xref: /freebsd/contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/UseListOrder.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Support/AtomicOrdering.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormattedStream.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97 
98 namespace {
99 
100 struct OrderMap {
101   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
102 
103   unsigned size() const { return IDs.size(); }
104   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
105 
106   std::pair<unsigned, bool> lookup(const Value *V) const {
107     return IDs.lookup(V);
108   }
109 
110   void index(const Value *V) {
111     // Explicitly sequence get-size and insert-value operations to avoid UB.
112     unsigned ID = IDs.size() + 1;
113     IDs[V].first = ID;
114   }
115 };
116 
117 } // end anonymous namespace
118 
119 static void orderValue(const Value *V, OrderMap &OM) {
120   if (OM.lookup(V).first)
121     return;
122 
123   if (const Constant *C = dyn_cast<Constant>(V))
124     if (C->getNumOperands() && !isa<GlobalValue>(C))
125       for (const Value *Op : C->operands())
126         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
127           orderValue(Op, OM);
128 
129   // Note: we cannot cache this lookup above, since inserting into the map
130   // changes the map's size, and thus affects the other IDs.
131   OM.index(V);
132 }
133 
134 static OrderMap orderModule(const Module *M) {
135   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
136   // and ValueEnumerator::incorporateFunction().
137   OrderMap OM;
138 
139   for (const GlobalVariable &G : M->globals()) {
140     if (G.hasInitializer())
141       if (!isa<GlobalValue>(G.getInitializer()))
142         orderValue(G.getInitializer(), OM);
143     orderValue(&G, OM);
144   }
145   for (const GlobalAlias &A : M->aliases()) {
146     if (!isa<GlobalValue>(A.getAliasee()))
147       orderValue(A.getAliasee(), OM);
148     orderValue(&A, OM);
149   }
150   for (const GlobalIFunc &I : M->ifuncs()) {
151     if (!isa<GlobalValue>(I.getResolver()))
152       orderValue(I.getResolver(), OM);
153     orderValue(&I, OM);
154   }
155   for (const Function &F : *M) {
156     for (const Use &U : F.operands())
157       if (!isa<GlobalValue>(U.get()))
158         orderValue(U.get(), OM);
159 
160     orderValue(&F, OM);
161 
162     if (F.isDeclaration())
163       continue;
164 
165     for (const Argument &A : F.args())
166       orderValue(&A, OM);
167     for (const BasicBlock &BB : F) {
168       orderValue(&BB, OM);
169       for (const Instruction &I : BB) {
170         for (const Value *Op : I.operands())
171           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
172               isa<InlineAsm>(*Op))
173             orderValue(Op, OM);
174         orderValue(&I, OM);
175       }
176     }
177   }
178   return OM;
179 }
180 
181 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
182                                          unsigned ID, const OrderMap &OM,
183                                          UseListOrderStack &Stack) {
184   // Predict use-list order for this one.
185   using Entry = std::pair<const Use *, unsigned>;
186   SmallVector<Entry, 64> List;
187   for (const Use &U : V->uses())
188     // Check if this user will be serialized.
189     if (OM.lookup(U.getUser()).first)
190       List.push_back(std::make_pair(&U, List.size()));
191 
192   if (List.size() < 2)
193     // We may have lost some users.
194     return;
195 
196   bool GetsReversed =
197       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
198   if (auto *BA = dyn_cast<BlockAddress>(V))
199     ID = OM.lookup(BA->getBasicBlock()).first;
200   llvm::sort(List, [&](const Entry &L, const Entry &R) {
201     const Use *LU = L.first;
202     const Use *RU = R.first;
203     if (LU == RU)
204       return false;
205 
206     auto LID = OM.lookup(LU->getUser()).first;
207     auto RID = OM.lookup(RU->getUser()).first;
208 
209     // If ID is 4, then expect: 7 6 5 1 2 3.
210     if (LID < RID) {
211       if (GetsReversed)
212         if (RID <= ID)
213           return true;
214       return false;
215     }
216     if (RID < LID) {
217       if (GetsReversed)
218         if (LID <= ID)
219           return false;
220       return true;
221     }
222 
223     // LID and RID are equal, so we have different operands of the same user.
224     // Assume operands are added in order for all instructions.
225     if (GetsReversed)
226       if (LID <= ID)
227         return LU->getOperandNo() < RU->getOperandNo();
228     return LU->getOperandNo() > RU->getOperandNo();
229   });
230 
231   if (std::is_sorted(
232           List.begin(), List.end(),
233           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
234     // Order is already correct.
235     return;
236 
237   // Store the shuffle.
238   Stack.emplace_back(V, F, List.size());
239   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
240   for (size_t I = 0, E = List.size(); I != E; ++I)
241     Stack.back().Shuffle[I] = List[I].second;
242 }
243 
244 static void predictValueUseListOrder(const Value *V, const Function *F,
245                                      OrderMap &OM, UseListOrderStack &Stack) {
246   auto &IDPair = OM[V];
247   assert(IDPair.first && "Unmapped value");
248   if (IDPair.second)
249     // Already predicted.
250     return;
251 
252   // Do the actual prediction.
253   IDPair.second = true;
254   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
255     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
256 
257   // Recursive descent into constants.
258   if (const Constant *C = dyn_cast<Constant>(V))
259     if (C->getNumOperands()) // Visit GlobalValues.
260       for (const Value *Op : C->operands())
261         if (isa<Constant>(Op)) // Visit GlobalValues.
262           predictValueUseListOrder(Op, F, OM, Stack);
263 }
264 
265 static UseListOrderStack predictUseListOrder(const Module *M) {
266   OrderMap OM = orderModule(M);
267 
268   // Use-list orders need to be serialized after all the users have been added
269   // to a value, or else the shuffles will be incomplete.  Store them per
270   // function in a stack.
271   //
272   // Aside from function order, the order of values doesn't matter much here.
273   UseListOrderStack Stack;
274 
275   // We want to visit the functions backward now so we can list function-local
276   // constants in the last Function they're used in.  Module-level constants
277   // have already been visited above.
278   for (const Function &F : make_range(M->rbegin(), M->rend())) {
279     if (F.isDeclaration())
280       continue;
281     for (const BasicBlock &BB : F)
282       predictValueUseListOrder(&BB, &F, OM, Stack);
283     for (const Argument &A : F.args())
284       predictValueUseListOrder(&A, &F, OM, Stack);
285     for (const BasicBlock &BB : F)
286       for (const Instruction &I : BB)
287         for (const Value *Op : I.operands())
288           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
289             predictValueUseListOrder(Op, &F, OM, Stack);
290     for (const BasicBlock &BB : F)
291       for (const Instruction &I : BB)
292         predictValueUseListOrder(&I, &F, OM, Stack);
293   }
294 
295   // Visit globals last.
296   for (const GlobalVariable &G : M->globals())
297     predictValueUseListOrder(&G, nullptr, OM, Stack);
298   for (const Function &F : *M)
299     predictValueUseListOrder(&F, nullptr, OM, Stack);
300   for (const GlobalAlias &A : M->aliases())
301     predictValueUseListOrder(&A, nullptr, OM, Stack);
302   for (const GlobalIFunc &I : M->ifuncs())
303     predictValueUseListOrder(&I, nullptr, OM, Stack);
304   for (const GlobalVariable &G : M->globals())
305     if (G.hasInitializer())
306       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
307   for (const GlobalAlias &A : M->aliases())
308     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
309   for (const GlobalIFunc &I : M->ifuncs())
310     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
311   for (const Function &F : *M)
312     for (const Use &U : F.operands())
313       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
314 
315   return Stack;
316 }
317 
318 static const Module *getModuleFromVal(const Value *V) {
319   if (const Argument *MA = dyn_cast<Argument>(V))
320     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
321 
322   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
323     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
324 
325   if (const Instruction *I = dyn_cast<Instruction>(V)) {
326     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
327     return M ? M->getParent() : nullptr;
328   }
329 
330   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
331     return GV->getParent();
332 
333   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
334     for (const User *U : MAV->users())
335       if (isa<Instruction>(U))
336         if (const Module *M = getModuleFromVal(U))
337           return M;
338     return nullptr;
339   }
340 
341   return nullptr;
342 }
343 
344 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
345   switch (cc) {
346   default:                         Out << "cc" << cc; break;
347   case CallingConv::Fast:          Out << "fastcc"; break;
348   case CallingConv::Cold:          Out << "coldcc"; break;
349   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
350   case CallingConv::AnyReg:        Out << "anyregcc"; break;
351   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
352   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
353   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
354   case CallingConv::GHC:           Out << "ghccc"; break;
355   case CallingConv::Tail:          Out << "tailcc"; break;
356   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
357   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
358   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
359   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
360   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
361   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
362   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
363   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
364   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
365   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
366   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
367   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
368   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
369   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
370   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
371   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
372   case CallingConv::Win64:         Out << "win64cc"; break;
373   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
374   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
375   case CallingConv::Swift:         Out << "swiftcc"; break;
376   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
377   case CallingConv::HHVM:          Out << "hhvmcc"; break;
378   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
379   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
380   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
381   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
382   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
383   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
384   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
385   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
386   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
387   }
388 }
389 
390 enum PrefixType {
391   GlobalPrefix,
392   ComdatPrefix,
393   LabelPrefix,
394   LocalPrefix,
395   NoPrefix
396 };
397 
398 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
399   assert(!Name.empty() && "Cannot get empty name!");
400 
401   // Scan the name to see if it needs quotes first.
402   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
403   if (!NeedsQuotes) {
404     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
405       // By making this unsigned, the value passed in to isalnum will always be
406       // in the range 0-255.  This is important when building with MSVC because
407       // its implementation will assert.  This situation can arise when dealing
408       // with UTF-8 multibyte characters.
409       unsigned char C = Name[i];
410       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
411           C != '_') {
412         NeedsQuotes = true;
413         break;
414       }
415     }
416   }
417 
418   // If we didn't need any quotes, just write out the name in one blast.
419   if (!NeedsQuotes) {
420     OS << Name;
421     return;
422   }
423 
424   // Okay, we need quotes.  Output the quotes and escape any scary characters as
425   // needed.
426   OS << '"';
427   printEscapedString(Name, OS);
428   OS << '"';
429 }
430 
431 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
432 /// (if the string only contains simple characters) or is surrounded with ""'s
433 /// (if it has special chars in it). Print it out.
434 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
435   switch (Prefix) {
436   case NoPrefix:
437     break;
438   case GlobalPrefix:
439     OS << '@';
440     break;
441   case ComdatPrefix:
442     OS << '$';
443     break;
444   case LabelPrefix:
445     break;
446   case LocalPrefix:
447     OS << '%';
448     break;
449   }
450   printLLVMNameWithoutPrefix(OS, Name);
451 }
452 
453 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
454 /// (if the string only contains simple characters) or is surrounded with ""'s
455 /// (if it has special chars in it). Print it out.
456 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
457   PrintLLVMName(OS, V->getName(),
458                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
459 }
460 
461 namespace {
462 
463 class TypePrinting {
464 public:
465   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
466 
467   TypePrinting(const TypePrinting &) = delete;
468   TypePrinting &operator=(const TypePrinting &) = delete;
469 
470   /// The named types that are used by the current module.
471   TypeFinder &getNamedTypes();
472 
473   /// The numbered types, number to type mapping.
474   std::vector<StructType *> &getNumberedTypes();
475 
476   bool empty();
477 
478   void print(Type *Ty, raw_ostream &OS);
479 
480   void printStructBody(StructType *Ty, raw_ostream &OS);
481 
482 private:
483   void incorporateTypes();
484 
485   /// A module to process lazily when needed. Set to nullptr as soon as used.
486   const Module *DeferredM;
487 
488   TypeFinder NamedTypes;
489 
490   // The numbered types, along with their value.
491   DenseMap<StructType *, unsigned> Type2Number;
492 
493   std::vector<StructType *> NumberedTypes;
494 };
495 
496 } // end anonymous namespace
497 
498 TypeFinder &TypePrinting::getNamedTypes() {
499   incorporateTypes();
500   return NamedTypes;
501 }
502 
503 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
504   incorporateTypes();
505 
506   // We know all the numbers that each type is used and we know that it is a
507   // dense assignment. Convert the map to an index table, if it's not done
508   // already (judging from the sizes):
509   if (NumberedTypes.size() == Type2Number.size())
510     return NumberedTypes;
511 
512   NumberedTypes.resize(Type2Number.size());
513   for (const auto &P : Type2Number) {
514     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
515     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
516     NumberedTypes[P.second] = P.first;
517   }
518   return NumberedTypes;
519 }
520 
521 bool TypePrinting::empty() {
522   incorporateTypes();
523   return NamedTypes.empty() && Type2Number.empty();
524 }
525 
526 void TypePrinting::incorporateTypes() {
527   if (!DeferredM)
528     return;
529 
530   NamedTypes.run(*DeferredM, false);
531   DeferredM = nullptr;
532 
533   // The list of struct types we got back includes all the struct types, split
534   // the unnamed ones out to a numbering and remove the anonymous structs.
535   unsigned NextNumber = 0;
536 
537   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
538   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
539     StructType *STy = *I;
540 
541     // Ignore anonymous types.
542     if (STy->isLiteral())
543       continue;
544 
545     if (STy->getName().empty())
546       Type2Number[STy] = NextNumber++;
547     else
548       *NextToUse++ = STy;
549   }
550 
551   NamedTypes.erase(NextToUse, NamedTypes.end());
552 }
553 
554 /// Write the specified type to the specified raw_ostream, making use of type
555 /// names or up references to shorten the type name where possible.
556 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
557   switch (Ty->getTypeID()) {
558   case Type::VoidTyID:      OS << "void"; return;
559   case Type::HalfTyID:      OS << "half"; return;
560   case Type::FloatTyID:     OS << "float"; return;
561   case Type::DoubleTyID:    OS << "double"; return;
562   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
563   case Type::FP128TyID:     OS << "fp128"; return;
564   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
565   case Type::LabelTyID:     OS << "label"; return;
566   case Type::MetadataTyID:  OS << "metadata"; return;
567   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
568   case Type::TokenTyID:     OS << "token"; return;
569   case Type::IntegerTyID:
570     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
571     return;
572 
573   case Type::FunctionTyID: {
574     FunctionType *FTy = cast<FunctionType>(Ty);
575     print(FTy->getReturnType(), OS);
576     OS << " (";
577     for (FunctionType::param_iterator I = FTy->param_begin(),
578          E = FTy->param_end(); I != E; ++I) {
579       if (I != FTy->param_begin())
580         OS << ", ";
581       print(*I, OS);
582     }
583     if (FTy->isVarArg()) {
584       if (FTy->getNumParams()) OS << ", ";
585       OS << "...";
586     }
587     OS << ')';
588     return;
589   }
590   case Type::StructTyID: {
591     StructType *STy = cast<StructType>(Ty);
592 
593     if (STy->isLiteral())
594       return printStructBody(STy, OS);
595 
596     if (!STy->getName().empty())
597       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
598 
599     incorporateTypes();
600     const auto I = Type2Number.find(STy);
601     if (I != Type2Number.end())
602       OS << '%' << I->second;
603     else  // Not enumerated, print the hex address.
604       OS << "%\"type " << STy << '\"';
605     return;
606   }
607   case Type::PointerTyID: {
608     PointerType *PTy = cast<PointerType>(Ty);
609     print(PTy->getElementType(), OS);
610     if (unsigned AddressSpace = PTy->getAddressSpace())
611       OS << " addrspace(" << AddressSpace << ')';
612     OS << '*';
613     return;
614   }
615   case Type::ArrayTyID: {
616     ArrayType *ATy = cast<ArrayType>(Ty);
617     OS << '[' << ATy->getNumElements() << " x ";
618     print(ATy->getElementType(), OS);
619     OS << ']';
620     return;
621   }
622   case Type::VectorTyID: {
623     VectorType *PTy = cast<VectorType>(Ty);
624     OS << "<";
625     if (PTy->isScalable())
626       OS << "vscale x ";
627     OS << PTy->getNumElements() << " x ";
628     print(PTy->getElementType(), OS);
629     OS << '>';
630     return;
631   }
632   }
633   llvm_unreachable("Invalid TypeID");
634 }
635 
636 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
637   if (STy->isOpaque()) {
638     OS << "opaque";
639     return;
640   }
641 
642   if (STy->isPacked())
643     OS << '<';
644 
645   if (STy->getNumElements() == 0) {
646     OS << "{}";
647   } else {
648     StructType::element_iterator I = STy->element_begin();
649     OS << "{ ";
650     print(*I++, OS);
651     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
652       OS << ", ";
653       print(*I, OS);
654     }
655 
656     OS << " }";
657   }
658   if (STy->isPacked())
659     OS << '>';
660 }
661 
662 namespace llvm {
663 
664 //===----------------------------------------------------------------------===//
665 // SlotTracker Class: Enumerate slot numbers for unnamed values
666 //===----------------------------------------------------------------------===//
667 /// This class provides computation of slot numbers for LLVM Assembly writing.
