!ConstVCall.Args.empty()) { 3081 Out << ", "; 3082 printArgs(ConstVCall.Args); 3083 } 3084 Out << ")"; 3085 } 3086 Out << ")"; 3087 } 3088 3089 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) { 3090 GlobalValueSummary::GVFlags GVFlags = Summary.flags(); 3091 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage; 3092 Out << getSummaryKindName(Summary.getSummaryKind()) << ": "; 3093 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath()) 3094 << ", flags: ("; 3095 Out << "linkage: " << getLinkageName(LT); 3096 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport; 3097 Out << ", live: " << GVFlags.Live; 3098 Out << ", dsoLocal: " << GVFlags.DSOLocal; 3099 Out << ", canAutoHide: " << GVFlags.CanAutoHide; 3100 Out << ")"; 3101 3102 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind) 3103 printAliasSummary(cast<AliasSummary>(&Summary)); 3104 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind) 3105 printFunctionSummary(cast<FunctionSummary>(&Summary)); 3106 else 3107 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary)); 3108 3109 auto RefList = Summary.refs(); 3110 if (!RefList.empty()) { 3111 Out << ", refs: ("; 3112 FieldSeparator FS; 3113 for (auto &Ref : RefList) { 3114 Out << FS; 3115 if (Ref.isReadOnly()) 3116 Out << "readonly "; 3117 else if (Ref.isWriteOnly()) 3118 Out << "writeonly "; 3119 Out << "^" << Machine.getGUIDSlot(Ref.getGUID()); 3120 } 3121 Out << ")"; 3122 } 3123 3124 Out << ")"; 3125 } 3126 3127 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) { 3128 Out << "^" << Slot << " = gv: ("; 3129 if (!VI.name().empty()) 3130 Out << "name: \"" << VI.name() << "\""; 3131 else 3132 Out << "guid: " << VI.getGUID(); 3133 if (!VI.getSummaryList().empty()) { 3134 Out << ", summaries: ("; 3135 FieldSeparator FS; 3136 for (auto &Summary : VI.getSummaryList()) { 3137 Out << FS; 3138 printSummary(*Summary); 3139 } 3140 Out << ")"; 3141 } 3142 Out << ")"; 3143 if (!VI.name().empty()) 3144 Out << " ; guid = " << VI.getGUID(); 3145 Out << "\n"; 3146 } 3147 3148 static void printMetadataIdentifier(StringRef Name, 3149 formatted_raw_ostream &Out) { 3150 if (Name.empty()) { 3151 Out << "<empty name> "; 3152 } else { 3153 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' || 3154 Name[0] == '$' || Name[0] == '.' || Name[0] == '_') 3155 Out << Name[0]; 3156 else 3157 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); 3158 for (unsigned i = 1, e = Name.size(); i != e; ++i) { 3159 unsigned char C = Name[i]; 3160 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' || 3161 C == '.' || C == '_') 3162 Out << C; 3163 else 3164 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 3165 } 3166 } 3167 } 3168 3169 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { 3170 Out << '!'; 3171 printMetadataIdentifier(NMD->getName(), Out); 3172 Out << " = !{"; 3173 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 3174 if (i) 3175 Out << ", "; 3176 3177 // Write DIExpressions inline. 3178 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose. 3179 MDNode *Op = NMD->getOperand(i); 3180 if (auto *Expr = dyn_cast<DIExpression>(Op)) { 3181 writeDIExpression(Out, Expr, nullptr, nullptr, nullptr); 3182 continue; 3183 } 3184 3185 int Slot = Machine.getMetadataSlot(Op); 3186 if (Slot == -1) 3187 Out << "<badref>"; 3188 else 3189 Out << '!' << Slot; 3190 } 3191 Out << "}\n"; 3192 } 3193 3194 static void PrintVisibility(GlobalValue::VisibilityTypes Vis, 3195 formatted_raw_ostream &Out) { 3196 switch (Vis) { 3197 case GlobalValue::DefaultVisibility: break; 3198 case GlobalValue::HiddenVisibility: Out << "hidden "; break; 3199 case GlobalValue::ProtectedVisibility: Out << "protected "; break; 3200 } 3201 } 3202 3203 static void PrintDSOLocation(const GlobalValue &GV, 3204 formatted_raw_ostream &Out) { 3205 // GVs with local linkage or non default visibility are implicitly dso_local, 3206 // so we don't print it. 3207 bool Implicit = GV.hasLocalLinkage() || 3208 (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility()); 3209 if (GV.isDSOLocal() && !Implicit) 3210 Out << "dso_local "; 3211 } 3212 3213 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, 3214 formatted_raw_ostream &Out) { 3215 switch (SCT) { 3216 case GlobalValue::DefaultStorageClass: break; 3217 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break; 3218 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break; 3219 } 3220 } 3221 3222 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, 3223 formatted_raw_ostream &Out) { 3224 switch (TLM) { 3225 case GlobalVariable::NotThreadLocal: 3226 break; 3227 case GlobalVariable::GeneralDynamicTLSModel: 3228 Out << "thread_local "; 3229 break; 3230 case GlobalVariable::LocalDynamicTLSModel: 3231 Out << "thread_local(localdynamic) "; 3232 break; 3233 case GlobalVariable::InitialExecTLSModel: 3234 Out << "thread_local(initialexec) "; 3235 break; 3236 case GlobalVariable::LocalExecTLSModel: 3237 Out << "thread_local(localexec) "; 3238 break; 3239 } 3240 } 3241 3242 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) { 3243 switch (UA) { 3244 case GlobalVariable::UnnamedAddr::None: 3245 return ""; 3246 case GlobalVariable::UnnamedAddr::Local: 3247 return "local_unnamed_addr"; 3248 case GlobalVariable::UnnamedAddr::Global: 3249 return "unnamed_addr"; 3250 } 3251 llvm_unreachable("Unknown UnnamedAddr"); 3252 } 3253 3254 static void maybePrintComdat(formatted_raw_ostream &Out, 3255 const GlobalObject &GO) { 3256 const Comdat *C = GO.getComdat(); 3257 if (!C) 3258 return; 3259 3260 if (isa<GlobalVariable>(GO)) 3261 Out << ','; 3262 Out << " comdat"; 3263 3264 if (GO.getName() == C->getName()) 3265 return; 3266 3267 Out << '('; 3268 PrintLLVMName(Out, C->getName(), ComdatPrefix); 3269 Out << ')'; 3270 } 3271 3272 void AssemblyWriter::printGlobal(const GlobalVariable *GV) { 3273 if (GV->isMaterializable()) 3274 Out << "; Materializable\n"; 3275 3276 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); 3277 Out << " = "; 3278 3279 if (!GV->hasInitializer() && GV->hasExternalLinkage()) 3280 Out << "external "; 3281 3282 Out << getLinkageNameWithSpace(GV->getLinkage()); 3283 PrintDSOLocation(*GV, Out); 3284 PrintVisibility(GV->getVisibility(), Out); 3285 PrintDLLStorageClass(GV->getDLLStorageClass(), Out); 3286 PrintThreadLocalModel(GV->getThreadLocalMode(), Out); 3287 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr()); 3288 if (!UA.empty()) 3289 Out << UA << ' '; 3290 3291 if (unsigned AddressSpace = GV->getType()->getAddressSpace()) 3292 Out << "addrspace(" << AddressSpace << ") "; 3293 if (GV->isExternallyInitialized()) Out << "externally_initialized "; 3294 Out << (GV->isConstant() ? "constant " : "global "); 3295 TypePrinter.print(GV->getValueType(), Out); 3296 3297 if (GV->hasInitializer()) { 3298 Out << ' '; 3299 writeOperand(GV->getInitializer(), false); 3300 } 3301 3302 if (GV->hasSection()) { 3303 Out << ", section \""; 3304 printEscapedString(GV->getSection(), Out); 3305 Out << '"'; 3306 } 3307 if (GV->hasPartition()) { 3308 Out << ", partition \""; 3309 printEscapedString(GV->getPartition(), Out); 3310 Out << '"'; 3311 } 3312 3313 maybePrintComdat(Out, *GV); 3314 if (GV->getAlignment()) 3315 Out << ", align " << GV->getAlignment(); 3316 3317 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3318 GV->getAllMetadata(MDs); 3319 printMetadataAttachments(MDs, ", "); 3320 3321 auto Attrs = GV->getAttributes(); 3322 if (Attrs.hasAttributes()) 3323 Out << " #" << Machine.getAttributeGroupSlot(Attrs); 3324 3325 printInfoComment(*GV); 3326 } 3327 3328 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) { 3329 if (GIS->isMaterializable()) 3330 Out << "; Materializable\n"; 3331 3332 WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent()); 3333 Out << " = "; 3334 3335 Out << getLinkageNameWithSpace(GIS->getLinkage()); 3336 PrintDSOLocation(*GIS, Out); 3337 PrintVisibility(GIS->getVisibility(), Out); 3338 PrintDLLStorageClass(GIS->getDLLStorageClass(), Out); 3339 PrintThreadLocalModel(GIS->getThreadLocalMode(), Out); 3340 StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr()); 3341 if (!UA.empty()) 3342 Out << UA << ' '; 3343 3344 if (isa<GlobalAlias>(GIS)) 3345 Out << "alias "; 3346 else if (isa<GlobalIFunc>(GIS)) 3347 Out << "ifunc "; 3348 else 3349 llvm_unreachable("Not an alias or ifunc!"); 3350 3351 TypePrinter.print(GIS->getValueType(), Out); 3352 3353 Out << ", "; 3354 3355 const Constant *IS = GIS->getIndirectSymbol(); 3356 3357 if (!IS) { 3358 TypePrinter.print(GIS->getType(), Out); 3359 Out << " <<NULL ALIASEE>>"; 3360 } else { 3361 writeOperand(IS, !isa<ConstantExpr>(IS)); 3362 } 3363 3364 if (GIS->hasPartition()) { 3365 Out << ", partition \""; 3366 printEscapedString(GIS->getPartition(), Out); 3367 Out << '"'; 3368 } 3369 3370 printInfoComment(*GIS); 3371 Out << '\n'; 3372 } 3373 3374 void AssemblyWriter::printComdat(const Comdat *C) { 3375 C->print(Out); 3376 } 3377 3378 void AssemblyWriter::printTypeIdentities() { 3379 if (TypePrinter.empty()) 3380 return; 3381 3382 Out << '\n'; 3383 3384 // Emit all numbered types. 3385 auto &NumberedTypes = TypePrinter.getNumberedTypes(); 3386 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) { 3387 Out << '%' << I << " = type "; 3388 3389 // Make sure we print out at least one level of the type structure, so 3390 // that we do not get %2 = type %2 3391 TypePrinter.printStructBody(NumberedTypes[I], Out); 3392 Out << '\n'; 3393 } 3394 3395 auto &NamedTypes = TypePrinter.getNamedTypes(); 3396 for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) { 3397 PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix); 3398 Out << " = type "; 3399 3400 // Make sure we print out at least one level of the type structure, so 3401 // that we do not get %FILE = type %FILE 3402 TypePrinter.printStructBody(NamedTypes[I], Out); 3403 Out << '\n'; 3404 } 3405 } 3406 3407 /// printFunction - Print all aspects of a function. 3408 void AssemblyWriter::printFunction(const Function *F) { 3409 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); 3410 3411 if (F->isMaterializable()) 3412 Out << "; Materializable\n"; 3413 3414 const AttributeList &Attrs = F->getAttributes(); 3415 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) { 3416 AttributeSet AS = Attrs.getFnAttributes(); 3417 std::string AttrStr; 3418 3419 for (const Attribute &Attr : AS) { 3420 if (!Attr.isStringAttribute()) { 3421 if (!AttrStr.empty()) AttrStr += ' '; 3422 AttrStr += Attr.getAsString(); 3423 } 3424 } 3425 3426 if (!AttrStr.empty()) 3427 Out << "; Function Attrs: " << AttrStr << '\n'; 3428 } 3429 3430 Machine.incorporateFunction(F); 3431 3432 if (F->isDeclaration()) { 3433 Out << "declare"; 3434 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3435 F->getAllMetadata(MDs); 3436 printMetadataAttachments(MDs, " "); 3437 Out << ' '; 3438 } else 3439 Out << "define "; 3440 3441 Out << getLinkageNameWithSpace(F->getLinkage()); 3442 PrintDSOLocation(*F, Out); 3443 PrintVisibility(F->getVisibility(), Out); 3444 PrintDLLStorageClass(F->getDLLStorageClass(), Out); 3445 3446 // Print the calling convention. 3447 if (F->getCallingConv() != CallingConv::C) { 3448 PrintCallingConv(F->getCallingConv(), Out); 3449 Out << " "; 3450 } 3451 3452 FunctionType *FT = F->getFunctionType(); 3453 if (Attrs.hasAttributes(AttributeList::ReturnIndex)) 3454 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' '; 3455 TypePrinter.print(F->getReturnType(), Out); 3456 Out << ' '; 3457 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); 3458 Out << '('; 3459 3460 // Loop over the arguments, printing them... 3461 if (F->isDeclaration() && !IsForDebug) { 3462 // We're only interested in the type here - don't print argument names. 