1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This library implements `print` family of functions in classes like 10 // Module, Function, Value, etc. In-memory representation of those classes is 11 // converted to IR strings. 12 // 13 // Note that these routines must be extremely tolerant of various errors in the 14 // LLVM code, because it can be used for debugging transformations. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/iterator_range.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Argument.h" 34 #include "llvm/IR/AssemblyAnnotationWriter.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Comdat.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalIFunc.h" 47 #include "llvm/IR/GlobalIndirectSymbol.h" 48 #include "llvm/IR/GlobalObject.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/IRPrintingPasses.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSlotTracker.h" 60 #include "llvm/IR/ModuleSummaryIndex.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/Statepoint.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/TypeFinder.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/UseListOrder.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/Support/AtomicOrdering.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/Format.h" 75 #include "llvm/Support/FormattedStream.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cctype> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <memory> 84 #include <string> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 // Make virtual table appear in this compilation unit. 92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default; 93 94 //===----------------------------------------------------------------------===// 95 // Helper Functions 96 //===----------------------------------------------------------------------===// 97 98 namespace { 99 100 struct OrderMap { 101 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 102 103 unsigned size() const { return IDs.size(); } 104 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 105 106 std::pair<unsigned, bool> lookup(const Value *V) const { 107 return IDs.lookup(V); 108 } 109 110 void index(const Value *V) { 111 // Explicitly sequence get-size and insert-value operations to avoid UB. 112 unsigned ID = IDs.size() + 1; 113 IDs[V].first = ID; 114 } 115 }; 116 117 } // end anonymous namespace 118 119 static void orderValue(const Value *V, OrderMap &OM) { 120 if (OM.lookup(V).first) 121 return; 122 123 if (const Constant *C = dyn_cast<Constant>(V)) 124 if (C->getNumOperands() && !isa<GlobalValue>(C)) 125 for (const Value *Op : C->operands()) 126 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 127 orderValue(Op, OM); 128 129 // Note: we cannot cache this lookup above, since inserting into the map 130 // changes the map's size, and thus affects the other IDs. 131 OM.index(V); 132 } 133 134 static OrderMap orderModule(const Module *M) { 135 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 136 // and ValueEnumerator::incorporateFunction(). 137 OrderMap OM; 138 139 for (const GlobalVariable &G : M->globals()) { 140 if (G.hasInitializer()) 141 if (!isa<GlobalValue>(G.getInitializer())) 142 orderValue(G.getInitializer(), OM); 143 orderValue(&G, OM); 144 } 145 for (const GlobalAlias &A : M->aliases()) { 146 if (!isa<GlobalValue>(A.getAliasee())) 147 orderValue(A.getAliasee(), OM); 148 orderValue(&A, OM); 149 } 150 for (const GlobalIFunc &I : M->ifuncs()) { 151 if (!isa<GlobalValue>(I.getResolver())) 152 orderValue(I.getResolver(), OM); 153 orderValue(&I, OM); 154 } 155 for (const Function &F : *M) { 156 for (const Use &U : F.operands()) 157 if (!isa<GlobalValue>(U.get())) 158 orderValue(U.get(), OM); 159 160 orderValue(&F, OM); 161 162 if (F.isDeclaration()) 163 continue; 164 165 for (const Argument &A : F.args()) 166 orderValue(&A, OM); 167 for (const BasicBlock &BB : F) { 168 orderValue(&BB, OM); 169 for (const Instruction &I : BB) { 170 for (const Value *Op : I.operands()) 171 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 172 isa<InlineAsm>(*Op)) 173 orderValue(Op, OM); 174 orderValue(&I, OM); 175 } 176 } 177 } 178 return OM; 179 } 180 181 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 182 unsigned ID, const OrderMap &OM, 183 UseListOrderStack &Stack) { 184 // Predict use-list order for this one. 185 using Entry = std::pair<const Use *, unsigned>; 186 SmallVector<Entry, 64> List; 187 for (const Use &U : V->uses()) 188 // Check if this user will be serialized. 189 if (OM.lookup(U.getUser()).first) 190 List.push_back(std::make_pair(&U, List.size())); 191 192 if (List.size() < 2) 193 // We may have lost some users. 194 return; 195 196 bool GetsReversed = 197 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V); 198 if (auto *BA = dyn_cast<BlockAddress>(V)) 199 ID = OM.lookup(BA->getBasicBlock()).first; 200 llvm::sort(List, [&](const Entry &L, const Entry &R) { 201 const Use *LU = L.first; 202 const Use *RU = R.first; 203 if (LU == RU) 204 return false; 205 206 auto LID = OM.lookup(LU->getUser()).first; 207 auto RID = OM.lookup(RU->getUser()).first; 208 209 // If ID is 4, then expect: 7 6 5 1 2 3. 210 if (LID < RID) { 211 if (GetsReversed) 212 if (RID <= ID) 213 return true; 214 return false; 215 } 216 if (RID < LID) { 217 if (GetsReversed) 218 if (LID <= ID) 219 return false; 220 return true; 221 } 222 223 // LID and RID are equal, so we have different operands of the same user. 224 // Assume operands are added in order for all instructions. 225 if (GetsReversed) 226 if (LID <= ID) 227 return LU->getOperandNo() < RU->getOperandNo(); 228 return LU->getOperandNo() > RU->getOperandNo(); 229 }); 230 231 if (std::is_sorted( 232 List.begin(), List.end(), 233 [](const Entry &L, const Entry &R) { return L.second < R.second; })) 234 // Order is already correct. 235 return; 236 237 // Store the shuffle. 238 Stack.emplace_back(V, F, List.size()); 239 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 240 for (size_t I = 0, E = List.size(); I != E; ++I) 241 Stack.back().Shuffle[I] = List[I].second; 242 } 243 244 static void predictValueUseListOrder(const Value *V, const Function *F, 245 OrderMap &OM, UseListOrderStack &Stack) { 246 auto &IDPair = OM[V]; 247 assert(IDPair.first && "Unmapped value"); 248 if (IDPair.second) 249 // Already predicted. 250 return; 251 252 // Do the actual prediction. 253 IDPair.second = true; 254 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 255 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 256 257 // Recursive descent into constants. 258 if (const Constant *C = dyn_cast<Constant>(V)) 259 if (C->getNumOperands()) // Visit GlobalValues. 260 for (const Value *Op : C->operands()) 261 if (isa<Constant>(Op)) // Visit GlobalValues. 262 predictValueUseListOrder(Op, F, OM, Stack); 263 } 264 265 static UseListOrderStack predictUseListOrder(const Module *M) { 266 OrderMap OM = orderModule(M); 267 268 // Use-list orders need to be serialized after all the users have been added 269 // to a value, or else the shuffles will be incomplete. Store them per 270 // function in a stack. 271 // 272 // Aside from function order, the order of values doesn't matter much here. 273 UseListOrderStack Stack; 274 275 // We want to visit the functions backward now so we can list function-local 276 // constants in the last Function they're used in. Module-level constants 277 // have already been visited above. 278 for (const Function &F : make_range(M->rbegin(), M->rend())) { 279 if (F.isDeclaration()) 280 continue; 281 for (const BasicBlock &BB : F) 282 predictValueUseListOrder(&BB, &F, OM, Stack); 283 for (const Argument &A : F.args()) 284 predictValueUseListOrder(&A, &F, OM, Stack); 285 for (const BasicBlock &BB : F) 286 for (const Instruction &I : BB) 287 for (const Value *Op : I.operands()) 288 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 289 predictValueUseListOrder(Op, &F, OM, Stack); 290 for (const BasicBlock &BB : F) 291 for (const Instruction &I : BB) 292 predictValueUseListOrder(&I, &F, OM, Stack); 293 } 294 295 // Visit globals last. 296 for (const GlobalVariable &G : M->globals()) 297 predictValueUseListOrder(&G, nullptr, OM, Stack); 298 for (const Function &F : *M) 299 predictValueUseListOrder(&F, nullptr, OM, Stack); 300 for (const GlobalAlias &A : M->aliases()) 301 predictValueUseListOrder(&A, nullptr, OM, Stack); 302 for (const GlobalIFunc &I : M->ifuncs()) 303 predictValueUseListOrder(&I, nullptr, OM, Stack); 304 for (const GlobalVariable &G : M->globals()) 305 if (G.hasInitializer()) 306 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 307 for (const GlobalAlias &A : M->aliases()) 308 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 309 for (const GlobalIFunc &I : M->ifuncs()) 310 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 311 for (const Function &F : *M) 312 for (const Use &U : F.operands()) 313 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 314 315 return Stack; 316 } 317 318 static const Module *getModuleFromVal(const Value *V) { 319 if (const Argument *MA = dyn_cast<Argument>(V)) 320 return MA->getParent() ? MA->getParent()->getParent() : nullptr; 321 322 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 323 return BB->getParent() ? BB->getParent()->getParent() : nullptr; 324 325 if (const Instruction *I = dyn_cast<Instruction>(V)) { 326 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr; 327 return M ? M->getParent() : nullptr; 328 } 329 330 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 331 return GV->getParent(); 332 333 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 334 for (const User *U : MAV->users()) 335 if (isa<Instruction>(U)) 336 if (const Module *M = getModuleFromVal(U)) 337 return M; 338 return nullptr; 339 } 340 341 return nullptr; 342 } 343 344 static void PrintCallingConv(unsigned cc, raw_ostream &Out) { 345 switch (cc) { 346 default: Out << "cc" << cc; break; 347 case CallingConv::Fast: Out << "fastcc"; break; 348 case CallingConv::Cold: Out << "coldcc"; break; 349 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break; 350 case CallingConv::AnyReg: Out << "anyregcc"; break; 351 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break; 352 case CallingConv::PreserveAll: Out << "preserve_allcc"; break; 353 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break; 354 case CallingConv::GHC: Out << "ghccc"; break; 355 case CallingConv::Tail: Out << "tailcc"; break; 356 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; 357 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; 358 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; 359 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break; 360 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break; 361 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; 362 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; 363 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; 364 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; 365 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break; 366 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; 367 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break; 368 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break; 369 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; 370 case CallingConv::PTX_Device: Out << "ptx_device"; break; 371 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break; 372 case CallingConv::Win64: Out << "win64cc"; break; 373 case CallingConv::SPIR_FUNC: Out << "spir_func"; break; 374 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break; 375 case CallingConv::Swift: Out << "swiftcc"; break; 376 case CallingConv::X86_INTR: Out << "x86_intrcc"; break; 377 case CallingConv::HHVM: Out << "hhvmcc"; break; 378 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break; 379 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break; 380 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break; 381 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break; 382 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break; 383 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break; 384 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break; 385 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break; 386 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break; 387 } 388 } 389 390 enum PrefixType { 391 GlobalPrefix, 392 ComdatPrefix, 393 LabelPrefix, 394 LocalPrefix, 395 NoPrefix 396 }; 397 398 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) { 399 assert(!Name.empty() && "Cannot get empty name!"); 400 401 // Scan the name to see if it needs quotes first. 402 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); 403 if (!NeedsQuotes) { 404 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 405 // By making this unsigned, the value passed in to isalnum will always be 406 // in the range 0-255. This is important when building with MSVC because 407 // its implementation will assert. This situation can arise when dealing 408 // with UTF-8 multibyte characters. 409 unsigned char C = Name[i]; 410 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && 411 C != '_') { 412 NeedsQuotes = true; 413 break; 414 } 415 } 416 } 417 418 // If we didn't need any quotes, just write out the name in one blast. 419 if (!NeedsQuotes) { 420 OS << Name; 421 return; 422 } 423 424 // Okay, we need quotes. Output the quotes and escape any scary characters as 425 // needed. 426 OS << '"'; 427 printEscapedString(Name, OS); 428 OS << '"'; 429 } 430 431 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 432 /// (if the string only contains simple characters) or is surrounded with ""'s 433 /// (if it has special chars in it). Print it out. 434 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { 435 switch (Prefix) { 436 case NoPrefix: 437 break; 438 case GlobalPrefix: 439 OS << '@'; 440 break; 441 case ComdatPrefix: 442 OS << '$'; 443 break; 444 case LabelPrefix: 445 break; 446 case LocalPrefix: 447 OS << '%'; 448 break; 449 } 450 printLLVMNameWithoutPrefix(OS, Name); 451 } 452 453 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 454 /// (if the string only contains simple characters) or is surrounded with ""'s 455 /// (if it has special chars in it). Print it out. 456 static void PrintLLVMName(raw_ostream &OS, const Value *V) { 457 PrintLLVMName(OS, V->getName(), 458 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); 459 } 460 461 namespace { 462 463 class TypePrinting { 464 public: 465 TypePrinting(const Module *M = nullptr) : DeferredM(M) {} 466 467 TypePrinting(const TypePrinting &) = delete; 468 TypePrinting &operator=(const TypePrinting &) = delete; 469 470 /// The named types that are used by the current module. 471 TypeFinder &getNamedTypes(); 472 473 /// The numbered types, number to type mapping. 474 std::vector<StructType *> &getNumberedTypes(); 475 476 bool empty(); 477 478 void print(Type *Ty, raw_ostream &OS); 479 480 void printStructBody(StructType *Ty, raw_ostream &OS); 481 482 private: 483 void incorporateTypes(); 484 485 /// A module to process lazily when needed. Set to nullptr as soon as used. 486 const Module *DeferredM; 487 488 TypeFinder NamedTypes; 489 490 // The numbered types, along with their value. 491 DenseMap<StructType *, unsigned> Type2Number; 492 493 std::vector<StructType *> NumberedTypes; 494 }; 495 496 } // end anonymous namespace 497 498 TypeFinder &TypePrinting::getNamedTypes() { 499 incorporateTypes(); 500 return NamedTypes; 501 } 502 503 std::vector<StructType *> &TypePrinting::getNumberedTypes() { 504 incorporateTypes(); 505 506 // We know all the numbers that each type is used and we know that it is a 507 // dense assignment. Convert the map to an index table, if it's not done 508 // already (judging from the sizes): 509 if (NumberedTypes.size() == Type2Number.size()) 510 return NumberedTypes; 511 512 NumberedTypes.resize(Type2Number.size()); 513 for (const auto &P : Type2Number) { 514 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?"); 515 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?"); 516 NumberedTypes[P.second] = P.first; 517 } 518 return NumberedTypes; 519 } 520 521 bool TypePrinting::empty() { 522 incorporateTypes(); 523 return NamedTypes.empty() && Type2Number.empty(); 524 } 525 526 void TypePrinting::incorporateTypes() { 527 if (!DeferredM) 528 return; 529 530 NamedTypes.run(*DeferredM, false); 531 DeferredM = nullptr; 532 533 // The list of struct types we got back includes all the struct types, split 534 // the unnamed ones out to a numbering and remove the anonymous structs. 535 unsigned NextNumber = 0; 536 537 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; 538 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { 539 StructType *STy = *I; 540 541 // Ignore anonymous types. 542 if (STy->isLiteral()) 543 continue; 544 545 if (STy->getName().empty()) 546 Type2Number[STy] = NextNumber++; 547 else 548 *NextToUse++ = STy; 549 } 550 551 NamedTypes.erase(NextToUse, NamedTypes.end()); 552 } 553 554 /// Write the specified type to the specified raw_ostream, making use of type 555 /// names or up references to shorten the type name where possible. 556 void TypePrinting::print(Type *Ty, raw_ostream &OS) { 557 switch (Ty->getTypeID()) { 558 case Type::VoidTyID: OS << "void"; return; 559 case Type::HalfTyID: OS << "half"; return; 560 case Type::FloatTyID: OS << "float"; return; 561 case Type::DoubleTyID: OS << "double"; return; 562 case Type::X86_FP80TyID: OS << "x86_fp80"; return; 563 case Type::FP128TyID: OS << "fp128"; return; 564 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return; 565 case Type::LabelTyID: OS << "label"; return; 566 case Type::MetadataTyID: OS << "metadata"; return; 567 case Type::X86_MMXTyID: OS << "x86_mmx"; return; 568 case Type::TokenTyID: OS << "token"; return; 569 case Type::IntegerTyID: 570 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); 571 return; 572 573 case Type::FunctionTyID: { 574 FunctionType *FTy = cast<FunctionType>(Ty); 575 print(FTy->getReturnType(), OS); 576 OS << " ("; 577 for (FunctionType::param_iterator I = FTy->param_begin(), 578 E = FTy->param_end(); I != E; ++I) { 579 if (I != FTy->param_begin()) 580 OS << ", "; 581 print(*I, OS); 582 } 583 if (FTy->isVarArg()) { 584 if (FTy->getNumParams()) OS << ", "; 585 OS << "..."; 586 } 587 OS << ')'; 588 return; 589 } 590 case Type::StructTyID: { 591 StructType *STy = cast<StructType>(Ty); 592 593 if (STy->isLiteral()) 594 return printStructBody(STy, OS); 595 596 if (!STy->getName().empty()) 597 return PrintLLVMName(OS, STy->getName(), LocalPrefix); 598 599 incorporateTypes(); 600 const auto I = Type2Number.find(STy); 601 if (I != Type2Number.end()) 602 OS << '%' << I->second; 603 else // Not enumerated, print the hex address. 