668 ///
669 class SlotTracker {
670 public:
671   /// ValueMap - A mapping of Values to slot numbers.
672   using ValueMap = DenseMap<const Value *, unsigned>;
673 
674 private:
675   /// TheModule - The module for which we are holding slot numbers.
676   const Module* TheModule;
677 
678   /// TheFunction - The function for which we are holding slot numbers.
679   const Function* TheFunction = nullptr;
680   bool FunctionProcessed = false;
681   bool ShouldInitializeAllMetadata;
682 
683   /// The summary index for which we are holding slot numbers.
684   const ModuleSummaryIndex *TheIndex = nullptr;
685 
686   /// mMap - The slot map for the module level data.
687   ValueMap mMap;
688   unsigned mNext = 0;
689 
690   /// fMap - The slot map for the function level data.
691   ValueMap fMap;
692   unsigned fNext = 0;
693 
694   /// mdnMap - Map for MDNodes.
695   DenseMap<const MDNode*, unsigned> mdnMap;
696   unsigned mdnNext = 0;
697 
698   /// asMap - The slot map for attribute sets.
699   DenseMap<AttributeSet, unsigned> asMap;
700   unsigned asNext = 0;
701 
702   /// ModulePathMap - The slot map for Module paths used in the summary index.
703   StringMap<unsigned> ModulePathMap;
704   unsigned ModulePathNext = 0;
705 
706   /// GUIDMap - The slot map for GUIDs used in the summary index.
707   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
708   unsigned GUIDNext = 0;
709 
710   /// TypeIdMap - The slot map for type ids used in the summary index.
711   StringMap<unsigned> TypeIdMap;
712   unsigned TypeIdNext = 0;
713 
714 public:
715   /// Construct from a module.
716   ///
717   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
718   /// functions, giving correct numbering for metadata referenced only from
719   /// within a function (even if no functions have been initialized).
720   explicit SlotTracker(const Module *M,
721                        bool ShouldInitializeAllMetadata = false);
722 
723   /// Construct from a function, starting out in incorp state.
724   ///
725   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
726   /// functions, giving correct numbering for metadata referenced only from
727   /// within a function (even if no functions have been initialized).
728   explicit SlotTracker(const Function *F,
729                        bool ShouldInitializeAllMetadata = false);
730 
731   /// Construct from a module summary index.
732   explicit SlotTracker(const ModuleSummaryIndex *Index);
733 
734   SlotTracker(const SlotTracker &) = delete;
735   SlotTracker &operator=(const SlotTracker &) = delete;
736 
737   /// Return the slot number of the specified value in it's type
738   /// plane.  If something is not in the SlotTracker, return -1.
739   int getLocalSlot(const Value *V);
740   int getGlobalSlot(const GlobalValue *V);
741   int getMetadataSlot(const MDNode *N);
742   int getAttributeGroupSlot(AttributeSet AS);
743   int getModulePathSlot(StringRef Path);
744   int getGUIDSlot(GlobalValue::GUID GUID);
745   int getTypeIdSlot(StringRef Id);
746 
747   /// If you'd like to deal with a function instead of just a module, use
748   /// this method to get its data into the SlotTracker.
749   void incorporateFunction(const Function *F) {
750     TheFunction = F;
751     FunctionProcessed = false;
752   }
753 
754   const Function *getFunction() const { return TheFunction; }
755 
756   /// After calling incorporateFunction, use this method to remove the
757   /// most recently incorporated function from the SlotTracker. This
758   /// will reset the state of the machine back to just the module contents.
759   void purgeFunction();
760 
761   /// MDNode map iterators.
762   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
763 
764   mdn_iterator mdn_begin() { return mdnMap.begin(); }
765   mdn_iterator mdn_end() { return mdnMap.end(); }
766   unsigned mdn_size() const { return mdnMap.size(); }
767   bool mdn_empty() const { return mdnMap.empty(); }
768 
769   /// AttributeSet map iterators.
770   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
771 
772   as_iterator as_begin()   { return asMap.begin(); }
773   as_iterator as_end()     { return asMap.end(); }
774   unsigned as_size() const { return asMap.size(); }
775   bool as_empty() const    { return asMap.empty(); }
776 
777   /// GUID map iterators.
778   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
779 
780   /// These functions do the actual initialization.
781   inline void initializeIfNeeded();
782   void initializeIndexIfNeeded();
783 
784   // Implementation Details
785 private:
786   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
787   void CreateModuleSlot(const GlobalValue *V);
788 
789   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
790   void CreateMetadataSlot(const MDNode *N);
791 
792   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
793   void CreateFunctionSlot(const Value *V);
794 
795   /// Insert the specified AttributeSet into the slot table.
796   void CreateAttributeSetSlot(AttributeSet AS);
797 
798   inline void CreateModulePathSlot(StringRef Path);
799   void CreateGUIDSlot(GlobalValue::GUID GUID);
800   void CreateTypeIdSlot(StringRef Id);
801 
802   /// Add all of the module level global variables (and their initializers)
803   /// and function declarations, but not the contents of those functions.
804   void processModule();
805   void processIndex();
806 
807   /// Add all of the functions arguments, basic blocks, and instructions.
808   void processFunction();
809 
810   /// Add the metadata directly attached to a GlobalObject.
811   void processGlobalObjectMetadata(const GlobalObject &GO);
812 
813   /// Add all of the metadata from a function.
814   void processFunctionMetadata(const Function &F);
815 
816   /// Add all of the metadata from an instruction.
817   void processInstructionMetadata(const Instruction &I);
818 };
819 
820 } // end namespace llvm
821 
822 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
823                                      const Function *F)
824     : M(M), F(F), Machine(&Machine) {}
825 
826 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
827                                      bool ShouldInitializeAllMetadata)
828     : ShouldCreateStorage(M),
829       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
830 
831 ModuleSlotTracker::~ModuleSlotTracker() = default;
832 
833 SlotTracker *ModuleSlotTracker::getMachine() {
834   if (!ShouldCreateStorage)
835     return Machine;
836 
837   ShouldCreateStorage = false;
838   MachineStorage =
839       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
840   Machine = MachineStorage.get();
841   return Machine;
842 }
843 
844 void ModuleSlotTracker::incorporateFunction(const Function &F) {
845   // Using getMachine() may lazily create the slot tracker.
846   if (!getMachine())
847     return;
848 
849   // Nothing to do if this is the right function already.
850   if (this->F == &F)
851     return;
852   if (this->F)
853     Machine->purgeFunction();
854   Machine->incorporateFunction(&F);
855   this->F = &F;
856 }
857 
858 int ModuleSlotTracker::getLocalSlot(const Value *V) {
859   assert(F && "No function incorporated");
860   return Machine->getLocalSlot(V);
861 }
862 
863 static SlotTracker *createSlotTracker(const Value *V) {
864   if (const Argument *FA = dyn_cast<Argument>(V))
865     return new SlotTracker(FA->getParent());
866 
867   if (const Instruction *I = dyn_cast<Instruction>(V))
868     if (I->getParent())
869       return new SlotTracker(I->getParent()->getParent());
870 
871   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
872     return new SlotTracker(BB->getParent());
873 
874   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
875     return new SlotTracker(GV->getParent());
876 
877   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
878     return new SlotTracker(GA->getParent());
879 
880   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
881     return new SlotTracker(GIF->getParent());
882 
883   if (const Function *Func = dyn_cast<Function>(V))
884     return new SlotTracker(Func);
885 
886   return nullptr;
887 }
888 
889 #if 0
890 #define ST_DEBUG(X) dbgs() << X
891 #else
892 #define ST_DEBUG(X)
893 #endif
894 
895 // Module level constructor. Causes the contents of the Module (sans functions)
896 // to be added to the slot table.
897 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
898     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
899 
900 // Function level constructor. Causes the contents of the Module and the one
901 // function provided to be added to the slot table.
902 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
903     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
904       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
905 
906 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
907     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
908 
909 inline void SlotTracker::initializeIfNeeded() {
910   if (TheModule) {
911     processModule();
912     TheModule = nullptr; ///< Prevent re-processing next time we're called.
913   }
914 
915   if (TheFunction && !FunctionProcessed)
916     processFunction();
917 }
918 
919 void SlotTracker::initializeIndexIfNeeded() {
920   if (!TheIndex)
921     return;
922   processIndex();
923   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
924 }
925 
926 // Iterate through all the global variables, functions, and global
927 // variable initializers and create slots for them.
928 void SlotTracker::processModule() {
929   ST_DEBUG("begin processModule!\n");
930 
931   // Add all of the unnamed global variables to the value table.
932   for (const GlobalVariable &Var : TheModule->globals()) {
933     if (!Var.hasName())
934       CreateModuleSlot(&Var);
935     processGlobalObjectMetadata(Var);
936     auto Attrs = Var.getAttributes();
937     if (Attrs.hasAttributes())
938       CreateAttributeSetSlot(Attrs);
939   }
940 
941   for (const GlobalAlias &A : TheModule->aliases()) {
942     if (!A.hasName())
943       CreateModuleSlot(&A);
944   }
945 
946   for (const GlobalIFunc &I : TheModule->ifuncs()) {
947     if (!I.hasName())
948       CreateModuleSlot(&I);
949   }
950 
951   // Add metadata used by named metadata.
952   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
953     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
954       CreateMetadataSlot(NMD.getOperand(i));
955   }
956 
957   for (const Function &F : *TheModule) {
958     if (!F.hasName())
959       // Add all the unnamed functions to the table.
960       CreateModuleSlot(&F);
961 
962     if (ShouldInitializeAllMetadata)
963       processFunctionMetadata(F);
964 
965     // Add all the function attributes to the table.
966     // FIXME: Add attributes of other objects?
967     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
968     if (FnAttrs.hasAttributes())
969       CreateAttributeSetSlot(FnAttrs);
970   }
971 
972   ST_DEBUG("end processModule!\n");
973 }
974 
975 // Process the arguments, basic blocks, and instructions  of a function.
976 void SlotTracker::processFunction() {
977   ST_DEBUG("begin processFunction!\n");
978   fNext = 0;
979 
980   // Process function metadata if it wasn't hit at the module-level.
981   if (!ShouldInitializeAllMetadata)
982     processFunctionMetadata(*TheFunction);
983 
984   // Add all the function arguments with no names.
985   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
986       AE = TheFunction->arg_end(); AI != AE; ++AI)
987     if (!AI->hasName())
988       CreateFunctionSlot(&*AI);
989 
990   ST_DEBUG("Inserting Instructions:\n");
991 
992   // Add all of the basic blocks and instructions with no names.
993   for (auto &BB : *TheFunction) {
994     if (!BB.hasName())
995       CreateFunctionSlot(&BB);
996 
997     for (auto &I : BB) {
998       if (!I.getType()->isVoidTy() && !I.hasName())
999         CreateFunctionSlot(&I);
1000 
1001       // We allow direct calls to any llvm.foo function here, because the
1002       // target may not be linked into the optimizer.
1003       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1004         // Add all the call attributes to the table.
1005         AttributeSet Attrs = Call->getAttributes().getFnAttributes();
1006         if (Attrs.hasAttributes())
1007           CreateAttributeSetSlot(Attrs);
1008       }
1009     }
1010   }
1011 
1012   FunctionProcessed = true;
1013 
1014   ST_DEBUG("end processFunction!\n");
1015 }
1016 
1017 // Iterate through all the GUID in the index and create slots for them.
1018 void SlotTracker::processIndex() {
1019   ST_DEBUG("begin processIndex!\n");
1020   assert(TheIndex);
1021 
1022   // The first block of slots are just the module ids, which start at 0 and are
1023   // assigned consecutively. Since the StringMap iteration order isn't
1024   // guaranteed, use a std::map to order by module ID before assigning slots.
1025   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1026   for (auto &ModPath : TheIndex->modulePaths())
1027     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1028   for (auto &ModPair : ModuleIdToPathMap)
1029     CreateModulePathSlot(ModPair.second);
1030 
1031   // Start numbering the GUIDs after the module ids.
1032   GUIDNext = ModulePathNext;
1033 
1034   for (auto &GlobalList : *TheIndex)
1035     CreateGUIDSlot(GlobalList.first);
1036 
1037   // Start numbering the TypeIds after the GUIDs.
1038   TypeIdNext = GUIDNext;
1039 
1040   for (auto TidIter = TheIndex->typeIds().begin();
1041        TidIter != TheIndex->typeIds().end(); TidIter++)
1042     CreateTypeIdSlot(TidIter->second.first);
1043 
1044   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1045     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1046 
1047   ST_DEBUG("end processIndex!\n");
1048 }
1049 
1050 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1051   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1052   GO.getAllMetadata(MDs);
1053   for (auto &MD : MDs)
1054     CreateMetadataSlot(MD.second);
1055 }
1056 
1057 void SlotTracker::processFunctionMetadata(const Function &F) {
1058   processGlobalObjectMetadata(F);
1059   for (auto &BB : F) {
1060     for (auto &I : BB)
1061       processInstructionMetadata(I);
1062   }
1063 }
1064 
1065 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1066   // Process metadata used directly by intrinsics.
1067   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1068     if (Function *F = CI->getCalledFunction())
1069       if (F->isIntrinsic())
1070         for (auto &Op : I.operands())
1071           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1072             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1073               CreateMetadataSlot(N);
1074 
1075   // Process metadata attached to this instruction.
1076   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1077   I.getAllMetadata(MDs);
1078   for (auto &MD : MDs)
1079     CreateMetadataSlot(MD.second);
1080 }
1081 
1082 /// Clean up after incorporating a function. This is the only way to get out of
1083 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1084 /// incorporation state is indicated by TheFunction != 0.
1085 void SlotTracker::purgeFunction() {
1086   ST_DEBUG("begin purgeFunction!\n");
1087   fMap.clear(); // Simply discard the function level map
1088   TheFunction = nullptr;
1089   FunctionProcessed = false;
1090   ST_DEBUG("end purgeFunction!\n");
1091 }
1092 
1093 /// getGlobalSlot - Get the slot number of a global value.
1094 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1095   // Check for uninitialized state and do lazy initialization.
1096   initializeIfNeeded();
1097 
1098   // Find the value in the module map
1099   ValueMap::iterator MI = mMap.find(V);
1100   return MI == mMap.end() ? -1 : (int)MI->second;
1101 }
1102 
1103 /// getMetadataSlot - Get the slot number of a MDNode.
1104 int SlotTracker::getMetadataSlot(const MDNode *N) {
1105   // Check for uninitialized state and do lazy initialization.
1106   initializeIfNeeded();
1107 
1108   // Find the MDNode in the module map
1109   mdn_iterator MI = mdnMap.find(N);
1110   return MI == mdnMap.end() ? -1 : (int)MI->second;
1111 }
1112 
1113 /// getLocalSlot - Get the slot number for a value that is local to a function.
1114 int SlotTracker::getLocalSlot(const Value *V) {
1115   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1116 
1117   // Check for uninitialized state and do lazy initialization.
1118   initializeIfNeeded();
1119 
1120   ValueMap::iterator FI = fMap.find(V);
1121   return FI == fMap.end() ? -1 : (int)FI->second;
1122 }
1123 
1124 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1125   // Check for uninitialized state and do lazy initialization.
1126   initializeIfNeeded();
1127 
1128   // Find the AttributeSet in the module map.
1129   as_iterator AI = asMap.find(AS);
1130   return AI == asMap.end() ? -1 : (int)AI->second;
1131 }
1132 
1133 int SlotTracker::getModulePathSlot(StringRef Path) {
1134   // Check for uninitialized state and do lazy initialization.
1135   initializeIndexIfNeeded();
1136 
1137   // Find the Module path in the map
1138   auto I = ModulePathMap.find(Path);
1139   return I == ModulePathMap.end() ? -1 : (int)I->second;
1140 }
1141 
1142 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1143   // Check for uninitialized state and do lazy initialization.
1144   initializeIndexIfNeeded();
1145 
1146   // Find the GUID in the map
1147   guid_iterator I = GUIDMap.find(GUID);
1148   return I == GUIDMap.end() ? -1 : (int)I->second;
1149 }
1150 
1151 int SlotTracker::getTypeIdSlot(StringRef Id) {
1152   // Check for uninitialized state and do lazy initialization.