3463 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) { 3464 // Insert commas as we go... the first arg doesn't get a comma 3465 if (I) 3466 Out << ", "; 3467 // Output type... 3468 TypePrinter.print(FT->getParamType(I), Out); 3469 3470 AttributeSet ArgAttrs = Attrs.getParamAttributes(I); 3471 if (ArgAttrs.hasAttributes()) { 3472 Out << ' '; 3473 writeAttributeSet(ArgAttrs); 3474 } 3475 } 3476 } else { 3477 // The arguments are meaningful here, print them in detail. 3478 for (const Argument &Arg : F->args()) { 3479 // Insert commas as we go... the first arg doesn't get a comma 3480 if (Arg.getArgNo() != 0) 3481 Out << ", "; 3482 printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo())); 3483 } 3484 } 3485 3486 // Finish printing arguments... 3487 if (FT->isVarArg()) { 3488 if (FT->getNumParams()) Out << ", "; 3489 Out << "..."; // Output varargs portion of signature! 3490 } 3491 Out << ')'; 3492 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr()); 3493 if (!UA.empty()) 3494 Out << ' ' << UA; 3495 // We print the function address space if it is non-zero or if we are writing 3496 // a module with a non-zero program address space or if there is no valid 3497 // Module* so that the file can be parsed without the datalayout string. 3498 const Module *Mod = F->getParent(); 3499 if (F->getAddressSpace() != 0 || !Mod || 3500 Mod->getDataLayout().getProgramAddressSpace() != 0) 3501 Out << " addrspace(" << F->getAddressSpace() << ")"; 3502 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) 3503 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes()); 3504 if (F->hasSection()) { 3505 Out << " section \""; 3506 printEscapedString(F->getSection(), Out); 3507 Out << '"'; 3508 } 3509 if (F->hasPartition()) { 3510 Out << " partition \""; 3511 printEscapedString(F->getPartition(), Out); 3512 Out << '"'; 3513 } 3514 maybePrintComdat(Out, *F); 3515 if (F->getAlignment()) 3516 Out << " align " << F->getAlignment(); 3517 if (F->hasGC()) 3518 Out << " gc \"" << F->getGC() << '"'; 3519 if (F->hasPrefixData()) { 3520 Out << " prefix "; 3521 writeOperand(F->getPrefixData(), true); 3522 } 3523 if (F->hasPrologueData()) { 3524 Out << " prologue "; 3525 writeOperand(F->getPrologueData(), true); 3526 } 3527 if (F->hasPersonalityFn()) { 3528 Out << " personality "; 3529 writeOperand(F->getPersonalityFn(), /*PrintType=*/true); 3530 } 3531 3532 if (F->isDeclaration()) { 3533 Out << '\n'; 3534 } else { 3535 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3536 F->getAllMetadata(MDs); 3537 printMetadataAttachments(MDs, " "); 3538 3539 Out << " {"; 3540 // Output all of the function's basic blocks. 3541 for (const BasicBlock &BB : *F) 3542 printBasicBlock(&BB); 3543 3544 // Output the function's use-lists. 3545 printUseLists(F); 3546 3547 Out << "}\n"; 3548 } 3549 3550 Machine.purgeFunction(); 3551 } 3552 3553 /// printArgument - This member is called for every argument that is passed into 3554 /// the function. Simply print it out 3555 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) { 3556 // Output type... 3557 TypePrinter.print(Arg->getType(), Out); 3558 3559 // Output parameter attributes list 3560 if (Attrs.hasAttributes()) { 3561 Out << ' '; 3562 writeAttributeSet(Attrs); 3563 } 3564 3565 // Output name, if available... 3566 if (Arg->hasName()) { 3567 Out << ' '; 3568 PrintLLVMName(Out, Arg); 3569 } else { 3570 int Slot = Machine.getLocalSlot(Arg); 3571 assert(Slot != -1 && "expect argument in function here"); 3572 Out << " %" << Slot; 3573 } 3574 } 3575 3576 /// printBasicBlock - This member is called for each basic block in a method. 3577 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { 3578 assert(BB && BB->getParent() && "block without parent!"); 3579 bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock(); 3580 if (BB->hasName()) { // Print out the label if it exists... 3581 Out << "\n"; 3582 PrintLLVMName(Out, BB->getName(), LabelPrefix); 3583 Out << ':'; 3584 } else if (!IsEntryBlock) { 3585 Out << "\n"; 3586 int Slot = Machine.getLocalSlot(BB); 3587 if (Slot != -1) 3588 Out << Slot << ":"; 3589 else 3590 Out << "<badref>:"; 3591 } 3592 3593 if (!IsEntryBlock) { 3594 // Output predecessors for the block. 3595 Out.PadToColumn(50); 3596 Out << ";"; 3597 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 3598 3599 if (PI == PE) { 3600 Out << " No predecessors!"; 3601 } else { 3602 Out << " preds = "; 3603 writeOperand(*PI, false); 3604 for (++PI; PI != PE; ++PI) { 3605 Out << ", "; 3606 writeOperand(*PI, false); 3607 } 3608 } 3609 } 3610 3611 Out << "\n"; 3612 3613 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); 3614 3615 // Output all of the instructions in the basic block... 3616 for (const Instruction &I : *BB) { 3617 printInstructionLine(I); 3618 } 3619 3620 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); 3621 } 3622 3623 /// printInstructionLine - Print an instruction and a newline character. 3624 void AssemblyWriter::printInstructionLine(const Instruction &I) { 3625 printInstruction(I); 3626 Out << '\n'; 3627 } 3628 3629 /// printGCRelocateComment - print comment after call to the gc.relocate 3630 /// intrinsic indicating base and derived pointer names. 3631 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) { 3632 Out << " ; ("; 3633 writeOperand(Relocate.getBasePtr(), false); 3634 Out << ", "; 3635 writeOperand(Relocate.getDerivedPtr(), false); 3636 Out << ")"; 3637 } 3638 3639 /// printInfoComment - Print a little comment after the instruction indicating 3640 /// which slot it occupies. 