xref: /freebsd/contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp (revision 6fa42b91ca3f481912af98c4d49c44507eb1b8e1)
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/iterator_range.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/AssemblyAnnotationWriter.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Comdat.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugProgramInstruction.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalObject.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/IRPrintingPasses.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/TypeFinder.h"
64 #include "llvm/IR/TypedPointerType.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/SaveAndRestore.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <optional>
85 #include <string>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 // Make virtual table appear in this compilation unit.
93 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
94 
95 //===----------------------------------------------------------------------===//
96 // Helper Functions
97 //===----------------------------------------------------------------------===//
98 
99 using OrderMap = MapVector<const Value *, unsigned>;
100 
101 using UseListOrderMap =
102     DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
103 
104 /// Look for a value that might be wrapped as metadata, e.g. a value in a
105 /// metadata operand. Returns the input value as-is if it is not wrapped.
106 static const Value *skipMetadataWrapper(const Value *V) {
107   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
108     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
109       return VAM->getValue();
110   return V;
111 }
112 
113 static void orderValue(const Value *V, OrderMap &OM) {
114   if (OM.lookup(V))
115     return;
116 
117   if (const Constant *C = dyn_cast<Constant>(V))
118     if (C->getNumOperands() && !isa<GlobalValue>(C))
119       for (const Value *Op : C->operands())
120         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
121           orderValue(Op, OM);
122 
123   // Note: we cannot cache this lookup above, since inserting into the map
124   // changes the map's size, and thus affects the other IDs.
125   unsigned ID = OM.size() + 1;
126   OM[V] = ID;
127 }
128 
129 static OrderMap orderModule(const Module *M) {
130   OrderMap OM;
131 
132   for (const GlobalVariable &G : M->globals()) {
133     if (G.hasInitializer())
134       if (!isa<GlobalValue>(G.getInitializer()))
135         orderValue(G.getInitializer(), OM);
136     orderValue(&G, OM);
137   }
138   for (const GlobalAlias &A : M->aliases()) {
139     if (!isa<GlobalValue>(A.getAliasee()))
140       orderValue(A.getAliasee(), OM);
141     orderValue(&A, OM);
142   }
143   for (const GlobalIFunc &I : M->ifuncs()) {
144     if (!isa<GlobalValue>(I.getResolver()))
145       orderValue(I.getResolver(), OM);
146     orderValue(&I, OM);
147   }
148   for (const Function &F : *M) {
149     for (const Use &U : F.operands())
150       if (!isa<GlobalValue>(U.get()))
151         orderValue(U.get(), OM);
152 
153     orderValue(&F, OM);
154 
155     if (F.isDeclaration())
156       continue;
157 
158     for (const Argument &A : F.args())
159       orderValue(&A, OM);
160     for (const BasicBlock &BB : F) {
161       orderValue(&BB, OM);
162       for (const Instruction &I : BB) {
163         for (const Value *Op : I.operands()) {
164           Op = skipMetadataWrapper(Op);
165           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
166               isa<InlineAsm>(*Op))
167             orderValue(Op, OM);
168         }
169         orderValue(&I, OM);
170       }
171     }
172   }
173   return OM;
174 }
175 
176 static std::vector<unsigned>
177 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
178   // Predict use-list order for this one.
179   using Entry = std::pair<const Use *, unsigned>;
180   SmallVector<Entry, 64> List;
181   for (const Use &U : V->uses())
182     // Check if this user will be serialized.
183     if (OM.lookup(U.getUser()))
184       List.push_back(std::make_pair(&U, List.size()));
185 
186   if (List.size() < 2)
187     // We may have lost some users.
188     return {};
189 
190   // When referencing a value before its declaration, a temporary value is
191   // created, which will later be RAUWed with the actual value. This reverses
192   // the use list. This happens for all values apart from basic blocks.
193   bool GetsReversed = !isa<BasicBlock>(V);
194   if (auto *BA = dyn_cast<BlockAddress>(V))
195     ID = OM.lookup(BA->getBasicBlock());
196   llvm::sort(List, [&](const Entry &L, const Entry &R) {
197     const Use *LU = L.first;
198     const Use *RU = R.first;
199     if (LU == RU)
200       return false;
201 
202     auto LID = OM.lookup(LU->getUser());
203     auto RID = OM.lookup(RU->getUser());
204 
205     // If ID is 4, then expect: 7 6 5 1 2 3.
206     if (LID < RID) {
207       if (GetsReversed)
208         if (RID <= ID)
209           return true;
210       return false;
211     }
212     if (RID < LID) {
213       if (GetsReversed)
214         if (LID <= ID)
215           return false;
216       return true;
217     }
218 
219     // LID and RID are equal, so we have different operands of the same user.
220     // Assume operands are added in order for all instructions.
221     if (GetsReversed)
222       if (LID <= ID)
223         return LU->getOperandNo() < RU->getOperandNo();
224     return LU->getOperandNo() > RU->getOperandNo();
225   });
226 
227   if (llvm::is_sorted(List, llvm::less_second()))
228     // Order is already correct.
229     return {};
230 
231   // Store the shuffle.