1153   initializeIndexIfNeeded();
1154 
1155   // Find the TypeId string in the map
1156   auto I = TypeIdMap.find(Id);
1157   return I == TypeIdMap.end() ? -1 : (int)I->second;
1158 }
1159 
1160 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1161 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1162   assert(V && "Can't insert a null Value into SlotTracker!");
1163   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1164   assert(!V->hasName() && "Doesn't need a slot!");
1165 
1166   unsigned DestSlot = mNext++;
1167   mMap[V] = DestSlot;
1168 
1169   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1170            DestSlot << " [");
1171   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1172   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1173             (isa<Function>(V) ? 'F' :
1174              (isa<GlobalAlias>(V) ? 'A' :
1175               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1176 }
1177 
1178 /// CreateSlot - Create a new slot for the specified value if it has no name.
1179 void SlotTracker::CreateFunctionSlot(const Value *V) {
1180   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1181 
1182   unsigned DestSlot = fNext++;
1183   fMap[V] = DestSlot;
1184 
1185   // G = Global, F = Function, o = other
1186   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1187            DestSlot << " [o]\n");
1188 }
1189 
1190 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1191 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1192   assert(N && "Can't insert a null Value into SlotTracker!");
1193 
1194   // Don't make slots for DIExpressions. We just print them inline everywhere.
1195   if (isa<DIExpression>(N))
1196     return;
1197 
1198   unsigned DestSlot = mdnNext;
1199   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1200     return;
1201   ++mdnNext;
1202 
1203   // Recursively add any MDNodes referenced by operands.
1204   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1205     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1206       CreateMetadataSlot(Op);
1207 }
1208 
1209 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1210   assert(AS.hasAttributes() && "Doesn't need a slot!");
1211 
1212   as_iterator I = asMap.find(AS);
1213   if (I != asMap.end())
1214     return;
1215 
1216   unsigned DestSlot = asNext++;
1217   asMap[AS] = DestSlot;
1218 }
1219 
1220 /// Create a new slot for the specified Module
1221 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1222   ModulePathMap[Path] = ModulePathNext++;
1223 }
1224 
1225 /// Create a new slot for the specified GUID
1226 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1227   GUIDMap[GUID] = GUIDNext++;
1228 }
1229 
1230 /// Create a new slot for the specified Id
1231 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1232   TypeIdMap[Id] = TypeIdNext++;
1233 }
1234 
1235 //===----------------------------------------------------------------------===//
1236 // AsmWriter Implementation
1237 //===----------------------------------------------------------------------===//
1238 
1239 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1240                                    TypePrinting *TypePrinter,
1241                                    SlotTracker *Machine,
1242                                    const Module *Context);
1243 
1244 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1245                                    TypePrinting *TypePrinter,
1246                                    SlotTracker *Machine, const Module *Context,
1247                                    bool FromValue = false);
1248 
1249 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1250   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1251     // 'Fast' is an abbreviation for all fast-math-flags.
1252     if (FPO->isFast())
1253       Out << " fast";
1254     else {
1255       if (FPO->hasAllowReassoc())
1256         Out << " reassoc";
1257       if (FPO->hasNoNaNs())
1258         Out << " nnan";
1259       if (FPO->hasNoInfs())
1260         Out << " ninf";
1261       if (FPO->hasNoSignedZeros())
1262         Out << " nsz";
1263       if (FPO->hasAllowReciprocal())
1264         Out << " arcp";
1265       if (FPO->hasAllowContract())
1266         Out << " contract";
1267       if (FPO->hasApproxFunc())
1268         Out << " afn";
1269     }
1270   }
1271 
1272   if (const OverflowingBinaryOperator *OBO =
1273         dyn_cast<OverflowingBinaryOperator>(U)) {
1274     if (OBO->hasNoUnsignedWrap())
1275       Out << " nuw";
1276     if (OBO->hasNoSignedWrap())
1277       Out << " nsw";
1278   } else if (const PossiblyExactOperator *Div =
1279                dyn_cast<PossiblyExactOperator>(U)) {
1280     if (Div->isExact())
1281       Out << " exact";
1282   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1283     if (GEP->isInBounds())
1284       Out << " inbounds";
1285   }
1286 }
1287 
1288 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1289                                   TypePrinting &TypePrinter,
1290                                   SlotTracker *Machine,
1291                                   const Module *Context) {
1292   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1293     if (CI->getType()->isIntegerTy(1)) {
1294       Out << (CI->getZExtValue() ? "true" : "false");
1295       return;
1296     }
1297     Out << CI->getValue();
1298     return;
1299   }
1300 
1301   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1302     const APFloat &APF = CFP->getValueAPF();
1303     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1304         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1305       // We would like to output the FP constant value in exponential notation,
1306       // but we cannot do this if doing so will lose precision.  Check here to
1307       // make sure that we only output it in exponential format if we can parse
1308       // the value back and get the same value.
1309       //
1310       bool ignored;
1311       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1312       bool isInf = APF.isInfinity();
1313       bool isNaN = APF.isNaN();
1314       if (!isInf && !isNaN) {
1315         double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1316         SmallString<128> StrVal;
1317         APF.toString(StrVal, 6, 0, false);
1318         // Check to make sure that the stringized number is not some string like
1319         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1320         // that the string matches the "[-+]?[0-9]" regex.
1321         //
1322         assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1323                 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1324                  (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1325                "[-+]?[0-9] regex does not match!");
1326         // Reparse stringized version!
1327         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1328           Out << StrVal;
1329           return;
1330         }
1331       }
1332       // Otherwise we could not reparse it to exactly the same value, so we must
1333       // output the string in hexadecimal format!  Note that loading and storing
1334       // floating point types changes the bits of NaNs on some hosts, notably
1335       // x86, so we must not use these types.
1336       static_assert(sizeof(double) == sizeof(uint64_t),
1337                     "assuming that double is 64 bits!");
1338       APFloat apf = APF;
1339       // Floats are represented in ASCII IR as double, convert.
1340       if (!isDouble)
1341         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1342                           &ignored);
1343       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1344       return;
1345     }
1346 
1347     // Either half, or some form of long double.
1348     // These appear as a magic letter identifying the type, then a
1349     // fixed number of hex digits.
1350     Out << "0x";
1351     APInt API = APF.bitcastToAPInt();
1352     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1353       Out << 'K';
1354       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1355                                   /*Upper=*/true);
1356       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1357                                   /*Upper=*/true);
1358       return;
1359     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1360       Out << 'L';
1361       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1362                                   /*Upper=*/true);
1363       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1364                                   /*Upper=*/true);
1365     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1366       Out << 'M';
1367       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1368                                   /*Upper=*/true);
1369       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1370                                   /*Upper=*/true);
1371     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1372       Out << 'H';
1373       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1374                                   /*Upper=*/true);
1375     } else
1376       llvm_unreachable("Unsupported floating point type");
1377     return;
1378   }
1379 
1380   if (isa<ConstantAggregateZero>(CV)) {
1381     Out << "zeroinitializer";
1382     return;
1383   }
1384 
1385   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1386     Out << "blockaddress(";
1387     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1388                            Context);
1389     Out << ", ";
1390     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1391                            Context);
1392     Out << ")";
1393     return;
1394   }
1395 
1396   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1397     Type *ETy = CA->getType()->getElementType();
1398     Out << '[';
1399     TypePrinter.print(ETy, Out);
1400     Out << ' ';
1401     WriteAsOperandInternal(Out, CA->getOperand(0),
1402                            &TypePrinter, Machine,
1403                            Context);
1404     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1405       Out << ", ";
1406       TypePrinter.print(ETy, Out);
1407       Out << ' ';
1408       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1409                              Context);
1410     }
1411     Out << ']';
1412     return;
1413   }
1414 
1415   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1416     // As a special case, print the array as a string if it is an array of
1417     // i8 with ConstantInt values.
1418     if (CA->isString()) {
1419       Out << "c\"";
1420       printEscapedString(CA->getAsString(), Out);
1421       Out << '"';
1422       return;
1423     }
1424 
1425     Type *ETy = CA->getType()->getElementType();
1426     Out << '[';
1427     TypePrinter.print(ETy, Out);
1428     Out << ' ';
1429     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1430                            &TypePrinter, Machine,
1431                            Context);
1432     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1433       Out << ", ";
1434       TypePrinter.print(ETy, Out);
1435       Out << ' ';
1436       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1437                              Machine, Context);
1438     }
1439     Out << ']';
1440     return;
1441   }
1442 
1443   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1444     if (CS->getType()->isPacked())
1445       Out << '<';
1446     Out << '{';
1447     unsigned N = CS->getNumOperands();
1448     if (N) {
1449       Out << ' ';
1450       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1451       Out << ' ';
1452 
1453       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1454                              Context);
1455 
1456       for (unsigned i = 1; i < N; i++) {
1457         Out << ", ";
1458         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1459         Out << ' ';
1460 
1461         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1462                                Context);
1463       }
1464       Out << ' ';
1465     }
1466 
1467     Out << '}';
1468     if (CS->getType()->isPacked())
1469       Out << '>';
1470     return;
1471   }
1472 
1473   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1474     Type *ETy = CV->getType()->getVectorElementType();
1475     Out << '<';
1476     TypePrinter.print(ETy, Out);
1477     Out << ' ';
1478     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1479                            Machine, Context);
1480     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1481       Out << ", ";
1482       TypePrinter.print(ETy, Out);
1483       Out << ' ';
1484       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1485                              Machine, Context);
1486     }
1487     Out << '>';
1488     return;
1489   }
1490 
1491   if (isa<ConstantPointerNull>(CV)) {
1492     Out << "null";
1493     return;
1494   }
1495 
1496   if (isa<ConstantTokenNone>(CV)) {
1497     Out << "none";
1498     return;
1499   }
1500 
1501   if (isa<UndefValue>(CV)) {
1502     Out << "undef";
1503     return;
1504   }
1505 
1506   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1507     Out << CE->getOpcodeName();
1508     WriteOptimizationInfo(Out, CE);
1509     if (CE->isCompare())
1510       Out << ' ' << CmpInst::getPredicateName(
1511                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1512     Out << " (";
1513 
1514     Optional<unsigned> InRangeOp;
1515     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1516       TypePrinter.print(GEP->getSourceElementType(), Out);
1517       Out << ", ";
1518       InRangeOp = GEP->getInRangeIndex();
1519       if (InRangeOp)
1520         ++*InRangeOp;
1521     }
1522 
1523     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1524       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1525         Out << "inrange ";
1526       TypePrinter.print((*OI)->getType(), Out);
1527       Out << ' ';
1528       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1529       if (OI+1 != CE->op_end())
1530         Out << ", ";
1531     }
1532 
1533     if (CE->hasIndices()) {
1534       ArrayRef<unsigned> Indices = CE->getIndices();
1535       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1536         Out << ", " << Indices[i];
1537     }
1538 
1539     if (CE->isCast()) {
1540       Out << " to ";
1541       TypePrinter.print(CE->getType(), Out);
1542     }
1543 
1544     Out << ')';
1545     return;
1546   }
1547 
1548   Out << "<placeholder or erroneous Constant>";
1549 }
1550 
1551 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1552                          TypePrinting *TypePrinter, SlotTracker *Machine,
1553                          const Module *Context) {
1554   Out << "!{";
1555   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1556     const Metadata *MD = Node->getOperand(mi);
1557     if (!MD)
1558       Out << "null";
1559     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1560       Value *V = MDV->getValue();
1561       TypePrinter->print(V->getType(), Out);
1562       Out << ' ';
1563       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1564     } else {
1565       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1566     }
1567     if (mi + 1 != me)
1568       Out << ", ";
1569   }
1570 
1571   Out << "}";
1572 }
1573 
1574 namespace {
1575 
1576 struct FieldSeparator {
1577   bool Skip = true;
1578   const char *Sep;
1579 
1580   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1581 };
1582 
1583 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1584   if (FS.Skip) {
1585     FS.Skip = false;
1586     return OS;
1587   }
1588   return OS << FS.Sep;
1589 }
1590 
1591 struct MDFieldPrinter {
1592   raw_ostream &Out;
1593   FieldSeparator FS;
1594   TypePrinting *TypePrinter = nullptr;
1595   SlotTracker *Machine = nullptr;
1596   const Module *Context = nullptr;
1597 
1598   explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1599   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1600                  SlotTracker *Machine, const Module *Context)
1601       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1602   }
1603 
1604   void printTag(const DINode *N);
1605   void printMacinfoType(const DIMacroNode *N);
1606   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1607   void printString(StringRef Name, StringRef Value,
1608                    bool ShouldSkipEmpty = true);
1609   void printMetadata(StringRef Name, const Metadata *MD,
1610                      bool ShouldSkipNull = true);
1611   template <class IntTy>
1612   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1613   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1614   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1615   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1616   template <class IntTy, class Stringifier>
1617   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1618                       bool ShouldSkipZero = true);
1619   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1620   void printNameTableKind(StringRef Name,
1621                           DICompileUnit::DebugNameTableKind NTK);
1622 };
1623 
1624 } // end anonymous namespace
1625 
1626 void MDFieldPrinter::printTag(const DINode *N) {
1627   Out << FS << "tag: ";
1628   auto Tag = dwarf::TagString(N->getTag());
1629   if (!Tag.empty())
1630     Out << Tag;
1631   else
1632     Out << N->getTag();
1633 }
1634 
1635 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1636   Out << FS << "type: ";
1637   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1638   if (!Type.empty())
1639     Out << Type;
1640   else
1641     Out << N->getMacinfoType();
1642 }
1643 
1644 void MDFieldPrinter::printChecksum(
1645     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1646   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1647   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1648 }
1649 
1650 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1651                                  bool ShouldSkipEmpty) {
1652   if (ShouldSkipEmpty && Value.empty())
1653     return;
1654 
1655   Out << FS << Name << ": \"";
1656   printEscapedString(Value, Out);
1657   Out << "\"";
1658 }
1659 
1660 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1661                                    TypePrinting *TypePrinter,
1662                                    SlotTracker *Machine,
1663                                    const Module *Context) {
1664   if (!MD) {
1665     Out << "null";
1666     return;
1667   }
1668   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1669 }
1670 
1671 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1672                                    bool ShouldSkipNull) {
1673   if (ShouldSkipNull && !MD)
1674     return;
1675 
1676   Out << FS << Name << ": ";
1677   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1678 }
1679 
1680 template <class IntTy>
1681 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1682   if (ShouldSkipZero && !Int)
1683     return;
1684 
1685   Out << FS << Name << ": " << Int;
1686 }
1687 
1688 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1689                                Optional<bool> Default) {
1690   if (Default && Value == *Default)
1691     return;
1692   Out << FS << Name << ": " << (Value ? "true" : "false");
1693 }
1694 
1695 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1696   if (!Flags)
1697     return;
1698 
1699   Out << FS << Name << ": ";
1700 
1701   SmallVector<DINode::DIFlags, 8> SplitFlags;
1702   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1703 
1704   FieldSeparator FlagsFS(" | ");
1705   for (auto F : SplitFlags) {
1706     auto StringF = DINode::getFlagString(F);
1707     assert(!StringF.empty() && "Expected valid flag");
1708     Out << FlagsFS << StringF;
1709   }
1710   if (Extra || SplitFlags.empty())
1711     Out << FlagsFS << Extra;
1712 }
1713 
1714 void MDFieldPrinter::printDISPFlags(StringRef Name,
1715                                     DISubprogram::DISPFlags Flags) {
1716   // Always print this field, because no flags in the IR at all will be
1717   // interpreted as old-style isDefinition: true.
1718   Out << FS << Name << ": ";
1719 
1720   if (!Flags) {
1721     Out << 0;
1722     return;
1723   }
1724 
1725   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1726   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1727 
1728   FieldSeparator FlagsFS(" | ");
1729   for (auto F : SplitFlags) {
1730     auto StringF = DISubprogram::getFlagString(F);
1731     assert(!StringF.empty() && "Expected valid flag");
1732     Out << FlagsFS << StringF;
1733   }
1734   if (Extra || SplitFlags.empty())
1735     Out << FlagsFS << Extra;
1736 }
1737 
1738 void MDFieldPrinter::printEmissionKind(StringRef Name,
1739                                        DICompileUnit::DebugEmissionKind EK) {
1740   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1741 }
1742 
1743 void MDFieldPrinter::printNameTableKind(StringRef Name,
1744                                         DICompileUnit::DebugNameTableKind NTK) {
1745   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1746     return;
1747   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1748 }
1749 
1750 template <class IntTy, class Stringifier>
1751 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1752                                     Stringifier toString, bool ShouldSkipZero) {
1753   if (!Value)
1754     return;
1755 
1756   Out << FS << Name << ": ";
1757   auto S = toString(Value);
1758   if (!S.empty())
1759     Out << S;
1760   else
1761     Out << Value;
1762 }
1763 
1764 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1765                                TypePrinting *TypePrinter, SlotTracker *Machine,
1766                                const Module *Context) {
1767   Out << "!GenericDINode(";
1768   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1769   Printer.printTag(N);
1770   Printer.printString("header", N->getHeader());
1771   if (N->getNumDwarfOperands()) {
1772     Out << Printer.FS << "operands: {";
1773     FieldSeparator IFS;
1774     for (auto &I : N->dwarf_operands()) {
1775       Out << IFS;
1776       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1777     }
1778     Out << "}";
1779   }
1780   Out << ")";
1781 }
1782 
1783 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1784                             TypePrinting *TypePrinter, SlotTracker *Machine,
1785                             const Module *Context) {
1786   Out << "!DILocation(";
1787   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1788   // Always output the line, since 0 is a relevant and important value for it.