3641 void AssemblyWriter::printInfoComment(const Value &V) { 3642 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V)) 3643 printGCRelocateComment(*Relocate); 3644 3645 if (AnnotationWriter) 3646 AnnotationWriter->printInfoComment(V, Out); 3647 } 3648 3649 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, 3650 raw_ostream &Out) { 3651 // We print the address space of the call if it is non-zero. 3652 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace(); 3653 bool PrintAddrSpace = CallAddrSpace != 0; 3654 if (!PrintAddrSpace) { 3655 const Module *Mod = getModuleFromVal(I); 3656 // We also print it if it is zero but not equal to the program address space 3657 // or if we can't find a valid Module* to make it possible to parse 3658 // the resulting file even without a datalayout string. 3659 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0) 3660 PrintAddrSpace = true; 3661 } 3662 if (PrintAddrSpace) 3663 Out << " addrspace(" << CallAddrSpace << ")"; 3664 } 3665 3666 // This member is called for each Instruction in a function.. 3667 void AssemblyWriter::printInstruction(const Instruction &I) { 3668 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); 3669 3670 // Print out indentation for an instruction. 3671 Out << " "; 3672 3673 // Print out name if it exists... 3674 if (I.hasName()) { 3675 PrintLLVMName(Out, &I); 3676 Out << " = "; 3677 } else if (!I.getType()->isVoidTy()) { 3678 // Print out the def slot taken. 3679 int SlotNum = Machine.getLocalSlot(&I); 3680 if (SlotNum == -1) 3681 Out << "<badref> = "; 3682 else 3683 Out << '%' << SlotNum << " = "; 3684 } 3685 3686 if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 3687 if (CI->isMustTailCall()) 3688 Out << "musttail "; 3689 else if (CI->isTailCall()) 3690 Out << "tail "; 3691 else if (CI->isNoTailCall()) 3692 Out << "notail "; 3693 } 3694 3695 // Print out the opcode... 3696 Out << I.getOpcodeName(); 3697 3698 // If this is an atomic load or store, print out the atomic marker. 3699 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || 3700 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) 3701 Out << " atomic"; 3702 3703 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak()) 3704 Out << " weak"; 3705 3706 // If this is a volatile operation, print out the volatile marker. 3707 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || 3708 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || 3709 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || 3710 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) 3711 Out << " volatile"; 3712 3713 // Print out optimization information. 3714 WriteOptimizationInfo(Out, &I); 3715 3716 // Print out the compare instruction predicates 3717 if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) 3718 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate()); 3719 3720 // Print out the atomicrmw operation 3721 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) 3722 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation()); 3723 3724 // Print out the type of the operands... 3725 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr; 3726 3727 // Special case conditional branches to swizzle the condition out to the front 3728 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { 3729 const BranchInst &BI(cast<BranchInst>(I)); 3730 Out << ' '; 3731 writeOperand(BI.getCondition(), true); 3732 Out << ", "; 3733 writeOperand(BI.getSuccessor(0), true); 3734 Out << ", "; 3735 writeOperand(BI.getSuccessor(1), true); 3736 3737 } else if (isa<SwitchInst>(I)) { 3738 const SwitchInst& SI(cast<SwitchInst>(I)); 3739 // Special case switch instruction to get formatting nice and correct. 3740 Out << ' '; 3741 writeOperand(SI.getCondition(), true); 3742 Out << ", "; 3743 writeOperand(SI.getDefaultDest(), true); 3744 Out << " ["; 3745 for (auto Case : SI.cases()) { 3746 Out << "\n "; 3747 writeOperand(Case.getCaseValue(), true); 3748 Out << ", "; 3749 writeOperand(Case.getCaseSuccessor(), true); 3750 } 3751 Out << "\n ]"; 3752 } else if (isa<IndirectBrInst>(I)) { 3753 // Special case indirectbr instruction to get formatting nice and correct. 3754 Out << ' '; 3755 writeOperand(Operand, true); 3756 Out << ", ["; 3757 3758 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 3759 if (i != 1) 3760 Out << ", "; 3761 writeOperand(I.getOperand(i), true); 3762 } 3763 Out << ']'; 3764 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 3765 Out << ' '; 3766 TypePrinter.print(I.getType(), Out); 3767 Out << ' '; 3768 3769 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { 3770 if (op) Out << ", "; 3771 Out << "[ "; 3772 writeOperand(PN->getIncomingValue(op), false); Out << ", "; 3773 writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; 3774 } 3775 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { 3776 Out << ' '; 3777 writeOperand(I.getOperand(0), true); 3778 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 3779 Out << ", " << *i; 3780 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { 3781 Out << ' '; 3782 writeOperand(I.getOperand(0), true); Out << ", "; 3783 writeOperand(I.getOperand(1), true); 3784 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 3785 Out << ", " << *i; 3786 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { 3787 Out << ' '; 3788 TypePrinter.print(I.getType(), Out); 3789 if (LPI->isCleanup() || LPI->getNumClauses() != 0) 3790 Out << '\n'; 3791 3792 if (LPI->isCleanup()) 3793 Out << " cleanup"; 3794 3795 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { 3796 if (i != 0 || LPI->isCleanup()) Out << "\n"; 3797 if (LPI->isCatch(i)) 3798 Out << " catch "; 3799 else 3800 Out << " filter "; 3801 3802 writeOperand(LPI->getClause(i), true); 3803 } 3804 