232   std::vector<unsigned> Shuffle(List.size());
233   for (size_t I = 0, E = List.size(); I != E; ++I)
234     Shuffle[I] = List[I].second;
235   return Shuffle;
236 }
237 
238 static UseListOrderMap predictUseListOrder(const Module *M) {
239   OrderMap OM = orderModule(M);
240   UseListOrderMap ULOM;
241   for (const auto &Pair : OM) {
242     const Value *V = Pair.first;
243     if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
244       continue;
245 
246     std::vector<unsigned> Shuffle =
247         predictValueUseListOrder(V, Pair.second, OM);
248     if (Shuffle.empty())
249       continue;
250 
251     const Function *F = nullptr;
252     if (auto *I = dyn_cast<Instruction>(V))
253       F = I->getFunction();
254     if (auto *A = dyn_cast<Argument>(V))
255       F = A->getParent();
256     if (auto *BB = dyn_cast<BasicBlock>(V))
257       F = BB->getParent();
258     ULOM[F][V] = std::move(Shuffle);
259   }
260   return ULOM;
261 }
262 
263 static const Module *getModuleFromVal(const Value *V) {
264   if (const Argument *MA = dyn_cast<Argument>(V))
265     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
266 
267   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
268     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
269 
270   if (const Instruction *I = dyn_cast<Instruction>(V)) {
271     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
272     return M ? M->getParent() : nullptr;
273   }
274 
275   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
276     return GV->getParent();
277 
278   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
279     for (const User *U : MAV->users())
280       if (isa<Instruction>(U))
281         if (const Module *M = getModuleFromVal(U))
282           return M;
283     return nullptr;
284   }
285 
286   return nullptr;
287 }
288 
289 static const Module *getModuleFromDPI(const DPMarker *Marker) {
290   const Function *M =
291       Marker->getParent() ? Marker->getParent()->getParent() : nullptr;
292   return M ? M->getParent() : nullptr;
293 }
294 
295 static const Module *getModuleFromDPI(const DPValue *DPV) {
296   return getModuleFromDPI(DPV->getMarker());
297 }
298 
299 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
300   switch (cc) {
301   default:                         Out << "cc" << cc; break;
302   case CallingConv::Fast:          Out << "fastcc"; break;
303   case CallingConv::Cold:          Out << "coldcc"; break;
304   case CallingConv::AnyReg:        Out << "anyregcc"; break;
305   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
306   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
307   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
308   case CallingConv::GHC:           Out << "ghccc"; break;
309   case CallingConv::Tail:          Out << "tailcc"; break;
310   case CallingConv::GRAAL:         Out << "graalcc"; break;
311   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
312   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
313   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
314   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
315   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
316   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
317   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
318   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
319   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
320   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
321   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
322   case CallingConv::AArch64_SVE_VectorCall:
323     Out << "aarch64_sve_vector_pcs";
324     break;
325   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
326     Out << "aarch64_sme_preservemost_from_x0";
327     break;
328   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
329     Out << "aarch64_sme_preservemost_from_x2";
330     break;
331   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
332   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
333   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
334   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
335   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
336   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
337   case CallingConv::Win64:         Out << "win64cc"; break;
338   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
339   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
340   case CallingConv::Swift:         Out << "swiftcc"; break;
341   case CallingConv::SwiftTail:     Out << "swifttailcc"; break;
342   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
343   case CallingConv::DUMMY_HHVM:
344     Out << "hhvmcc";
345     break;
346   case CallingConv::DUMMY_HHVM_C:
347     Out << "hhvm_ccc";
348     break;
349   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
350   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
351   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
352   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
353   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
354   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
355   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
356   case CallingConv::AMDGPU_CS_Chain:
357     Out << "amdgpu_cs_chain";
358     break;
359   case CallingConv::AMDGPU_CS_ChainPreserve:
360     Out << "amdgpu_cs_chain_preserve";
361     break;
362   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
363   case CallingConv::AMDGPU_Gfx:    Out << "amdgpu_gfx"; break;
364   case CallingConv::M68k_RTD:      Out << "m68k_rtdcc"; break;
365   }
366 }
367 
368 enum PrefixType {
369   GlobalPrefix,
370   ComdatPrefix,
371   LabelPrefix,
372   LocalPrefix,
373   NoPrefix
374 };
375 
376 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
377   assert(!Name.empty() && "Cannot get empty name!");
378 
379   // Scan the name to see if it needs quotes first.
380   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
381   if (!NeedsQuotes) {
382     for (unsigned char C : Name) {
383       // By making this unsigned, the value passed in to isalnum will always be
384       // in the range 0-255.  This is important when building with MSVC because
385       // its implementation will assert.  This situation can arise when dealing
386       // with UTF-8 multibyte characters.
387       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
388           C != '_') {
389         NeedsQuotes = true;
390         break;
391       }
392     }
393   }
394 
395   // If we didn't need any quotes, just write out the name in one blast.
396   if (!NeedsQuotes) {
397     OS << Name;
398     return;
399   }
400 
401   // Okay, we need quotes.  Output the quotes and escape any scary characters as
402   // needed.
403   OS << '"';
404   printEscapedString(Name, OS);
405   OS << '"';
406 }
407 
408 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
409 /// (if the string only contains simple characters) or is surrounded with ""'s
410 /// (if it has special chars in it). Print it out.
411 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
412   switch (Prefix) {
413   case NoPrefix:
414     break;
415   case GlobalPrefix:
416     OS << '@';
417     break;
418   case ComdatPrefix:
419     OS << '$';
420     break;
421   case LabelPrefix:
422     break;
423   case LocalPrefix:
424     OS << '%';
425     break;
426   }
427   printLLVMNameWithoutPrefix(OS, Name);
428 }
429 
430 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
431 /// (if the string only contains simple characters) or is surrounded with ""'s
432 /// (if it has special chars in it). Print it out.