1789   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1790   Printer.printInt("column", DL->getColumn());
1791   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1792   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1793   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1794                     /* Default */ false);
1795   Out << ")";
1796 }
1797 
1798 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1799                             TypePrinting *TypePrinter, SlotTracker *Machine,
1800                             const Module *Context) {
1801   Out << "!DISubrange(";
1802   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1803   if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
1804     Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
1805   else
1806     Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(),
1807                           /*ShouldSkipNull */ false);
1808   Printer.printInt("lowerBound", N->getLowerBound());
1809   Out << ")";
1810 }
1811 
1812 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1813                               TypePrinting *, SlotTracker *, const Module *) {
1814   Out << "!DIEnumerator(";
1815   MDFieldPrinter Printer(Out);
1816   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1817   if (N->isUnsigned()) {
1818     auto Value = static_cast<uint64_t>(N->getValue());
1819     Printer.printInt("value", Value, /* ShouldSkipZero */ false);
1820     Printer.printBool("isUnsigned", true);
1821   } else {
1822     Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1823   }
1824   Out << ")";
1825 }
1826 
1827 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1828                              TypePrinting *, SlotTracker *, const Module *) {
1829   Out << "!DIBasicType(";
1830   MDFieldPrinter Printer(Out);
1831   if (N->getTag() != dwarf::DW_TAG_base_type)
1832     Printer.printTag(N);
1833   Printer.printString("name", N->getName());
1834   Printer.printInt("size", N->getSizeInBits());
1835   Printer.printInt("align", N->getAlignInBits());
1836   Printer.printDwarfEnum("encoding", N->getEncoding(),
1837                          dwarf::AttributeEncodingString);
1838   Printer.printDIFlags("flags", N->getFlags());
1839   Out << ")";
1840 }
1841 
1842 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1843                                TypePrinting *TypePrinter, SlotTracker *Machine,
1844                                const Module *Context) {
1845   Out << "!DIDerivedType(";
1846   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1847   Printer.printTag(N);
1848   Printer.printString("name", N->getName());
1849   Printer.printMetadata("scope", N->getRawScope());
1850   Printer.printMetadata("file", N->getRawFile());
1851   Printer.printInt("line", N->getLine());
1852   Printer.printMetadata("baseType", N->getRawBaseType(),
1853                         /* ShouldSkipNull */ false);
1854   Printer.printInt("size", N->getSizeInBits());
1855   Printer.printInt("align", N->getAlignInBits());
1856   Printer.printInt("offset", N->getOffsetInBits());
1857   Printer.printDIFlags("flags", N->getFlags());
1858   Printer.printMetadata("extraData", N->getRawExtraData());
1859   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1860     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1861                      /* ShouldSkipZero */ false);
1862   Out << ")";
1863 }
1864 
1865 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1866                                  TypePrinting *TypePrinter,
1867                                  SlotTracker *Machine, const Module *Context) {
1868   Out << "!DICompositeType(";
1869   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1870   Printer.printTag(N);
1871   Printer.printString("name", N->getName());
1872   Printer.printMetadata("scope", N->getRawScope());
1873   Printer.printMetadata("file", N->getRawFile());
1874   Printer.printInt("line", N->getLine());
1875   Printer.printMetadata("baseType", N->getRawBaseType());
1876   Printer.printInt("size", N->getSizeInBits());
1877   Printer.printInt("align", N->getAlignInBits());
1878   Printer.printInt("offset", N->getOffsetInBits());
1879   Printer.printDIFlags("flags", N->getFlags());
1880   Printer.printMetadata("elements", N->getRawElements());
1881   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1882                          dwarf::LanguageString);
1883   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1884   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1885   Printer.printString("identifier", N->getIdentifier());
1886   Printer.printMetadata("discriminator", N->getRawDiscriminator());
1887   Out << ")";
1888 }
1889 
1890 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1891                                   TypePrinting *TypePrinter,
1892                                   SlotTracker *Machine, const Module *Context) {
1893   Out << "!DISubroutineType(";
1894   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1895   Printer.printDIFlags("flags", N->getFlags());
1896   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1897   Printer.printMetadata("types", N->getRawTypeArray(),
1898                         /* ShouldSkipNull */ false);
1899   Out << ")";
1900 }
1901 
1902 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1903                         SlotTracker *, const Module *) {
1904   Out << "!DIFile(";
1905   MDFieldPrinter Printer(Out);
1906   Printer.printString("filename", N->getFilename(),
1907                       /* ShouldSkipEmpty */ false);
1908   Printer.printString("directory", N->getDirectory(),
1909                       /* ShouldSkipEmpty */ false);
1910   // Print all values for checksum together, or not at all.
1911   if (N->getChecksum())
1912     Printer.printChecksum(*N->getChecksum());
1913   Printer.printString("source", N->getSource().getValueOr(StringRef()),
1914                       /* ShouldSkipEmpty */ true);
1915   Out << ")";
1916 }
1917 
1918 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1919                                TypePrinting *TypePrinter, SlotTracker *Machine,
1920                                const Module *Context) {
1921   Out << "!DICompileUnit(";
1922   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1923   Printer.printDwarfEnum("language", N->getSourceLanguage(),
1924                          dwarf::LanguageString, /* ShouldSkipZero */ false);
1925   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1926   Printer.printString("producer", N->getProducer());
1927   Printer.printBool("isOptimized", N->isOptimized());
1928   Printer.printString("flags", N->getFlags());
1929   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1930                    /* ShouldSkipZero */ false);
1931   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1932   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1933   Printer.printMetadata("enums", N->getRawEnumTypes());
1934   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1935   Printer.printMetadata("globals", N->getRawGlobalVariables());
1936   Printer.printMetadata("imports", N->getRawImportedEntities());
1937   Printer.printMetadata("macros", N->getRawMacros());
1938   Printer.printInt("dwoId", N->getDWOId());
1939   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1940   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
1941                     false);
1942   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
1943   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
1944   Out << ")";
1945 }
1946 
1947 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1948                               TypePrinting *TypePrinter, SlotTracker *Machine,
1949                               const Module *Context) {
1950   Out << "!DISubprogram(";
1951   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1952   Printer.printString("name", N->getName());
1953   Printer.printString("linkageName", N->getLinkageName());
1954   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1955   Printer.printMetadata("file", N->getRawFile());
1956   Printer.printInt("line", N->getLine());
1957   Printer.printMetadata("type", N->getRawType());
1958   Printer.printInt("scopeLine", N->getScopeLine());
1959   Printer.printMetadata("containingType", N->getRawContainingType());
1960   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1961       N->getVirtualIndex() != 0)
1962     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1963   Printer.printInt("thisAdjustment", N->getThisAdjustment());
1964   Printer.printDIFlags("flags", N->getFlags());
1965   Printer.printDISPFlags("spFlags", N->getSPFlags());
1966   Printer.printMetadata("unit", N->getRawUnit());
1967   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1968   Printer.printMetadata("declaration", N->getRawDeclaration());
1969   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
1970   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
1971   Out << ")";
1972 }
1973 
1974 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1975                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1976                                 const Module *Context) {
1977   Out << "!DILexicalBlock(";
1978   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1979   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1980   Printer.printMetadata("file", N->getRawFile());
1981   Printer.printInt("line", N->getLine());
1982   Printer.printInt("column", N->getColumn());
1983   Out << ")";
1984 }
1985 
1986 static void writeDILexicalBlockFile(raw_ostream &Out,
1987                                     const DILexicalBlockFile *N,
1988                                     TypePrinting *TypePrinter,
1989                                     SlotTracker *Machine,
1990                                     const Module *Context) {
1991   Out << "!DILexicalBlockFile(";
1992   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1993   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1994   Printer.printMetadata("file", N->getRawFile());
1995   Printer.printInt("discriminator", N->getDiscriminator(),
1996                    /* ShouldSkipZero */ false);
1997   Out << ")";
1998 }
1999 
2000 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2001                              TypePrinting *TypePrinter, SlotTracker *Machine,
2002                              const Module *Context) {
2003   Out << "!DINamespace(";
2004   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2005   Printer.printString("name", N->getName());
2006   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2007   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2008   Out << ")";
2009 }
2010 
2011 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2012                                TypePrinting *TypePrinter, SlotTracker *Machine,
2013                                const Module *Context) {
2014   Out << "!DICommonBlock(";
2015   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2016   Printer.printMetadata("scope", N->getRawScope(), false);
2017   Printer.printMetadata("declaration", N->getRawDecl(), false);
2018   Printer.printString("name", N->getName());
2019   Printer.printMetadata("file", N->getRawFile());
2020   Printer.printInt("line", N->getLineNo());
2021   Out << ")";
2022 }
2023 
2024 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2025                          TypePrinting *TypePrinter, SlotTracker *Machine,
2026                          const Module *Context) {
2027   Out << "!DIMacro(";
2028   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2029   Printer.printMacinfoType(N);
2030   Printer.printInt("line", N->getLine());
2031   Printer.printString("name", N->getName());
2032   Printer.printString("value", N->getValue());
2033   Out << ")";
2034 }
2035 
2036 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2037                              TypePrinting *TypePrinter, SlotTracker *Machine,
2038                              const Module *Context) {
2039   Out << "!DIMacroFile(";
2040   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2041   Printer.printInt("line", N->getLine());
2042   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2043   Printer.printMetadata("nodes", N->getRawElements());
2044   Out << ")";
2045 }
2046 
2047 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2048                           TypePrinting *TypePrinter, SlotTracker *Machine,
2049                           const Module *Context) {
2050   Out << "!DIModule(";
2051   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2052   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2053   Printer.printString("name", N->getName());
2054   Printer.printString("configMacros", N->getConfigurationMacros());
2055   Printer.printString("includePath", N->getIncludePath());
2056   Printer.printString("isysroot", N->getISysRoot());
2057   Out << ")";
2058 }
2059 
2060 
2061 static void writeDITemplateTypeParameter(raw_ostream &Out,
2062                                          const DITemplateTypeParameter *N,
2063                                          TypePrinting *TypePrinter,
2064                                          SlotTracker *Machine,
2065                                          const Module *Context) {
2066   Out << "!DITemplateTypeParameter(";
2067   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2068   Printer.printString("name", N->getName());
2069   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2070   Out << ")";
2071 }
2072 
2073 static void writeDITemplateValueParameter(raw_ostream &Out,
2074                                           const DITemplateValueParameter *N,
2075                                           TypePrinting *TypePrinter,
2076                                           SlotTracker *Machine,
2077                                           const Module *Context) {
2078   Out << "!DITemplateValueParameter(";
2079   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2080   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2081     Printer.printTag(N);
2082   Printer.printString("name", N->getName());
2083   Printer.printMetadata("type", N->getRawType());
2084   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2085   Out << ")";
2086 }
2087 
2088 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2089                                   TypePrinting *TypePrinter,
2090                                   SlotTracker *Machine, const Module *Context) {
2091   Out << "!DIGlobalVariable(";
2092   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2093   Printer.printString("name", N->getName());
2094   Printer.printString("linkageName", N->getLinkageName());
2095   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2096   Printer.printMetadata("file", N->getRawFile());
2097   Printer.printInt("line", N->getLine());
2098   Printer.printMetadata("type", N->getRawType());
2099   Printer.printBool("isLocal", N->isLocalToUnit());
2100   Printer.printBool("isDefinition", N->isDefinition());
2101   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2102   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2103   Printer.printInt("align", N->getAlignInBits());
2104   Out << ")";
2105 }
2106 
2107 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2108                                  TypePrinting *TypePrinter,
2109                                  SlotTracker *Machine, const Module *Context) {
2110   Out << "!DILocalVariable(";
2111   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2112   Printer.printString("name", N->getName());
2113   Printer.printInt("arg", N->getArg());
2114   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2115   Printer.printMetadata("file", N->getRawFile());
2116   Printer.printInt("line", N->getLine());
2117   Printer.printMetadata("type", N->getRawType());
2118   Printer.printDIFlags("flags", N->getFlags());
2119   Printer.printInt("align", N->getAlignInBits());
2120   Out << ")";
2121 }
2122 
2123 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2124                          TypePrinting *TypePrinter,
2125                          SlotTracker *Machine, const Module *Context) {
2126   Out << "!DILabel(";
2127   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2128   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2129   Printer.printString("name", N->getName());
2130   Printer.printMetadata("file", N->getRawFile());
2131   Printer.printInt("line", N->getLine());
2132   Out << ")";
2133 }
2134 
2135 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2136                               TypePrinting *TypePrinter, SlotTracker *Machine,
2137                               const Module *Context) {
2138   Out << "!DIExpression(";
2139   FieldSeparator FS;
2140   if (N->isValid()) {
2141     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
2142       auto OpStr = dwarf::OperationEncodingString(I->getOp());
2143       assert(!OpStr.empty() && "Expected valid opcode");
2144 
2145       Out << FS << OpStr;
2146       if (I->getOp() == dwarf::DW_OP_LLVM_convert) {
2147         Out << FS << I->getArg(0);
2148         Out << FS << dwarf::AttributeEncodingString(I->getArg(1));
2149       } else {
2150         for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
2151           Out << FS << I->getArg(A);
2152       }
2153     }
2154   } else {
2155     for (const auto &I : N->getElements())
2156       Out << FS << I;
2157   }
2158   Out << ")";
2159 }
2160 
2161 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2162                                             const DIGlobalVariableExpression *N,
2163                                             TypePrinting *TypePrinter,
2164                                             SlotTracker *Machine,
2165                                             const Module *Context) {
2166   Out << "!DIGlobalVariableExpression(";
2167   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2168   Printer.printMetadata("var", N->getVariable());
2169   Printer.printMetadata("expr", N->getExpression());
2170   Out << ")";
2171 }
2172 
2173 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2174                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2175                                 const Module *Context) {
2176   Out << "!DIObjCProperty(";
2177   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2178   Printer.printString("name", N->getName());
2179   Printer.printMetadata("file", N->getRawFile());
2180   Printer.printInt("line", N->getLine());
2181   Printer.printString("setter", N->getSetterName());
2182   Printer.printString("getter", N->getGetterName());
2183   Printer.printInt("attributes", N->getAttributes());
2184   Printer.printMetadata("type", N->getRawType());
2185   Out << ")";
2186 }
2187 
2188 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2189                                   TypePrinting *TypePrinter,
2190                                   SlotTracker *Machine, const Module *Context) {
2191   Out << "!DIImportedEntity(";
2192   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2193   Printer.printTag(N);
2194   Printer.printString("name", N->getName());
2195   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2196   Printer.printMetadata("entity", N->getRawEntity());
2197   Printer.printMetadata("file", N->getRawFile());
2198   Printer.printInt("line", N->getLine());
2199   Out << ")";
2200 }
2201 
2202 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2203                                     TypePrinting *TypePrinter,
2204                                     SlotTracker *Machine,
2205                                     const Module *Context) {
2206   if (Node->isDistinct())
2207     Out << "distinct ";
2208   else if (Node->isTemporary())
2209     Out << "<temporary!> "; // Handle broken code.
2210 
2211   switch (Node->getMetadataID()) {
2212   default:
2213     llvm_unreachable("Expected uniquable MDNode");
2214 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2215   case Metadata::CLASS##Kind:                                                  \
2216     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
2217     break;
2218 #include "llvm/IR/Metadata.def"
2219   }
2220 }
2221 
2222 // Full implementation of printing a Value as an operand with support for
2223 // TypePrinting, etc.
2224 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2225                                    TypePrinting *TypePrinter,
2226                                    SlotTracker *Machine,
2227                                    const Module *Context) {
2228   if (V->hasName()) {
2229     PrintLLVMName(Out, V);
2230     return;
2231   }
2232 
2233   const Constant *CV = dyn_cast<Constant>(V);
2234   if (CV && !isa<GlobalValue>(CV)) {
2235     assert(TypePrinter && "Constants require TypePrinting!");
2236     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2237     return;
2238   }
2239 
2240   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2241     Out << "asm ";
2242     if (IA->hasSideEffects())
2243       Out << "sideeffect ";
2244     if (IA->isAlignStack())
2245       Out << "alignstack ";
2246     // We don't emit the AD_ATT dialect as it's the assumed default.