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) { 3805 Out << " within "; 3806 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false); 3807 Out << " ["; 3808 unsigned Op = 0; 3809 for (const BasicBlock *PadBB : CatchSwitch->handlers()) { 3810 if (Op > 0) 3811 Out << ", "; 3812 writeOperand(PadBB, /*PrintType=*/true); 3813 ++Op; 3814 } 3815 Out << "] unwind "; 3816 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest()) 3817 writeOperand(UnwindDest, /*PrintType=*/true); 3818 else 3819 Out << "to caller"; 3820 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) { 3821 Out << " within "; 3822 writeOperand(FPI->getParentPad(), /*PrintType=*/false); 3823 Out << " ["; 3824 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps; 3825 ++Op) { 3826 if (Op > 0) 3827 Out << ", "; 3828 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true); 3829 } 3830 Out << ']'; 3831 } else if (isa<ReturnInst>(I) && !Operand) { 3832 Out << " void"; 3833 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) { 3834 Out << " from "; 3835 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 3836 3837 Out << " to "; 3838 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 3839 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) { 3840 Out << " from "; 3841 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 3842 3843 Out << " unwind "; 3844 if (CRI->hasUnwindDest()) 3845 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 3846 else 3847 Out << "to caller"; 3848 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 3849 // Print the calling convention being used. 3850 if (CI->getCallingConv() != CallingConv::C) { 3851 Out << " "; 3852 PrintCallingConv(CI->getCallingConv(), Out); 3853 } 3854 3855 Operand = CI->getCalledValue(); 3856 FunctionType *FTy = CI->getFunctionType(); 3857 Type *RetTy = FTy->getReturnType(); 3858 const AttributeList &PAL = CI->getAttributes(); 3859 3860 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 3861 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 3862 3863 // Only print addrspace(N) if necessary: 3864 maybePrintCallAddrSpace(Operand, &I, Out); 3865 3866 // If possible, print out the short form of the call instruction. We can 3867 // only do this if the first argument is a pointer to a nonvararg function, 3868 // and if the return type is not a pointer to a function. 3869 // 3870 Out << ' '; 3871 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 3872 Out << ' '; 3873 writeOperand(Operand, false); 3874 Out << '('; 3875 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { 3876 if (op > 0) 3877 Out << ", "; 3878 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op)); 3879 } 3880 3881 // Emit an ellipsis if this is a musttail call in a vararg function. This 3882 // is only to aid readability, musttail calls forward varargs by default. 3883 if (CI->isMustTailCall() && CI->getParent() && 3884 CI->getParent()->getParent() && 3885 CI->getParent()->getParent()->isVarArg()) 3886 Out << ", ..."; 3887 3888 Out << ')'; 3889 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 3890 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 3891 3892 writeOperandBundles(CI); 3893 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 3894 Operand = II->getCalledValue(); 3895 FunctionType *FTy = II->getFunctionType(); 3896 Type *RetTy = FTy->getReturnType(); 3897 const AttributeList &PAL = II->getAttributes(); 3898 3899 // Print the calling convention being used. 3900 if (II->getCallingConv() != CallingConv::C) { 3901 Out << " "; 3902 PrintCallingConv(II->getCallingConv(), Out); 3903 } 3904 3905 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 3906 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 3907 3908 // Only print addrspace(N) if necessary: 3909 maybePrintCallAddrSpace(Operand, &I, Out); 3910 3911 // If possible, print out the short form of the invoke instruction. We can 3912 // only do this if the first argument is a pointer to a nonvararg function, 3913 // and if the return type is not a pointer to a function. 3914 // 3915 Out << ' '; 3916 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 3917 Out << ' '; 3918 writeOperand(Operand, false); 3919 Out << '('; 3920 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { 3921 if (op) 3922 Out << ", "; 3923 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op)); 3924 } 3925 3926 Out << ')'; 3927 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 3928 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 3929 3930 writeOperandBundles(II); 3931 3932 Out << "\n to "; 3933 writeOperand(II->getNormalDest(), true); 3934 Out << " unwind "; 3935 writeOperand(II->getUnwindDest(), true); 3936 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 3937 Operand = CBI->getCalledValue(); 3938 FunctionType *FTy = CBI->getFunctionType(); 3939 Type *RetTy = FTy->getReturnType(); 3940 const AttributeList &PAL = CBI->getAttributes(); 3941 3942 // Print the calling convention being used. 3943 if (CBI->getCallingConv() != CallingConv::C) { 3944 Out << " "; 3945 PrintCallingConv(CBI->getCallingConv(), Out); 3946 } 3947 3948 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 3949 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 3950 3951 // If possible, print out the short form of the callbr instruction. We can 3952 // only do this if the first argument is a pointer to a nonvararg function, 3953 // and if the return type is not a pointer to a function. 