433 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
434   PrintLLVMName(OS, V->getName(),
435                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
436 }
437 
438 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
439   Out << ", <";
440   if (isa<ScalableVectorType>(Ty))
441     Out << "vscale x ";
442   Out << Mask.size() << " x i32> ";
443   bool FirstElt = true;
444   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
445     Out << "zeroinitializer";
446   } else if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
447     Out << "poison";
448   } else {
449     Out << "<";
450     for (int Elt : Mask) {
451       if (FirstElt)
452         FirstElt = false;
453       else
454         Out << ", ";
455       Out << "i32 ";
456       if (Elt == PoisonMaskElem)
457         Out << "poison";
458       else
459         Out << Elt;
460     }
461     Out << ">";
462   }
463 }
464 
465 namespace {
466 
467 class TypePrinting {
468 public:
469   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
470 
471   TypePrinting(const TypePrinting &) = delete;
472   TypePrinting &operator=(const TypePrinting &) = delete;
473 
474   /// The named types that are used by the current module.
475   TypeFinder &getNamedTypes();
476 
477   /// The numbered types, number to type mapping.
478   std::vector<StructType *> &getNumberedTypes();
479 
480   bool empty();
481 
482   void print(Type *Ty, raw_ostream &OS);
483 
484   void printStructBody(StructType *Ty, raw_ostream &OS);
485 
486 private:
487   void incorporateTypes();
488 
489   /// A module to process lazily when needed. Set to nullptr as soon as used.
490   const Module *DeferredM;
491 
492   TypeFinder NamedTypes;
493 
494   // The numbered types, along with their value.
495   DenseMap<StructType *, unsigned> Type2Number;
496 
497   std::vector<StructType *> NumberedTypes;
498 };
499 
500 } // end anonymous namespace
501 
502 TypeFinder &TypePrinting::getNamedTypes() {
503   incorporateTypes();
504   return NamedTypes;
505 }
506 
507 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
508   incorporateTypes();
509 
510   // We know all the numbers that each type is used and we know that it is a
511   // dense assignment. Convert the map to an index table, if it's not done
512   // already (judging from the sizes):
513   if (NumberedTypes.size() == Type2Number.size())
514     return NumberedTypes;
515 
516   NumberedTypes.resize(Type2Number.size());
517   for (const auto &P : Type2Number) {
518     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
519     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
520     NumberedTypes[P.second] = P.first;
521   }
522   return NumberedTypes;
523 }
524 
525 bool TypePrinting::empty() {
526   incorporateTypes();
527   return NamedTypes.empty() && Type2Number.empty();
528 }
529 
530 void TypePrinting::incorporateTypes() {
531   if (!DeferredM)
532     return;
533 
534   NamedTypes.run(*DeferredM, false);
535   DeferredM = nullptr;
536 
537   // The list of struct types we got back includes all the struct types, split
538   // the unnamed ones out to a numbering and remove the anonymous structs.
539   unsigned NextNumber = 0;
540 
541   std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
542   for (StructType *STy : NamedTypes) {
543     // Ignore anonymous types.
544     if (STy->isLiteral())
545       continue;
546 
547     if (STy->getName().empty())
548       Type2Number[STy] = NextNumber++;
549     else
550       *NextToUse++ = STy;
551   }
552 
553   NamedTypes.erase(NextToUse, NamedTypes.end());
554 }
555 
556 /// Write the specified type to the specified raw_ostream, making use of type
557 /// names or up references to shorten the type name where possible.
558 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
559   switch (Ty->getTypeID()) {
560   case Type::VoidTyID:      OS << "void"; return;
561   case Type::HalfTyID:      OS << "half"; return;
562   case Type::BFloatTyID:    OS << "bfloat"; return;
563   case Type::FloatTyID:     OS << "float"; return;
564   case Type::DoubleTyID:    OS << "double"; return;
565   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
566   case Type::FP128TyID:     OS << "fp128"; return;
567   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
568   case Type::LabelTyID:     OS << "label"; return;
569   case Type::MetadataTyID:  OS << "metadata"; return;
570   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
571   case Type::X86_AMXTyID:   OS << "x86_amx"; return;
572   case Type::TokenTyID:     OS << "token"; return;
573   case Type::IntegerTyID:
574     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
575     return;
576 
577   case Type::FunctionTyID: {
578     FunctionType *FTy = cast<FunctionType>(Ty);
579     print(FTy->getReturnType(), OS);
580     OS << " (";
581     ListSeparator LS;
582     for (Type *Ty : FTy->params()) {
583       OS << LS;
584       print(Ty, OS);
585     }
586     if (FTy->isVarArg())
587       OS << LS << "...";
588     OS << ')';
589     return;
590   }
591   case Type::StructTyID: {
592     StructType *STy = cast<StructType>(Ty);
593 
594     if (STy->isLiteral())
595       return printStructBody(STy, OS);
596 
597     if (!STy->getName().empty())
598       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
599 
600     incorporateTypes();
601     const auto I = Type2Number.find(STy);
602     if (I != Type2Number.end())
603       OS << '%' << I->second;
604     else  // Not enumerated, print the hex address.