604 OS << "%\"type " << STy << '\"'; 605 return; 606 } 607 case Type::PointerTyID: { 608 PointerType *PTy = cast<PointerType>(Ty); 609 print(PTy->getElementType(), OS); 610 if (unsigned AddressSpace = PTy->getAddressSpace()) 611 OS << " addrspace(" << AddressSpace << ')'; 612 OS << '*'; 613 return; 614 } 615 case Type::ArrayTyID: { 616 ArrayType *ATy = cast<ArrayType>(Ty); 617 OS << '[' << ATy->getNumElements() << " x "; 618 print(ATy->getElementType(), OS); 619 OS << ']'; 620 return; 621 } 622 case Type::VectorTyID: { 623 VectorType *PTy = cast<VectorType>(Ty); 624 OS << "<"; 625 if (PTy->isScalable()) 626 OS << "vscale x "; 627 OS << PTy->getNumElements() << " x "; 628 print(PTy->getElementType(), OS); 629 OS << '>'; 630 return; 631 } 632 } 633 llvm_unreachable("Invalid TypeID"); 634 } 635 636 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { 637 if (STy->isOpaque()) { 638 OS << "opaque"; 639 return; 640 } 641 642 if (STy->isPacked()) 643 OS << '<'; 644 645 if (STy->getNumElements() == 0) { 646 OS << "{}"; 647 } else { 648 StructType::element_iterator I = STy->element_begin(); 649 OS << "{ "; 650 print(*I++, OS); 651 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { 652 OS << ", "; 653 print(*I, OS); 654 } 655 656 OS << " }"; 657 } 658 if (STy->isPacked()) 659 OS << '>'; 660 } 661 662 namespace llvm { 663 664 //===----------------------------------------------------------------------===// 665 // SlotTracker Class: Enumerate slot numbers for unnamed values 666 //===----------------------------------------------------------------------===// 667 /// This class provides computation of slot numbers for LLVM Assembly writing. 668 /// 669 class SlotTracker { 670 public: 671 /// ValueMap - A mapping of Values to slot numbers. 672 using ValueMap = DenseMap<const Value *, unsigned>; 673 674 private: 675 /// TheModule - The module for which we are holding slot numbers. 676 const Module* TheModule; 677 678 /// TheFunction - The function for which we are holding slot numbers. 679 const Function* TheFunction = nullptr; 680 bool FunctionProcessed = false; 681 bool ShouldInitializeAllMetadata; 682 683 /// The summary index for which we are holding slot numbers. 684 const ModuleSummaryIndex *TheIndex = nullptr; 685 686 /// mMap - The slot map for the module level data. 687 ValueMap mMap; 688 unsigned mNext = 0; 689 690 /// fMap - The slot map for the function level data. 691 ValueMap fMap; 692 unsigned fNext = 0; 693 694 /// mdnMap - Map for MDNodes. 695 DenseMap<const MDNode*, unsigned> mdnMap; 696 unsigned mdnNext = 0; 697 698 /// asMap - The slot map for attribute sets. 699 DenseMap<AttributeSet, unsigned> asMap; 700 unsigned asNext = 0; 701 702 /// ModulePathMap - The slot map for Module paths used in the summary index. 703 StringMap<unsigned> ModulePathMap; 704 unsigned ModulePathNext = 0; 705 706 /// GUIDMap - The slot map for GUIDs used in the summary index. 707 DenseMap<GlobalValue::GUID, unsigned> GUIDMap; 708 unsigned GUIDNext = 0; 709 710 /// TypeIdMap - The slot map for type ids used in the summary index. 711 StringMap<unsigned> TypeIdMap; 712 unsigned TypeIdNext = 0; 713 714 public: 715 /// Construct from a module. 716 /// 717 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 718 /// functions, giving correct numbering for metadata referenced only from 719 /// within a function (even if no functions have been initialized). 720 explicit SlotTracker(const Module *M, 721 bool ShouldInitializeAllMetadata = false); 722 723 /// Construct from a function, starting out in incorp state. 724 /// 725 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 726 /// functions, giving correct numbering for metadata referenced only from 727 /// within a function (even if no functions have been initialized). 728 explicit SlotTracker(const Function *F, 729 bool ShouldInitializeAllMetadata = false); 730 731 /// Construct from a module summary index. 732 explicit SlotTracker(const ModuleSummaryIndex *Index); 733 734 SlotTracker(const SlotTracker &) = delete; 735 SlotTracker &operator=(const SlotTracker &) = delete; 736 737 /// Return the slot number of the specified value in it's type 738 /// plane. If something is not in the SlotTracker, return -1. 739 int getLocalSlot(const Value *V); 740 int getGlobalSlot(const GlobalValue *V); 741 int getMetadataSlot(const MDNode *N); 742 int getAttributeGroupSlot(AttributeSet AS); 743 int getModulePathSlot(StringRef Path); 744 int getGUIDSlot(GlobalValue::GUID GUID); 745 int getTypeIdSlot(StringRef Id); 746 747 /// If you'd like to deal with a function instead of just a module, use 748 /// this method to get its data into the SlotTracker. 749 void incorporateFunction(const Function *F) { 750 TheFunction = F; 751 FunctionProcessed = false; 752 } 753 754 const Function *getFunction() const { return TheFunction; } 755 756 /// After calling incorporateFunction, use this method to remove the 757 /// most recently incorporated function from the SlotTracker. This 758 /// will reset the state of the machine back to just the module contents. 759 void purgeFunction(); 760 761 /// MDNode map iterators. 762 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator; 763 764 mdn_iterator mdn_begin() { return mdnMap.begin(); } 765 mdn_iterator mdn_end() { return mdnMap.end(); } 766 unsigned mdn_size() const { return mdnMap.size(); } 767 bool mdn_empty() const { return mdnMap.empty(); } 768 769 /// AttributeSet map iterators. 770 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator; 771 772 as_iterator as_begin() { return asMap.begin(); } 773 as_iterator as_end() { return asMap.end(); } 774 unsigned as_size() const { return asMap.size(); } 775 bool as_empty() const { return asMap.empty(); } 776 777 /// GUID map iterators. 778 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator; 779 780 /// These functions do the actual initialization. 781 inline void initializeIfNeeded(); 782 void initializeIndexIfNeeded(); 783 784 // Implementation Details 785 private: 786 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 787 void CreateModuleSlot(const GlobalValue *V); 788 789 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. 790 void CreateMetadataSlot(const MDNode *N); 791 792 /// CreateFunctionSlot - Insert the specified Value* into the slot table. 793 void CreateFunctionSlot(const Value *V); 794 795 /// Insert the specified AttributeSet into the slot table. 796 void CreateAttributeSetSlot(AttributeSet AS); 797 798 inline void CreateModulePathSlot(StringRef Path); 799 void CreateGUIDSlot(GlobalValue::GUID GUID); 800 void CreateTypeIdSlot(StringRef Id); 801 802 /// Add all of the module level global variables (and their initializers) 803 /// and function declarations, but not the contents of those functions. 804 void processModule(); 805 void processIndex(); 806 807 /// Add all of the functions arguments, basic blocks, and instructions. 808 void processFunction(); 809 810 /// Add the metadata directly attached to a GlobalObject. 811 void processGlobalObjectMetadata(const GlobalObject &GO); 812 813 /// Add all of the metadata from a function. 814 void processFunctionMetadata(const Function &F); 815 816 /// Add all of the metadata from an instruction. 817 void processInstructionMetadata(const Instruction &I); 818 }; 819 820 } // end namespace llvm 821 822 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M, 823 const Function *F) 824 : M(M), F(F), Machine(&Machine) {} 825 826 ModuleSlotTracker::ModuleSlotTracker(const Module *M, 827 bool ShouldInitializeAllMetadata) 828 : ShouldCreateStorage(M), 829 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {} 830 831 ModuleSlotTracker::~ModuleSlotTracker() = default; 832 833 SlotTracker *ModuleSlotTracker::getMachine() { 834 if (!ShouldCreateStorage) 835 return Machine; 836 837 ShouldCreateStorage = false; 838 MachineStorage = 839 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata); 840 Machine = MachineStorage.get(); 841 return Machine; 842 } 843 844 void ModuleSlotTracker::incorporateFunction(const Function &F) { 845 // Using getMachine() may lazily create the slot tracker. 846 if (!getMachine()) 847 return; 848 849 // Nothing to do if this is the right function already. 850 if (this->F == &F) 851 return; 852 if (this->F) 853 Machine->purgeFunction(); 854 Machine->incorporateFunction(&F); 855 this->F = &F; 856 } 857 858 int ModuleSlotTracker::getLocalSlot(const Value *V) { 859 assert(F && "No function incorporated"); 860 return Machine->getLocalSlot(V); 861 } 862 863 static SlotTracker *createSlotTracker(const Value *V) { 864 if (const Argument *FA = dyn_cast<Argument>(V)) 865 return new SlotTracker(FA->getParent()); 866 867 if (const Instruction *I = dyn_cast<Instruction>(V)) 868 if (I->getParent()) 869 return new SlotTracker(I->getParent()->getParent()); 870 871 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 872 return new SlotTracker(BB->getParent()); 873 874 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 875 return new SlotTracker(GV->getParent()); 876 877 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 878 return new SlotTracker(GA->getParent()); 879 880 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V)) 881 return new SlotTracker(GIF->getParent()); 882 883 if (const Function *Func = dyn_cast<Function>(V)) 884 return new SlotTracker(Func); 885 886 return nullptr; 887 } 888 889 #if 0 890 #define ST_DEBUG(X) dbgs() << X 891 #else 892 #define ST_DEBUG(X) 893 #endif 894 895 // Module level constructor. Causes the contents of the Module (sans functions) 896 // to be added to the slot table. 897 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) 898 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 899 900 // Function level constructor. Causes the contents of the Module and the one 901 // function provided to be added to the slot table. 902 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) 903 : TheModule(F ? F->getParent() : nullptr), TheFunction(F), 904 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 905 906 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index) 907 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {} 908 909 inline void SlotTracker::initializeIfNeeded() { 910 if (TheModule) { 911 processModule(); 912 TheModule = nullptr; ///< Prevent re-processing next time we're called. 913 } 914 915 if (TheFunction && !FunctionProcessed) 916 processFunction(); 917 } 918 919 void SlotTracker::initializeIndexIfNeeded() { 920 if (!TheIndex) 921 return; 922 processIndex(); 923 TheIndex = nullptr; ///< Prevent re-processing next time we're called. 924 } 925 926 // Iterate through all the global variables, functions, and global 927 // variable initializers and create slots for them. 928 void SlotTracker::processModule() { 929 ST_DEBUG("begin processModule!\n"); 930 931 // Add all of the unnamed global variables to the value table. 932 for (const GlobalVariable &Var : TheModule->globals()) { 933 if (!Var.hasName()) 934 CreateModuleSlot(&Var); 935 processGlobalObjectMetadata(Var); 936 auto Attrs = Var.getAttributes(); 937 if (Attrs.hasAttributes()) 938 CreateAttributeSetSlot(Attrs); 939 } 940 941 for (const GlobalAlias &A : TheModule->aliases()) { 942 if (!A.hasName()) 943 CreateModuleSlot(&A); 944 } 945 946 for (const GlobalIFunc &I : TheModule->ifuncs()) { 947 if (!I.hasName()) 948 CreateModuleSlot(&I); 949 } 950 951 // Add metadata used by named metadata. 952 for (const NamedMDNode &NMD : TheModule->named_metadata()) { 953 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) 954 CreateMetadataSlot(NMD.getOperand(i)); 955 } 956 957 for (const Function &F : *TheModule) { 958 if (!F.hasName()) 959 // Add all the unnamed functions to the table. 960 CreateModuleSlot(&F); 961 962 if (ShouldInitializeAllMetadata) 963 processFunctionMetadata(F); 964 965 // Add all the function attributes to the table. 966 // FIXME: Add attributes of other objects? 967 AttributeSet FnAttrs = F.getAttributes().getFnAttributes(); 968 if (FnAttrs.hasAttributes()) 969 CreateAttributeSetSlot(FnAttrs); 970 } 971 972 ST_DEBUG("end processModule!\n"); 973 } 974 975 // Process the arguments, basic blocks, and instructions of a function. 976 void SlotTracker::processFunction() { 977 ST_DEBUG("begin processFunction!\n"); 978 fNext = 0; 979 980 // Process function metadata if it wasn't hit at the module-level. 981 if (!ShouldInitializeAllMetadata) 982 processFunctionMetadata(*TheFunction); 983 984 // Add all the function arguments with no names. 985 for(Function::const_arg_iterator AI = TheFunction->arg_begin(), 986 AE = TheFunction->arg_end(); AI != AE; ++AI) 987 if (!AI->hasName()) 988 CreateFunctionSlot(&*AI); 989 990 ST_DEBUG("Inserting Instructions:\n"); 991 992 // Add all of the basic blocks and instructions with no names. 993 for (auto &BB : *TheFunction) { 994 if (!BB.hasName()) 995 CreateFunctionSlot(&BB); 996 997 for (auto &I : BB) { 998 if (!I.getType()->isVoidTy() && !I.hasName()) 999 CreateFunctionSlot(&I); 1000 1001 // We allow direct calls to any llvm.foo function here, because the 1002 // target may not be linked into the optimizer. 1003 if (const auto *Call = dyn_cast<CallBase>(&I)) { 1004 // Add all the call attributes to the table. 1005 AttributeSet Attrs = Call->getAttributes().getFnAttributes(); 1006 if (Attrs.hasAttributes()) 1007 CreateAttributeSetSlot(Attrs); 1008 } 1009 } 1010 } 1011 1012 FunctionProcessed = true; 1013 1014 ST_DEBUG("end processFunction!\n"); 1015 } 1016 1017 // Iterate through all the GUID in the index and create slots for them. 1018 void SlotTracker::processIndex() { 1019 ST_DEBUG("begin processIndex!\n"); 1020 assert(TheIndex); 1021 1022 // The first block of slots are just the module ids, which start at 0 and are 1023 // assigned consecutively. Since the StringMap iteration order isn't 1024 // guaranteed, use a std::map to order by module ID before assigning slots. 1025 std::map<uint64_t, StringRef> ModuleIdToPathMap; 1026 for (auto &ModPath : TheIndex->modulePaths()) 1027 ModuleIdToPathMap[ModPath.second.first] = ModPath.first(); 1028 for (auto &ModPair : ModuleIdToPathMap) 1029 CreateModulePathSlot(ModPair.second); 1030 1031 // Start numbering the GUIDs after the module ids. 1032 GUIDNext = ModulePathNext; 1033 1034 for (auto &GlobalList : *TheIndex) 1035 CreateGUIDSlot(GlobalList.first); 1036 1037 // Start numbering the TypeIds after the GUIDs. 1038 TypeIdNext = GUIDNext; 1039 1040 for (auto TidIter = TheIndex->typeIds().begin(); 1041 TidIter != TheIndex->typeIds().end(); TidIter++) 1042 CreateTypeIdSlot(TidIter->second.first); 1043 1044 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) 1045 CreateGUIDSlot(GlobalValue::getGUID(TId.first)); 1046 1047 ST_DEBUG("end processIndex!\n"); 1048 } 1049 1050 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) { 1051 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1052 GO.getAllMetadata(MDs); 1053 for (auto &MD : MDs) 1054 CreateMetadataSlot(MD.second); 1055 } 1056 1057 void SlotTracker::processFunctionMetadata(const Function &F) { 1058 processGlobalObjectMetadata(F); 1059 for (auto &BB : F) { 1060 for (auto &I : BB) 1061 processInstructionMetadata(I); 1062 } 1063 } 1064 1065 void SlotTracker::processInstructionMetadata(const Instruction &I) { 1066 // Process metadata used directly by intrinsics. 1067 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1068 if (Function *F = CI->getCalledFunction()) 1069 if (F->isIntrinsic()) 1070 for (auto &Op : I.operands()) 1071 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 1072 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) 1073 CreateMetadataSlot(N); 1074 1075 // Process metadata attached to this instruction. 1076 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1077 I.getAllMetadata(MDs); 1078 for (auto &MD : MDs) 1079 CreateMetadataSlot(MD.second); 1080 } 1081 1082 /// Clean up after incorporating a function. This is the only way to get out of 1083 /// the function incorporation state that affects get*Slot/Create*Slot. Function 1084 /// incorporation state is indicated by TheFunction != 0. 1085 void SlotTracker::purgeFunction() { 1086 ST_DEBUG("begin purgeFunction!\n"); 1087 fMap.clear(); // Simply discard the function level map 1088 TheFunction = nullptr; 1089 FunctionProcessed = false; 1090 ST_DEBUG("end purgeFunction!\n"); 1091 } 1092 1093 /// getGlobalSlot - Get the slot number of a global value. 1094 int SlotTracker::getGlobalSlot(const GlobalValue *V) { 1095 // Check for uninitialized state and do lazy initialization. 1096 initializeIfNeeded(); 1097 1098 // Find the value in the module map 1099 ValueMap::iterator MI = mMap.find(V); 1100 return MI == mMap.end() ? -1 : (int)MI->second; 1101 } 1102 1103 /// getMetadataSlot - Get the slot number of a MDNode. 1104 int SlotTracker::getMetadataSlot(const MDNode *N) { 1105 // Check for uninitialized state and do lazy initialization. 1106 initializeIfNeeded(); 1107 1108 // Find the MDNode in the module map 1109 mdn_iterator MI = mdnMap.find(N); 1110 return MI == mdnMap.end() ? -1 : (int)MI->second; 1111 } 1112 1113 /// getLocalSlot - Get the slot number for a value that is local to a function. 1114 int SlotTracker::getLocalSlot(const Value *V) { 1115 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); 1116 1117 // Check for uninitialized state and do lazy initialization. 1118 initializeIfNeeded(); 1119 1120 ValueMap::iterator FI = fMap.find(V); 1121 return FI == fMap.end() ? -1 : (int)FI->second; 1122 } 1123 1124 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { 1125 // Check for uninitialized state and do lazy initialization. 1126 initializeIfNeeded(); 1127 1128 // Find the AttributeSet in the module map. 1129 as_iterator AI = asMap.find(AS); 1130 return AI == asMap.end() ? -1 : (int)AI->second; 1131 } 1132 1133 int SlotTracker::getModulePathSlot(StringRef Path) { 1134 // Check for uninitialized state and do lazy initialization. 1135 initializeIndexIfNeeded(); 1136 1137 // Find the Module path in the map 1138 auto I = ModulePathMap.find(Path); 1139 return I == ModulePathMap.end() ? -1 : (int)I->second; 1140 } 1141 1142 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) { 1143 // Check for uninitialized state and do lazy initialization. 