3954 // 3955 Out << ' '; 3956 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 3957 Out << ' '; 3958 writeOperand(Operand, false); 3959 Out << '('; 3960 for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) { 3961 if (op) 3962 Out << ", "; 3963 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op)); 3964 } 3965 3966 Out << ')'; 3967 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 3968 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 3969 3970 writeOperandBundles(CBI); 3971 3972 Out << "\n to "; 3973 writeOperand(CBI->getDefaultDest(), true); 3974 Out << " ["; 3975 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) { 3976 if (i != 0) 3977 Out << ", "; 3978 writeOperand(CBI->getIndirectDest(i), true); 3979 } 3980 Out << ']'; 3981 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 3982 Out << ' '; 3983 if (AI->isUsedWithInAlloca()) 3984 Out << "inalloca "; 3985 if (AI->isSwiftError()) 3986 Out << "swifterror "; 3987 TypePrinter.print(AI->getAllocatedType(), Out); 3988 3989 // Explicitly write the array size if the code is broken, if it's an array 3990 // allocation, or if the type is not canonical for scalar allocations. The 3991 // latter case prevents the type from mutating when round-tripping through 3992 // assembly. 3993 if (!AI->getArraySize() || AI->isArrayAllocation() || 3994 !AI->getArraySize()->getType()->isIntegerTy(32)) { 3995 Out << ", "; 3996 writeOperand(AI->getArraySize(), true); 3997 } 3998 if (AI->getAlignment()) { 3999 Out << ", align " << AI->getAlignment(); 4000 } 4001 4002 unsigned AddrSpace = AI->getType()->getAddressSpace(); 4003 if (AddrSpace != 0) { 4004 Out << ", addrspace(" << AddrSpace << ')'; 4005 } 4006 } else if (isa<CastInst>(I)) { 4007 if (Operand) { 4008 Out << ' '; 4009 writeOperand(Operand, true); // Work with broken code 4010 } 4011 Out << " to "; 4012 TypePrinter.print(I.getType(), Out); 4013 } else if (isa<VAArgInst>(I)) { 4014 if (Operand) { 4015 Out << ' '; 4016 writeOperand(Operand, true); // Work with broken code 4017 } 4018 Out << ", "; 4019 TypePrinter.print(I.getType(), Out); 4020 } else if (Operand) { // Print the normal way. 4021 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4022 Out << ' '; 4023 TypePrinter.print(GEP->getSourceElementType(), Out); 4024 Out << ','; 4025 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) { 4026 Out << ' '; 4027 TypePrinter.print(LI->getType(), Out); 4028 Out << ','; 4029 } 4030 4031 // PrintAllTypes - Instructions who have operands of all the same type 4032 // omit the type from all but the first operand. If the instruction has 4033 // different type operands (for example br), then they are all printed. 4034 bool PrintAllTypes = false; 4035 Type *TheType = Operand->getType(); 4036 4037 // Select, Store and ShuffleVector always print all types. 4038 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) 4039 || isa<ReturnInst>(I)) { 4040 PrintAllTypes = true; 4041 } else { 4042 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { 4043 Operand = I.getOperand(i); 4044 // note that Operand shouldn't be null, but the test helps make dump() 4045 // more tolerant of malformed IR 4046 if (Operand && Operand->getType() != TheType) { 4047 PrintAllTypes = true; // We have differing types! Print them all! 4048 break; 4049 } 4050 } 4051 } 4052 4053 if (!PrintAllTypes) { 4054 Out << ' '; 4055 TypePrinter.print(TheType, Out); 4056 } 4057 4058 Out << ' '; 4059 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { 4060 if (i) Out << ", "; 4061 writeOperand(I.getOperand(i), PrintAllTypes); 4062 } 4063 } 4064 4065 // Print atomic ordering/alignment for memory operations 4066 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 4067 if (LI->isAtomic()) 4068 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID()); 4069 if (LI->getAlignment()) 4070 Out << ", align " << LI->getAlignment(); 4071 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 4072 if (SI->isAtomic()) 4073 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID()); 4074 if (SI->getAlignment()) 4075 Out << ", align " << SI->getAlignment(); 4076 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { 4077 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(), 4078 CXI->getFailureOrdering(), CXI->getSyncScopeID()); 4079 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { 4080 writeAtomic(RMWI->getContext(), RMWI->getOrdering(), 4081 RMWI->getSyncScopeID()); 4082 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { 4083 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID()); 4084 } 4085 4086 // Print Metadata info. 4087 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD; 4088 I.getAllMetadata(InstMD); 4089 printMetadataAttachments(InstMD, ", "); 4090 4091 // Print a nice comment. 4092 printInfoComment(I); 4093 } 4094 4095 void AssemblyWriter::printMetadataAttachments( 4096 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 4097 StringRef Separator) { 4098 if (MDs.empty()) 4099 return; 4100 4101 if (MDNames.empty()) 4102 MDs[0].second->getContext().getMDKindNames(MDNames); 4103 4104 for (const auto &I : MDs) { 4105 unsigned Kind = I.first; 4106 Out << Separator; 4107 if (Kind < MDNames.size()) { 4108 Out << "!"; 4109 printMetadataIdentifier(MDNames[Kind], Out); 4110 } else 4111 Out << "!