605       OS << "%\"type " << STy << '\"';
606     return;
607   }
608   case Type::PointerTyID: {
609     PointerType *PTy = cast<PointerType>(Ty);
610     OS << "ptr";
611     if (unsigned AddressSpace = PTy->getAddressSpace())
612       OS << " addrspace(" << AddressSpace << ')';
613     return;
614   }
615   case Type::ArrayTyID: {
616     ArrayType *ATy = cast<ArrayType>(Ty);
617     OS << '[' << ATy->getNumElements() << " x ";
618     print(ATy->getElementType(), OS);
619     OS << ']';
620     return;
621   }
622   case Type::FixedVectorTyID:
623   case Type::ScalableVectorTyID: {
624     VectorType *PTy = cast<VectorType>(Ty);
625     ElementCount EC = PTy->getElementCount();
626     OS << "<";
627     if (EC.isScalable())
628       OS << "vscale x ";
629     OS << EC.getKnownMinValue() << " x ";
630     print(PTy->getElementType(), OS);
631     OS << '>';
632     return;
633   }
634   case Type::TypedPointerTyID: {
635     TypedPointerType *TPTy = cast<TypedPointerType>(Ty);
636     OS << "typedptr(" << *TPTy->getElementType() << ", "
637        << TPTy->getAddressSpace() << ")";
638     return;
639   }
640   case Type::TargetExtTyID:
641     TargetExtType *TETy = cast<TargetExtType>(Ty);
642     OS << "target(\"";
643     printEscapedString(Ty->getTargetExtName(), OS);
644     OS << "\"";
645     for (Type *Inner : TETy->type_params())
646       OS << ", " << *Inner;
647     for (unsigned IntParam : TETy->int_params())
648       OS << ", " << IntParam;
649     OS << ")";
650     return;
651   }
652   llvm_unreachable("Invalid TypeID");
653 }
654 
655 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
656   if (STy->isOpaque()) {
657     OS << "opaque";
658     return;
659   }
660 
661   if (STy->isPacked())
662     OS << '<';
663 
664   if (STy->getNumElements() == 0) {
665     OS << "{}";
666   } else {
667     OS << "{ ";
668     ListSeparator LS;
669     for (Type *Ty : STy->elements()) {
670       OS << LS;
671       print(Ty, OS);
672     }
673 
674     OS << " }";
675   }
676   if (STy->isPacked())
677     OS << '>';
678 }
679 
680 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
681 
682 namespace llvm {
683 
684 //===----------------------------------------------------------------------===//
685 // SlotTracker Class: Enumerate slot numbers for unnamed values
686 //===----------------------------------------------------------------------===//
687 /// This class provides computation of slot numbers for LLVM Assembly writing.
688 ///
689 class SlotTracker : public AbstractSlotTrackerStorage {
690 public:
691   /// ValueMap - A mapping of Values to slot numbers.
692   using ValueMap = DenseMap<const Value *, unsigned>;
693 
694 private:
695   /// TheModule - The module for which we are holding slot numbers.
696   const Module* TheModule;
697 
698   /// TheFunction - The function for which we are holding slot numbers.
699   const Function* TheFunction = nullptr;
700   bool FunctionProcessed = false;
701   bool ShouldInitializeAllMetadata;
702 
703   std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
704       ProcessModuleHookFn;
705   std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
706       ProcessFunctionHookFn;
707 
708   /// The summary index for which we are holding slot numbers.
709   const ModuleSummaryIndex *TheIndex = nullptr;
710 
711   /// mMap - The slot map for the module level data.
712   ValueMap mMap;
713   unsigned mNext = 0;
714 
715   /// fMap - The slot map for the function level data.
716   ValueMap fMap;
717   unsigned fNext = 0;
718 
719   /// mdnMap - Map for MDNodes.
720   DenseMap<const MDNode*, unsigned> mdnMap;
721   unsigned mdnNext = 0;
722 
723   /// asMap - The slot map for attribute sets.
724   DenseMap<AttributeSet, unsigned> asMap;
725   unsigned asNext = 0;
726 
727   /// ModulePathMap - The slot map for Module paths used in the summary index.
728   StringMap<unsigned> ModulePathMap;
729   unsigned ModulePathNext = 0;
730 
731   /// GUIDMap - The slot map for GUIDs used in the summary index.
732   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
733   unsigned GUIDNext = 0;
734 
735   /// TypeIdMap - The slot map for type ids used in the summary index.
736   StringMap<unsigned> TypeIdMap;
737   unsigned TypeIdNext = 0;
738 
739   /// TypeIdCompatibleVtableMap - The slot map for type compatible vtable ids
740   /// used in the summary index.
741   StringMap<unsigned> TypeIdCompatibleVtableMap;
742   unsigned TypeIdCompatibleVtableNext = 0;
743 
744 public:
745   /// Construct from a module.
746   ///
747   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
748   /// functions, giving correct numbering for metadata referenced only from
749   /// within a function (even if no functions have been initialized).
750   explicit SlotTracker(const Module *M,
751                        bool ShouldInitializeAllMetadata = false);
752 
753   /// Construct from a function, starting out in incorp state.
754   ///
755   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
756   /// functions, giving correct numbering for metadata referenced only from
757   /// within a function (even if no functions have been initialized).
758   explicit SlotTracker(const Function *F,
759                        bool ShouldInitializeAllMetadata = false);
760 
761   /// Construct from a module summary index.
762   explicit SlotTracker(const ModuleSummaryIndex *Index);
763 
764   SlotTracker(const SlotTracker &) = delete;
765   SlotTracker &operator=(const SlotTracker &) = delete;
766 
767   ~SlotTracker() = default;
768 
769   void setProcessHook(
770       std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
771   void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
772                                          const Function *, bool)>);
773 
774   unsigned getNextMetadataSlot() override { return mdnNext; }
775 
776   void createMetadataSlot(const MDNode *N) override;
777 
778   /// Return the slot number of the specified value in it's type
779   /// plane.  If something is not in the SlotTracker, return -1.