2247     if (IA->getDialect() == InlineAsm::AD_Intel)
2248       Out << "inteldialect ";
2249     Out << '"';
2250     printEscapedString(IA->getAsmString(), Out);
2251     Out << "\", \"";
2252     printEscapedString(IA->getConstraintString(), Out);
2253     Out << '"';
2254     return;
2255   }
2256 
2257   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2258     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2259                            Context, /* FromValue */ true);
2260     return;
2261   }
2262 
2263   char Prefix = '%';
2264   int Slot;
2265   // If we have a SlotTracker, use it.
2266   if (Machine) {
2267     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2268       Slot = Machine->getGlobalSlot(GV);
2269       Prefix = '@';
2270     } else {
2271       Slot = Machine->getLocalSlot(V);
2272 
2273       // If the local value didn't succeed, then we may be referring to a value
2274       // from a different function.  Translate it, as this can happen when using
2275       // address of blocks.
2276       if (Slot == -1)
2277         if ((Machine = createSlotTracker(V))) {
2278           Slot = Machine->getLocalSlot(V);
2279           delete Machine;
2280         }
2281     }
2282   } else if ((Machine = createSlotTracker(V))) {
2283     // Otherwise, create one to get the # and then destroy it.
2284     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2285       Slot = Machine->getGlobalSlot(GV);
2286       Prefix = '@';
2287     } else {
2288       Slot = Machine->getLocalSlot(V);
2289     }
2290     delete Machine;
2291     Machine = nullptr;
2292   } else {
2293     Slot = -1;
2294   }
2295 
2296   if (Slot != -1)
2297     Out << Prefix << Slot;
2298   else
2299     Out << "<badref>";
2300 }
2301 
2302 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2303                                    TypePrinting *TypePrinter,
2304                                    SlotTracker *Machine, const Module *Context,
2305                                    bool FromValue) {
2306   // Write DIExpressions inline when used as a value. Improves readability of
2307   // debug info intrinsics.
2308   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2309     writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2310     return;
2311   }
2312 
2313   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2314     std::unique_ptr<SlotTracker> MachineStorage;
2315     if (!Machine) {
2316       MachineStorage = std::make_unique<SlotTracker>(Context);
2317       Machine = MachineStorage.get();
2318     }
2319     int Slot = Machine->getMetadataSlot(N);
2320     if (Slot == -1) {
2321       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2322         writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2323         return;
2324       }
2325       // Give the pointer value instead of "badref", since this comes up all
2326       // the time when debugging.
2327       Out << "<" << N << ">";
2328     } else
2329       Out << '!' << Slot;
2330     return;
2331   }
2332 
2333   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2334     Out << "!\"";
2335     printEscapedString(MDS->getString(), Out);
2336     Out << '"';
2337     return;
2338   }
2339 
2340   auto *V = cast<ValueAsMetadata>(MD);
2341   assert(TypePrinter && "TypePrinter required for metadata values");
2342   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2343          "Unexpected function-local metadata outside of value argument");
2344 
2345   TypePrinter->print(V->getValue()->getType(), Out);
2346   Out << ' ';
2347   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2348 }
2349 
2350 namespace {
2351 
2352 class AssemblyWriter {
2353   formatted_raw_ostream &Out;
2354   const Module *TheModule = nullptr;
2355   const ModuleSummaryIndex *TheIndex = nullptr;
2356   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2357   SlotTracker &Machine;
2358   TypePrinting TypePrinter;
2359   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2360   SetVector<const Comdat *> Comdats;
2361   bool IsForDebug;
2362   bool ShouldPreserveUseListOrder;
2363   UseListOrderStack UseListOrders;
2364   SmallVector<StringRef, 8> MDNames;
2365   /// Synchronization scope names registered with LLVMContext.
2366   SmallVector<StringRef, 8> SSNs;
2367   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2368 
2369 public:
2370   /// Construct an AssemblyWriter with an external SlotTracker
2371   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2372                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2373                  bool ShouldPreserveUseListOrder = false);
2374 
2375   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2376                  const ModuleSummaryIndex *Index, bool IsForDebug);
2377 
2378   void printMDNodeBody(const MDNode *MD);
2379   void printNamedMDNode(const NamedMDNode *NMD);
2380 
2381   void printModule(const Module *M);
2382 
2383   void writeOperand(const Value *Op, bool PrintType);
2384   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2385   void writeOperandBundles(const CallBase *Call);
2386   void writeSyncScope(const LLVMContext &Context,
2387                       SyncScope::ID SSID);
2388   void writeAtomic(const LLVMContext &Context,
2389                    AtomicOrdering Ordering,
2390                    SyncScope::ID SSID);
2391   void writeAtomicCmpXchg(const LLVMContext &Context,
2392                           AtomicOrdering SuccessOrdering,
2393                           AtomicOrdering FailureOrdering,
2394                           SyncScope::ID SSID);
2395 
2396   void writeAllMDNodes();
2397   void writeMDNode(unsigned Slot, const MDNode *Node);
2398   void writeAllAttributeGroups();
2399 
2400   void printTypeIdentities();
2401   void printGlobal(const GlobalVariable *GV);
2402   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2403   void printComdat(const Comdat *C);
2404   void printFunction(const Function *F);
2405   void printArgument(const Argument *FA, AttributeSet Attrs);
2406   void printBasicBlock(const BasicBlock *BB);
2407   void printInstructionLine(const Instruction &I);
2408   void printInstruction(const Instruction &I);
2409 
2410   void printUseListOrder(const UseListOrder &Order);
2411   void printUseLists(const Function *F);
2412 
2413   void printModuleSummaryIndex();
2414   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2415   void printSummary(const GlobalValueSummary &Summary);
2416   void printAliasSummary(const AliasSummary *AS);
2417   void printGlobalVarSummary(const GlobalVarSummary *GS);
2418   void printFunctionSummary(const FunctionSummary *FS);
2419   void printTypeIdSummary(const TypeIdSummary &TIS);
2420   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2421   void printTypeTestResolution(const TypeTestResolution &TTRes);
2422   void printArgs(const std::vector<uint64_t> &Args);
2423   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2424   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2425   void printVFuncId(const FunctionSummary::VFuncId VFId);
2426   void
2427   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
2428                       const char *Tag);
2429   void
2430   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
2431                    const char *Tag);
2432 
2433 private:
2434   /// Print out metadata attachments.
2435   void printMetadataAttachments(
2436       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2437       StringRef Separator);
2438 
2439   // printInfoComment - Print a little comment after the instruction indicating
2440   // which slot it occupies.
2441   void printInfoComment(const Value &V);
2442 
2443   // printGCRelocateComment - print comment after call to the gc.relocate
2444   // intrinsic indicating base and derived pointer names.
2445   void printGCRelocateComment(const GCRelocateInst &Relocate);
2446 };
2447 
2448 } // end anonymous namespace
2449 
2450 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2451                                const Module *M, AssemblyAnnotationWriter *AAW,
2452                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2453     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2454       IsForDebug(IsForDebug),
2455       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2456   if (!TheModule)
2457     return;
2458   for (const GlobalObject &GO : TheModule->global_objects())
2459     if (const Comdat *C = GO.getComdat())
2460       Comdats.insert(C);
2461 }
2462 
2463 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2464                                const ModuleSummaryIndex *Index, bool IsForDebug)
2465     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2466       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2467 
2468 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2469   if (!Operand) {
2470     Out << "<null operand!>";
2471     return;
2472   }
2473   if (PrintType) {
2474     TypePrinter.print(Operand->getType(), Out);
2475     Out << ' ';
2476   }
2477   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2478 }
2479 
2480 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2481                                     SyncScope::ID SSID) {
2482   switch (SSID) {
2483   case SyncScope::System: {
2484     break;
2485   }
2486   default: {
2487     if (SSNs.empty())
2488       Context.getSyncScopeNames(SSNs);
2489 
2490     Out << " syncscope(\"";
2491     printEscapedString(SSNs[SSID], Out);
2492     Out << "\")";
2493     break;
2494   }
2495   }
2496 }
2497 
2498 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2499                                  AtomicOrdering Ordering,
2500                                  SyncScope::ID SSID) {
2501   if (Ordering == AtomicOrdering::NotAtomic)
2502     return;
2503 
2504   writeSyncScope(Context, SSID);
2505   Out << " " << toIRString(Ordering);
2506 }
2507 
2508 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2509                                         AtomicOrdering SuccessOrdering,
2510                                         AtomicOrdering FailureOrdering,
2511                                         SyncScope::ID SSID) {
2512   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2513          FailureOrdering != AtomicOrdering::NotAtomic);
2514 
2515   writeSyncScope(Context, SSID);
2516   Out << " " << toIRString(SuccessOrdering);
2517   Out << " " << toIRString(FailureOrdering);
2518 }
2519 
2520 void AssemblyWriter::writeParamOperand(const Value *Operand,
2521                                        AttributeSet Attrs) {
2522   if (!Operand) {
2523     Out << "<null operand!>";
2524     return;
2525   }
2526 
2527   // Print the type
2528   TypePrinter.print(Operand->getType(), Out);
2529   // Print parameter attributes list
2530   if (Attrs.hasAttributes())
2531     Out << ' ' << Attrs.getAsString();
2532   Out << ' ';
2533   // Print the operand
2534   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2535 }
2536 
2537 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2538   if (!Call->hasOperandBundles())
2539     return;
2540 
2541   Out << " [ ";
2542 
2543   bool FirstBundle = true;
2544   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2545     OperandBundleUse BU = Call->getOperandBundleAt(i);
2546 
2547     if (!FirstBundle)
2548       Out << ", ";
2549     FirstBundle = false;
2550 
2551     Out << '"';
2552     printEscapedString(BU.getTagName(), Out);
2553     Out << '"';
2554 
2555     Out << '(';
2556 
2557     bool FirstInput = true;
2558     for (const auto &Input : BU.Inputs) {
2559       if (!FirstInput)
2560         Out << ", ";
2561       FirstInput = false;
2562 
2563       TypePrinter.print(Input->getType(), Out);
2564       Out << " ";
2565       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2566     }
2567 
2568     Out << ')';
2569   }
2570 
2571   Out << " ]";
2572 }
2573 
2574 void AssemblyWriter::printModule(const Module *M) {
2575   Machine.initializeIfNeeded();
2576 
2577   if (ShouldPreserveUseListOrder)
2578     UseListOrders = predictUseListOrder(M);
2579 
2580   if (!M->getModuleIdentifier().empty() &&
2581       // Don't print the ID if it will start a new line (which would
2582       // require a comment char before it).
2583       M->getModuleIdentifier().find('\n') == std::string::npos)
2584     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2585 
2586   if (!M->getSourceFileName().empty()) {
2587     Out << "source_filename = \"";
2588     printEscapedString(M->getSourceFileName(), Out);
2589     Out << "\"\n";
2590   }
2591 
2592   const std::string &DL = M->getDataLayoutStr();
2593   if (!DL.empty())
2594     Out << "target datalayout = \"" << DL << "\"\n";
2595   if (!M->getTargetTriple().empty())
2596     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2597 
2598   if (!M->getModuleInlineAsm().empty()) {
2599     Out << '\n';
2600 
2601     // Split the string into lines, to make it easier to read the .ll file.
2602     StringRef Asm = M->getModuleInlineAsm();
2603     do {
2604       StringRef Front;
2605       std::tie(Front, Asm) = Asm.split('\n');
2606 
2607       // We found a newline, print the portion of the asm string from the
2608       // last newline up to this newline.
2609       Out << "module asm \"";
2610       printEscapedString(Front, Out);
2611       Out << "\"\n";
2612     } while (!Asm.empty());
2613   }
2614 
2615   printTypeIdentities();
2616 
2617   // Output all comdats.
2618   if (!Comdats.empty())
2619     Out << '\n';
2620   for (const Comdat *C : Comdats) {
2621     printComdat(C);
2622     if (C != Comdats.back())
2623       Out << '\n';
2624   }
2625 
2626   // Output all globals.
2627   if (!M->global_empty()) Out << '\n';
2628   for (const GlobalVariable &GV : M->globals()) {
2629     printGlobal(&GV); Out << '\n';
2630   }
2631 
2632   // Output all aliases.
2633   if (!M->alias_empty()) Out << "\n";
2634   for (const GlobalAlias &GA : M->aliases())
2635     printIndirectSymbol(&GA);
2636 
2637   // Output all ifuncs.
2638   if (!M->ifunc_empty()) Out << "\n";
2639   for (const GlobalIFunc &GI : M->ifuncs())
2640     printIndirectSymbol(&GI);
2641 
2642   // Output global use-lists.
2643   printUseLists(nullptr);
2644 
2645   // Output all of the functions.
2646   for (const Function &F : *M)
2647     printFunction(&F);
2648   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2649 
2650   // Output all attribute groups.
2651   if (!Machine.as_empty()) {
2652     Out << '\n';
2653     writeAllAttributeGroups();
2654   }
2655 
2656   // Output named metadata.
2657   if (!M->named_metadata_empty()) Out << '\n';
2658 
2659   for (const NamedMDNode &Node : M->named_metadata())
2660     printNamedMDNode(&Node);
2661 
2662   // Output metadata.
2663   if (!Machine.mdn_empty()) {
2664     Out << '\n';
2665     writeAllMDNodes();
2666   }
2667 }
2668 
2669 void AssemblyWriter::printModuleSummaryIndex() {
2670   assert(TheIndex);
2671   Machine.initializeIndexIfNeeded();
2672 
2673   Out << "\n";
2674 
2675   // Print module path entries. To print in order, add paths to a vector
2676   // indexed by module slot.
2677   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2678   std::string RegularLTOModuleName = "[Regular LTO]";
2679   moduleVec.resize(TheIndex->modulePaths().size());
2680   for (auto &ModPath : TheIndex->modulePaths())
2681     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2682         // A module id of -1 is a special entry for a regular LTO module created
2683         // during the thin link.
2684         ModPath.second.first == -1u ? RegularLTOModuleName
2685                                     : (std::string)ModPath.first(),
2686         ModPath.second.second);
2687 
2688   unsigned i = 0;
2689   for (auto &ModPair : moduleVec) {
2690     Out << "^" << i++ << " = module: (";
2691     Out << "path: \"";
2692     printEscapedString(ModPair.first, Out);
2693     Out << "\", hash: (";
2694     FieldSeparator FS;
2695     for (auto Hash : ModPair.second)
2696       Out << FS << Hash;
2697     Out << "))\n";
2698   }
2699 
2700   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2701   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2702   for (auto &GlobalList : *TheIndex) {
2703     auto GUID = GlobalList.first;
2704     for (auto &Summary : GlobalList.second.SummaryList)
2705       SummaryToGUIDMap[Summary.get()] = GUID;
2706   }
2707 
2708   // Print the global value summary entries.
2709   for (auto &GlobalList : *TheIndex) {
2710     auto GUID = GlobalList.first;
2711     auto VI = TheIndex->getValueInfo(GlobalList);
2712     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2713   }
2714 
2715   // Print the TypeIdMap entries.
2716   for (auto TidIter = TheIndex->typeIds().begin();
2717        TidIter != TheIndex->typeIds().end(); TidIter++) {
2718     Out << "^" << Machine.getTypeIdSlot(TidIter->second.first)
2719         << " = typeid: (name: \"" << TidIter->second.first << "\"";
2720     printTypeIdSummary(TidIter->second.second);
2721     Out << ") ; guid = " << TidIter->first << "\n";
2722   }
2723 
2724   // Print the TypeIdCompatibleVtableMap entries.
2725   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2726     auto GUID = GlobalValue::getGUID(TId.first);
2727     Out << "^" << Machine.getGUIDSlot(GUID)
2728         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2729     printTypeIdCompatibleVtableSummary(TId.second);
2730     Out << ") ; guid = " << GUID << "\n";
2731   }
2732 }
2733 
2734 static const char *
2735 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2736   switch (K) {
2737   case WholeProgramDevirtResolution::Indir:
2738     return "indir";
2739   case WholeProgramDevirtResolution::SingleImpl:
2740     return "singleImpl";
2741   case WholeProgramDevirtResolution::BranchFunnel:
2742     return "branchFunnel";
2743   }
2744   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2745 }
2746 
2747 static const char *getWholeProgDevirtResByArgKindName(
2748     WholeProgramDevirtResolution::ByArg::Kind K) {
2749   switch (K) {
2750   case WholeProgramDevirtResolution::ByArg::Indir:
2751     return "indir";
2752   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2753     return "uniformRetVal";
2754   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2755     return "uniqueRetVal";
2756   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2757     return "virtualConstProp";
2758   }
2759   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2760 }
2761 
2762 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2763   switch (K) {
2764   case TypeTestResolution::Unsat:
2765     return "unsat";
2766   case TypeTestResolution::ByteArray:
2767     return "byteArray";
2768   case TypeTestResolution::Inline:
2769     return "inline";
2770   case TypeTestResolution::Single:
2771     return "single";
2772   case TypeTestResolution::AllOnes:
2773     return "allOnes";
2774   }
2775   llvm_unreachable("invalid TypeTestResolution kind");
2776 }
2777 
2778 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2779   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2780       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2781 
2782   // The following fields are only used if the target does not support the use
2783   // of absolute symbols to store constants. Print only if non-zero.