<unknown kind #" << Kind << ">"; 4112 Out << ' '; 4113 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule); 4114 } 4115 } 4116 4117 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) { 4118 Out << '!' << Slot << " = "; 4119 printMDNodeBody(Node); 4120 Out << "\n"; 4121 } 4122 4123 void AssemblyWriter::writeAllMDNodes() { 4124 SmallVector<const MDNode *, 16> Nodes; 4125 Nodes.resize(Machine.mdn_size()); 4126 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); 4127 I != E; ++I) 4128 Nodes[I->second] = cast<MDNode>(I->first); 4129 4130 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 4131 writeMDNode(i, Nodes[i]); 4132 } 4133 } 4134 4135 void AssemblyWriter::printMDNodeBody(const MDNode *Node) { 4136 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); 4137 } 4138 4139 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) { 4140 if (!Attr.isTypeAttribute()) { 4141 Out << Attr.getAsString(InAttrGroup); 4142 return; 4143 } 4144 4145 assert(Attr.hasAttribute(Attribute::ByVal) && "unexpected type attr"); 4146 4147 Out << "byval"; 4148 if (Type *Ty = Attr.getValueAsType()) { 4149 Out << '('; 4150 TypePrinter.print(Ty, Out); 4151 Out << ')'; 4152 } 4153 } 4154 4155 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet, 4156 bool InAttrGroup) { 4157 bool FirstAttr = true; 4158 for (const auto &Attr : AttrSet) { 4159 if (!FirstAttr) 4160 Out << ' '; 4161 writeAttribute(Attr, InAttrGroup); 4162 FirstAttr = false; 4163 } 4164 } 4165 4166 void AssemblyWriter::writeAllAttributeGroups() { 4167 std::vector<std::pair<AttributeSet, unsigned>> asVec; 4168 asVec.resize(Machine.as_size()); 4169 4170 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end(); 4171 I != E; ++I) 4172 asVec[I->second] = *I; 4173 4174 for (const auto &I : asVec) 4175 Out << "attributes #" << I.second << " = { " 4176 << I.first.getAsString(true) << " }\n"; 4177 } 4178 4179 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) { 4180 bool IsInFunction = Machine.getFunction(); 4181 if (IsInFunction) 4182 Out << " "; 4183 4184 Out << "uselistorder"; 4185 if (const BasicBlock *BB = 4186 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) { 4187 Out << "_bb "; 4188 writeOperand(BB->getParent(), false); 4189 Out << ", "; 4190 writeOperand(BB, false); 4191 } else { 4192 Out << " "; 4193 writeOperand(Order.V, true); 4194 } 4195 Out << ", { "; 4196 4197 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 4198 Out << Order.Shuffle[0]; 4199 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I) 4200 Out << ", " << Order.Shuffle[I]; 4201 Out << " }\n"; 4202 } 4203 4204 void AssemblyWriter::printUseLists(const Function *F) { 4205 auto hasMore = 4206 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; }; 4207 if (!hasMore()) 4208 // Nothing to do. 4209 return; 4210 4211 Out << "\n; uselistorder directives\n"; 4212 while (hasMore()) { 4213 printUseListOrder(UseListOrders.back()); 4214 UseListOrders.pop_back(); 4215 } 4216 } 4217 4218 //===----------------------------------------------------------------------===// 4219 // External Interface declarations 4220 //===----------------------------------------------------------------------===// 4221 4222 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4223 bool ShouldPreserveUseListOrder, 4224 bool IsForDebug) const { 4225 SlotTracker SlotTable(this->getParent()); 4226 formatted_raw_ostream OS(ROS); 4227 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW, 4228 IsForDebug, 4229 ShouldPreserveUseListOrder); 4230 W.printFunction(this); 4231 } 4232 4233 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4234 bool ShouldPreserveUseListOrder, bool IsForDebug) const { 4235 SlotTracker SlotTable(this); 4236 formatted_raw_ostream OS(ROS); 4237 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug, 4238 ShouldPreserveUseListOrder); 4239 W.printModule(this); 4240 } 4241 4242 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const { 4243 SlotTracker SlotTable(getParent()); 4244 formatted_raw_ostream OS(ROS); 4245 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug); 4246 W.printNamedMDNode(this); 4247 } 4248 4249 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4250 bool IsForDebug) const { 4251 Optional<SlotTracker> LocalST; 4252 SlotTracker *SlotTable; 4253 if (auto *ST = MST.getMachine()) 4254 SlotTable = ST; 4255 else { 4256 LocalST.emplace(getParent()); 4257 SlotTable = &*LocalST; 4258 } 4259 4260 formatted_raw_ostream OS(ROS); 4261 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug); 4262 W.printNamedMDNode(this); 4263 } 4264 4265 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const { 4266 PrintLLVMName(ROS, getName(), ComdatPrefix); 4267 ROS << " = comdat "; 4268 4269 switch (getSelectionKind()) { 4270 case Comdat::Any: 4271 ROS << "any"; 4272 break; 4273 case Comdat::ExactMatch: 4274 ROS << "exactmatch"; 4275 break; 4276 case Comdat::Largest: 4277 ROS << "largest"; 4278 break; 4279 case Comdat::NoDuplicates: 4280 ROS << "noduplicates"; 4281 break; 4282 case Comdat::SameSize: 4283 ROS << "samesize"; 4284 break; 4285 } 4286 4287 ROS << '\n'; 4288 } 4289 4290 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const { 4291 TypePrinting TP; 4292 TP.print(const_cast<Type*>(this), OS); 4293 4294 if (NoDetails) 4295 return; 4296 4297 // If the type is a named struct type, print the body as well. 4298 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) 4299 if (!STy->isLiteral()) { 4300 OS << " = type "; 4301 TP.printStructBody(STy, OS); 4302 } 4303 } 4304 4305 static bool isReferencingMDNode(const Instruction &I) { 4306 if (const auto *CI = dyn_cast<CallInst>(&I)) 4307 if (Function *F = CI->getCalledFunction()) 4308 if (F->isIntrinsic()) 4309 for (auto &Op : I.operands()) 4310 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 4311 if (isa<MDNode>(V->getMetadata())) 4312 return true; 4313 return false; 4314 } 4315 4316 void Value::print(raw_ostream &ROS, bool IsForDebug) const { 4317 bool ShouldInitializeAllMetadata = false; 4318 if (auto *I = dyn_cast<Instruction>(this)) 4319 ShouldInitializeAllMetadata = isReferencingMDNode(*I); 4320 else if (isa<Function>(this) || isa<MetadataAsValue>(this)) 4321 ShouldInitializeAllMetadata = true; 4322 4323 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata); 4324 print(ROS, MST, IsForDebug); 4325 } 4326 4327 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4328 bool IsForDebug) const { 4329 formatted_raw_ostream OS(ROS); 4330 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr)); 4331 SlotTracker &SlotTable = 