780   int getLocalSlot(const Value *V);
781   int getGlobalSlot(const GlobalValue *V);
782   int getMetadataSlot(const MDNode *N) override;
783   int getAttributeGroupSlot(AttributeSet AS);
784   int getModulePathSlot(StringRef Path);
785   int getGUIDSlot(GlobalValue::GUID GUID);
786   int getTypeIdSlot(StringRef Id);
787   int getTypeIdCompatibleVtableSlot(StringRef Id);
788 
789   /// If you'd like to deal with a function instead of just a module, use
790   /// this method to get its data into the SlotTracker.
791   void incorporateFunction(const Function *F) {
792     TheFunction = F;
793     FunctionProcessed = false;
794   }
795 
796   const Function *getFunction() const { return TheFunction; }
797 
798   /// After calling incorporateFunction, use this method to remove the
799   /// most recently incorporated function from the SlotTracker. This
800   /// will reset the state of the machine back to just the module contents.
801   void purgeFunction();
802 
803   /// MDNode map iterators.
804   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
805 
806   mdn_iterator mdn_begin() { return mdnMap.begin(); }
807   mdn_iterator mdn_end() { return mdnMap.end(); }
808   unsigned mdn_size() const { return mdnMap.size(); }
809   bool mdn_empty() const { return mdnMap.empty(); }
810 
811   /// AttributeSet map iterators.
812   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
813 
814   as_iterator as_begin()   { return asMap.begin(); }
815   as_iterator as_end()     { return asMap.end(); }
816   unsigned as_size() const { return asMap.size(); }
817   bool as_empty() const    { return asMap.empty(); }
818 
819   /// GUID map iterators.
820   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
821 
822   /// These functions do the actual initialization.
823   inline void initializeIfNeeded();
824   int initializeIndexIfNeeded();
825 
826   // Implementation Details
827 private:
828   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
829   void CreateModuleSlot(const GlobalValue *V);
830 
831   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
832   void CreateMetadataSlot(const MDNode *N);
833 
834   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
835   void CreateFunctionSlot(const Value *V);
836 
837   /// Insert the specified AttributeSet into the slot table.
838   void CreateAttributeSetSlot(AttributeSet AS);
839 
840   inline void CreateModulePathSlot(StringRef Path);
841   void CreateGUIDSlot(GlobalValue::GUID GUID);
842   void CreateTypeIdSlot(StringRef Id);
843   void CreateTypeIdCompatibleVtableSlot(StringRef Id);
844 
845   /// Add all of the module level global variables (and their initializers)
846   /// and function declarations, but not the contents of those functions.
847   void processModule();
848   // Returns number of allocated slots
849   int processIndex();
850 
851   /// Add all of the functions arguments, basic blocks, and instructions.
852   void processFunction();
853 
854   /// Add the metadata directly attached to a GlobalObject.
855   void processGlobalObjectMetadata(const GlobalObject &GO);
856 
857   /// Add all of the metadata from a function.
858   void processFunctionMetadata(const Function &F);
859 
860   /// Add all of the metadata from an instruction.
861   void processInstructionMetadata(const Instruction &I);
862 
863   /// Add all of the metadata from an instruction.
864   void processDPValueMetadata(const DPValue &DPV);
865 };
866 
867 } // end namespace llvm
868 
869 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
870                                      const Function *F)
871     : M(M), F(F), Machine(&Machine) {}
872 
873 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
874                                      bool ShouldInitializeAllMetadata)
875     : ShouldCreateStorage(M),
876       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
877 
878 ModuleSlotTracker::~ModuleSlotTracker() = default;
879 
880 SlotTracker *ModuleSlotTracker::getMachine() {
881   if (!ShouldCreateStorage)
882     return Machine;
883 
884   ShouldCreateStorage = false;
885   MachineStorage =
886       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
887   Machine = MachineStorage.get();
888   if (ProcessModuleHookFn)
889     Machine->setProcessHook(ProcessModuleHookFn);
890   if (ProcessFunctionHookFn)
891     Machine->setProcessHook(ProcessFunctionHookFn);
892   return Machine;
893 }
894 
895 void ModuleSlotTracker::incorporateFunction(const Function &F) {
896   // Using getMachine() may lazily create the slot tracker.
897   if (!getMachine())
898     return;
899 
900   // Nothing to do if this is the right function already.
901   if (this->F == &F)
902     return;
903   if (this->F)
904     Machine->purgeFunction();
905   Machine->incorporateFunction(&F);
906   this->F = &F;
907 }
908 
909 int ModuleSlotTracker::getLocalSlot(const Value *V) {
910   assert(F && "No function incorporated");
911   return Machine->getLocalSlot(V);
912 }
913 
914 void ModuleSlotTracker::setProcessHook(
915     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
916         Fn) {
917   ProcessModuleHookFn = Fn;
918 }
919 
920 void ModuleSlotTracker::setProcessHook(
921     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
922         Fn) {
923   ProcessFunctionHookFn = Fn;
924 }
925 
926 static SlotTracker *createSlotTracker(const Value *V) {
927   if (const Argument *FA = dyn_cast<Argument>(V))
928     return new SlotTracker(FA->getParent());
929 
930   if (const Instruction *I = dyn_cast<Instruction>(V))
931     if (I->getParent())
932       return new SlotTracker(I->getParent()->getParent());
933 
934   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
935     return new SlotTracker(BB->getParent());
936 
937   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
938     return new SlotTracker(GV->getParent());
939 
940   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
941     return new SlotTracker(GA->getParent());
942 
943   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
944     return new SlotTracker(GIF->getParent());
945 
946   if (const Function *Func = dyn_cast<Function>(V))
947     return new SlotTracker(Func);
948 
949   return nullptr;
950 }
951 
952 #if 0
953 #define ST_DEBUG(X) dbgs() << X
954 #else
955 #define ST_DEBUG(X)
956 #endif
957 
958 // Module level constructor. Causes the contents of the Module (sans functions)
959 // to be added to the slot table.