1144 initializeIndexIfNeeded(); 1145 1146 // Find the GUID in the map 1147 guid_iterator I = GUIDMap.find(GUID); 1148 return I == GUIDMap.end() ? -1 : (int)I->second; 1149 } 1150 1151 int SlotTracker::getTypeIdSlot(StringRef Id) { 1152 // Check for uninitialized state and do lazy initialization. 1153 initializeIndexIfNeeded(); 1154 1155 // Find the TypeId string in the map 1156 auto I = TypeIdMap.find(Id); 1157 return I == TypeIdMap.end() ? -1 : (int)I->second; 1158 } 1159 1160 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 1161 void SlotTracker::CreateModuleSlot(const GlobalValue *V) { 1162 assert(V && "Can't insert a null Value into SlotTracker!"); 1163 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); 1164 assert(!V->hasName() && "Doesn't need a slot!"); 1165 1166 unsigned DestSlot = mNext++; 1167 mMap[V] = DestSlot; 1168 1169 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1170 DestSlot << " ["); 1171 // G = Global, F = Function, A = Alias, I = IFunc, o = other 1172 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : 1173 (isa<Function>(V) ? 'F' : 1174 (isa<GlobalAlias>(V) ? 'A' : 1175 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n"); 1176 } 1177 1178 /// CreateSlot - Create a new slot for the specified value if it has no name. 1179 void SlotTracker::CreateFunctionSlot(const Value *V) { 1180 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); 1181 1182 unsigned DestSlot = fNext++; 1183 fMap[V] = DestSlot; 1184 1185 // G = Global, F = Function, o = other 1186 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1187 DestSlot << " [o]\n"); 1188 } 1189 1190 /// CreateModuleSlot - Insert the specified MDNode* into the slot table. 1191 void SlotTracker::CreateMetadataSlot(const MDNode *N) { 1192 assert(N && "Can't insert a null Value into SlotTracker!"); 1193 1194 // Don't make slots for DIExpressions. We just print them inline everywhere. 1195 if (isa<DIExpression>(N)) 1196 return; 1197 1198 unsigned DestSlot = mdnNext; 1199 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second) 1200 return; 1201 ++mdnNext; 1202 1203 // Recursively add any MDNodes referenced by operands. 1204 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1205 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) 1206 CreateMetadataSlot(Op); 1207 } 1208 1209 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { 1210 assert(AS.hasAttributes() && "Doesn't need a slot!"); 1211 1212 as_iterator I = asMap.find(AS); 1213 if (I != asMap.end()) 1214 return; 1215 1216 unsigned DestSlot = asNext++; 1217 asMap[AS] = DestSlot; 1218 } 1219 1220 /// Create a new slot for the specified Module 1221 void SlotTracker::CreateModulePathSlot(StringRef Path) { 1222 ModulePathMap[Path] = ModulePathNext++; 1223 } 1224 1225 /// Create a new slot for the specified GUID 1226 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) { 1227 GUIDMap[GUID] = GUIDNext++; 1228 } 1229 1230 /// Create a new slot for the specified Id 1231 void SlotTracker::CreateTypeIdSlot(StringRef Id) { 1232 TypeIdMap[Id] = TypeIdNext++; 1233 } 1234 1235 //===----------------------------------------------------------------------===// 1236 // AsmWriter Implementation 1237 //===----------------------------------------------------------------------===// 1238 1239 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 1240 TypePrinting *TypePrinter, 1241 SlotTracker *Machine, 1242 const Module *Context); 1243 1244 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 1245 TypePrinting *TypePrinter, 1246 SlotTracker *Machine, const Module *Context, 1247 bool FromValue = false); 1248 1249 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { 1250 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) { 1251 // 'Fast' is an abbreviation for all fast-math-flags. 1252 if (FPO->isFast()) 1253 Out << " fast"; 1254 else { 1255 if (FPO->hasAllowReassoc()) 1256 Out << " reassoc"; 1257 if (FPO->hasNoNaNs()) 1258 Out << " nnan"; 1259 if (FPO->hasNoInfs()) 1260 Out << " ninf"; 1261 if (FPO->hasNoSignedZeros()) 1262 Out << " nsz"; 1263 if (FPO->hasAllowReciprocal()) 1264 Out << " arcp"; 1265 if (FPO->hasAllowContract()) 1266 Out << " contract"; 1267 if (FPO->hasApproxFunc()) 1268 Out << " afn"; 1269 } 1270 } 1271 1272 if (const OverflowingBinaryOperator *OBO = 1273 dyn_cast<OverflowingBinaryOperator>(U)) { 1274 if (OBO->hasNoUnsignedWrap()) 1275 Out << " nuw"; 1276 if (OBO->hasNoSignedWrap()) 1277 Out << " nsw"; 1278 } else if (const PossiblyExactOperator *Div = 1279 dyn_cast<PossiblyExactOperator>(U)) { 1280 if (Div->isExact()) 1281 Out << " exact"; 1282 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 1283 if (GEP->isInBounds()) 1284 Out << " inbounds"; 1285 } 1286 } 1287 1288 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, 1289 TypePrinting &TypePrinter, 1290 SlotTracker *Machine, 1291 const Module *Context) { 1292 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1293 if (CI->getType()->isIntegerTy(1)) { 1294 Out << (CI->getZExtValue() ? "true" : "false"); 1295 return; 1296 } 1297 Out << CI->getValue(); 1298 return; 1299 } 1300 1301 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1302 const APFloat &APF = CFP->getValueAPF(); 1303 if (&APF.getSemantics() == &APFloat::IEEEsingle() || 1304 &APF.getSemantics() == &APFloat::IEEEdouble()) { 1305 // We would like to output the FP constant value in exponential notation, 1306 // but we cannot do this if doing so will lose precision. Check here to 1307 // make sure that we only output it in exponential format if we can parse 1308 // the value back and get the same value. 1309 // 1310 bool ignored; 1311 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble(); 1312 bool isInf = APF.isInfinity(); 1313 bool isNaN = APF.isNaN(); 1314 if (!isInf && !isNaN) { 1315 double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat(); 1316 SmallString<128> StrVal; 1317 APF.toString(StrVal, 6, 0, false); 1318 // Check to make sure that the stringized number is not some string like 1319 // "Inf" or NaN, that atof will accept, but the lexer will not. Check 1320 // that the string matches the "[-+]?[0-9]" regex. 1321 // 1322 assert(((StrVal[0] >= '0' && StrVal[0] <= '9') || 1323 ((StrVal[0] == '-' || StrVal[0] == '+') && 1324 (StrVal[1] >= '0' && StrVal[1] <= '9'))) && 1325 "[-+]?[0-9] regex does not match!"); 1326 // Reparse stringized version! 1327 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) { 1328 Out << StrVal; 1329 return; 1330 } 1331 } 1332 // Otherwise we could not reparse it to exactly the same value, so we must 1333 // output the string in hexadecimal format! Note that loading and storing 1334 // floating point types changes the bits of NaNs on some hosts, notably 1335 // x86, so we must not use these types. 1336 static_assert(sizeof(double) == sizeof(uint64_t), 1337 "assuming that double is 64 bits!"); 1338 APFloat apf = APF; 1339 // Floats are represented in ASCII IR as double, convert. 1340 if (!isDouble) 1341 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1342 &ignored); 1343 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true); 1344 return; 1345 } 1346 1347 // Either half, or some form of long double. 1348 // These appear as a magic letter identifying the type, then a 1349 // fixed number of hex digits. 1350 Out << "0x"; 1351 APInt API = APF.bitcastToAPInt(); 1352 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) { 1353 Out << 'K'; 1354 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 1355 /*Upper=*/true); 1356 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1357 /*Upper=*/true); 1358 return; 1359 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) { 1360 Out << 'L'; 1361 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1362 /*Upper=*/true); 1363 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1364 /*Upper=*/true); 1365 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) { 1366 Out << 'M'; 1367 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1368 /*Upper=*/true); 1369 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1370 /*Upper=*/true); 1371 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) { 1372 Out << 'H'; 1373 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1374 /*Upper=*/true); 1375 } else 1376 llvm_unreachable("Unsupported floating point type"); 1377 return; 1378 } 1379 1380 if (isa<ConstantAggregateZero>(CV)) { 1381 Out << "zeroinitializer"; 1382 return; 1383 } 1384 1385 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 1386 Out << "blockaddress("; 1387 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, 1388 Context); 1389 Out << ", "; 1390 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, 1391 Context); 1392 Out << ")"; 1393 return; 1394 } 1395 1396 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 1397 Type *ETy = CA->getType()->getElementType(); 1398 Out << '['; 1399 TypePrinter.print(ETy, Out); 1400 Out << ' '; 1401 WriteAsOperandInternal(Out, CA->getOperand(0), 1402 &TypePrinter, Machine, 1403 Context); 1404 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1405 Out << ", "; 1406 TypePrinter.print(ETy, Out); 1407 Out << ' '; 1408 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, 1409 Context); 1410 } 1411 Out << ']'; 1412 return; 1413 } 1414 1415 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { 1416 // As a special case, print the array as a string if it is an array of 1417 // i8 with ConstantInt values. 1418 if (CA->isString()) { 1419 Out << "c\""; 1420 printEscapedString(CA->getAsString(), Out); 1421 Out << '"'; 1422 return; 1423 } 1424 1425 Type *ETy = CA->getType()->getElementType(); 1426 Out << '['; 1427 TypePrinter.print(ETy, Out); 1428 Out << ' '; 1429 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), 1430 &TypePrinter, Machine, 1431 Context); 1432 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { 1433 Out << ", "; 1434 TypePrinter.print(ETy, Out); 1435 Out << ' '; 1436 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, 1437 Machine, Context); 1438 } 1439 Out << ']'; 1440 return; 1441 } 1442 1443 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 1444 if (CS->getType()->isPacked()) 1445 Out << '<'; 1446 Out << '{'; 1447 unsigned N = CS->getNumOperands(); 1448 if (N) { 1449 Out << ' '; 1450 TypePrinter.print(CS->getOperand(0)->getType(), Out); 1451 Out << ' '; 1452 1453 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, 1454 Context); 1455 1456 for (unsigned i = 1; i < N; i++) { 1457 Out << ", "; 1458 TypePrinter.print(CS->getOperand(i)->getType(), Out); 1459 Out << ' '; 1460 1461 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, 1462 Context); 1463 } 1464 Out << ' '; 1465 } 1466 1467 Out << '}'; 1468 if (CS->getType()->isPacked()) 1469 Out << '>'; 1470 return; 1471 } 1472 1473 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { 1474 Type *ETy = CV->getType()->getVectorElementType(); 1475 Out << '<'; 1476 TypePrinter.print(ETy, Out); 1477 Out << ' '; 1478 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, 1479 Machine, Context); 1480 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){ 1481 Out << ", "; 1482 TypePrinter.print(ETy, Out); 1483 Out << ' '; 1484 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, 1485 Machine, Context); 1486 } 1487 Out << '>'; 1488 return; 1489 } 1490 1491 if (isa<ConstantPointerNull>(CV)) { 1492 Out << "null"; 1493 return; 1494 } 1495 1496 if (isa<ConstantTokenNone>(CV)) { 1497 Out << "none"; 1498 return; 1499 } 1500 1501 if (isa<UndefValue>(CV)) { 1502 Out << "undef"; 1503 return; 1504 } 1505 1506 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1507 Out << CE->getOpcodeName(); 1508 WriteOptimizationInfo(Out, CE); 1509 if (CE->isCompare()) 1510 Out << ' ' << CmpInst::getPredicateName( 1511 static_cast<CmpInst::Predicate>(CE->getPredicate())); 1512 Out << " ("; 1513 1514 Optional<unsigned> InRangeOp; 1515 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) { 1516 TypePrinter.print(GEP->getSourceElementType(), Out); 1517 Out << ", "; 1518 InRangeOp = GEP->getInRangeIndex(); 1519 if (InRangeOp) 1520 ++*InRangeOp; 1521 } 1522 1523 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { 1524 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp) 1525 Out << "inrange "; 1526 TypePrinter.print((*OI)->getType(), Out); 1527 Out << ' '; 1528 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); 1529 if (OI+1 != CE->op_end()) 1530 Out << ", "; 1531 } 1532 1533 if (CE->hasIndices()) { 1534 ArrayRef<unsigned> Indices = CE->getIndices(); 1535 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1536 Out << ", " << Indices[i]; 1537 } 1538 1539 if (CE->isCast()) { 1540 Out << " to "; 1541 TypePrinter.print(CE->getType(), Out); 1542 } 1543 1544 Out << ')'; 1545 return; 1546 } 1547 1548 Out << "<placeholder or erroneous Constant>"; 1549 } 1550 1551 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, 1552 TypePrinting *TypePrinter, SlotTracker *Machine, 1553 const Module *Context) { 1554 Out << "!{"; 1555 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { 1556 const Metadata *MD = Node->getOperand(mi); 1557 if (!MD) 1558 Out << "null"; 1559 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) { 1560 Value *V = MDV->getValue(); 1561 TypePrinter->print(V->getType(), Out); 1562 Out << ' '; 1563 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context); 1564 } else { 1565 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); 1566 } 1567 if (mi + 1 != me) 1568 Out << ", "; 1569 } 1570 1571 Out << "}"; 1572 } 1573 1574 namespace { 1575 1576 struct FieldSeparator { 1577 bool Skip = true; 1578 const char *Sep; 1579 1580 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {} 1581 }; 1582 1583 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { 1584 if (FS.Skip) { 1585 FS.Skip = false; 1586 return OS; 1587 } 1588 return OS << FS.Sep; 1589 } 1590 1591 struct MDFieldPrinter { 1592 raw_ostream &Out; 1593 FieldSeparator FS; 1594 TypePrinting *TypePrinter = nullptr; 1595 SlotTracker *Machine = nullptr; 1596 const Module *Context = nullptr; 1597 1598 explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {} 1599 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter, 1600 SlotTracker *Machine, const Module *Context) 1601 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) { 1602 } 1603 1604 void printTag(const DINode *N); 1605 void printMacinfoType(const DIMacroNode *N); 1606 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N); 1607 void printString(StringRef Name, StringRef Value, 1608 bool ShouldSkipEmpty = true); 1609 void printMetadata(StringRef Name, const Metadata *MD, 1610 bool ShouldSkipNull = true); 1611 template <class IntTy> 1612 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); 1613 void printBool(StringRef Name, bool Value, Optional<bool> Default = None); 1614 void printDIFlags(StringRef Name, DINode::DIFlags Flags); 1615 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags); 1616 template <class IntTy, class Stringifier> 1617 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, 1618 bool ShouldSkipZero = true); 1619 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK); 1620 void printNameTableKind(StringRef Name, 1621 DICompileUnit::DebugNameTableKind NTK); 1622 }; 1623 1624 } // end anonymous namespace 1625 1626 void MDFieldPrinter::printTag(const DINode *N) { 1627 Out << FS << "tag: "; 1628 auto Tag = dwarf::TagString(N->getTag()); 1629 if (!Tag.empty()) 1630 Out << Tag; 1631 else 1632 Out << N->getTag(); 1633 } 1634 1635 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) { 1636 Out << FS << "type: "; 1637 auto Type = dwarf::MacinfoString(N->getMacinfoType()); 1638 if (!Type.empty()) 1639 Out << Type; 1640 else 1641 Out << N->getMacinfoType(); 1642 } 1643 1644 void MDFieldPrinter::printChecksum( 1645 const DIFile::ChecksumInfo<StringRef> &Checksum) { 1646 Out << FS << "checksumkind: " << Checksum.getKindAsString(); 1647 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false); 1648 } 1649 1650 void MDFieldPrinter::printString(StringRef Name, StringRef Value, 1651 bool ShouldSkipEmpty) { 1652 if (ShouldSkipEmpty && Value.empty()) 1653 return; 1654 1655 Out << FS << Name << ": \""; 1656 printEscapedString(Value, Out); 1657 Out << "\""; 1658 } 1659 1660 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, 1661 TypePrinting *TypePrinter, 1662 SlotTracker *Machine, 1663 const Module *Context) { 1664 if (!MD) { 1665 Out << "null"; 1666 return; 1667 } 1668 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); 1669 } 1670 1671 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, 1672 bool ShouldSkipNull) { 1673 if (ShouldSkipNull && !MD) 1674 return; 1675 1676 Out << FS << Name << ": "; 1677 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context); 1678 } 1679 1680 template <class IntTy> 1681 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { 1682 if (ShouldSkipZero && !Int) 1683 return; 1684 1685 Out << FS << Name << ": " << Int; 1686 } 1687 1688 void MDFieldPrinter::printBool(StringRef Name, bool Value, 1689 Optional<bool> Default) { 1690 if (Default && Value == *Default) 1691 return; 1692 Out << FS << Name << ": " << (Value ? "true" : "false"); 1693 } 1694 1695 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) { 1696 if (!Flags) 1697 return; 1698 1699 Out << FS << Name << ": "; 1700 1701 SmallVector<DINode::DIFlags, 8> SplitFlags; 1702 auto Extra = DINode::splitFlags(Flags, SplitFlags); 1703 1704 FieldSeparator FlagsFS(" | "); 1705 for (auto F : SplitFlags) { 1706 auto StringF = DINode::getFlagString(F); 1707 assert(!StringF.empty() && "Expected valid flag"); 1708 Out << FlagsFS << StringF; 1709 } 1710 if (Extra || SplitFlags.empty()) 1711 Out << FlagsFS << Extra; 1712 } 1713 1714 void MDFieldPrinter::printDISPFlags(StringRef Name, 1715 DISubprogram::DISPFlags Flags) { 1716 // Always print this field, because no flags in the IR at all will be 1717 // interpreted as old-style isDefinition: true. 1718 Out << FS << Name << ": "; 1719 1720 if (!Flags) { 1721 Out << 0; 1722 return; 1723 } 1724 1725 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags; 1726 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags); 1727 1728 FieldSeparator FlagsFS(" | "); 1729 for (auto F : SplitFlags) { 1730 auto StringF = DISubprogram::getFlagString(F); 1731 assert(!StringF.empty() && "Expected valid flag"); 1732 