2784   if (TTRes.AlignLog2)
2785     Out << ", alignLog2: " << TTRes.AlignLog2;
2786   if (TTRes.SizeM1)
2787     Out << ", sizeM1: " << TTRes.SizeM1;
2788   if (TTRes.BitMask)
2789     // BitMask is uint8_t which causes it to print the corresponding char.
2790     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2791   if (TTRes.InlineBits)
2792     Out << ", inlineBits: " << TTRes.InlineBits;
2793 
2794   Out << ")";
2795 }
2796 
2797 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2798   Out << ", summary: (";
2799   printTypeTestResolution(TIS.TTRes);
2800   if (!TIS.WPDRes.empty()) {
2801     Out << ", wpdResolutions: (";
2802     FieldSeparator FS;
2803     for (auto &WPDRes : TIS.WPDRes) {
2804       Out << FS;
2805       Out << "(offset: " << WPDRes.first << ", ";
2806       printWPDRes(WPDRes.second);
2807       Out << ")";
2808     }
2809     Out << ")";
2810   }
2811   Out << ")";
2812 }
2813 
2814 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
2815     const TypeIdCompatibleVtableInfo &TI) {
2816   Out << ", summary: (";
2817   FieldSeparator FS;
2818   for (auto &P : TI) {
2819     Out << FS;
2820     Out << "(offset: " << P.AddressPointOffset << ", ";
2821     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
2822     Out << ")";
2823   }
2824   Out << ")";
2825 }
2826 
2827 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
2828   Out << "args: (";
2829   FieldSeparator FS;
2830   for (auto arg : Args) {
2831     Out << FS;
2832     Out << arg;
2833   }
2834   Out << ")";
2835 }
2836 
2837 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
2838   Out << "wpdRes: (kind: ";
2839   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
2840 
2841   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
2842     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
2843 
2844   if (!WPDRes.ResByArg.empty()) {
2845     Out << ", resByArg: (";
2846     FieldSeparator FS;
2847     for (auto &ResByArg : WPDRes.ResByArg) {
2848       Out << FS;
2849       printArgs(ResByArg.first);
2850       Out << ", byArg: (kind: ";
2851       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
2852       if (ResByArg.second.TheKind ==
2853               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
2854           ResByArg.second.TheKind ==
2855               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
2856         Out << ", info: " << ResByArg.second.Info;
2857 
2858       // The following fields are only used if the target does not support the
2859       // use of absolute symbols to store constants. Print only if non-zero.
2860       if (ResByArg.second.Byte || ResByArg.second.Bit)
2861         Out << ", byte: " << ResByArg.second.Byte
2862             << ", bit: " << ResByArg.second.Bit;
2863 
2864       Out << ")";
2865     }
2866     Out << ")";
2867   }
2868   Out << ")";
2869 }
2870 
2871 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
2872   switch (SK) {
2873   case GlobalValueSummary::AliasKind:
2874     return "alias";
2875   case GlobalValueSummary::FunctionKind:
2876     return "function";
2877   case GlobalValueSummary::GlobalVarKind:
2878     return "variable";
2879   }
2880   llvm_unreachable("invalid summary kind");
2881 }
2882 
2883 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
2884   Out << ", aliasee: ";
2885   // The indexes emitted for distributed backends may not include the
2886   // aliasee summary (only if it is being imported directly). Handle
2887   // that case by just emitting "null" as the aliasee.
2888   if (AS->hasAliasee())
2889     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
2890   else
2891     Out << "null";
2892 }
2893 
2894 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
2895   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
2896       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ")";
2897 
2898   auto VTableFuncs = GS->vTableFuncs();
2899   if (!VTableFuncs.empty()) {
2900     Out << ", vTableFuncs: (";
2901     FieldSeparator FS;
2902     for (auto &P : VTableFuncs) {
2903       Out << FS;
2904       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
2905           << ", offset: " << P.VTableOffset;
2906       Out << ")";
2907     }
2908     Out << ")";
2909   }
2910 }
2911 
2912 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
2913   switch (LT) {
2914   case GlobalValue::ExternalLinkage:
2915     return "external";
2916   case GlobalValue::PrivateLinkage:
2917     return "private";
2918   case GlobalValue::InternalLinkage:
2919     return "internal";
2920   case GlobalValue::LinkOnceAnyLinkage:
2921     return "linkonce";
2922   case GlobalValue::LinkOnceODRLinkage:
2923     return "linkonce_odr";
2924   case GlobalValue::WeakAnyLinkage:
2925     return "weak";
2926   case GlobalValue::WeakODRLinkage:
2927     return "weak_odr";
2928   case GlobalValue::CommonLinkage:
2929     return "common";
2930   case GlobalValue::AppendingLinkage:
2931     return "appending";
2932   case GlobalValue::ExternalWeakLinkage:
2933     return "extern_weak";
2934   case GlobalValue::AvailableExternallyLinkage:
2935     return "available_externally";
2936   }
2937   llvm_unreachable("invalid linkage");
2938 }
2939 
2940 // When printing the linkage types in IR where the ExternalLinkage is
2941 // not printed, and other linkage types are expected to be printed with
2942 // a space after the name.
2943 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
2944   if (LT == GlobalValue::ExternalLinkage)
2945     return "";
2946   return getLinkageName(LT) + " ";
2947 }
2948 
2949 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
2950   Out << ", insts: " << FS->instCount();
2951 
2952   FunctionSummary::FFlags FFlags = FS->fflags();
2953   if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
2954       FFlags.ReturnDoesNotAlias | FFlags.NoInline) {
2955     Out << ", funcFlags: (";
2956     Out << "readNone: " << FFlags.ReadNone;
2957     Out << ", readOnly: " << FFlags.ReadOnly;
2958     Out << ", noRecurse: " << FFlags.NoRecurse;
2959     Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
2960     Out << ", noInline: " << FFlags.NoInline;
2961     Out << ")";
2962   }
2963   if (!FS->calls().empty()) {
2964     Out << ", calls: (";
2965     FieldSeparator IFS;
2966     for (auto &Call : FS->calls()) {
2967       Out << IFS;
2968       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
2969       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
2970         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
2971       else if (Call.second.RelBlockFreq)
2972         Out << ", relbf: " << Call.second.RelBlockFreq;
2973       Out << ")";
2974     }
2975     Out << ")";
2976   }
2977 
2978   if (const auto *TIdInfo = FS->getTypeIdInfo())
2979     printTypeIdInfo(*TIdInfo);
2980 }
2981 
2982 void AssemblyWriter::printTypeIdInfo(
2983     const FunctionSummary::TypeIdInfo &TIDInfo) {
2984   Out << ", typeIdInfo: (";
2985   FieldSeparator TIDFS;
2986   if (!TIDInfo.TypeTests.empty()) {
2987     Out << TIDFS;
2988     Out << "typeTests: (";
2989     FieldSeparator FS;
2990     for (auto &GUID : TIDInfo.TypeTests) {
2991       auto TidIter = TheIndex->typeIds().equal_range(GUID);
2992       if (TidIter.first == TidIter.second) {
2993         Out << FS;
2994         Out << GUID;
2995         continue;
2996       }
2997       // Print all type id that correspond to this GUID.
2998       for (auto It = TidIter.first; It != TidIter.second; ++It) {
2999         Out << FS;
3000         auto Slot = Machine.getTypeIdSlot(It->second.first);
3001         assert(Slot != -1);
3002         Out << "^" << Slot;
3003       }
3004     }
3005     Out << ")";
3006   }
3007   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3008     Out << TIDFS;
3009     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3010   }
3011   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3012     Out << TIDFS;
3013     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3014   }
3015   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3016     Out << TIDFS;
3017     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3018                      "typeTestAssumeConstVCalls");
3019   }
3020   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3021     Out << TIDFS;
3022     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3023                      "typeCheckedLoadConstVCalls");
3024   }
3025   Out << ")";
3026 }
3027 
3028 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3029   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3030   if (TidIter.first == TidIter.second) {
3031     Out << "vFuncId: (";
3032     Out << "guid: " << VFId.GUID;
3033     Out << ", offset: " << VFId.Offset;
3034     Out << ")";
3035     return;
3036   }
3037   // Print all type id that correspond to this GUID.
3038   FieldSeparator FS;
3039   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3040     Out << FS;
3041     Out << "vFuncId: (";
3042     auto Slot = Machine.getTypeIdSlot(It->second.first);
3043     assert(Slot != -1);
3044     Out << "^" << Slot;
3045     Out << ", offset: " << VFId.Offset;
3046     Out << ")";
3047   }
3048 }
3049 
3050 void AssemblyWriter::printNonConstVCalls(
3051     const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
3052   Out << Tag << ": (";
3053   FieldSeparator FS;
3054   for (auto &VFuncId : VCallList) {
3055     Out << FS;
3056     printVFuncId(VFuncId);
3057   }
3058   Out << ")";
3059 }
3060 
3061 void AssemblyWriter::printConstVCalls(
3062     const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
3063   Out << Tag << ": (";
3064   FieldSeparator FS;
3065   for (auto &ConstVCall : VCallList) {
3066     Out << FS;
3067     Out << "(";
3068     printVFuncId(ConstVCall.VFunc);
3069     if (!ConstVCall.Args.empty()) {
3070       Out << ", ";
3071       printArgs(ConstVCall.Args);
3072     }
3073     Out << ")";
3074   }
3075   Out << ")";
3076 }
3077 
3078 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3079   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3080   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3081   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3082   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3083       << ", flags: (";
3084   Out << "linkage: " << getLinkageName(LT);
3085   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3086   Out << ", live: " << GVFlags.Live;
3087   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3088   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3089   Out << ")";
3090 
3091   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3092     printAliasSummary(cast<AliasSummary>(&Summary));
3093   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3094     printFunctionSummary(cast<FunctionSummary>(&Summary));
3095   else
3096     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3097 
3098   auto RefList = Summary.refs();
3099   if (!RefList.empty()) {
3100     Out << ", refs: (";
3101     FieldSeparator FS;
3102     for (auto &Ref : RefList) {
3103       Out << FS;
3104       if (Ref.isReadOnly())
3105         Out << "readonly ";
3106       else if (Ref.isWriteOnly())
3107         Out << "writeonly ";
3108       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3109     }
3110     Out << ")";
3111   }
3112 
3113   Out << ")";
3114 }
3115 
3116 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3117   Out << "^" << Slot << " = gv: (";
3118   if (!VI.name().empty())
3119     Out << "name: \"" << VI.name() << "\"";
3120   else
3121     Out << "guid: " << VI.getGUID();
3122   if (!VI.getSummaryList().empty()) {
3123     Out << ", summaries: (";
3124     FieldSeparator FS;
3125     for (auto &Summary : VI.getSummaryList()) {
3126       Out << FS;
3127       printSummary(*Summary);
3128     }
3129     Out << ")";
3130   }
3131   Out << ")";
3132   if (!VI.name().empty())
3133     Out << " ; guid = " << VI.getGUID();
3134   Out << "\n";
3135 }
3136 
3137 static void printMetadataIdentifier(StringRef Name,
3138                                     formatted_raw_ostream &Out) {
3139   if (Name.empty()) {
3140     Out << "<empty name> ";
3141   } else {
3142     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3143         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3144       Out << Name[0];
3145     else
3146       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3147     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3148       unsigned char C = Name[i];
3149       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3150           C == '.' || C == '_')
3151         Out << C;
3152       else
3153         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3154     }
3155   }
3156 }
3157 
3158 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3159   Out << '!';
3160   printMetadataIdentifier(NMD->getName(), Out);
3161   Out << " = !{";
3162   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3163     if (i)
3164       Out << ", ";
3165 
3166     // Write DIExpressions inline.
3167     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3168     MDNode *Op = NMD->getOperand(i);
3169     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3170       writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3171       continue;
3172     }
3173 
3174     int Slot = Machine.getMetadataSlot(Op);
3175     if (Slot == -1)
3176       Out << "<badref>";
3177     else
3178       Out << '!' << Slot;
3179   }
3180   Out << "}\n";
3181 }
3182 
3183 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3184                             formatted_raw_ostream &Out) {
3185   switch (Vis) {
3186   case GlobalValue::DefaultVisibility: break;
3187   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3188   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3189   }
3190 }
3191 
3192 static void PrintDSOLocation(const GlobalValue &GV,
3193                              formatted_raw_ostream &Out) {
3194   // GVs with local linkage or non default visibility are implicitly dso_local,
3195   // so we don't print it.
3196   bool Implicit = GV.hasLocalLinkage() ||
3197                   (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility());
3198   if (GV.isDSOLocal() && !Implicit)
3199     Out << "dso_local ";
3200 }
3201 
3202 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3203                                  formatted_raw_ostream &Out) {
3204   switch (SCT) {
3205   case GlobalValue::DefaultStorageClass: break;
3206   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3207   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3208   }
3209 }
3210 
3211 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3212                                   formatted_raw_ostream &Out) {
3213   switch (TLM) {
3214     case GlobalVariable::NotThreadLocal:
3215       break;
3216     case GlobalVariable::GeneralDynamicTLSModel:
3217       Out << "thread_local ";
3218       break;
3219     case GlobalVariable::LocalDynamicTLSModel:
3220       Out << "thread_local(localdynamic) ";
3221       break;
3222     case GlobalVariable::InitialExecTLSModel:
3223       Out << "thread_local(initialexec) ";
3224       break;
3225     case GlobalVariable::LocalExecTLSModel:
3226       Out << "thread_local(localexec) ";
3227       break;
3228   }
3229 }
3230 
3231 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3232   switch (UA) {
3233   case GlobalVariable::UnnamedAddr::None:
3234     return "";
3235   case GlobalVariable::UnnamedAddr::Local:
3236     return "local_unnamed_addr";
3237   case GlobalVariable::UnnamedAddr::Global:
3238     return "unnamed_addr";
3239   }
3240   llvm_unreachable("Unknown UnnamedAddr");
3241 }
3242 
3243 static void maybePrintComdat(formatted_raw_ostream &Out,
3244                              const GlobalObject &GO) {
3245   const Comdat *C = GO.getComdat();
3246   if (!C)
3247     return;
3248 
3249   if (isa<GlobalVariable>(GO))
3250     Out << ',';
3251   Out << " comdat";
3252 
3253   if (GO.getName() == C->getName())
3254     return;
3255 
3256   Out << '(';
3257   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3258   Out << ')';
3259 }
3260 
3261 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3262   if (GV->isMaterializable())
3263     Out << "; Materializable\n";
3264 
3265   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3266   Out << " = ";
3267 
3268   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3269     Out << "external ";
3270 
3271   Out << getLinkageNameWithSpace(GV->getLinkage());
3272   PrintDSOLocation(*GV, Out);
3273   PrintVisibility(GV->getVisibility(), Out);
3274   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3275   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3276   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3277   if (!UA.empty())
3278       Out << UA << ' ';
3279 
3280   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3281     Out << "addrspace(" << AddressSpace << ") ";
3282   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3283   Out << (GV->isConstant() ? "constant " : "global ");
3284   TypePrinter.print(GV->getValueType(), Out);
3285 
3286   if (GV->hasInitializer()) {
3287     Out << ' ';
3288     writeOperand(GV->getInitializer(), false);
3289   }
3290 
3291   if (GV->hasSection()) {
3292     Out << ", section \"";
3293     printEscapedString(GV->getSection(), Out);
3294     Out << '"';
3295   }
3296   if (GV->hasPartition()) {
3297     Out << ", partition \"";
3298     printEscapedString(GV->getPartition(), Out);
3299     Out << '"';
3300   }
3301 
3302   maybePrintComdat(Out, *GV);
3303   if (GV->getAlignment())
3304     Out << ", align " << GV->getAlignment();
3305 
3306   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3307   GV->getAllMetadata(MDs);
3308   printMetadataAttachments(MDs, ", ");
3309 
3310   auto Attrs = GV->getAttributes();
3311   if (Attrs.hasAttributes())
3312     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3313 
3314   printInfoComment(*GV);
3315 }
3316 
3317 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3318   if (GIS->isMaterializable())
3319     Out << "; Materializable\n";
3320 
3321   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3322   Out << " = ";
3323 
3324   Out << getLinkageNameWithSpace(GIS->getLinkage());
3325   PrintDSOLocation(*GIS, Out);
3326   PrintVisibility(GIS->getVisibility(), Out);
3327   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3328   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3329   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3330   if (!UA.empty())
3331       Out << UA << ' ';
3332 
3333   if (isa<GlobalAlias>(GIS))
3334     Out << "alias ";
3335   else if (isa<GlobalIFunc>(GIS))
3336     Out << "ifunc ";
3337   else
3338     llvm_unreachable("Not an alias or ifunc!");
3339 
3340   TypePrinter.print(GIS->getValueType(), Out);
3341 
3342   Out << ", ";
3343 
3344   const Constant *IS = GIS->getIndirectSymbol();
3345 
3346   if (!IS) {
3347     TypePrinter.print(GIS->getType(), Out);
3348     Out << " <<NULL ALIASEE>>";
3349   } else {
3350     writeOperand(IS, !isa<ConstantExpr>(IS));
3351   }
3352 
3353   if (GIS->hasPartition()) {
3354     Out << ", partition \"";
3355     printEscapedString(GIS->getPartition(), Out);
3356     Out << '"';
3357   }
3358 
3359   printInfoComment(*GIS);
3360   Out << '\n';
3361 }
3362 
3363 void AssemblyWriter::printComdat(const Comdat *C) {
3364   C->print(Out);
3365 }
3366 
3367 void AssemblyWriter::printTypeIdentities() {
3368   if (TypePrinter.empty())
3369     return;
3370 
3371   Out << '\n';
3372 
3373   // Emit all numbered types.