960 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
961     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
962 
963 // Function level constructor. Causes the contents of the Module and the one
964 // function provided to be added to the slot table.
965 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
966     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
967       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
968 
969 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
970     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
971 
972 inline void SlotTracker::initializeIfNeeded() {
973   if (TheModule) {
974     processModule();
975     TheModule = nullptr; ///< Prevent re-processing next time we're called.
976   }
977 
978   if (TheFunction && !FunctionProcessed)
979     processFunction();
980 }
981 
982 int SlotTracker::initializeIndexIfNeeded() {
983   if (!TheIndex)
984     return 0;
985   int NumSlots = processIndex();
986   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
987   return NumSlots;
988 }
989 
990 // Iterate through all the global variables, functions, and global
991 // variable initializers and create slots for them.
992 void SlotTracker::processModule() {
993   ST_DEBUG("begin processModule!\n");
994 
995   // Add all of the unnamed global variables to the value table.
996   for (const GlobalVariable &Var : TheModule->globals()) {
997     if (!Var.hasName())
998       CreateModuleSlot(&Var);
999     processGlobalObjectMetadata(Var);
1000     auto Attrs = Var.getAttributes();
1001     if (Attrs.hasAttributes())
1002       CreateAttributeSetSlot(Attrs);
1003   }
1004 
1005   for (const GlobalAlias &A : TheModule->aliases()) {
1006     if (!A.hasName())
1007       CreateModuleSlot(&A);
1008   }
1009 
1010   for (const GlobalIFunc &I : TheModule->ifuncs()) {
1011     if (!I.hasName())
1012       CreateModuleSlot(&I);
1013   }
1014 
1015   // Add metadata used by named metadata.
1016   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
1017     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
1018       CreateMetadataSlot(NMD.getOperand(i));
1019   }
1020 
1021   for (const Function &F : *TheModule) {
1022     if (!F.hasName())
1023       // Add all the unnamed functions to the table.
1024       CreateModuleSlot(&F);
1025 
1026     if (ShouldInitializeAllMetadata)
1027       processFunctionMetadata(F);
1028 
1029     // Add all the function attributes to the table.
1030     // FIXME: Add attributes of other objects?
1031     AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
1032     if (FnAttrs.hasAttributes())
1033       CreateAttributeSetSlot(FnAttrs);
1034   }
1035 
1036   if (ProcessModuleHookFn)
1037     ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1038 
1039   ST_DEBUG("end processModule!\n");
1040 }
1041 
1042 // Process the arguments, basic blocks, and instructions  of a function.
1043 void SlotTracker::processFunction() {
1044   ST_DEBUG("begin processFunction!\n");
1045   fNext = 0;
1046 
1047   // Process function metadata if it wasn't hit at the module-level.
1048   if (!ShouldInitializeAllMetadata)
1049     processFunctionMetadata(*TheFunction);
1050 
1051   // Add all the function arguments with no names.
1052   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1053       AE = TheFunction->arg_end(); AI != AE; ++AI)
1054     if (!AI->hasName())
1055       CreateFunctionSlot(&*AI);
1056 
1057   ST_DEBUG("Inserting Instructions:\n");
1058 
1059   // Add all of the basic blocks and instructions with no names.
1060   for (auto &BB : *TheFunction) {
1061     if (!BB.hasName())
1062       CreateFunctionSlot(&BB);
1063 
1064     for (auto &I : BB) {
1065       if (!I.getType()->isVoidTy() && !I.hasName())
1066         CreateFunctionSlot(&I);
1067 
1068       // We allow direct calls to any llvm.foo function here, because the
1069       // target may not be linked into the optimizer.
1070       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1071         // Add all the call attributes to the table.
1072         AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1073         if (Attrs.hasAttributes())
1074           CreateAttributeSetSlot(Attrs);
1075       }
1076     }
1077   }
1078 
1079   if (ProcessFunctionHookFn)
1080     ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1081 
1082   FunctionProcessed = true;
1083 
1084   ST_DEBUG("end processFunction!\n");
1085 }
1086 
1087 // Iterate through all the GUID in the index and create slots for them.
1088 int SlotTracker::processIndex() {
1089   ST_DEBUG("begin processIndex!\n");
1090   assert(TheIndex);
1091 
1092   // The first block of slots are just the module ids, which start at 0 and are
1093   // assigned consecutively. Since the StringMap iteration order isn't
1094   // guaranteed, order by path string before assigning slots.
1095   std::vector<StringRef> ModulePaths;
1096   for (auto &[ModPath, _] : TheIndex->modulePaths())
1097     ModulePaths.push_back(ModPath);
1098   llvm::sort(ModulePaths.begin(), ModulePaths.end());
1099   for (auto &ModPath : ModulePaths)
1100     CreateModulePathSlot(ModPath);
1101 
1102   // Start numbering the GUIDs after the module ids.
1103   GUIDNext = ModulePathNext;
1104 
1105   for (auto &GlobalList : *TheIndex)
1106     CreateGUIDSlot(GlobalList.first);
1107 
1108   // Start numbering the TypeIdCompatibleVtables after the GUIDs.
1109   TypeIdCompatibleVtableNext = GUIDNext;
1110   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1111     CreateTypeIdCompatibleVtableSlot(TId.first);
1112 
1113   // Start numbering the TypeIds after the TypeIdCompatibleVtables.