Out << FlagsFS << StringF; 1733 } 1734 if (Extra || SplitFlags.empty()) 1735 Out << FlagsFS << Extra; 1736 } 1737 1738 void MDFieldPrinter::printEmissionKind(StringRef Name, 1739 DICompileUnit::DebugEmissionKind EK) { 1740 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK); 1741 } 1742 1743 void MDFieldPrinter::printNameTableKind(StringRef Name, 1744 DICompileUnit::DebugNameTableKind NTK) { 1745 if (NTK == DICompileUnit::DebugNameTableKind::Default) 1746 return; 1747 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK); 1748 } 1749 1750 template <class IntTy, class Stringifier> 1751 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, 1752 Stringifier toString, bool ShouldSkipZero) { 1753 if (!Value) 1754 return; 1755 1756 Out << FS << Name << ": "; 1757 auto S = toString(Value); 1758 if (!S.empty()) 1759 Out << S; 1760 else 1761 Out << Value; 1762 } 1763 1764 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, 1765 TypePrinting *TypePrinter, SlotTracker *Machine, 1766 const Module *Context) { 1767 Out << "!GenericDINode("; 1768 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1769 Printer.printTag(N); 1770 Printer.printString("header", N->getHeader()); 1771 if (N->getNumDwarfOperands()) { 1772 Out << Printer.FS << "operands: {"; 1773 FieldSeparator IFS; 1774 for (auto &I : N->dwarf_operands()) { 1775 Out << IFS; 1776 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context); 1777 } 1778 Out << "}"; 1779 } 1780 Out << ")"; 1781 } 1782 1783 static void writeDILocation(raw_ostream &Out, const DILocation *DL, 1784 TypePrinting *TypePrinter, SlotTracker *Machine, 1785 const Module *Context) { 1786 Out << "!DILocation("; 1787 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1788 // Always output the line, since 0 is a relevant and important value for it. 1789 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); 1790 Printer.printInt("column", DL->getColumn()); 1791 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); 1792 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); 1793 Printer.printBool("isImplicitCode", DL->isImplicitCode(), 1794 /* Default */ false); 1795 Out << ")"; 1796 } 1797 1798 static void writeDISubrange(raw_ostream &Out, const DISubrange *N, 1799 TypePrinting *TypePrinter, SlotTracker *Machine, 1800 const Module *Context) { 1801 Out << "!DISubrange("; 1802 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1803 if (auto *CE = N->getCount().dyn_cast<ConstantInt*>()) 1804 Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false); 1805 else 1806 Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(), 1807 /*ShouldSkipNull */ false); 1808 Printer.printInt("lowerBound", N->getLowerBound()); 1809 Out << ")"; 1810 } 1811 1812 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, 1813 TypePrinting *, SlotTracker *, const Module *) { 1814 Out << "!DIEnumerator("; 1815 MDFieldPrinter Printer(Out); 1816 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); 1817 if (N->isUnsigned()) { 1818 auto Value = static_cast<uint64_t>(N->getValue()); 1819 Printer.printInt("value", Value, /* ShouldSkipZero */ false); 1820 Printer.printBool("isUnsigned", true); 1821 } else { 1822 Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false); 1823 } 1824 Out << ")"; 1825 } 1826 1827 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, 1828 TypePrinting *, SlotTracker *, const Module *) { 1829 Out << "!DIBasicType("; 1830 MDFieldPrinter Printer(Out); 1831 if (N->getTag() != dwarf::DW_TAG_base_type) 1832 Printer.printTag(N); 1833 Printer.printString("name", N->getName()); 1834 Printer.printInt("size", N->getSizeInBits()); 1835 Printer.printInt("align", N->getAlignInBits()); 1836 Printer.printDwarfEnum("encoding", N->getEncoding(), 1837 dwarf::AttributeEncodingString); 1838 Printer.printDIFlags("flags", N->getFlags()); 1839 Out << ")"; 1840 } 1841 1842 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, 1843 TypePrinting *TypePrinter, SlotTracker *Machine, 1844 const Module *Context) { 1845 Out << "!DIDerivedType("; 1846 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1847 Printer.printTag(N); 1848 Printer.printString("name", N->getName()); 1849 Printer.printMetadata("scope", N->getRawScope()); 1850 Printer.printMetadata("file", N->getRawFile()); 1851 Printer.printInt("line", N->getLine()); 1852 Printer.printMetadata("baseType", N->getRawBaseType(), 1853 /* ShouldSkipNull */ false); 1854 Printer.printInt("size", N->getSizeInBits()); 1855 Printer.printInt("align", N->getAlignInBits()); 1856 Printer.printInt("offset", N->getOffsetInBits()); 1857 Printer.printDIFlags("flags", N->getFlags()); 1858 Printer.printMetadata("extraData", N->getRawExtraData()); 1859 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1860 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace, 1861 /* ShouldSkipZero */ false); 1862 Out << ")"; 1863 } 1864 1865 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, 1866 TypePrinting *TypePrinter, 1867 SlotTracker *Machine, const Module *Context) { 1868 Out << "!DICompositeType("; 1869 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1870 Printer.printTag(N); 1871 Printer.printString("name", N->getName()); 1872 Printer.printMetadata("scope", N->getRawScope()); 1873 Printer.printMetadata("file", N->getRawFile()); 1874 Printer.printInt("line", N->getLine()); 1875 Printer.printMetadata("baseType", N->getRawBaseType()); 1876 Printer.printInt("size", N->getSizeInBits()); 1877 Printer.printInt("align", N->getAlignInBits()); 1878 Printer.printInt("offset", N->getOffsetInBits()); 1879 Printer.printDIFlags("flags", N->getFlags()); 1880 Printer.printMetadata("elements", N->getRawElements()); 1881 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), 1882 dwarf::LanguageString); 1883 Printer.printMetadata("vtableHolder", N->getRawVTableHolder()); 1884 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 1885 Printer.printString("identifier", N->getIdentifier()); 1886 Printer.printMetadata("discriminator", N->getRawDiscriminator()); 1887 Out << ")"; 1888 } 1889 1890 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, 1891 TypePrinting *TypePrinter, 1892 SlotTracker *Machine, const Module *Context) { 1893 Out << "!DISubroutineType("; 1894 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1895 Printer.printDIFlags("flags", N->getFlags()); 1896 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString); 1897 Printer.printMetadata("types", N->getRawTypeArray(), 1898 /* ShouldSkipNull */ false); 1899 Out << ")"; 1900 } 1901 1902 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *, 1903 SlotTracker *, const Module *) { 1904 Out << "!DIFile("; 1905 MDFieldPrinter Printer(Out); 1906 Printer.printString("filename", N->getFilename(), 1907 /* ShouldSkipEmpty */ false); 1908 Printer.printString("directory", N->getDirectory(), 1909 /* ShouldSkipEmpty */ false); 1910 // Print all values for checksum together, or not at all. 1911 if (N->getChecksum()) 1912 Printer.printChecksum(*N->getChecksum()); 1913 Printer.printString("source", N->getSource().getValueOr(StringRef()), 1914 /* ShouldSkipEmpty */ true); 1915 Out << ")"; 1916 } 1917 1918 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, 1919 TypePrinting *TypePrinter, SlotTracker *Machine, 1920 const Module *Context) { 1921 Out << "!DICompileUnit("; 1922 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1923 Printer.printDwarfEnum("language", N->getSourceLanguage(), 1924 dwarf::LanguageString, /* ShouldSkipZero */ false); 1925 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 1926 Printer.printString("producer", N->getProducer()); 1927 Printer.printBool("isOptimized", N->isOptimized()); 1928 Printer.printString("flags", N->getFlags()); 1929 Printer.printInt("runtimeVersion", N->getRuntimeVersion(), 1930 /* ShouldSkipZero */ false); 1931 Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); 1932 Printer.printEmissionKind("emissionKind", N->getEmissionKind()); 1933 Printer.printMetadata("enums", N->getRawEnumTypes()); 1934 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes()); 1935 Printer.printMetadata("globals", N->getRawGlobalVariables()); 1936 Printer.printMetadata("imports", N->getRawImportedEntities()); 1937 Printer.printMetadata("macros", N->getRawMacros()); 1938 Printer.printInt("dwoId", N->getDWOId()); 1939 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true); 1940 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(), 1941 false); 1942 Printer.printNameTableKind("nameTableKind", N->getNameTableKind()); 1943 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false); 1944 Out << ")"; 1945 } 1946 1947 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, 1948 TypePrinting *TypePrinter, SlotTracker *Machine, 1949 const Module *Context) { 1950 Out << "!DISubprogram("; 1951 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1952 Printer.printString("name", N->getName()); 1953 Printer.printString("linkageName", N->getLinkageName()); 1954 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 1955 Printer.printMetadata("file", N->getRawFile()); 1956 Printer.printInt("line", N->getLine()); 1957 Printer.printMetadata("type", N->getRawType()); 1958 Printer.printInt("scopeLine", N->getScopeLine()); 1959 Printer.printMetadata("containingType", N->getRawContainingType()); 1960 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none || 1961 N->getVirtualIndex() != 0) 1962 Printer.printInt("virtualIndex", N->getVirtualIndex(), false); 1963 Printer.printInt("thisAdjustment", N->getThisAdjustment()); 1964 Printer.printDIFlags("flags", N->getFlags()); 1965 Printer.printDISPFlags("spFlags", N->getSPFlags()); 1966 Printer.printMetadata("unit", N->getRawUnit()); 1967 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 1968 Printer.printMetadata("declaration", N->getRawDeclaration()); 1969 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes()); 1970 Printer.printMetadata("thrownTypes", N->getRawThrownTypes()); 1971 Out << ")"; 1972 } 1973 1974 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, 1975 TypePrinting *TypePrinter, SlotTracker *Machine, 1976 const Module *Context) { 1977 Out << "!DILexicalBlock("; 1978 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1979 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 1980 Printer.printMetadata("file", N->getRawFile()); 1981 Printer.printInt("line", N->getLine()); 1982 Printer.printInt("column", N->getColumn()); 1983 Out << ")"; 1984 } 1985 1986 static void writeDILexicalBlockFile(raw_ostream &Out, 1987 const DILexicalBlockFile *N, 1988 TypePrinting *TypePrinter, 1989 SlotTracker *Machine, 1990 const Module *Context) { 1991 Out << "!DILexicalBlockFile("; 1992 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1993 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 1994 Printer.printMetadata("file", N->getRawFile()); 1995 Printer.printInt("discriminator", N->getDiscriminator(), 1996 /* ShouldSkipZero */ false); 1997 Out << ")"; 1998 } 1999 2000 static void writeDINamespace(raw_ostream &Out, const DINamespace *N, 2001 TypePrinting *TypePrinter, SlotTracker *Machine, 2002 const Module *Context) { 2003 Out << "!DINamespace("; 2004 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2005 Printer.printString("name", N->getName()); 2006 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2007 Printer.printBool("exportSymbols", N->getExportSymbols(), false); 2008 Out << ")"; 2009 } 2010 2011 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, 2012 TypePrinting *TypePrinter, SlotTracker *Machine, 2013 const Module *Context) { 2014 Out << "!DICommonBlock("; 2015 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2016 Printer.printMetadata("scope", N->getRawScope(), false); 2017 Printer.printMetadata("declaration", N->getRawDecl(), false); 2018 Printer.printString("name", N->getName()); 2019 Printer.printMetadata("file", N->getRawFile()); 2020 Printer.printInt("line", N->getLineNo()); 2021 Out << ")"; 2022 } 2023 2024 static void writeDIMacro(raw_ostream &Out, const DIMacro *N, 2025 TypePrinting *TypePrinter, SlotTracker *Machine, 2026 const Module *Context) { 2027 Out << "!DIMacro("; 2028 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2029 Printer.printMacinfoType(N); 2030 Printer.printInt("line", N->getLine()); 2031 Printer.printString("name", N->getName()); 2032 Printer.printString("value", N->getValue()); 2033 Out << ")"; 2034 } 2035 2036 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, 2037 TypePrinting *TypePrinter, SlotTracker *Machine, 2038 const Module *Context) { 2039 Out << "!DIMacroFile("; 2040 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2041 Printer.printInt("line", N->getLine()); 2042 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2043 Printer.printMetadata("nodes", N->getRawElements()); 2044 Out << ")"; 2045 } 2046 2047 static void writeDIModule(raw_ostream &Out, const DIModule *N, 2048 TypePrinting *TypePrinter, SlotTracker *Machine, 2049 const Module *Context) { 2050 Out << "!DIModule("; 2051 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2052 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2053 Printer.printString("name", N->getName()); 2054 Printer.printString("configMacros", N->getConfigurationMacros()); 2055 Printer.printString("includePath", N->getIncludePath()); 2056 Printer.printString("isysroot", N->getISysRoot()); 2057 Out << ")"; 2058 } 2059 2060 2061 static void writeDITemplateTypeParameter(raw_ostream &Out, 2062 const DITemplateTypeParameter *N, 2063 TypePrinting *TypePrinter, 2064 SlotTracker *Machine, 2065 const Module *Context) { 2066 Out << "!DITemplateTypeParameter("; 2067 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2068 Printer.printString("name", N->getName()); 2069 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false); 2070 Out << ")"; 2071 } 2072 2073 static void writeDITemplateValueParameter(raw_ostream &Out, 2074 const DITemplateValueParameter *N, 2075 TypePrinting *TypePrinter, 2076 SlotTracker *Machine, 2077 const Module *Context) { 2078 Out << "!DITemplateValueParameter("; 2079 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2080 if (N->getTag() != dwarf::DW_TAG_template_value_parameter) 2081 Printer.printTag(N); 2082 Printer.printString("name", N->getName()); 2083 Printer.printMetadata("type", N->getRawType()); 2084 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); 2085 Out << ")"; 2086 } 2087 2088 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, 2089 TypePrinting *TypePrinter, 2090 SlotTracker *Machine, const Module *Context) { 2091 Out << "!DIGlobalVariable("; 2092 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2093 Printer.printString("name", N->getName()); 2094 Printer.printString("linkageName", N->getLinkageName()); 2095 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2096 Printer.printMetadata("file", N->getRawFile()); 2097 Printer.printInt("line", N->getLine()); 2098 Printer.printMetadata("type", N->getRawType()); 2099 Printer.printBool("isLocal", N->isLocalToUnit()); 2100 Printer.printBool("isDefinition", N->isDefinition()); 2101 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration()); 2102 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2103 Printer.printInt("align", N->getAlignInBits()); 2104 Out << ")"; 2105 } 2106 2107 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, 2108 TypePrinting *TypePrinter, 2109 SlotTracker *Machine, const Module *Context) { 2110 Out << "!DILocalVariable("; 2111 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2112 Printer.printString("name", N->getName()); 2113 Printer.printInt("arg", N->getArg()); 2114 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2115 Printer.printMetadata("file", N->getRawFile()); 2116 Printer.printInt("line", N->getLine()); 2117 Printer.printMetadata("type", N->getRawType()); 2118 Printer.printDIFlags("flags", N->getFlags()); 2119 Printer.printInt("align", N->getAlignInBits()); 2120 Out << ")"; 2121 } 2122 2123 static void writeDILabel(raw_ostream &Out, const DILabel *N, 2124 TypePrinting *TypePrinter, 2125 SlotTracker *Machine, const Module *Context) { 2126 Out << "!DILabel("; 2127 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2128 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2129 Printer.printString("name", N->getName()); 2130 Printer.printMetadata("file", N->getRawFile()); 2131 Printer.printInt("line", N->getLine()); 2132 Out << ")"; 2133 } 2134 2135 static void writeDIExpression(raw_ostream &Out, const DIExpression *N, 2136 TypePrinting *TypePrinter, SlotTracker *Machine, 2137 const Module *Context) { 2138 Out << "!DIExpression("; 2139 FieldSeparator FS; 2140 if (N->isValid()) { 2141 for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) { 2142 auto OpStr = dwarf::OperationEncodingString(I->getOp()); 2143 assert(!OpStr.empty() && "Expected valid opcode"); 2144 2145 Out << FS << OpStr; 2146 if (I->getOp() == dwarf::DW_OP_LLVM_convert) { 2147 Out << FS << I->getArg(0); 2148 Out << FS << dwarf::AttributeEncodingString(I->getArg(1)); 2149 } else { 2150 for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A) 2151 Out << FS << I->getArg(A); 2152 } 2153 } 2154 } else { 2155 for (const auto &I : N->getElements()) 2156 Out << FS << I; 2157 } 2158 Out << ")"; 2159 } 2160 2161 static void writeDIGlobalVariableExpression(raw_ostream &Out, 2162 const DIGlobalVariableExpression *N, 2163 TypePrinting *TypePrinter, 2164 SlotTracker *Machine, 2165 const Module *Context) { 2166 Out << "!DIGlobalVariableExpression("; 2167 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2168 Printer.printMetadata("var", N->getVariable()); 2169 Printer.printMetadata("expr", N->getExpression()); 2170 Out << ")"; 2171 } 2172 2173 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, 2174 TypePrinting *TypePrinter, SlotTracker *Machine, 2175 const Module *Context) { 2176 Out << "!DIObjCProperty("; 2177 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2178 Printer.printString("name", N->getName()); 2179 Printer.printMetadata("file", N->getRawFile()); 2180 Printer.printInt("line", N->getLine()); 2181 Printer.printString("setter", N->getSetterName()); 2182 Printer.printString("getter", N->getGetterName()); 2183 Printer.printInt("attributes", N->getAttributes()); 2184 Printer.printMetadata("type", N->getRawType()); 2185 Out << ")"; 2186 } 2187 2188 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, 2189 TypePrinting *TypePrinter, 2190 SlotTracker *Machine, const Module *Context) { 2191 Out << "!DIImportedEntity("; 2192 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2193 Printer.printTag(N); 2194 Printer.printString("name", N->getName()); 2195 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2196 Printer.printMetadata("entity", N->getRawEntity()); 2197 Printer.printMetadata("file", N->getRawFile()); 2198 Printer.printInt("line", N->getLine()); 2199 Out << ")"; 2200 } 2201 2202 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, 2203 TypePrinting *TypePrinter, 2204 SlotTracker *Machine, 2205 const Module *Context) { 2206 if (Node->isDistinct()) 2207 Out << "distinct "; 2208 else if (Node->isTemporary()) 2209 Out << "<temporary!