3374   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3375   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3376     Out << '%' << I << " = type ";
3377 
3378     // Make sure we print out at least one level of the type structure, so
3379     // that we do not get %2 = type %2
3380     TypePrinter.printStructBody(NumberedTypes[I], Out);
3381     Out << '\n';
3382   }
3383 
3384   auto &NamedTypes = TypePrinter.getNamedTypes();
3385   for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3386     PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3387     Out << " = type ";
3388 
3389     // Make sure we print out at least one level of the type structure, so
3390     // that we do not get %FILE = type %FILE
3391     TypePrinter.printStructBody(NamedTypes[I], Out);
3392     Out << '\n';
3393   }
3394 }
3395 
3396 /// printFunction - Print all aspects of a function.
3397 void AssemblyWriter::printFunction(const Function *F) {
3398   // Print out the return type and name.
3399   Out << '\n';
3400 
3401   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3402 
3403   if (F->isMaterializable())
3404     Out << "; Materializable\n";
3405 
3406   const AttributeList &Attrs = F->getAttributes();
3407   if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3408     AttributeSet AS = Attrs.getFnAttributes();
3409     std::string AttrStr;
3410 
3411     for (const Attribute &Attr : AS) {
3412       if (!Attr.isStringAttribute()) {
3413         if (!AttrStr.empty()) AttrStr += ' ';
3414         AttrStr += Attr.getAsString();
3415       }
3416     }
3417 
3418     if (!AttrStr.empty())
3419       Out << "; Function Attrs: " << AttrStr << '\n';
3420   }
3421 
3422   Machine.incorporateFunction(F);
3423 
3424   if (F->isDeclaration()) {
3425     Out << "declare";
3426     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3427     F->getAllMetadata(MDs);
3428     printMetadataAttachments(MDs, " ");
3429     Out << ' ';
3430   } else
3431     Out << "define ";
3432 
3433   Out << getLinkageNameWithSpace(F->getLinkage());
3434   PrintDSOLocation(*F, Out);
3435   PrintVisibility(F->getVisibility(), Out);
3436   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3437 
3438   // Print the calling convention.
3439   if (F->getCallingConv() != CallingConv::C) {
3440     PrintCallingConv(F->getCallingConv(), Out);
3441     Out << " ";
3442   }
3443 
3444   FunctionType *FT = F->getFunctionType();
3445   if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3446     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3447   TypePrinter.print(F->getReturnType(), Out);
3448   Out << ' ';
3449   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3450   Out << '(';
3451 
3452   // Loop over the arguments, printing them...
3453   if (F->isDeclaration() && !IsForDebug) {
3454     // We're only interested in the type here - don't print argument names.
3455     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3456       // Insert commas as we go... the first arg doesn't get a comma
3457       if (I)
3458         Out << ", ";
3459       // Output type...
3460       TypePrinter.print(FT->getParamType(I), Out);
3461 
3462       AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3463       if (ArgAttrs.hasAttributes())
3464         Out << ' ' << ArgAttrs.getAsString();
3465     }
3466   } else {
3467     // The arguments are meaningful here, print them in detail.
3468     for (const Argument &Arg : F->args()) {
3469       // Insert commas as we go... the first arg doesn't get a comma
3470       if (Arg.getArgNo() != 0)
3471         Out << ", ";
3472       printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3473     }
3474   }
3475 
3476   // Finish printing arguments...
3477   if (FT->isVarArg()) {
3478     if (FT->getNumParams()) Out << ", ";
3479     Out << "...";  // Output varargs portion of signature!
3480   }
3481   Out << ')';
3482   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3483   if (!UA.empty())
3484     Out << ' ' << UA;
3485   // We print the function address space if it is non-zero or if we are writing
3486   // a module with a non-zero program address space or if there is no valid
3487   // Module* so that the file can be parsed without the datalayout string.
3488   const Module *Mod = F->getParent();
3489   if (F->getAddressSpace() != 0 || !Mod ||
3490       Mod->getDataLayout().getProgramAddressSpace() != 0)
3491     Out << " addrspace(" << F->getAddressSpace() << ")";
3492   if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3493     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3494   if (F->hasSection()) {
3495     Out << " section \"";
3496     printEscapedString(F->getSection(), Out);
3497     Out << '"';
3498   }
3499   if (F->hasPartition()) {
3500     Out << " partition \"";
3501     printEscapedString(F->getPartition(), Out);
3502     Out << '"';
3503   }
3504   maybePrintComdat(Out, *F);
3505   if (F->getAlignment())
3506     Out << " align " << F->getAlignment();
3507   if (F->hasGC())
3508     Out << " gc \"" << F->getGC() << '"';
3509   if (F->hasPrefixData()) {
3510     Out << " prefix ";
3511     writeOperand(F->getPrefixData(), true);
3512   }
3513   if (F->hasPrologueData()) {
3514     Out << " prologue ";
3515     writeOperand(F->getPrologueData(), true);
3516   }
3517   if (F->hasPersonalityFn()) {
3518     Out << " personality ";
3519     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3520   }
3521 
3522   if (F->isDeclaration()) {
3523     Out << '\n';
3524   } else {
3525     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3526     F->getAllMetadata(MDs);
3527     printMetadataAttachments(MDs, " ");
3528 
3529     Out << " {";
3530     // Output all of the function's basic blocks.
3531     for (const BasicBlock &BB : *F)
3532       printBasicBlock(&BB);
3533 
3534     // Output the function's use-lists.
3535     printUseLists(F);
3536 
3537     Out << "}\n";
3538   }
3539 
3540   Machine.purgeFunction();
3541 }
3542 
3543 /// printArgument - This member is called for every argument that is passed into
3544 /// the function.  Simply print it out
3545 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3546   // Output type...
3547   TypePrinter.print(Arg->getType(), Out);
3548 
3549   // Output parameter attributes list
3550   if (Attrs.hasAttributes())
3551     Out << ' ' << Attrs.getAsString();
3552 
3553   // Output name, if available...
3554   if (Arg->hasName()) {
3555     Out << ' ';
3556     PrintLLVMName(Out, Arg);
3557   } else {
3558     int Slot = Machine.getLocalSlot(Arg);
3559     assert(Slot != -1 && "expect argument in function here");
3560     Out << " %" << Slot;
3561   }
3562 }
3563 
3564 /// printBasicBlock - This member is called for each basic block in a method.
3565 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3566   bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock();
3567   if (BB->hasName()) {              // Print out the label if it exists...
3568     Out << "\n";
3569     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3570     Out << ':';
3571   } else if (!IsEntryBlock) {
3572     Out << "\n";
3573     int Slot = Machine.getLocalSlot(BB);
3574     if (Slot != -1)
3575       Out << Slot << ":";
3576     else
3577       Out << "<badref>:";
3578   }
3579 
3580   if (!BB->getParent()) {
3581     Out.PadToColumn(50);
3582     Out << "; Error: Block without parent!";
3583   } else if (!IsEntryBlock) {
3584     // Output predecessors for the block.
3585     Out.PadToColumn(50);
3586     Out << ";";
3587     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3588 
3589     if (PI == PE) {
3590       Out << " No predecessors!";
3591     } else {
3592       Out << " preds = ";
3593       writeOperand(*PI, false);
3594       for (++PI; PI != PE; ++PI) {
3595         Out << ", ";
3596         writeOperand(*PI, false);
3597       }
3598     }
3599   }
3600 
3601   Out << "\n";
3602 
3603   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3604 
3605   // Output all of the instructions in the basic block...
3606   for (const Instruction &I : *BB) {
3607     printInstructionLine(I);
3608   }
3609 
3610   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3611 }
3612 
3613 /// printInstructionLine - Print an instruction and a newline character.
3614 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3615   printInstruction(I);
3616   Out << '\n';
3617 }
3618 
3619 /// printGCRelocateComment - print comment after call to the gc.relocate
3620 /// intrinsic indicating base and derived pointer names.
3621 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3622   Out << " ; (";
3623   writeOperand(Relocate.getBasePtr(), false);
3624   Out << ", ";
3625   writeOperand(Relocate.getDerivedPtr(), false);
3626   Out << ")";
3627 }
3628 
3629 /// printInfoComment - Print a little comment after the instruction indicating
3630 /// which slot it occupies.
3631 void AssemblyWriter::printInfoComment(const Value &V) {
3632   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3633     printGCRelocateComment(*Relocate);
3634 
3635   if (AnnotationWriter)
3636     AnnotationWriter->printInfoComment(V, Out);
3637 }
3638 
3639 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3640                                     raw_ostream &Out) {
3641   // We print the address space of the call if it is non-zero.
3642   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3643   bool PrintAddrSpace = CallAddrSpace != 0;
3644   if (!PrintAddrSpace) {
3645     const Module *Mod = getModuleFromVal(I);
3646     // We also print it if it is zero but not equal to the program address space
3647     // or if we can't find a valid Module* to make it possible to parse
3648     // the resulting file even without a datalayout string.
3649     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3650       PrintAddrSpace = true;
3651   }
3652   if (PrintAddrSpace)
3653     Out << " addrspace(" << CallAddrSpace << ")";
3654 }
3655 
3656 // This member is called for each Instruction in a function..
3657 void AssemblyWriter::printInstruction(const Instruction &I) {
3658   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3659 
3660   // Print out indentation for an instruction.
3661   Out << "  ";
3662 
3663   // Print out name if it exists...
3664   if (I.hasName()) {
3665     PrintLLVMName(Out, &I);
3666     Out << " = ";
3667   } else if (!I.getType()->isVoidTy()) {
3668     // Print out the def slot taken.
3669     int SlotNum = Machine.getLocalSlot(&I);
3670     if (SlotNum == -1)
3671       Out << "<badref> = ";
3672     else
3673       Out << '%' << SlotNum << " = ";
3674   }
3675 
3676   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3677     if (CI->isMustTailCall())
3678       Out << "musttail ";
3679     else if (CI->isTailCall())
3680       Out << "tail ";
3681     else if (CI->isNoTailCall())
3682       Out << "notail ";
3683   }
3684 
3685   // Print out the opcode...
3686   Out << I.getOpcodeName();
3687 
3688   // If this is an atomic load or store, print out the atomic marker.
3689   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3690       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3691     Out << " atomic";
3692 
3693   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3694     Out << " weak";
3695 
3696   // If this is a volatile operation, print out the volatile marker.
3697   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3698       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3699       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3700       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3701     Out << " volatile";
3702 
3703   // Print out optimization information.
3704   WriteOptimizationInfo(Out, &I);
3705 
3706   // Print out the compare instruction predicates
3707   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3708     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3709 
3710   // Print out the atomicrmw operation
3711   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3712     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3713 
3714   // Print out the type of the operands...
3715   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3716 
3717   // Special case conditional branches to swizzle the condition out to the front
3718   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3719     const BranchInst &BI(cast<BranchInst>(I));
3720     Out << ' ';
3721     writeOperand(BI.getCondition(), true);
3722     Out << ", ";
3723     writeOperand(BI.getSuccessor(0), true);
3724     Out << ", ";
3725     writeOperand(BI.getSuccessor(1), true);
3726 
3727   } else if (isa<SwitchInst>(I)) {
3728     const SwitchInst& SI(cast<SwitchInst>(I));
3729     // Special case switch instruction to get formatting nice and correct.
3730     Out << ' ';
3731     writeOperand(SI.getCondition(), true);
3732     Out << ", ";
3733     writeOperand(SI.getDefaultDest(), true);
3734     Out << " [";
3735     for (auto Case : SI.cases()) {
3736       Out << "\n    ";
3737       writeOperand(Case.getCaseValue(), true);
3738       Out << ", ";
3739       writeOperand(Case.getCaseSuccessor(), true);
3740     }
3741     Out << "\n  ]";
3742   } else if (isa<IndirectBrInst>(I)) {
3743     // Special case indirectbr instruction to get formatting nice and correct.
3744     Out << ' ';
3745     writeOperand(Operand, true);
3746     Out << ", [";
3747 
3748     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3749       if (i != 1)
3750         Out << ", ";
3751       writeOperand(I.getOperand(i), true);
3752     }
3753     Out << ']';
3754   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
3755     Out << ' ';
3756     TypePrinter.print(I.getType(), Out);
3757     Out << ' ';
3758 
3759     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
3760       if (op) Out << ", ";
3761       Out << "[ ";
3762       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
3763       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
3764     }
3765   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
3766     Out << ' ';
3767     writeOperand(I.getOperand(0), true);
3768     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3769       Out << ", " << *i;
3770   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3771     Out << ' ';
3772     writeOperand(I.getOperand(0), true); Out << ", ";
3773     writeOperand(I.getOperand(1), true);
3774     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3775       Out << ", " << *i;
3776   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3777     Out << ' ';
3778     TypePrinter.print(I.getType(), Out);
3779     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3780       Out << '\n';
3781 
3782     if (LPI->isCleanup())
3783       Out << "          cleanup";
3784 
3785     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3786       if (i != 0 || LPI->isCleanup()) Out << "\n";
3787       if (LPI->isCatch(i))
3788         Out << "          catch ";
3789       else
3790         Out << "          filter ";
3791 
3792       writeOperand(LPI->getClause(i), true);
3793     }
3794   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3795     Out << " within ";
3796     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3797     Out << " [";
3798     unsigned Op = 0;
3799     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3800       if (Op > 0)
3801         Out << ", ";
3802       writeOperand(PadBB, /*PrintType=*/true);
3803       ++Op;
3804     }
3805     Out << "] unwind ";
3806     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3807       writeOperand(UnwindDest, /*PrintType=*/true);
3808     else
3809       Out << "to caller";
3810   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3811     Out << " within ";
3812     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3813     Out << " [";
3814     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3815          ++Op) {
3816       if (Op > 0)
3817         Out << ", ";
3818       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3819     }
3820     Out << ']';
3821   } else if (isa<ReturnInst>(I) && !Operand) {
3822     Out << " void";
3823   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3824     Out << " from ";
3825     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3826 
3827     Out << " to ";
3828     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3829   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3830     Out << " from ";
3831     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3832 
3833     Out << " unwind ";
3834     if (CRI->hasUnwindDest())
3835       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3836     else
3837       Out << "to caller";
3838   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3839     // Print the calling convention being used.
3840     if (CI->getCallingConv() != CallingConv::C) {
3841       Out << " ";
3842       PrintCallingConv(CI->getCallingConv(), Out);
3843     }
3844 
3845     Operand = CI->getCalledValue();
3846     FunctionType *FTy = CI->getFunctionType();
3847     Type *RetTy = FTy->getReturnType();
3848     const AttributeList &PAL = CI->getAttributes();
3849 
3850     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3851       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3852 
3853     // Only print addrspace(N) if necessary:
3854     maybePrintCallAddrSpace(Operand, &I, Out);
3855 
3856     // If possible, print out the short form of the call instruction.  We can
3857     // only do this if the first argument is a pointer to a nonvararg function,
3858     // and if the return type is not a pointer to a function.
3859     //
3860     Out << ' ';
3861     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3862     Out << ' ';
3863     writeOperand(Operand, false);
3864     Out << '(';
3865     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3866       if (op > 0)
3867         Out << ", ";
3868       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
3869     }
3870 
3871     // Emit an ellipsis if this is a musttail call in a vararg function.  This
3872     // is only to aid readability, musttail calls forward varargs by default.
3873     if (CI->isMustTailCall() && CI->getParent() &&
3874         CI->getParent()->getParent() &&
3875         CI->getParent()->getParent()->isVarArg())
3876       Out << ", ...";
3877 
3878     Out << ')';
3879     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3880       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3881 
3882     writeOperandBundles(CI);
3883   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3884     Operand = II->getCalledValue();
3885     FunctionType *FTy = II->getFunctionType();
3886     Type *RetTy = FTy->getReturnType();
3887     const AttributeList &PAL = II->getAttributes();
3888 
3889     // Print the calling convention being used.