1114   TypeIdNext = TypeIdCompatibleVtableNext;
1115   for (const auto &TID : TheIndex->typeIds())
1116     CreateTypeIdSlot(TID.second.first);
1117 
1118   ST_DEBUG("end processIndex!\n");
1119   return TypeIdNext;
1120 }
1121 
1122 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1123   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1124   GO.getAllMetadata(MDs);
1125   for (auto &MD : MDs)
1126     CreateMetadataSlot(MD.second);
1127 }
1128 
1129 void SlotTracker::processFunctionMetadata(const Function &F) {
1130   processGlobalObjectMetadata(F);
1131   for (auto &BB : F) {
1132     for (auto &I : BB) {
1133       for (const DPValue &DPV : I.getDbgValueRange())
1134         processDPValueMetadata(DPV);
1135       processInstructionMetadata(I);
1136     }
1137   }
1138 }
1139 
1140 void SlotTracker::processDPValueMetadata(const DPValue &DPV) {
1141   CreateMetadataSlot(DPV.getVariable());
1142   CreateMetadataSlot(DPV.getDebugLoc());
1143   if (DPV.isDbgAssign()) {
1144     CreateMetadataSlot(DPV.getAssignID());
1145   }
1146 }
1147 
1148 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1149   // Process metadata used directly by intrinsics.
1150   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1151     if (Function *F = CI->getCalledFunction())
1152       if (F->isIntrinsic())
1153         for (auto &Op : I.operands())
1154           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1155             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1156               CreateMetadataSlot(N);
1157 
1158   // Process metadata attached to this instruction.
1159   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1160   I.getAllMetadata(MDs);
1161   for (auto &MD : MDs)
1162     CreateMetadataSlot(MD.second);
1163 }
1164 
1165 /// Clean up after incorporating a function. This is the only way to get out of
1166 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1167 /// incorporation state is indicated by TheFunction != 0.
1168 void SlotTracker::purgeFunction() {
1169   ST_DEBUG("begin purgeFunction!\n");
1170   fMap.clear(); // Simply discard the function level map
1171   TheFunction = nullptr;
1172   FunctionProcessed = false;
1173   ST_DEBUG("end purgeFunction!\n");
1174 }
1175 
1176 /// getGlobalSlot - Get the slot number of a global value.
1177 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1178   // Check for uninitialized state and do lazy initialization.
1179   initializeIfNeeded();
1180 
1181   // Find the value in the module map
1182   ValueMap::iterator MI = mMap.find(V);
1183   return MI == mMap.end() ? -1 : (int)MI->second;
1184 }
1185 
1186 void SlotTracker::setProcessHook(
1187     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1188         Fn) {
1189   ProcessModuleHookFn = Fn;
1190 }
1191 
1192 void SlotTracker::setProcessHook(
1193     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1194         Fn) {
1195   ProcessFunctionHookFn = Fn;
1196 }
1197 
1198 /// getMetadataSlot - Get the slot number of a MDNode.
1199 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1200 
1201 /// getMetadataSlot - Get the slot number of a MDNode.
1202 int SlotTracker::getMetadataSlot(const MDNode *N) {
1203   // Check for uninitialized state and do lazy initialization.
1204   initializeIfNeeded();
1205 
1206   // Find the MDNode in the module map
1207   mdn_iterator MI = mdnMap.find(N);
1208   return MI == mdnMap.end() ? -1 : (int)MI->second;
1209 }
1210 
1211 /// getLocalSlot - Get the slot number for a value that is local to a function.
1212 int SlotTracker::getLocalSlot(const Value *V) {
1213   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1214 
1215   // Check for uninitialized state and do lazy initialization.
1216   initializeIfNeeded();
1217 
1218   ValueMap::iterator FI = fMap.find(V);
1219   return FI == fMap.end() ? -1 : (int)FI->second;
1220 }
1221 
1222 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1223   // Check for uninitialized state and do lazy initialization.
1224   initializeIfNeeded();
1225 
1226   // Find the AttributeSet in the module map.
1227   as_iterator AI = asMap.find(AS);
1228   return AI == asMap.end() ? -1 : (int)AI->second;
1229 }
1230 
1231 int SlotTracker::getModulePathSlot(StringRef Path) {
1232   // Check for uninitialized state and do lazy initialization.
1233   initializeIndexIfNeeded();
1234 
1235   // Find the Module path in the map
1236   auto I = ModulePathMap.find(Path);
1237   return I == ModulePathMap.end() ? -1 : (int)I->second;
1238 }
1239 
1240 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1241   // Check for uninitialized state and do lazy initialization.
1242   initializeIndexIfNeeded();
1243 
1244   // Find the GUID in the map
1245   guid_iterator I = GUIDMap.find(GUID);
1246   return I == GUIDMap.end() ? -1 : (int)I->second;
1247 }
1248 
1249 int SlotTracker::getTypeIdSlot(StringRef Id) {
1250   // Check for uninitialized state and do lazy initialization.
1251   initializeIndexIfNeeded();
1252 
1253   // Find the TypeId string in the map
1254   auto I = TypeIdMap.find(Id);
1255   return I == TypeIdMap.end() ? -1 : (int)I->second;
1256 }
1257 
1258 int SlotTracker::getTypeIdCompatibleVtableSlot(StringRef Id) {
1259   // Check for uninitialized state and do lazy initialization.