4332 MST.getMachine() ? *MST.getMachine() : EmptySlotTable; 4333 auto incorporateFunction = [&](const Function *F) { 4334 if (F) 4335 MST.incorporateFunction(*F); 4336 }; 4337 4338 if (const Instruction *I = dyn_cast<Instruction>(this)) { 4339 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr); 4340 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug); 4341 W.printInstruction(*I); 4342 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { 4343 incorporateFunction(BB->getParent()); 4344 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug); 4345 W.printBasicBlock(BB); 4346 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 4347 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug); 4348 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) 4349 W.printGlobal(V); 4350 else if (const Function *F = dyn_cast<Function>(GV)) 4351 W.printFunction(F); 4352 else 4353 W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV)); 4354 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) { 4355 V->getMetadata()->print(ROS, MST, getModuleFromVal(V)); 4356 } else if (const Constant *C = dyn_cast<Constant>(this)) { 4357 TypePrinting TypePrinter; 4358 TypePrinter.print(C->getType(), OS); 4359 OS << ' '; 4360 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr); 4361 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) { 4362 this->printAsOperand(OS, /* PrintType */ true, MST); 4363 } else { 4364 llvm_unreachable("Unknown value to print out!"); 4365 } 4366 } 4367 4368 /// Print without a type, skipping the TypePrinting object. 4369 /// 4370 /// \return \c true iff printing was successful. 4371 static bool printWithoutType(const Value &V, raw_ostream &O, 4372 SlotTracker *Machine, const Module *M) { 4373 if (V.hasName() || isa<GlobalValue>(V) || 4374 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) { 4375 WriteAsOperandInternal(O, &V, nullptr, Machine, M); 4376 return true; 4377 } 4378 return false; 4379 } 4380 4381 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, 4382 ModuleSlotTracker &MST) { 4383 TypePrinting TypePrinter(MST.getModule()); 4384 if (PrintType) { 4385 TypePrinter.print(V.getType(), O); 4386 O << ' '; 4387 } 4388 4389 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(), 4390 MST.getModule()); 4391 } 4392 4393 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4394 const Module *M) const { 4395 if (!M) 4396 M = getModuleFromVal(this); 4397 4398 if (!PrintType) 4399 if (printWithoutType(*this, O, nullptr, M)) 4400 return; 4401 4402 SlotTracker Machine( 4403 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this)); 4404 ModuleSlotTracker MST(Machine, M); 4405 printAsOperandImpl(*this, O, PrintType, MST); 4406 } 4407 4408 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4409 ModuleSlotTracker &MST) const { 4410 if (!PrintType) 4411 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule())) 4412 return; 4413 4414 printAsOperandImpl(*this, O, PrintType, MST); 4415 } 4416 4417 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, 4418 ModuleSlotTracker &MST, const Module *M, 4419 bool OnlyAsOperand) { 4420 formatted_raw_ostream OS(ROS); 4421 4422 TypePrinting TypePrinter(M); 4423 4424 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M, 4425 /* FromValue */ true); 4426 4427 auto *N = dyn_cast<MDNode>(&MD); 4428 if (OnlyAsOperand || !N || isa<DIExpression>(MD)) 4429 return; 4430 4431 OS << " = "; 4432 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M); 4433 } 4434 4435 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const { 4436 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4437 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4438 } 4439 4440 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST, 4441 const Module *M) const { 4442 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4443 } 4444 4445 void Metadata::print(raw_ostream &OS, const Module *M, 4446 bool /*IsForDebug*/) const { 4447 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4448 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4449 } 4450 4451 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST, 4452 const Module *M, bool /*IsForDebug*/) const { 4453 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4454 } 4455 4456 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const { 4457 SlotTracker SlotTable(this); 4458 formatted_raw_ostream OS(ROS); 4459 AssemblyWriter W(OS, SlotTable, this, IsForDebug); 4460 W.printModuleSummaryIndex(); 4461 } 4462 4463 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4464 // Value::dump - allow easy printing of Values from the debugger. 4465 LLVM_DUMP_METHOD 4466 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4467 4468 // Type::dump - allow easy printing of Types from the debugger. 4469 LLVM_DUMP_METHOD 4470 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4471 4472 // Module::dump() - Allow printing of Modules from the debugger. 4473 LLVM_DUMP_METHOD 4474 void Module::dump() const { 4475 print(dbgs(), nullptr, 4476 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true); 4477 } 4478 4479 // Allow printing of Comdats from the debugger. 4480 LLVM_DUMP_METHOD 4481 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4482 4483 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. 4484 LLVM_DUMP_METHOD 4485 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4486 4487 LLVM_DUMP_METHOD 4488 void Metadata::dump() const { dump(nullptr); } 4489 4490 LLVM_DUMP_METHOD 4491 void Metadata::dump(const Module *M) const { 4492 print(dbgs(), M, /*IsForDebug=*/true); 4493 dbgs() << '\n'; 4494 } 4495 4496 // Allow printing of ModuleSummaryIndex from the debugger. 4497 LLVM_DUMP_METHOD 4498 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4499 #endif 4500