> "; // Handle broken code. 2210 2211 switch (Node->getMetadataID()) { 2212 default: 2213 llvm_unreachable("Expected uniquable MDNode"); 2214 #define HANDLE_MDNODE_LEAF(CLASS) \ 2215 case Metadata::CLASS##Kind: \ 2216 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \ 2217 break; 2218 #include "llvm/IR/Metadata.def" 2219 } 2220 } 2221 2222 // Full implementation of printing a Value as an operand with support for 2223 // TypePrinting, etc. 2224 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 2225 TypePrinting *TypePrinter, 2226 SlotTracker *Machine, 2227 const Module *Context) { 2228 if (V->hasName()) { 2229 PrintLLVMName(Out, V); 2230 return; 2231 } 2232 2233 const Constant *CV = dyn_cast<Constant>(V); 2234 if (CV && !isa<GlobalValue>(CV)) { 2235 assert(TypePrinter && "Constants require TypePrinting!"); 2236 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); 2237 return; 2238 } 2239 2240 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2241 Out << "asm "; 2242 if (IA->hasSideEffects()) 2243 Out << "sideeffect "; 2244 if (IA->isAlignStack()) 2245 Out << "alignstack "; 2246 // We don't emit the AD_ATT dialect as it's the assumed default. 2247 if (IA->getDialect() == InlineAsm::AD_Intel) 2248 Out << "inteldialect "; 2249 Out << '"'; 2250 printEscapedString(IA->getAsmString(), Out); 2251 Out << "\", \""; 2252 printEscapedString(IA->getConstraintString(), Out); 2253 Out << '"'; 2254 return; 2255 } 2256 2257 if (auto *MD = dyn_cast<MetadataAsValue>(V)) { 2258 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine, 2259 Context, /* FromValue */ true); 2260 return; 2261 } 2262 2263 char Prefix = '%'; 2264 int Slot; 2265 // If we have a SlotTracker, use it. 2266 if (Machine) { 2267 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2268 Slot = Machine->getGlobalSlot(GV); 2269 Prefix = '@'; 2270 } else { 2271 Slot = Machine->getLocalSlot(V); 2272 2273 // If the local value didn't succeed, then we may be referring to a value 2274 // from a different function. Translate it, as this can happen when using 2275 // address of blocks. 2276 if (Slot == -1) 2277 if ((Machine = createSlotTracker(V))) { 2278 Slot = Machine->getLocalSlot(V); 2279 delete Machine; 2280 } 2281 } 2282 } else if ((Machine = createSlotTracker(V))) { 2283 // Otherwise, create one to get the # and then destroy it. 2284 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2285 Slot = Machine->getGlobalSlot(GV); 2286 Prefix = '@'; 2287 } else { 2288 Slot = Machine->getLocalSlot(V); 2289 } 2290 delete Machine; 2291 Machine = nullptr; 2292 } else { 2293 Slot = -1; 2294 } 2295 2296 if (Slot != -1) 2297 Out << Prefix << Slot; 2298 else 2299 Out << "<badref>"; 2300 } 2301 2302 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 2303 TypePrinting *TypePrinter, 2304 SlotTracker *Machine, const Module *Context, 2305 bool FromValue) { 2306 // Write DIExpressions inline when used as a value. Improves readability of 2307 // debug info intrinsics. 2308 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) { 2309 writeDIExpression(Out, Expr, TypePrinter, Machine, Context); 2310 return; 2311 } 2312 2313 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2314 std::unique_ptr<SlotTracker> MachineStorage; 2315 if (!Machine) { 2316 MachineStorage = std::make_unique<SlotTracker>(Context); 2317 Machine = MachineStorage.get(); 2318 } 2319 int Slot = Machine->getMetadataSlot(N); 2320 if (Slot == -1) { 2321 if (const DILocation *Loc = dyn_cast<DILocation>(N)) { 2322 writeDILocation(Out, Loc, TypePrinter, Machine, Context); 2323 return; 2324 } 2325 // Give the pointer value instead of "badref", since this comes up all 2326 // the time when debugging. 2327 Out << "<" << N << ">"; 2328 } else 2329 Out << '!' << Slot; 2330 return; 2331 } 2332 2333 if (const MDString *MDS = dyn_cast<MDString>(MD)) { 2334 Out << "!\""; 2335 printEscapedString(MDS->getString(), Out); 2336 Out << '"'; 2337 return; 2338 } 2339 2340 auto *V = cast<ValueAsMetadata>(MD); 2341 assert(TypePrinter && "TypePrinter required for metadata values"); 2342 assert((FromValue || !isa<LocalAsMetadata>(V)) && 2343 "Unexpected function-local metadata outside of value argument"); 2344 2345 TypePrinter->print(V->getValue()->getType(), Out); 2346 Out << ' '; 2347 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context); 2348 } 2349 2350 namespace { 2351 2352 class AssemblyWriter { 2353 formatted_raw_ostream &Out; 2354 const Module *TheModule = nullptr; 2355 const ModuleSummaryIndex *TheIndex = nullptr; 2356 std::unique_ptr<SlotTracker> SlotTrackerStorage; 2357 SlotTracker &Machine; 2358 TypePrinting TypePrinter; 2359 AssemblyAnnotationWriter *AnnotationWriter = nullptr; 2360 SetVector<const Comdat *> Comdats; 2361 bool IsForDebug; 2362 bool ShouldPreserveUseListOrder; 2363 UseListOrderStack UseListOrders; 2364 SmallVector<StringRef, 8> MDNames; 2365 /// Synchronization scope names registered with LLVMContext. 2366 SmallVector<StringRef, 8> SSNs; 2367 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap; 2368 2369 public: 2370 /// Construct an AssemblyWriter with an external SlotTracker 2371 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, 2372 AssemblyAnnotationWriter *AAW, bool IsForDebug, 2373 bool ShouldPreserveUseListOrder = false); 2374 2375 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2376 const ModuleSummaryIndex *Index, bool IsForDebug); 2377 2378 void printMDNodeBody(const MDNode *MD); 2379 void printNamedMDNode(const NamedMDNode *NMD); 2380 2381 void printModule(const Module *M); 2382 2383 void writeOperand(const Value *Op, bool PrintType); 2384 void writeParamOperand(const Value *Operand, AttributeSet Attrs); 2385 void writeOperandBundles(const CallBase *Call); 2386 void writeSyncScope(const LLVMContext &Context, 2387 SyncScope::ID SSID); 2388 void writeAtomic(const LLVMContext &Context, 2389 AtomicOrdering Ordering, 2390 SyncScope::ID SSID); 2391 void writeAtomicCmpXchg(const LLVMContext &Context, 2392 AtomicOrdering SuccessOrdering, 2393 AtomicOrdering FailureOrdering, 2394 SyncScope::ID SSID); 2395 2396 void writeAllMDNodes(); 2397 void writeMDNode(unsigned Slot, const MDNode *Node); 2398 void writeAllAttributeGroups(); 2399 2400 void printTypeIdentities(); 2401 void printGlobal(const GlobalVariable *GV); 2402 void printIndirectSymbol(const GlobalIndirectSymbol *GIS); 2403 void printComdat(const Comdat *C); 2404 void printFunction(const Function *F); 2405 void printArgument(const Argument *FA, AttributeSet Attrs); 2406 void printBasicBlock(const BasicBlock *BB); 2407 void printInstructionLine(const Instruction &I); 2408 void printInstruction(const Instruction &I); 2409 2410 void printUseListOrder(const UseListOrder &Order); 2411 void printUseLists(const Function *F); 2412 2413 void printModuleSummaryIndex(); 2414 void printSummaryInfo(unsigned Slot, const ValueInfo &VI); 2415 void printSummary(const GlobalValueSummary &Summary); 2416 void printAliasSummary(const AliasSummary *AS); 2417 void printGlobalVarSummary(const GlobalVarSummary *GS); 2418 void printFunctionSummary(const FunctionSummary *FS); 2419 void printTypeIdSummary(const TypeIdSummary &TIS); 2420 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI); 2421 void printTypeTestResolution(const TypeTestResolution &TTRes); 2422 void printArgs(const std::vector<uint64_t> &Args); 2423 void printWPDRes(const WholeProgramDevirtResolution &WPDRes); 2424 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo); 2425 void printVFuncId(const FunctionSummary::VFuncId VFId); 2426 void 2427 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList, 2428 const char *Tag); 2429 void 2430 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList, 2431 const char *Tag); 2432 2433 private: 2434 /// Print out metadata attachments. 2435 void printMetadataAttachments( 2436 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 2437 StringRef Separator); 2438 2439 // printInfoComment - Print a little comment after the instruction indicating 2440 // which slot it occupies. 2441 void printInfoComment(const Value &V); 2442 2443 // printGCRelocateComment - print comment after call to the gc.relocate 2444 // intrinsic indicating base and derived pointer names. 2445 void printGCRelocateComment(const GCRelocateInst &Relocate); 2446 }; 2447 2448 } // end anonymous namespace 2449 2450 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2451 const Module *M, AssemblyAnnotationWriter *AAW, 2452 bool IsForDebug, bool ShouldPreserveUseListOrder) 2453 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW), 2454 IsForDebug(IsForDebug), 2455 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 2456 if (!TheModule) 2457 return; 2458 for (const GlobalObject &GO : TheModule->global_objects()) 2459 if (const Comdat *C = GO.getComdat()) 2460 Comdats.insert(C); 2461 } 2462 2463 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2464 const ModuleSummaryIndex *Index, bool IsForDebug) 2465 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr), 2466 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {} 2467 2468 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { 2469 if (!Operand) { 2470 Out << "<null operand!>"; 2471 return; 2472 } 2473 if (PrintType) { 2474 TypePrinter.print(Operand->getType(), Out); 2475 Out << ' '; 2476 } 2477 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 2478 } 2479 2480 void AssemblyWriter::writeSyncScope(const LLVMContext &Context, 2481 SyncScope::ID SSID) { 2482 switch (SSID) { 2483 case SyncScope::System: { 2484 break; 2485 } 2486 default: { 2487 if (SSNs.empty()) 2488 Context.getSyncScopeNames(SSNs); 2489 2490 Out << " syncscope(\""; 2491 printEscapedString(SSNs[SSID], Out); 2492 Out << "\")"; 2493 break; 2494 } 2495 } 2496 } 2497 2498 void AssemblyWriter::writeAtomic(const LLVMContext &Context, 2499 AtomicOrdering Ordering, 2500 SyncScope::ID SSID) { 2501 if (Ordering == AtomicOrdering::NotAtomic) 2502 return; 2503 2504 writeSyncScope(Context, SSID); 2505 Out << " " << toIRString(Ordering); 2506 } 2507 2508 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, 2509 AtomicOrdering SuccessOrdering, 2510 AtomicOrdering FailureOrdering, 2511 SyncScope::ID SSID) { 2512 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 2513 FailureOrdering != AtomicOrdering::NotAtomic); 2514 2515 writeSyncScope(Context, SSID); 2516 Out << " " << toIRString(SuccessOrdering); 2517 Out << " " << toIRString(FailureOrdering); 2518 } 2519 2520 void AssemblyWriter::writeParamOperand(const Value *Operand, 2521 AttributeSet Attrs) { 2522 if (!Operand) { 2523 Out << "<null operand!>"; 2524 return; 2525 } 2526 2527 // Print the type 2528 TypePrinter.print(Operand->getType(), Out); 2529 // Print parameter attributes list 2530 if (Attrs.hasAttributes()) 2531 Out << ' ' << Attrs.getAsString(); 2532 Out << ' '; 2533 // Print the operand 2534 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 2535 } 2536 2537 void AssemblyWriter::writeOperandBundles(const CallBase *Call) { 2538 if (!Call->hasOperandBundles()) 2539 return; 2540 2541 Out << " [ "; 2542 2543 bool FirstBundle = true; 2544 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) { 2545 OperandBundleUse BU = Call->getOperandBundleAt(i); 2546 2547 if (!FirstBundle) 2548 Out << ", "; 2549 FirstBundle = false; 2550 2551 Out << '"'; 2552 printEscapedString(BU.getTagName(), Out); 2553 Out << '"'; 2554 2555 Out << '('; 2556 2557 bool FirstInput = true; 2558 for (const auto &Input : BU.Inputs) { 2559 if (!FirstInput) 2560 Out << ", "; 2561 FirstInput = false; 2562 2563 TypePrinter.print(Input->getType(), Out); 2564 Out << " "; 2565 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule); 2566 } 2567 2568 Out << ')'; 2569 } 2570 2571 Out << " ]"; 2572 } 2573 2574 void AssemblyWriter::printModule(const Module *M) { 2575 Machine.initializeIfNeeded(); 2576 2577 if (ShouldPreserveUseListOrder) 2578 UseListOrders = predictUseListOrder(M); 2579 2580 if (!M->getModuleIdentifier().empty() && 2581 // Don't print the ID if it will start a new line (which would 2582 // require a comment char before it). 2583 M->getModuleIdentifier().find('\n') == std::string::npos) 2584 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 2585 2586 if (!M->getSourceFileName().empty()) { 2587 Out << "source_filename = \""; 2588 printEscapedString(M->getSourceFileName(), Out); 2589 Out << "\"\n"; 2590 } 2591 2592 const std::string &DL = M->getDataLayoutStr(); 2593 if (!DL.empty()) 2594 Out << "target datalayout = \"" << DL << "\"\n"; 2595 if (!M->getTargetTriple().empty()) 2596 Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; 2597 2598 if (!M->getModuleInlineAsm().empty()) { 2599 Out << '\n'; 2600 2601 // Split the string into lines, to make it easier to read the .ll file. 2602 StringRef Asm = M->getModuleInlineAsm(); 2603 do { 2604 StringRef Front; 2605 std::tie(Front, Asm) = Asm.split('\n'); 2606 2607 // We found a newline, print the portion of the asm string from the 2608 // last newline up to this newline. 2609 Out << "module asm \""; 2610 printEscapedString(Front, Out); 2611 Out << "\"\n"; 2612 } while (!Asm.empty()); 2613 } 2614 2615 printTypeIdentities(); 2616 2617 // Output all comdats. 2618 if (!Comdats.empty()) 2619 Out << '\n'; 2620 for (const Comdat *C : Comdats) { 2621 printComdat(C); 2622 if (C != Comdats.back()) 2623 Out << '\n'; 2624 } 2625 2626 // Output all globals. 2627 if (!M->global_empty()) Out << '\n'; 2628 for (const GlobalVariable &GV : M->globals()) { 2629 printGlobal(&GV); Out << '\n'; 2630 } 2631 2632 // Output all aliases. 2633 if (!M->alias_empty()) Out << "\n"; 2634 for (const GlobalAlias &GA : M->aliases()) 2635 printIndirectSymbol(&GA); 2636 2637 // Output all ifuncs. 2638 if (!M->ifunc_empty()) Out << "\n"; 2639 for (const GlobalIFunc &GI : M->ifuncs()) 2640 printIndirectSymbol(&GI); 2641 2642 // Output global use-lists. 2643 printUseLists(nullptr); 2644 2645 // Output all of the functions. 2646 for (const Function &F : *M) 2647 printFunction(&F); 2648 assert(UseListOrders.empty() && "All use-lists should have been consumed"); 2649 2650 // Output all attribute groups. 2651 if (!Machine.as_empty()) { 2652 Out << '\n'; 2653 writeAllAttributeGroups(); 2654 } 2655 2656 // Output named metadata. 2657 if (!M->named_metadata_empty()) Out << '\n'; 2658 2659 for (const NamedMDNode &Node : M->named_metadata()) 2660 printNamedMDNode(&Node); 2661 2662 // Output metadata. 2663 if (!Machine.mdn_empty()) { 2664 Out << '\n'; 2665 writeAllMDNodes(); 2666 } 2667 } 2668 2669 void AssemblyWriter::printModuleSummaryIndex() { 2670 assert(TheIndex); 2671 Machine.initializeIndexIfNeeded(); 2672 2673 Out << "\n"; 2674 2675 // Print module path entries. To print in order, add paths to a vector 2676 // indexed by module slot. 2677 std::vector<std::pair<std::string, ModuleHash>> moduleVec; 2678 std::string RegularLTOModuleName = "[Regular LTO]"; 2679 moduleVec.resize(TheIndex->modulePaths().size()); 2680 for (auto &ModPath : TheIndex->modulePaths()) 2681 moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair( 2682 // A module id of -1 is a special entry for a regular LTO module created 2683 // during the thin link. 2684 ModPath.second.first == -1u ? RegularLTOModuleName 2685 : (std::string)ModPath.first(), 2686 ModPath.second.second); 2687 2688 unsigned i = 0; 2689 for (auto &ModPair : moduleVec) { 2690 Out << "^" << i++ << " = module: ("; 2691 Out << "path: \""; 2692 printEscapedString(ModPair.first, Out); 2693 Out << "\", hash: ("; 2694 FieldSeparator FS; 2695 for (auto Hash : ModPair.second) 2696 Out << FS << Hash; 2697 Out << "))\n"; 2698 } 2699 2700 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer 2701 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID). 2702 for (auto &GlobalList : *TheIndex) { 2703 auto GUID = GlobalList.first; 2704 for (auto &Summary : GlobalList.second.SummaryList) 2705 SummaryToGUIDMap[Summary.get()] = GUID; 2706 } 2707 2708 // Print the global value summary entries. 2709 for (auto &GlobalList : *TheIndex) { 2710 auto GUID = GlobalList.first; 2711 auto VI = TheIndex->getValueInfo(GlobalList); 2712 printSummaryInfo(Machine.getGUIDSlot(GUID), VI); 2713 } 2714 2715 // Print the TypeIdMap entries. 2716 for (auto TidIter = TheIndex->typeIds().begin(); 2717 TidIter != TheIndex->typeIds().end(); TidIter++) { 2718 Out << "^" << Machine.getTypeIdSlot(TidIter->second.first) 2719 << " = typeid: (name: \"" << TidIter->second.first << "\""; 2720 printTypeIdSummary(TidIter->second.second); 2721 Out << ") ; guid = " << TidIter->first << "\n"; 2722 } 2723 2724 // Print the TypeIdCompatibleVtableMap entries. 