3890     if (II->getCallingConv() != CallingConv::C) {
3891       Out << " ";
3892       PrintCallingConv(II->getCallingConv(), Out);
3893     }
3894 
3895     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3896       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3897 
3898     // Only print addrspace(N) if necessary:
3899     maybePrintCallAddrSpace(Operand, &I, Out);
3900 
3901     // If possible, print out the short form of the invoke instruction. We can
3902     // only do this if the first argument is a pointer to a nonvararg function,
3903     // and if the return type is not a pointer to a function.
3904     //
3905     Out << ' ';
3906     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3907     Out << ' ';
3908     writeOperand(Operand, false);
3909     Out << '(';
3910     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3911       if (op)
3912         Out << ", ";
3913       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
3914     }
3915 
3916     Out << ')';
3917     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3918       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3919 
3920     writeOperandBundles(II);
3921 
3922     Out << "\n          to ";
3923     writeOperand(II->getNormalDest(), true);
3924     Out << " unwind ";
3925     writeOperand(II->getUnwindDest(), true);
3926   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
3927     Operand = CBI->getCalledValue();
3928     FunctionType *FTy = CBI->getFunctionType();
3929     Type *RetTy = FTy->getReturnType();
3930     const AttributeList &PAL = CBI->getAttributes();
3931 
3932     // Print the calling convention being used.
3933     if (CBI->getCallingConv() != CallingConv::C) {
3934       Out << " ";
3935       PrintCallingConv(CBI->getCallingConv(), Out);
3936     }
3937 
3938     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3939       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3940 
3941     // If possible, print out the short form of the callbr instruction. We can
3942     // only do this if the first argument is a pointer to a nonvararg function,
3943     // and if the return type is not a pointer to a function.
3944     //
3945     Out << ' ';
3946     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3947     Out << ' ';
3948     writeOperand(Operand, false);
3949     Out << '(';
3950     for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
3951       if (op)
3952         Out << ", ";
3953       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
3954     }
3955 
3956     Out << ')';
3957     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3958       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3959 
3960     writeOperandBundles(CBI);
3961 
3962     Out << "\n          to ";
3963     writeOperand(CBI->getDefaultDest(), true);
3964     Out << " [";
3965     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
3966       if (i != 0)
3967         Out << ", ";
3968       writeOperand(CBI->getIndirectDest(i), true);
3969     }
3970     Out << ']';
3971   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3972     Out << ' ';
3973     if (AI->isUsedWithInAlloca())
3974       Out << "inalloca ";
3975     if (AI->isSwiftError())
3976       Out << "swifterror ";
3977     TypePrinter.print(AI->getAllocatedType(), Out);
3978 
3979     // Explicitly write the array size if the code is broken, if it's an array
3980     // allocation, or if the type is not canonical for scalar allocations.  The
3981     // latter case prevents the type from mutating when round-tripping through
3982     // assembly.
3983     if (!AI->getArraySize() || AI->isArrayAllocation() ||
3984         !AI->getArraySize()->getType()->isIntegerTy(32)) {
3985       Out << ", ";
3986       writeOperand(AI->getArraySize(), true);
3987     }
3988     if (AI->getAlignment()) {
3989       Out << ", align " << AI->getAlignment();
3990     }
3991 
3992     unsigned AddrSpace = AI->getType()->getAddressSpace();
3993     if (AddrSpace != 0) {
3994       Out << ", addrspace(" << AddrSpace << ')';
3995     }
3996   } else if (isa<CastInst>(I)) {
3997     if (Operand) {
3998       Out << ' ';
3999       writeOperand(Operand, true);   // Work with broken code
4000     }
4001     Out << " to ";
4002     TypePrinter.print(I.getType(), Out);
4003   } else if (isa<VAArgInst>(I)) {
4004     if (Operand) {
4005       Out << ' ';
4006       writeOperand(Operand, true);   // Work with broken code
4007     }
4008     Out << ", ";
4009     TypePrinter.print(I.getType(), Out);
4010   } else if (Operand) {   // Print the normal way.
4011     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4012       Out << ' ';
4013       TypePrinter.print(GEP->getSourceElementType(), Out);
4014       Out << ',';
4015     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4016       Out << ' ';
4017       TypePrinter.print(LI->getType(), Out);
4018       Out << ',';
4019     }
4020 
4021     // PrintAllTypes - Instructions who have operands of all the same type
4022     // omit the type from all but the first operand.  If the instruction has
4023     // different type operands (for example br), then they are all printed.
4024     bool PrintAllTypes = false;
4025     Type *TheType = Operand->getType();
4026 
4027     // Select, Store and ShuffleVector always print all types.
4028     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4029         || isa<ReturnInst>(I)) {
4030       PrintAllTypes = true;
4031     } else {
4032       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4033         Operand = I.getOperand(i);
4034         // note that Operand shouldn't be null, but the test helps make dump()
4035         // more tolerant of malformed IR
4036         if (Operand && Operand->getType() != TheType) {
4037           PrintAllTypes = true;    // We have differing types!  Print them all!
4038           break;
4039         }
4040       }
4041     }
4042 
4043     if (!PrintAllTypes) {
4044       Out << ' ';
4045       TypePrinter.print(TheType, Out);
4046     }
4047 
4048     Out << ' ';
4049     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4050       if (i) Out << ", ";
4051       writeOperand(I.getOperand(i), PrintAllTypes);
4052     }
4053   }
4054 
4055   // Print atomic ordering/alignment for memory operations
4056   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4057     if (LI->isAtomic())
4058       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4059     if (LI->getAlignment())
4060       Out << ", align " << LI->getAlignment();
4061   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4062     if (SI->isAtomic())
4063       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4064     if (SI->getAlignment())
4065       Out << ", align " << SI->getAlignment();
4066   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4067     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4068                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4069   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4070     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4071                 RMWI->getSyncScopeID());
4072   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4073     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4074   }
4075 
4076   // Print Metadata info.
4077   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4078   I.getAllMetadata(InstMD);
4079   printMetadataAttachments(InstMD, ", ");
4080 
4081   // Print a nice comment.
4082   printInfoComment(I);
4083 }
4084 
4085 void AssemblyWriter::printMetadataAttachments(
4086     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4087     StringRef Separator) {
4088   if (MDs.empty())
4089     return;
4090 
4091   if (MDNames.empty())
4092     MDs[0].second->getContext().getMDKindNames(MDNames);
4093 
4094   for (const auto &I : MDs) {
4095     unsigned Kind = I.first;
4096     Out << Separator;
4097     if (Kind < MDNames.size()) {
4098       Out << "!";
4099       printMetadataIdentifier(MDNames[Kind], Out);
4100     } else
4101       Out << "!<unknown kind #" << Kind << ">";
4102     Out << ' ';
4103     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4104   }
4105 }
4106 
4107 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4108   Out << '!' << Slot << " = ";
4109   printMDNodeBody(Node);
4110   Out << "\n";
4111 }
4112 
4113 void AssemblyWriter::writeAllMDNodes() {
4114   SmallVector<const MDNode *, 16> Nodes;
4115   Nodes.resize(Machine.mdn_size());
4116   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
4117        I != E; ++I)
4118     Nodes[I->second] = cast<MDNode>(I->first);
4119 
4120   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4121     writeMDNode(i, Nodes[i]);
4122   }
4123 }
4124 
4125 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4126   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4127 }
4128 
4129 void AssemblyWriter::writeAllAttributeGroups() {
4130   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4131   asVec.resize(Machine.as_size());
4132 
4133   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
4134        I != E; ++I)
4135     asVec[I->second] = *I;
4136 
4137   for (const auto &I : asVec)
4138     Out << "attributes #" << I.second << " = { "
4139         << I.first.getAsString(true) << " }\n";
4140 }
4141 
4142 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
4143   bool IsInFunction = Machine.getFunction();
4144   if (IsInFunction)
4145     Out << "  ";
4146 
4147   Out << "uselistorder";
4148   if (const BasicBlock *BB =
4149           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
4150     Out << "_bb ";
4151     writeOperand(BB->getParent(), false);
4152     Out << ", ";
4153     writeOperand(BB, false);
4154   } else {
4155     Out << " ";
4156     writeOperand(Order.V, true);
4157   }
4158   Out << ", { ";
4159 
4160   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
4161   Out << Order.Shuffle[0];
4162   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
4163     Out << ", " << Order.Shuffle[I];
4164   Out << " }\n";
4165 }
4166 
4167 void AssemblyWriter::printUseLists(const Function *F) {
4168   auto hasMore =
4169       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
4170   if (!hasMore())
4171     // Nothing to do.
4172     return;
4173 
4174   Out << "\n; uselistorder directives\n";
4175   while (hasMore()) {
4176     printUseListOrder(UseListOrders.back());
4177     UseListOrders.pop_back();
4178   }
4179 }
4180 
4181 //===----------------------------------------------------------------------===//
4182 //                       External Interface declarations
4183 //===----------------------------------------------------------------------===//
4184 
4185 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4186                      bool ShouldPreserveUseListOrder,
4187                      bool IsForDebug) const {
4188   SlotTracker SlotTable(this->getParent());
4189   formatted_raw_ostream OS(ROS);
4190   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4191                    IsForDebug,
4192                    ShouldPreserveUseListOrder);
4193   W.printFunction(this);
4194 }
4195 
4196 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4197                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4198   SlotTracker SlotTable(this);
4199   formatted_raw_ostream OS(ROS);
4200   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4201                    ShouldPreserveUseListOrder);
4202   W.printModule(this);
4203 }
4204 
4205 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4206   SlotTracker SlotTable(getParent());
4207   formatted_raw_ostream OS(ROS);
4208   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4209   W.printNamedMDNode(this);
4210 }
4211 
4212 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4213                         bool IsForDebug) const {
4214   Optional<SlotTracker> LocalST;
4215   SlotTracker *SlotTable;
4216   if (auto *ST = MST.getMachine())
4217     SlotTable = ST;
4218   else {
4219     LocalST.emplace(getParent());
4220     SlotTable = &*LocalST;
4221   }
4222 
4223   formatted_raw_ostream OS(ROS);
4224   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4225   W.printNamedMDNode(this);
4226 }
4227 
4228 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4229   PrintLLVMName(ROS, getName(), ComdatPrefix);
4230   ROS << " = comdat ";
4231 
4232   switch (getSelectionKind()) {
4233   case Comdat::Any:
4234     ROS << "any";
4235     break;
4236   case Comdat::ExactMatch:
4237     ROS << "exactmatch";
4238     break;
4239   case Comdat::Largest:
4240     ROS << "largest";
4241     break;
4242   case Comdat::NoDuplicates:
4243     ROS << "noduplicates";
4244     break;
4245   case Comdat::SameSize:
4246     ROS << "samesize";
4247     break;
4248   }
4249 
4250   ROS << '\n';
4251 }
4252 
4253 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4254   TypePrinting TP;
4255   TP.print(const_cast<Type*>(this), OS);
4256 
4257   if (NoDetails)
4258     return;
4259 
4260   // If the type is a named struct type, print the body as well.
4261   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4262     if (!STy->isLiteral()) {
4263       OS << " = type ";
4264       TP.printStructBody(STy, OS);
4265     }
4266 }
4267 
4268 static bool isReferencingMDNode(const Instruction &I) {
4269   if (const auto *CI = dyn_cast<CallInst>(&I))
4270     if (Function *F = CI->getCalledFunction())
4271       if (F->isIntrinsic())
4272         for (auto &Op : I.operands())
4273           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4274             if (isa<MDNode>(V->getMetadata()))
4275               return true;
4276   return false;
4277 }
4278 
4279 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4280   bool ShouldInitializeAllMetadata = false;
4281   if (auto *I = dyn_cast<Instruction>(this))
4282     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4283   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4284     ShouldInitializeAllMetadata = true;
4285 
4286   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4287   print(ROS, MST, IsForDebug);
4288 }
4289 
4290 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4291                   bool IsForDebug) const {
4292   formatted_raw_ostream OS(ROS);
4293   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4294   SlotTracker &SlotTable =
4295       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4296   auto incorporateFunction = [&](const Function *F) {
4297     if (F)
4298       MST.incorporateFunction(*F);
4299   };
4300 
4301   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4302     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4303     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4304     W.printInstruction(*I);
4305   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4306     incorporateFunction(BB->getParent());
4307     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4308     W.printBasicBlock(BB);
4309   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4310     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4311     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4312       W.printGlobal(V);
4313     else if (const Function *F = dyn_cast<Function>(GV))
4314       W.printFunction(F);
4315     else
4316       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4317   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4318     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4319   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4320     TypePrinting TypePrinter;
4321     TypePrinter.print(C->getType(), OS);
4322     OS << ' ';
4323     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4324   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4325     this->printAsOperand(OS, /* PrintType */ true, MST);
4326   } else {
4327     llvm_unreachable("Unknown value to print out!");
4328   }
4329 }
4330 
4331 /// Print without a type, skipping the TypePrinting object.
4332 ///
4333 /// \return \c true iff printing was successful.
4334 static bool printWithoutType(const Value &V, raw_ostream &O,
4335                              SlotTracker *Machine, const Module *M) {
4336   if (V.hasName() || isa<GlobalValue>(V) ||
4337       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4338     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4339     return true;
4340   }
4341   return false;
4342 }
4343 
4344 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4345                                ModuleSlotTracker &MST) {
4346   TypePrinting TypePrinter(MST.getModule());
4347   if (PrintType) {
4348     TypePrinter.print(V.getType(), O);
4349     O << ' ';
4350   }
4351 
4352   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4353                          MST.getModule());
4354 }
4355 
4356 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4357                            const Module *M) const {
4358   if (!M)
4359     M = getModuleFromVal(this);
4360 
4361   if (!PrintType)
4362     if (printWithoutType(*this, O, nullptr, M))
4363       return;
4364 
4365   SlotTracker Machine(
4366       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4367   ModuleSlotTracker MST(Machine, M);
4368   printAsOperandImpl(*this, O, PrintType, MST);
4369 }
4370 
4371 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4372                            ModuleSlotTracker &MST) const {
4373   if (!PrintType)
4374     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4375       return;
4376 
4377   printAsOperandImpl(*this, O, PrintType, MST);
4378 }
4379 
4380 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4381                               ModuleSlotTracker &MST, const Module *M,
4382                               bool OnlyAsOperand) {
4383   formatted_raw_ostream OS(ROS);
4384 
4385   TypePrinting TypePrinter(M);
4386 
4387   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4388                          /* FromValue */ true);
4389 
4390   auto *N = dyn_cast<MDNode>(&MD);
4391   if (OnlyAsOperand || !N || isa<DIExpression>(MD))
4392     return;
4393 
4394   OS << " = ";
4395   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4396 }
4397 
4398 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4399   ModuleSlotTracker MST(M, isa<MDNode>(this));
4400   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4401 }
4402 
4403 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4404                               const Module *M) const {
4405   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4406 }
4407 
4408 void Metadata::print(raw_ostream &OS, const Module *M,
4409                      bool /*IsForDebug*/) const {
4410   ModuleSlotTracker MST(M, isa<MDNode>(this));
4411   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4412 }
4413 
4414 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4415                      const Module *M, bool /*IsForDebug*/) const {
4416   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4417 }
4418 
4419 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4420   SlotTracker SlotTable(this);
4421   formatted_raw_ostream OS(ROS);
4422   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4423   W.printModuleSummaryIndex();
4424 }
4425 
4426 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4427 // Value::dump - allow easy printing of Values from the debugger.
4428 LLVM_DUMP_METHOD
4429 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4430 
4431 // Type::dump - allow easy printing of Types from the debugger.
4432 LLVM_DUMP_METHOD
4433 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4434 
4435 // Module::dump() - Allow printing of Modules from the debugger.
4436 LLVM_DUMP_METHOD
4437 void Module::dump() const {
4438   print(dbgs(), nullptr,
4439         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4440 }
4441 
4442 // Allow printing of Comdats from the debugger.
4443 LLVM_DUMP_METHOD
4444 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4445 
4446 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4447 LLVM_DUMP_METHOD
4448 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4449 
4450 LLVM_DUMP_METHOD
4451 void Metadata::dump() const { dump(nullptr); }
4452 
4453 LLVM_DUMP_METHOD
4454 void Metadata::dump(const Module *M) const {
4455   print(dbgs(), M, /*IsForDebug=*/true);
4456   dbgs() << '\n';
4457 }
4458 
4459 // Allow printing of ModuleSummaryIndex from the debugger.
4460 LLVM_DUMP_METHOD
4461 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4462 #endif
4463