2725 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) { 2726 auto GUID = GlobalValue::getGUID(TId.first); 2727 Out << "^" << Machine.getGUIDSlot(GUID) 2728 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\""; 2729 printTypeIdCompatibleVtableSummary(TId.second); 2730 Out << ") ; guid = " << GUID << "\n"; 2731 } 2732 } 2733 2734 static const char * 2735 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) { 2736 switch (K) { 2737 case WholeProgramDevirtResolution::Indir: 2738 return "indir"; 2739 case WholeProgramDevirtResolution::SingleImpl: 2740 return "singleImpl"; 2741 case WholeProgramDevirtResolution::BranchFunnel: 2742 return "branchFunnel"; 2743 } 2744 llvm_unreachable("invalid WholeProgramDevirtResolution kind"); 2745 } 2746 2747 static const char *getWholeProgDevirtResByArgKindName( 2748 WholeProgramDevirtResolution::ByArg::Kind K) { 2749 switch (K) { 2750 case WholeProgramDevirtResolution::ByArg::Indir: 2751 return "indir"; 2752 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 2753 return "uniformRetVal"; 2754 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: 2755 return "uniqueRetVal"; 2756 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: 2757 return "virtualConstProp"; 2758 } 2759 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind"); 2760 } 2761 2762 static const char *getTTResKindName(TypeTestResolution::Kind K) { 2763 switch (K) { 2764 case TypeTestResolution::Unsat: 2765 return "unsat"; 2766 case TypeTestResolution::ByteArray: 2767 return "byteArray"; 2768 case TypeTestResolution::Inline: 2769 return "inline"; 2770 case TypeTestResolution::Single: 2771 return "single"; 2772 case TypeTestResolution::AllOnes: 2773 return "allOnes"; 2774 } 2775 llvm_unreachable("invalid TypeTestResolution kind"); 2776 } 2777 2778 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) { 2779 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind) 2780 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth; 2781 2782 // The following fields are only used if the target does not support the use 2783 // of absolute symbols to store constants. Print only if non-zero. 2784 if (TTRes.AlignLog2) 2785 Out << ", alignLog2: " << TTRes.AlignLog2; 2786 if (TTRes.SizeM1) 2787 Out << ", sizeM1: " << TTRes.SizeM1; 2788 if (TTRes.BitMask) 2789 // BitMask is uint8_t which causes it to print the corresponding char. 2790 Out << ", bitMask: " << (unsigned)TTRes.BitMask; 2791 if (TTRes.InlineBits) 2792 Out << ", inlineBits: " << TTRes.InlineBits; 2793 2794 Out << ")"; 2795 } 2796 2797 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) { 2798 Out << ", summary: ("; 2799 printTypeTestResolution(TIS.TTRes); 2800 if (!TIS.WPDRes.empty()) { 2801 Out << ", wpdResolutions: ("; 2802 FieldSeparator FS; 2803 for (auto &WPDRes : TIS.WPDRes) { 2804 Out << FS; 2805 Out << "(offset: " << WPDRes.first << ", "; 2806 printWPDRes(WPDRes.second); 2807 Out << ")"; 2808 } 2809 Out << ")"; 2810 } 2811 Out << ")"; 2812 } 2813 2814 void AssemblyWriter::printTypeIdCompatibleVtableSummary( 2815 const TypeIdCompatibleVtableInfo &TI) { 2816 Out << ", summary: ("; 2817 FieldSeparator FS; 2818 for (auto &P : TI) { 2819 Out << FS; 2820 Out << "(offset: " << P.AddressPointOffset << ", "; 2821 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID()); 2822 Out << ")"; 2823 } 2824 Out << ")"; 2825 } 2826 2827 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) { 2828 Out << "args: ("; 2829 FieldSeparator FS; 2830 for (auto arg : Args) { 2831 Out << FS; 2832 Out << arg; 2833 } 2834 Out << ")"; 2835 } 2836 2837 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) { 2838 Out << "wpdRes: (kind: "; 2839 Out << getWholeProgDevirtResKindName(WPDRes.TheKind); 2840 2841 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl) 2842 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\""; 2843 2844 if (!WPDRes.ResByArg.empty()) { 2845 Out << ", resByArg: ("; 2846 FieldSeparator FS; 2847 for (auto &ResByArg : WPDRes.ResByArg) { 2848 Out << FS; 2849 printArgs(ResByArg.first); 2850 Out << ", byArg: (kind: "; 2851 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind); 2852 if (ResByArg.second.TheKind == 2853 WholeProgramDevirtResolution::ByArg::UniformRetVal || 2854 ResByArg.second.TheKind == 2855 WholeProgramDevirtResolution::ByArg::UniqueRetVal) 2856 Out << ", info: " << ResByArg.second.Info; 2857 2858 // The following fields are only used if the target does not support the 2859 // use of absolute symbols to store constants. Print only if non-zero. 2860 if (ResByArg.second.Byte || ResByArg.second.Bit) 2861 Out << ", byte: " << ResByArg.second.Byte 2862 << ", bit: " << ResByArg.second.Bit; 2863 2864 Out << ")"; 2865 } 2866 Out << ")"; 2867 } 2868 Out << ")"; 2869 } 2870 2871 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) { 2872 switch (SK) { 2873 case GlobalValueSummary::AliasKind: 2874 return "alias"; 2875 case GlobalValueSummary::FunctionKind: 2876 return "function"; 2877 case GlobalValueSummary::GlobalVarKind: 2878 return "variable"; 2879 } 2880 llvm_unreachable("invalid summary kind"); 2881 } 2882 2883 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) { 2884 Out << ", aliasee: "; 2885 // The indexes emitted for distributed backends may not include the 2886 // aliasee summary (only if it is being imported directly). Handle 2887 // that case by just emitting "null" as the aliasee. 2888 if (AS->hasAliasee()) 2889 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]); 2890 else 2891 Out << "null"; 2892 } 2893 2894 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) { 2895 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", " 2896 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ")"; 2897 2898 auto VTableFuncs = GS->vTableFuncs(); 2899 if (!VTableFuncs.empty()) { 2900 Out << ", vTableFuncs: ("; 2901 FieldSeparator FS; 2902 for (auto &P : VTableFuncs) { 2903 Out << FS; 2904 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID()) 2905 << ", offset: " << P.VTableOffset; 2906 Out << ")"; 2907 } 2908 Out << ")"; 2909 } 2910 } 2911 2912 static std::string getLinkageName(GlobalValue::LinkageTypes LT) { 2913 switch (LT) { 2914 case GlobalValue::ExternalLinkage: 2915 return "external"; 2916 case GlobalValue::PrivateLinkage: 2917 return "private"; 2918 case GlobalValue::InternalLinkage: 2919 return "internal"; 2920 case GlobalValue::LinkOnceAnyLinkage: 2921 return "linkonce"; 2922 case GlobalValue::LinkOnceODRLinkage: 2923 return "linkonce_odr"; 2924 case GlobalValue::WeakAnyLinkage: 2925 return "weak"; 2926 case GlobalValue::WeakODRLinkage: 2927 return "weak_odr"; 2928 case GlobalValue::CommonLinkage: 2929 return "common"; 2930 case GlobalValue::AppendingLinkage: 2931 return "appending"; 2932 case GlobalValue::ExternalWeakLinkage: 2933 return "extern_weak"; 2934 case GlobalValue::AvailableExternallyLinkage: 2935 return "available_externally"; 2936 } 2937 llvm_unreachable("invalid linkage"); 2938 } 2939 2940 // When printing the linkage types in IR where the ExternalLinkage is 2941 // not printed, and other linkage types are expected to be printed with 2942 // a space after the name. 2943 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) { 2944 if (LT == GlobalValue::ExternalLinkage) 2945 return ""; 2946 return getLinkageName(LT) + " "; 2947 } 2948 2949 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) { 2950 Out << ", insts: " << FS->instCount(); 2951 2952 FunctionSummary::FFlags FFlags = FS->fflags(); 2953 if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse | 2954 FFlags.ReturnDoesNotAlias | FFlags.NoInline) { 2955 Out << ", funcFlags: ("; 2956 Out << "readNone: " << FFlags.ReadNone; 2957 Out << ", readOnly: " << FFlags.ReadOnly; 2958 Out << ", noRecurse: " << FFlags.NoRecurse; 2959 Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias; 2960 Out << ", noInline: " << FFlags.NoInline; 2961 Out << ")"; 2962 } 2963 if (!FS->calls().empty()) { 2964 Out << ", calls: ("; 2965 FieldSeparator IFS; 2966 for (auto &Call : FS->calls()) { 2967 Out << IFS; 2968 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID()); 2969 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown) 2970 Out << ", hotness: " << getHotnessName(Call.second.getHotness()); 2971 else if (Call.second.RelBlockFreq) 2972 Out << ", relbf: " << Call.second.RelBlockFreq; 2973 Out << ")"; 2974 } 2975 Out << ")"; 2976 } 2977 2978 if (const auto *TIdInfo = FS->getTypeIdInfo()) 2979 printTypeIdInfo(*TIdInfo); 2980 } 2981 2982 void AssemblyWriter::printTypeIdInfo( 2983 const FunctionSummary::TypeIdInfo &TIDInfo) { 2984 Out << ", typeIdInfo: ("; 2985 FieldSeparator TIDFS; 2986 if (!TIDInfo.TypeTests.empty()) { 2987 Out << TIDFS; 2988 Out << "typeTests: ("; 2989 FieldSeparator FS; 2990 for (auto &GUID : TIDInfo.TypeTests) { 2991 auto TidIter = TheIndex->typeIds().equal_range(GUID); 2992 if (TidIter.first == TidIter.second) { 2993 Out << FS; 2994 Out << GUID; 2995 continue; 2996 } 2997 // Print all type id that correspond to this GUID. 2998 for (auto It = TidIter.first; It != TidIter.second; ++It) { 2999 Out << FS; 3000 auto Slot = Machine.getTypeIdSlot(It->second.first); 3001 assert(Slot != -1); 3002 Out << "^" << Slot; 3003 } 3004 } 3005 Out << ")"; 3006 } 3007 if (!TIDInfo.TypeTestAssumeVCalls.empty()) { 3008 Out << TIDFS; 3009 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls"); 3010 } 3011 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) { 3012 Out << TIDFS; 3013 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls"); 3014 } 3015 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) { 3016 Out << TIDFS; 3017 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls, 3018 "typeTestAssumeConstVCalls"); 3019 } 3020 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) { 3021 Out << TIDFS; 3022 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls, 3023 "typeCheckedLoadConstVCalls"); 3024 } 3025 Out << ")"; 3026 } 3027 3028 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) { 3029 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID); 3030 if (TidIter.first == TidIter.second) { 3031 Out << "vFuncId: ("; 3032 Out << "guid: " << VFId.GUID; 3033 Out << ", offset: " << VFId.Offset; 3034 Out << ")"; 3035 return; 3036 } 3037 // Print all type id that correspond to this GUID. 3038 FieldSeparator FS; 3039 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3040 Out << FS; 3041 Out << "vFuncId: ("; 3042 auto Slot = Machine.getTypeIdSlot(It->second.first); 3043 assert(Slot != -1); 3044 Out << "^" << Slot; 3045 Out << ", offset: " << VFId.Offset; 3046 Out << ")"; 3047 } 3048 } 3049 3050 void AssemblyWriter::printNonConstVCalls( 3051 const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) { 3052 Out << Tag << ": ("; 3053 FieldSeparator FS; 3054 for (auto &VFuncId : VCallList) { 3055 Out << FS; 3056 printVFuncId(VFuncId); 3057 } 3058 Out << ")"; 3059 } 3060 3061 void AssemblyWriter::printConstVCalls( 3062 const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) { 3063 Out << Tag << ": ("; 3064 FieldSeparator FS; 3065 for (auto &ConstVCall : VCallList) { 3066 Out << FS; 3067 Out << "("; 3068 printVFuncId(ConstVCall.VFunc); 3069 if (!ConstVCall.Args.empty()) { 3070 Out << ", "; 3071 printArgs(ConstVCall.Args); 3072 } 3073 Out << ")"; 3074 } 3075 Out << ")"; 3076 } 3077 3078 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) { 3079 GlobalValueSummary::GVFlags GVFlags = Summary.flags(); 3080 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage; 3081 Out << getSummaryKindName(Summary.getSummaryKind()) << ": "; 3082 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath()) 3083 << ", flags: ("; 3084 Out << "linkage: " << getLinkageName(LT); 3085 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport; 3086 Out << ", live: " << GVFlags.Live; 3087 Out << ", dsoLocal: " << GVFlags.DSOLocal; 3088 Out << ", canAutoHide: " << GVFlags.CanAutoHide; 3089 Out << ")"; 3090 3091 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind) 3092 printAliasSummary(cast<AliasSummary>(&Summary)); 3093 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind) 3094 printFunctionSummary(cast<FunctionSummary>(&Summary)); 3095 else 3096 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary)); 3097 3098 auto RefList = Summary.refs(); 3099 if (!RefList.empty()) { 3100 Out << ", refs: ("; 3101 FieldSeparator FS; 3102 for (auto &Ref : RefList) { 3103 Out << FS; 3104 if (Ref.isReadOnly()) 3105 Out << "readonly "; 3106 else if (Ref.isWriteOnly()) 3107 Out << "writeonly "; 3108 Out << "^" << Machine.getGUIDSlot(Ref.getGUID()); 3109 } 3110 Out << ")"; 3111 } 3112 3113 Out << ")"; 3114 } 3115 3116 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) { 3117 Out << "^" << Slot << " = gv: ("; 3118 if (!VI.name().empty()) 3119 Out << "name: \"" << VI.name() << "\""; 3120 else 3121 Out << "guid: " << VI.getGUID(); 3122 if (!VI.getSummaryList().empty()) { 3123 Out << ", summaries: ("; 3124 FieldSeparator FS; 3125 for (auto &Summary : VI.getSummaryList()) { 3126 Out << FS; 3127 printSummary(*Summary); 3128 } 3129 Out << ")"; 3130 } 3131 Out << ")"; 3132 if (!VI.name().empty()) 3133 Out << " ; guid = " << VI.getGUID(); 3134 Out << "\n"; 3135 } 3136 3137 static void printMetadataIdentifier(StringRef Name, 3138 formatted_raw_ostream &Out) { 3139 if (Name.empty()) { 3140 Out << "<empty name> "; 3141 } else { 3142 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' || 3143 Name[0] == '$' || Name[0] == '.' || Name[0] == '_') 3144 Out << Name[0]; 3145 else 3146 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); 3147 for (unsigned i = 1, e = Name.size(); i != e; ++i) { 3148 unsigned char C = Name[i]; 3149 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' || 3150 C == '.' || C == '_') 3151 Out << C; 3152 else 3153 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 3154 } 3155 } 3156 } 3157 3158 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { 3159 Out << '!'; 3160 printMetadataIdentifier(NMD->getName(), Out); 3161 Out << " = !{"; 3162 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 3163 if (i) 3164 Out << ", "; 3165 3166 // Write DIExpressions inline. 3167 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose. 3168 MDNode *Op = NMD->getOperand(i); 3169 if (auto *Expr = dyn_cast<DIExpression>(Op)) { 3170 writeDIExpression(Out, Expr, nullptr, nullptr, nullptr); 3171 continue; 3172 } 3173 3174 int Slot = Machine.getMetadataSlot(Op); 3175 if (Slot == -1) 3176 Out << "<badref>"; 3177 else 3178 Out << '!' << Slot; 3179 } 3180 Out << "}\n"; 3181 } 3182 3183 static void PrintVisibility(GlobalValue::VisibilityTypes Vis, 3184 formatted_raw_ostream &Out) { 3185 switch (Vis) { 3186 case GlobalValue::DefaultVisibility: break; 3187 case GlobalValue::HiddenVisibility: Out << "hidden "; break; 3188 case GlobalValue::ProtectedVisibility: Out << "protected "; break; 3189 } 3190 } 3191 3192 static void PrintDSOLocation(const GlobalValue &GV, 3193 formatted_raw_ostream &Out) { 3194 // GVs with local linkage or non default visibility are implicitly dso_local, 3195 // so we don't print it. 3196 bool Implicit = GV.hasLocalLinkage() || 3197 (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility()); 3198 if (GV.isDSOLocal() && !Implicit) 3199 Out << "dso_local "; 3200 } 3201 3202 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, 3203 formatted_raw_ostream &Out) { 3204 switch (SCT) { 3205 case GlobalValue::DefaultStorageClass: break; 3206 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break; 3207 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break; 3208 } 3209 } 3210 3211 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, 3212 formatted_raw_ostream &Out) { 3213 switch (TLM) { 3214 case GlobalVariable::NotThreadLocal: 3215 break; 3216 case GlobalVariable::GeneralDynamicTLSModel: 3217 Out << "thread_local "; 3218 break; 3219 case GlobalVariable::LocalDynamicTLSModel: 3220 Out << "thread_local(localdynamic) "; 3221 break; 3222 case GlobalVariable::InitialExecTLSModel: 3223 Out << "thread_local(initialexec) "; 3224 break; 3225 case GlobalVariable::LocalExecTLSModel: 3226 Out << "thread_local(localexec) "; 3227 break; 3228 } 3229 } 3230 3231 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) { 3232 switch (UA) { 3233 case GlobalVariable::UnnamedAddr::None: 3234 return ""; 3235 case GlobalVariable::UnnamedAddr::Local: 3236 return "local_unnamed_addr"; 3237 case GlobalVariable::UnnamedAddr::Global: 3238 return "unnamed_addr"; 3239 } 3240 llvm_unreachable("Unknown UnnamedAddr"); 3241 } 3242 3243 static void maybePrintComdat(formatted_raw_ostream &Out, 3244 const GlobalObject &GO) { 3245 const Comdat *C = GO.getComdat(); 3246 if (!C) 3247 return; 3248 3249 if (isa<GlobalVariable>(GO)) 3250 Out << ','; 3251 Out << " comdat"; 3252 3253 if (GO.getName() == C->getName()) 3254 return; 3255 3256 Out << '('; 3257 PrintLLVMName(Out, C->getName(), ComdatPrefix); 3258 Out << ')'; 3259 } 3260 3261 void AssemblyWriter::printGlobal(const GlobalVariable *GV) { 3262 if (GV->isMaterializable()) 3263 Out << "; Materializable\n"; 3264 3265 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); 3266 Out << " = "; 3267 3268 if (!GV->hasInitializer() && GV->hasExternalLinkage()) 3269 Out << "external "; 3270 3271 Out << getLinkageNameWithSpace(GV->getLinkage()); 3272 PrintDSOLocation(*GV, Out); 3273 PrintVisibility(GV->getVisibility(), Out); 3274 PrintDLLStorageClass(GV->getDLLStorageClass(), Out); 3275 PrintThreadLocalModel(GV->getThreadLocalMode(), Out); 3276 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr()); 3277 if (!UA.empty()) 3278 Out << UA << ' '; 3279 3280 if (unsigned AddressSpace = GV->getType()->getAddressSpace()) 3281 Out << "addrspace(" << AddressSpace << ") "; 3282 if (GV->isExternallyInitialized()) Out << "externally_initialized "; 3283 Out << (GV->isConstant() ? "constant " : "global "); 3284 TypePrinter.print(GV->getValueType(), Out); 3285 3286 if (GV->hasInitializer()) { 3287 Out << ' '; 3288 writeOperand(GV->getInitializer(), false); 3289 } 3290 3291 if (GV->hasSection()) { 3292 Out << ", section \""; 3293 printEscapedString(GV->getSection(), Out); 3294 Out << '"'; 3295 } 3296 if (GV->hasPartition()) { 3297 Out << ", partition \""; 3298 printEscapedString(GV->getPartition(), Out); 3299 Out << '"'; 3300 } 3301 3302 maybePrintComdat(Out, *GV); 3303 if (GV->getAlignment()) 3304 Out << ", align " << GV->getAlignment(); 3305 3306 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3307 GV->getAllMetadata(MDs); 3308 printMetadataAttachments(MDs, ", "); 3309 3310 auto Attrs = GV->getAttributes(); 3311 if (Attrs.hasAttributes()) 3312 Out << " #" << Machine.getAttributeGroupSlot(Attrs); 3313 3314 printInfoComment(*GV); 3315 } 3316 3317 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) { 3318 if (GIS->isMaterializable()) 3319 Out << "; Materializable\n"; 3320 3321 WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent()); 3322 Out << " = "; 3323 3324 Out << getLinkageNameWithSpace(GIS->getLinkage()); 3325 PrintDSOLocation(*GIS, Out); 3326 PrintVisibility(GIS->getVisibility(), Out); 3327 PrintDLLStorageClass(GIS->getDLLStorageClass(), Out); 3328 PrintThreadLocalModel(GIS->getThreadLocalMode(), Out); 3329 StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr()); 3330 if (!UA.empty()) 3331 Out << UA << ' '; 3332 3333 if (isa<GlobalAlias>(GIS)) 3334 Out << "alias "; 3335 else if (isa<GlobalIFunc>(GIS)) 3336 Out << "ifunc "; 3337 else 3338 llvm_unreachable("Not an alias or ifunc!"); 3339 3340 TypePrinter.print(GIS->getValueType(), Out); 3341 3342 Out << ", "; 3343 3344 const Constant *IS = GIS->getIndirectSymbol(); 3345 3346 if (!IS) { 3347 TypePrinter.print(GIS->getType(), Out); 3348 Out << " <<NULL ALIASEE>>"; 3349 } else { 3350 writeOperand(IS, !isa<ConstantExpr>(IS)); 3351 } 3352 3353 if (GIS->hasPartition()) { 3354 Out << ", partition \""; 3355 printEscapedString(GIS->getPartition(), Out); 3356 Out << '"'; 3357 } 3358 3359 printInfoComment(*GIS); 3360 Out << '\n'; 3361 } 3362 3363 void AssemblyWriter::printComdat(const Comdat *C) { 3364 C->print(Out); 3365 } 3366 3367 void AssemblyWriter::printTypeIdentities() { 3368 if (TypePrinter.empty()) 3369 return; 3370 3371 Out << '\n'; 3372 3373 // Emit all numbered types. 3374 auto &NumberedTypes = TypePrinter.getNumberedTypes(); 3375 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) { 3376 Out << '%' << I << " = type "; 3377 3378 // Make sure we print out at least one level of the type structure, so 3379 // that we do not get %2 = type %2 3380 TypePrinter.printStructBody(NumberedTypes[I], Out); 3381 Out << '\n'; 3382 } 3383 3384 auto &NamedTypes = TypePrinter.getNamedTypes(); 3385 for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) { 3386 PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix); 3387 Out << " = type "; 3388 3389 // Make sure we print out at least one level of the type structure, so 3390 // that we do not get %FILE = type %FILE 3391 TypePrinter.printStructBody(NamedTypes[I], Out); 3392 Out << '\n'; 3393 } 3394 } 3395 3396 /// printFunction - Print all aspects of a function. 3397 void AssemblyWriter::printFunction(const Function *F) { 3398 // Print out the return type and name. 3399 Out << '\n'; 3400 3401 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); 3402 3403 if (F->isMaterializable()) 3404 Out << "; Materializable\n"; 3405 3406 const AttributeList &Attrs = F->getAttributes(); 3407 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) { 3408 AttributeSet AS = Attrs.getFnAttributes(); 3409 std::string AttrStr; 3410 3411 for (const Attribute &Attr : AS) { 3412 if (!Attr.isStringAttribute()) { 3413 if (!AttrStr.empty()) AttrStr += ' '; 3414 AttrStr += Attr.getAsString(); 3415 } 3416 } 3417 3418 if (!AttrStr.empty()) 3419 Out << "; Function Attrs: " << AttrStr << '\n'; 3420 } 3421 3422 Machine.incorporateFunction(F); 3423 3424 if (F->isDeclaration()) { 3425 Out << "declare"; 3426 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3427 F->getAllMetadata(MDs); 3428 printMetadataAttachments(MDs, " "); 3429 Out << ' '; 3430 } else 3431 Out << "define "; 3432 3433 Out << getLinkageNameWithSpace(F->getLinkage()); 3434 PrintDSOLocation(*F, Out); 3435 PrintVisibility(F->getVisibility(), Out); 3436 PrintDLLStorageClass(F->getDLLStorageClass(), Out); 3437 3438 // Print the calling convention. 3439 if (F->getCallingConv() != CallingConv::C) { 3440 PrintCallingConv(F->getCallingConv(), Out); 3441 Out << " "; 3442 } 3443 3444 FunctionType *FT = F->getFunctionType(); 3445 if (Attrs.hasAttributes(AttributeList::ReturnIndex)) 3446 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' '; 3447 TypePrinter.print(F->getReturnType(), Out); 3448 Out << ' '; 3449 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); 3450 Out << '('; 3451 3452 // Loop over the arguments, printing them... 3453 if (F->isDeclaration() && !IsForDebug) { 3454 // We're only interested in the type here - don't print argument names. 3455 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) { 3456 // Insert commas as we go... the first arg doesn't get a comma 3457 if (I) 3458 Out << ", "; 3459 // Output type... 3460 TypePrinter.print(FT->getParamType(I), Out); 3461 3462 AttributeSet ArgAttrs = Attrs.getParamAttributes(I); 3463 if (ArgAttrs.hasAttributes()) 3464 Out << ' ' << ArgAttrs.getAsString(); 3465 } 3466 } else { 3467 // The arguments are meaningful here, print them in detail. 3468 for (const Argument &Arg : F->args()) { 3469 // Insert commas as we go... the first arg doesn't get a comma 3470 if (Arg.getArgNo() != 0) 3471 Out << ", "; 3472 printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo())); 3473 } 3474 } 3475 3476 // Finish printing arguments... 3477 if (FT->isVarArg()) { 3478 if (FT->getNumParams()) Out << ", "; 3479 Out << "..."; // Output varargs portion of signature! 3480 } 3481 Out << ')'; 3482 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr()); 3483 if (!UA.empty()) 3484 Out << ' ' << UA; 3485 // We print the function address space if it is non-zero or if we are writing 3486 // a module with a non-zero program address space or if there is no valid 3487 // Module* so that the file can be parsed without the datalayout string. 3488 const Module *Mod = F->getParent(); 3489 if (F->getAddressSpace() != 0 || !Mod || 3490 Mod->getDataLayout().getProgramAddressSpace() != 0) 3491 Out << " addrspace(" << F->getAddressSpace() << ")"; 3492 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) 3493 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes()); 3494 if (F->hasSection()) { 3495 Out << " section \""; 3496 printEscapedString(F->getSection(), Out); 3497 Out << '"'; 3498 } 3499 if (F->hasPartition()) { 3500 Out << " partition \""; 3501 printEscapedString(F->getPartition(), Out); 3502 Out << '"'; 3503 } 3504 maybePrintComdat(Out, *F); 3505 if (F->getAlignment()) 3506 Out << " align " << F->getAlignment(); 3507 if (F->hasGC()) 3508 Out << " gc \"" << F->getGC() << '"'; 3509 if (F->hasPrefixData()) { 3510 Out << " prefix "; 3511 writeOperand(F->getPrefixData(), true); 3512 } 3513 if (F->hasPrologueData()) { 3514 Out << " prologue "; 3515 writeOperand(F->getPrologueData(), true); 3516 } 3517 if (F->hasPersonalityFn()) { 3518 Out << " personality "; 3519 writeOperand(F->getPersonalityFn(), /*PrintType=*/true); 3520 } 3521 3522 if (F->isDeclaration()) { 3523 Out << '\n'; 3524 } else { 3525 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3526 F->getAllMetadata(MDs); 3527 printMetadataAttachments(MDs, " "); 3528 3529 Out << " {"; 3530 // Output all of the function's basic blocks. 3531 for (const BasicBlock &BB : *F) 3532 printBasicBlock(&BB); 3533 3534 // Output the function's use-lists. 3535 printUseLists(F); 3536 3537 Out << "}\n"; 3538 } 3539 3540 Machine.purgeFunction(); 3541 } 3542 3543 /// printArgument - This member is called for every argument that is passed into 3544 /// the function. Simply print it out 3545 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) { 3546 // Output type... 3547 TypePrinter.print(Arg->getType(), Out); 3548 3549 // Output parameter attributes list 3550 if (Attrs.hasAttributes()) 3551 Out << ' ' << Attrs.getAsString(); 3552 3553 // Output name, if available... 3554 if (Arg->hasName()) { 3555 Out << ' '; 3556 PrintLLVMName(Out, Arg); 3557 } else { 3558 int Slot = Machine.getLocalSlot(Arg); 3559 assert(Slot != -1 && "expect argument in function here"); 3560 Out << " %" << Slot; 3561 } 3562 } 3563 3564 /// printBasicBlock - This member is called for each basic block in a method. 3565 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { 3566 bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock(); 3567 if (BB->hasName()) { // Print out the label if it exists... 3568 Out << "\n"; 3569 PrintLLVMName(Out, BB->getName(), LabelPrefix); 3570 Out << ':'; 3571 } else if (!IsEntryBlock) { 3572 Out << "\n"; 3573 int Slot = Machine.getLocalSlot(BB); 3574 if (Slot != -1) 3575 Out << Slot << ":"; 3576 else 3577 Out << "<badref>:"; 3578 } 3579 3580 if (!BB->getParent()) { 3581 Out.PadToColumn(50); 3582 Out << "; Error: Block without parent!"; 3583 } else if (!IsEntryBlock) { 3584 // Output predecessors for the block. 3585 Out.PadToColumn(50); 3586 Out << ";"; 3587 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 3588 3589 if (PI == PE) { 3590 Out << " No predecessors!"; 3591 } else { 3592 Out << " preds = "; 3593 writeOperand(*PI, false); 3594 for (++PI; PI != PE; ++PI) { 3595 Out << ", "; 3596 writeOperand(*PI, false); 3597 } 3598 } 3599 } 3600 3601 Out << "\n"; 3602 3603 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); 3604 3605 // Output all of the instructions in the basic block... 3606 for (const Instruction &I : *BB) { 3607 printInstructionLine(I); 3608 } 3609 3610 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); 3611 } 3612 3613 /// printInstructionLine - Print an instruction and a newline character. 3614 void AssemblyWriter::printInstructionLine(const Instruction &I) { 3615 printInstruction(I); 3616 Out << '\n'; 3617 } 3618 3619 /// printGCRelocateComment - print comment after call to the gc.relocate 3620 /// intrinsic indicating base and derived pointer names. 3621 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) { 3622 Out << " ; ("; 3623 writeOperand(Relocate.getBasePtr(), false); 3624 Out << ", "; 3625 writeOperand(Relocate.getDerivedPtr(), false); 3626 Out << ")"; 3627 } 3628 3629 /// printInfoComment - Print a little comment after the instruction indicating 3630 /// which slot it occupies. 3631 void AssemblyWriter::printInfoComment(const Value &V) { 3632 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V)) 3633 printGCRelocateComment(*Relocate); 3634 3635 if (AnnotationWriter) 3636 AnnotationWriter->printInfoComment(V, Out); 3637 } 3638 3639 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, 3640 raw_ostream &Out) { 3641 // We print the address space of the call if it is non-zero. 3642 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace(); 3643 bool PrintAddrSpace = CallAddrSpace != 0; 3644 if (!PrintAddrSpace) { 3645 const Module *Mod = getModuleFromVal(I); 3646 // We also print it if it is zero but not equal to the program address space 3647 // or if we can't find a valid Module* to make it possible to parse 3648 // the resulting file even without a datalayout string. 3649 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0) 3650 PrintAddrSpace = true; 3651 } 3652 if (PrintAddrSpace) 3653 Out << " addrspace(" << CallAddrSpace << ")"; 3654 } 3655 3656 // This member is called for each Instruction in a function.. 3657 void AssemblyWriter::printInstruction(const Instruction &I) { 3658 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); 3659 3660 // Print out indentation for an instruction. 3661 Out << " "; 3662 3663 // Print out name if it exists... 3664 if (I.hasName()) { 3665 PrintLLVMName(Out, &I); 3666 Out << " = "; 3667 } else if (!I.getType()->isVoidTy()) { 3668 // Print out the def slot taken. 3669 int SlotNum = Machine.getLocalSlot(&I); 3670 if (SlotNum == -1) 3671 Out << "<badref> = "; 3672 else 3673 Out << '%' << SlotNum << " = "; 3674 } 3675 3676 if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 3677 if (CI->isMustTailCall()) 3678 Out << "musttail "; 3679 else if (CI->isTailCall()) 3680 Out << "tail "; 3681 else if (CI->isNoTailCall()) 3682 Out << "notail "; 3683 } 3684 3685 // Print out the opcode... 3686 Out << I.getOpcodeName(); 3687 3688 // If this is an atomic load or store, print out the atomic marker. 3689 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || 3690 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) 3691 Out << " atomic"; 3692 3693 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak()) 3694 Out << " weak"; 3695 3696 // If this is a volatile operation, print out the volatile marker. 3697 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || 3698 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || 3699 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || 3700 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) 3701 Out << " volatile"; 3702 3703 // Print out optimization information. 3704 WriteOptimizationInfo(Out, &I); 3705 3706 // Print out the compare instruction predicates 3707 if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) 3708 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate()); 3709 3710 // Print out the atomicrmw operation 3711 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) 3712 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation()); 3713 3714 // Print out the type of the operands... 3715 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr; 3716 3717 // Special case conditional branches to swizzle the condition out to the front 3718 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { 3719 const BranchInst &BI(cast<BranchInst>(I)); 3720 Out << ' '; 3721 writeOperand(BI.getCondition(), true); 3722 Out << ", "; 3723 writeOperand(BI.getSuccessor(0), true); 3724 Out << ", "; 3725 writeOperand(BI.getSuccessor(1), true); 3726 3727 } else if (isa<SwitchInst>(I)) { 3728 const SwitchInst& SI(cast<SwitchInst>(I)); 3729 // Special case switch instruction to get formatting nice and correct. 3730 Out << ' '; 3731 writeOperand(SI.getCondition(), true); 3732 Out << ", "; 3733 writeOperand(SI.getDefaultDest(), true); 3734 Out << " ["; 3735 for (auto Case : SI.cases()) { 3736 Out << "\n "; 3737 writeOperand(Case.getCaseValue(), true); 3738 Out << ", "; 3739 writeOperand(Case.getCaseSuccessor(), true); 3740 } 3741 Out << "\n ]"; 3742 } else if (isa<IndirectBrInst>(I)) { 3743 // Special case indirectbr instruction to get formatting nice and correct. 3744 Out << ' '; 3745 writeOperand(Operand, true); 3746 Out << ", ["; 3747 3748 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 3749 if (i != 1) 3750 Out << ", "; 3751 writeOperand(I.getOperand(i), true); 3752 } 3753 Out << ']'; 3754 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 3755 Out << ' '; 3756 TypePrinter.print(I.getType(), Out); 3757 Out << ' '; 3758 3759 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { 3760 if (op) Out << ", "; 3761 Out << "[ "; 3762 writeOperand(PN->getIncomingValue(op), false); Out << ", "; 3763 writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; 3764 } 3765 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { 3766 Out << ' '; 3767 writeOperand(I.getOperand(0), true); 3768 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 3769 Out << ", " << *i; 3770 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { 3771 Out << ' '; 3772 writeOperand(I.getOperand(0), true); Out << ", "; 3773 writeOperand(I.getOperand(1), true); 3774 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 3775 Out << ", " << *i; 3776 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { 3777 Out << ' '; 3778 TypePrinter.print(I.getType(), Out); 3779 if (LPI->isCleanup() || LPI->getNumClauses() != 0) 3780 Out << '\n'; 3781 3782 if (LPI->isCleanup()) 3783 Out << " cleanup"; 3784 3785 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { 3786 if (i != 0 || LPI->isCleanup()) Out << "\n"; 3787 if (LPI->isCatch(i)) 3788 Out << " catch "; 3789 else 3790 Out << " filter "; 3791 3792 writeOperand(LPI->getClause(i), true); 3793 } 3794 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) { 3795 Out << " within "; 3796 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false); 3797 Out << " ["; 3798 unsigned Op = 0; 3799 for (const BasicBlock *PadBB : CatchSwitch->handlers()) { 3800 if (Op > 0) 3801 Out << ", "; 3802 writeOperand(PadBB, /*PrintType=*/true); 3803 ++Op; 3804 } 3805 Out << "] unwind "; 3806 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest()) 3807 writeOperand(UnwindDest, /*PrintType=*/true); 3808 else 3809 Out << "to caller"; 3810 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) { 3811 Out << " within "; 3812 writeOperand(FPI->getParentPad(), /*PrintType=*/false); 3813 Out << " ["; 3814 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps; 3815 ++Op) { 3816 if (Op > 0) 3817 Out << ", "; 3818 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true); 3819 } 3820 Out << ']'; 3821 } else if (isa<ReturnInst>(I) && !Operand) { 3822 Out << " void"; 3823 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) { 3824 Out << " from "; 3825 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 3826 3827 Out << " to "; 3828 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 3829 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) { 3830 Out << " from "; 3831 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 3832 3833 Out << " unwind "; 3834 if (CRI->hasUnwindDest()) 3835 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 3836 else 3837 Out << "to caller"; 3838 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 3839 // Print the calling convention being used. 3840 if (CI->getCallingConv() != CallingConv::C) { 3841 Out << " "; 3842 PrintCallingConv(CI->getCallingConv(), Out); 3843 } 3844 3845 Operand = CI->getCalledValue(); 3846 FunctionType *FTy = CI->getFunctionType(); 3847 Type *RetTy = FTy->getReturnType(); 3848 const AttributeList &PAL = CI->getAttributes(); 3849 3850 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 3851 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 3852 3853 // Only print addrspace(N) if necessary: 3854 maybePrintCallAddrSpace(Operand, &I, Out); 3855 3856 // If possible, print out the short form of the call instruction. We can 3857 // only do this if the first argument is a pointer to a nonvararg function, 3858 // and if the return type is not a pointer to a function. 3859 // 3860 Out << ' '; 3861 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 3862 Out << ' '; 3863 writeOperand(Operand, false); 3864 Out << '('; 3865 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { 3866 if (op > 0) 3867 Out << ", "; 3868 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op)); 3869 } 3870 3871 // Emit an ellipsis if this is a musttail call in a vararg function. This 3872 // is only to aid readability, musttail calls forward varargs by default. 3873 if (CI->isMustTailCall() && CI->getParent() && 3874 CI->getParent()->getParent() && 3875 CI->getParent()->getParent()->isVarArg()) 3876 Out << ", ..."; 3877 3878 Out << ')'; 3879 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 3880 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 3881 3882 writeOperandBundles(CI); 3883 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 3884 Operand = II->getCalledValue(); 3885 FunctionType *FTy = II->getFunctionType(); 3886 Type *RetTy = FTy->getReturnType(); 3887 const AttributeList &PAL = II->getAttributes(); 3888 3889 // Print the calling convention being used. 3890 if (II->getCallingConv() != CallingConv::C) { 3891 Out << " "; 3892 PrintCallingConv(II->getCallingConv(), Out); 3893 } 3894 3895 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 3896 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 3897 3898 // Only print addrspace(N) if necessary: 3899 maybePrintCallAddrSpace(Operand, &I, Out); 3900 3901 // If possible, print out the short form of the invoke instruction. We can 3902 // only do this if the first argument is a pointer to a nonvararg function, 3903 // and if the return type is not a pointer to a function. 3904 // 3905 Out << ' '; 3906 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 3907 Out << ' '; 3908 writeOperand(Operand, false); 3909 Out << '('; 3910 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { 3911 if (op) 3912 Out << ", "; 3913 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op)); 3914 } 3915 3916 Out << ')'; 3917 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 3918 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 3919 3920 writeOperandBundles(II); 3921 3922 Out << "\n to "; 3923 writeOperand(II->getNormalDest(), true); 3924 Out << " unwind "; 3925 writeOperand(II->getUnwindDest(), true); 3926 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 3927 Operand = CBI->getCalledValue(); 3928 FunctionType *FTy = CBI->getFunctionType(); 3929 Type *RetTy = FTy->getReturnType(); 3930 const AttributeList &PAL = CBI->getAttributes(); 3931 3932 // Print the calling convention being used. 3933 if (CBI->getCallingConv() != CallingConv::C) { 3934 Out << " "; 3935 PrintCallingConv(CBI->getCallingConv(), Out); 3936 } 3937 3938 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 3939 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 3940 3941 // If possible, print out the short form of the callbr instruction. We can 3942 // only do this if the first argument is a pointer to a nonvararg function, 3943 // and if the return type is not a pointer to a function. 3944 // 3945 Out << ' '; 3946 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 3947 Out << ' '; 3948 writeOperand(Operand, false); 3949 Out << '('; 3950 for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) { 3951 if (op) 3952 Out << ", "; 3953 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op)); 3954 } 3955 3956 Out << ')'; 3957 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 3958 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 3959 3960 writeOperandBundles(CBI); 3961 3962 Out << "\n to "; 3963 writeOperand(CBI->getDefaultDest(), true); 3964 Out << " ["; 3965 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) { 3966 if (i != 0) 3967 Out << ", "; 3968 writeOperand(CBI->getIndirectDest(i), true); 3969 } 3970 Out << ']'; 3971 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 3972 Out << ' '; 3973 if (AI->isUsedWithInAlloca()) 3974 Out << "inalloca "; 3975 if (AI->isSwiftError()) 3976 Out << "swifterror "; 3977 TypePrinter.print(AI->getAllocatedType(), Out); 3978 3979 // Explicitly write the array size if the code is broken, if it's an array 3980 // allocation, or if the type is not canonical for scalar allocations. The 3981 // latter case prevents the type from mutating when round-tripping through 3982 // assembly. 3983 if (!AI->getArraySize() || AI->isArrayAllocation() || 3984 !AI->getArraySize()->getType()->isIntegerTy(32)) { 3985 Out << ", "; 3986 writeOperand(AI->getArraySize(), true); 3987 } 3988 if (AI->getAlignment()) { 3989 Out << ", align " << AI->getAlignment(); 3990 } 3991 3992 unsigned AddrSpace = AI->getType()->getAddressSpace(); 3993 if (AddrSpace != 0) { 3994 Out << ", addrspace(" << AddrSpace << ')'; 3995 } 3996 } else if (isa<CastInst>(I)) { 3997 if (Operand) { 3998 Out << ' '; 3999 writeOperand(Operand, true); // Work with broken code 4000 } 4001 Out << " to "; 4002 TypePrinter.print(I.getType(), Out); 4003 } else if (isa<VAArgInst>(I)) { 4004 if (Operand) { 4005 Out << ' '; 4006 writeOperand(Operand, true); // Work with broken code 4007 } 4008 Out << ", "; 4009 TypePrinter.print(I.getType(), Out); 4010 } else if (Operand) { // Print the normal way. 4011 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4012 Out << ' '; 4013 TypePrinter.print(GEP->getSourceElementType(), Out); 4014 Out << ','; 4015 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) { 4016 Out << ' '; 4017 TypePrinter.print(LI->getType(), Out); 4018 Out << ','; 4019 } 4020 4021 // PrintAllTypes - Instructions who have operands of all the same type 4022 // omit the type from all but the first operand. If the instruction has 4023 // different type operands (for example br), then they are all printed. 4024 bool PrintAllTypes = false; 4025 Type *TheType = Operand->getType(); 4026 4027 // Select, Store and ShuffleVector always print all types. 4028 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) 4029 || isa<ReturnInst>(I)) { 4030 PrintAllTypes = true; 4031 } else { 4032 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { 4033 Operand = I.getOperand(i); 4034 // note that Operand shouldn't be null, but the test helps make dump() 4035 // more tolerant of malformed IR 4036 if (Operand && Operand->getType() != TheType) { 4037 PrintAllTypes = true; // We have differing types! Print them all! 4038 break; 4039 } 4040 } 4041 } 4042 4043 if (!PrintAllTypes) { 4044 Out << ' '; 4045 TypePrinter.print(TheType, Out); 4046 } 4047 4048 Out << ' '; 4049 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { 4050 if (i) Out << ", "; 4051 writeOperand(I.getOperand(i), PrintAllTypes); 4052 } 4053 } 4054 4055 // Print atomic ordering/alignment for memory operations 4056 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 4057 if (LI->isAtomic()) 4058 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID()); 4059 if (LI->getAlignment()) 4060 Out << ", align " << LI->getAlignment(); 4061 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 4062 if (SI->isAtomic()) 4063 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID()); 4064 if (SI->getAlignment()) 4065 Out << ", align " << SI->getAlignment(); 4066 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { 4067 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(), 4068 CXI->getFailureOrdering(), CXI->getSyncScopeID()); 4069 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { 4070 writeAtomic(RMWI->getContext(), RMWI->getOrdering(), 4071 RMWI->getSyncScopeID()); 4072 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { 4073 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID()); 4074 } 4075 4076 // Print Metadata info. 4077 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD; 4078 I.getAllMetadata(InstMD); 4079 printMetadataAttachments(InstMD, ", "); 4080 4081 // Print a nice comment. 4082 printInfoComment(I); 4083 } 4084 4085 void AssemblyWriter::printMetadataAttachments( 4086 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 4087 StringRef Separator) { 4088 if (MDs.empty()) 4089 return; 4090 4091 if (MDNames.empty()) 4092 MDs[0].second->getContext().getMDKindNames(MDNames); 4093 4094 for (const auto &I : MDs) { 4095 unsigned Kind = I.first; 4096 Out << Separator; 4097 if (Kind < MDNames.size()) { 4098 Out << "!"; 4099 printMetadataIdentifier(MDNames[Kind], Out); 4100 } else 4101 Out << "!<unknown kind #" << Kind << ">"; 4102 Out << ' '; 4103 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule); 4104 } 4105 } 4106 4107 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) { 4108 Out << '!' << Slot << " = "; 4109 printMDNodeBody(Node); 4110 Out << "\n"; 4111 } 4112 4113 void AssemblyWriter::writeAllMDNodes() { 4114 SmallVector<const MDNode *, 16> Nodes; 4115 Nodes.resize(Machine.mdn_size()); 4116 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); 4117 I != E; ++I) 4118 Nodes[I->second] = cast<MDNode>(I->first); 4119 4120 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 4121 writeMDNode(i, Nodes[i]); 4122 } 4123 } 4124 4125 void AssemblyWriter::printMDNodeBody(const MDNode *Node) { 4126 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); 4127 } 4128 4129 void AssemblyWriter::writeAllAttributeGroups() { 4130 std::vector<std::pair<AttributeSet, unsigned>> asVec; 4131 asVec.resize(Machine.as_size()); 4132 4133 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end(); 4134 I != E; ++I) 4135 asVec[I->second] = *I; 4136 4137 for (const auto &I : asVec) 4138 Out << "attributes #" << I.second << " = { " 4139 << I.first.getAsString(true) << " }\n"; 4140 } 4141 4142 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) { 4143 bool IsInFunction = Machine.getFunction(); 4144 if (IsInFunction) 4145 Out << " "; 4146 4147 Out << "uselistorder"; 4148 if (const BasicBlock *BB = 4149 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) { 4150 Out << "_bb "; 4151 writeOperand(BB->getParent(), false); 4152 Out << ", "; 4153 writeOperand(BB, false); 4154 } else { 4155 Out << " "; 4156 writeOperand(Order.V, true); 4157 } 4158 Out << ", { "; 4159 4160 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 4161 Out << Order.Shuffle[0]; 4162 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I) 4163 Out << ", " << Order.Shuffle[I]; 4164 Out << " }\n"; 4165 } 4166 4167 void AssemblyWriter::printUseLists(const Function *F) { 4168 auto hasMore = 4169 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; }; 4170 if (!hasMore()) 4171 // Nothing to do. 4172 return; 4173 4174 Out << "\n; uselistorder directives\n"; 4175 while (hasMore()) { 4176 printUseListOrder(UseListOrders.back()); 4177 UseListOrders.pop_back(); 4178 } 4179 } 4180 4181 //===----------------------------------------------------------------------===// 4182 // External Interface declarations 4183 //===----------------------------------------------------------------------===// 4184 4185 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4186 bool ShouldPreserveUseListOrder, 4187 bool IsForDebug) const { 4188 SlotTracker SlotTable(this->getParent()); 4189 formatted_raw_ostream OS(ROS); 4190 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW, 4191 IsForDebug, 4192 ShouldPreserveUseListOrder); 4193 W.printFunction(this); 4194 } 4195 4196 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4197 bool ShouldPreserveUseListOrder, bool IsForDebug) const { 4198 SlotTracker SlotTable(this); 4199 formatted_raw_ostream OS(ROS); 4200 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug, 4201 ShouldPreserveUseListOrder); 4202 W.printModule(this); 4203 } 4204 4205 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const { 4206 SlotTracker SlotTable(getParent()); 4207 formatted_raw_ostream OS(ROS); 4208 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug); 4209 W.printNamedMDNode(this); 4210 } 4211 4212 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4213 bool IsForDebug) const { 4214 Optional<SlotTracker> LocalST; 4215 SlotTracker *SlotTable; 4216 if (auto *ST = MST.getMachine()) 4217 SlotTable = ST; 4218 else { 4219 LocalST.emplace(getParent()); 4220 SlotTable = &*LocalST; 4221 } 4222 4223 formatted_raw_ostream OS(ROS); 4224 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug); 4225 W.printNamedMDNode(this); 4226 } 4227 4228 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const { 4229 PrintLLVMName(ROS, getName(), ComdatPrefix); 4230 ROS << " = comdat "; 4231 4232 switch (getSelectionKind()) { 4233 case Comdat::Any: 4234 ROS << "any"; 4235 break; 4236 case Comdat::ExactMatch: 4237 ROS << "exactmatch"; 4238 break; 4239 case Comdat::Largest: 4240 ROS << "largest"; 4241 break; 4242 case Comdat::NoDuplicates: 4243 ROS << "noduplicates"; 4244 break; 4245 case Comdat::SameSize: 4246 ROS << "samesize"; 4247 break; 4248 } 4249 4250 ROS << '\n'; 4251 } 4252 4253 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const { 4254 TypePrinting TP; 4255 TP.print(const_cast<Type*>(this), OS); 4256 4257 if (NoDetails) 4258 return; 4259 4260 // If the type is a named struct type, print the body as well. 4261 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) 4262 if (!STy->isLiteral()) { 4263 OS << " = type "; 4264 TP.printStructBody(STy, OS); 4265 } 4266 } 4267 4268 static bool isReferencingMDNode(const Instruction &I) { 4269 if (const auto *CI = dyn_cast<CallInst>(&I)) 4270 if (Function *F = CI->getCalledFunction()) 4271 if (F->isIntrinsic()) 4272 for (auto &Op : I.operands()) 4273 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 4274 if (isa<MDNode>(V->getMetadata())) 4275 return true; 4276 return false; 4277 } 4278 4279 void Value::print(raw_ostream &ROS, bool IsForDebug) const { 4280 bool ShouldInitializeAllMetadata = false; 4281 if (auto *I = dyn_cast<Instruction>(this)) 4282 ShouldInitializeAllMetadata = isReferencingMDNode(*I); 4283 else if (isa<Function>(this) || isa<MetadataAsValue>(this)) 4284 ShouldInitializeAllMetadata = true; 4285 4286 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata); 4287 print(ROS, MST, IsForDebug); 4288 } 4289 4290 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4291 bool IsForDebug) const { 4292 formatted_raw_ostream OS(ROS); 4293 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr)); 4294 SlotTracker &SlotTable = 4295 MST.getMachine() ? *MST.getMachine() : EmptySlotTable; 4296 auto incorporateFunction = [&](const Function *F) { 4297 if (F) 4298 MST.incorporateFunction(*F); 4299 }; 4300 4301 if (const Instruction *I = dyn_cast<Instruction>(this)) { 4302 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr); 4303 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug); 4304 W.printInstruction(*I); 4305 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { 4306 incorporateFunction(BB->getParent()); 4307 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug); 4308 W.printBasicBlock(BB); 4309 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 4310 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug); 4311 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) 4312 W.printGlobal(V); 4313 else if (const Function *F = dyn_cast<Function>(GV)) 4314 W.printFunction(F); 4315 else 4316 W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV)); 4317 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) { 4318 V->getMetadata()->print(ROS, MST, getModuleFromVal(V)); 4319 } else if (const Constant *C = dyn_cast<Constant>(this)) { 4320 TypePrinting TypePrinter; 4321 TypePrinter.print(C->getType(), OS); 4322 OS << ' '; 4323 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr); 4324 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) { 4325 this->printAsOperand(OS, /* PrintType */ true, MST); 4326 } else { 4327 llvm_unreachable("Unknown value to print out!"); 4328 } 4329 } 4330 4331 /// Print without a type, skipping the TypePrinting object. 4332 /// 4333 /// \return \c true iff printing was successful. 4334 static bool printWithoutType(const Value &V, raw_ostream &O, 4335 SlotTracker *Machine, const Module *M) { 4336 if (V.hasName() || isa<GlobalValue>(V) || 4337 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) { 4338 WriteAsOperandInternal(O, &V, nullptr, Machine, M); 4339 return true; 4340 } 4341 return false; 4342 } 4343 4344 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, 4345 ModuleSlotTracker &MST) { 4346 TypePrinting TypePrinter(MST.getModule()); 4347 if (PrintType) { 4348 TypePrinter.print(V.getType(), O); 4349 O << ' '; 4350 } 4351 4352 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(), 4353 MST.getModule()); 4354 } 4355 4356 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4357 const Module *M) const { 4358 if (!M) 4359 M = getModuleFromVal(this); 4360 4361 if (!PrintType) 4362 if (printWithoutType(*this, O, nullptr, M)) 4363 return; 4364 4365 SlotTracker Machine( 4366 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this)); 4367 ModuleSlotTracker MST(Machine, M); 4368 printAsOperandImpl(*this, O, PrintType, MST); 4369 } 4370 4371 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4372 ModuleSlotTracker &MST) const { 4373 if (!PrintType) 4374 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule())) 4375 return; 4376 4377 printAsOperandImpl(*this, O, PrintType, MST); 4378 } 4379 4380 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, 4381 ModuleSlotTracker &MST, const Module *M, 4382 bool OnlyAsOperand) { 4383 formatted_raw_ostream OS(ROS); 4384 4385 TypePrinting TypePrinter(M); 4386 4387 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M, 4388 /* FromValue */ true); 4389 4390 auto *N = dyn_cast<MDNode>(&MD); 4391 if (OnlyAsOperand || !N || isa<DIExpression>(MD)) 4392 return; 4393 4394 OS << " = "; 4395 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M); 4396 } 4397 4398 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const { 4399 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4400 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4401 } 4402 4403 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST, 4404 const Module *M) const { 4405 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4406 } 4407 4408 void Metadata::print(raw_ostream &OS, const Module *M, 4409 bool /*IsForDebug*/) const { 4410 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4411 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4412 } 4413 4414 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST, 4415 const Module *M, bool /*IsForDebug*/) const { 4416 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4417 } 4418 4419 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const { 4420 SlotTracker SlotTable(this); 4421 formatted_raw_ostream OS(ROS); 4422 AssemblyWriter W(OS, SlotTable, this, IsForDebug); 4423 W.printModuleSummaryIndex(); 4424 } 4425 4426 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4427 // Value::dump - allow easy printing of Values from the debugger. 4428 LLVM_DUMP_METHOD 4429 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4430 4431 // Type::dump - allow easy printing of Types from the debugger. 4432 LLVM_DUMP_METHOD 4433 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4434 4435 // Module::dump() - Allow printing of Modules from the debugger. 4436 LLVM_DUMP_METHOD 4437 void Module::dump() const { 4438 print(dbgs(), nullptr, 4439 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true); 4440 } 4441 4442 // Allow printing of Comdats from the debugger. 4443 LLVM_DUMP_METHOD 4444 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4445 4446 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. 4447 LLVM_DUMP_METHOD 4448 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4449 4450 LLVM_DUMP_METHOD 4451 void Metadata::dump() const { dump(nullptr); } 4452 4453 LLVM_DUMP_METHOD 4454 void Metadata::dump(const Module *M) const { 4455 print(dbgs(), M, /*IsForDebug=*/true); 4456 dbgs() << '\n'; 4457 } 4458 4459 // Allow printing of ModuleSummaryIndex from the debugger. 4460 LLVM_DUMP_METHOD 4461 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4462 #endif 4463