1260   initializeIndexIfNeeded();
1261 
1262   // Find the TypeIdCompatibleVtable string in the map
1263   auto I = TypeIdCompatibleVtableMap.find(Id);
1264   return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)I->second;
1265 }
1266 
1267 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1268 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1269   assert(V && "Can't insert a null Value into SlotTracker!");
1270   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1271   assert(!V->hasName() && "Doesn't need a slot!");
1272 
1273   unsigned DestSlot = mNext++;
1274   mMap[V] = DestSlot;
1275 
1276   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1277            DestSlot << " [");
1278   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1279   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1280             (isa<Function>(V) ? 'F' :
1281              (isa<GlobalAlias>(V) ? 'A' :
1282               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1283 }
1284 
1285 /// CreateSlot - Create a new slot for the specified value if it has no name.
1286 void SlotTracker::CreateFunctionSlot(const Value *V) {
1287   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1288 
1289   unsigned DestSlot = fNext++;
1290   fMap[V] = DestSlot;
1291 
1292   // G = Global, F = Function, o = other
1293   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1294            DestSlot << " [o]\n");
1295 }
1296 
1297 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1298 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1299   assert(N && "Can't insert a null Value into SlotTracker!");
1300 
1301   // Don't make slots for DIExpressions. We just print them inline everywhere.
1302   if (isa<DIExpression>(N))
1303     return;
1304 
1305   unsigned DestSlot = mdnNext;
1306   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1307     return;
1308   ++mdnNext;
1309 
1310   // Recursively add any MDNodes referenced by operands.
1311   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1312     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1313       CreateMetadataSlot(Op);
1314 }
1315 
1316 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1317   assert(AS.hasAttributes() && "Doesn't need a slot!");
1318 
1319   as_iterator I = asMap.find(AS);
1320   if (I != asMap.end())
1321     return;
1322 
1323   unsigned DestSlot = asNext++;
1324   asMap[AS] = DestSlot;
1325 }
1326 
1327 /// Create a new slot for the specified Module
1328 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1329   ModulePathMap[Path] = ModulePathNext++;
1330 }
1331 
1332 /// Create a new slot for the specified GUID
1333 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1334   GUIDMap[GUID] = GUIDNext++;
1335 }
1336 
1337 /// Create a new slot for the specified Id
1338 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1339   TypeIdMap[Id] = TypeIdNext++;
1340 }
1341 
1342 /// Create a new slot for the specified Id
1343 void SlotTracker::CreateTypeIdCompatibleVtableSlot(StringRef Id) {
1344   TypeIdCompatibleVtableMap[Id] = TypeIdCompatibleVtableNext++;
1345 }
1346 
1347 namespace {
1348 /// Common instances used by most of the printer functions.
1349 struct AsmWriterContext {
1350   TypePrinting *TypePrinter = nullptr;
1351   SlotTracker *Machine = nullptr;
1352   const Module *Context = nullptr;
1353 
1354   AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1355       : TypePrinter(TP), Machine(ST), Context(M) {}
1356 
1357   static AsmWriterContext &getEmpty() {
1358     static AsmWriterContext EmptyCtx(nullptr, nullptr);
1359     return EmptyCtx;
1360   }
1361 
1362   /// A callback that will be triggered when the underlying printer
1363   /// prints a Metadata as operand.
1364   virtual void onWriteMetadataAsOperand(const Metadata *) {}
1365 
1366   virtual ~AsmWriterContext() = default;
1367 };
1368 } // end anonymous namespace
1369 
1370 //===----------------------------------------------------------------------===//
1371 // AsmWriter Implementation
1372 //===----------------------------------------------------------------------===//
1373 
1374 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1375                                    AsmWriterContext &WriterCtx);
1376 
1377 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1378                                    AsmWriterContext &WriterCtx,
1379                                    bool FromValue = false);
1380 
1381 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1382   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1383     Out << FPO->getFastMathFlags();
1384 
1385   if (const OverflowingBinaryOperator *OBO =
1386         dyn_cast<OverflowingBinaryOperator>(U)) {
1387     if (OBO->hasNoUnsignedWrap())
1388       Out << " nuw";
1389     if (OBO->hasNoSignedWrap())
1390       Out << " nsw";
1391   } else if (const PossiblyExactOperator *Div =
1392                dyn_cast<PossiblyExactOperator>(U)) {
1393     if (Div->isExact())
1394       Out << " exact";
1395   } else if (const PossiblyDisjointInst *PDI =
1396                  dyn_cast<PossiblyDisjointInst>(U)) {
1397     if (PDI->isDisjoint())
1398       Out << " disjoint";
1399   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1400     if (GEP->isInBounds())
1401       Out << " inbounds";
1402   } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(U)) {
1403     if (NNI->hasNonNeg())
1404       Out << " nneg";
1405   }
1406 }
1407 
1408 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1409                                   AsmWriterContext &WriterCtx) {
1410   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1411     if (CI->getType()->isIntegerTy(1)) {
1412       Out << (CI->getZExtValue() ? "true" : "false");
1413       return;
1414     }
1415     Out << CI->getValue();
1416     return;
1417   }
1418 
1419   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1420     const APFloat &APF = CFP->getValueAPF();
1421     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1422         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1423       // We would like to output the FP constant value in exponential notation,
1424       // but we cannot do this if doing so will lose precision.  Check here to
1425       // make sure that we only output it in exponential format if we can parse
1426       // the value back and get the same value.
1427       //
1428       bool ignored;
1429       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1430       bool isInf = APF.isInfinity();
1431       bool isNaN = APF.isNaN();
1432       if (!isInf && !isNaN) {
1433         double Val = APF.convertToDouble();
1434         SmallString<128> StrVal;
1435         APF.toString(StrVal, 6, 0, false);
1436         // Check to make sure that the stringized number is not some string like
1437         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1438         // that the string matches the "[-+]?[0-9]" regex.
1439         //
1440         assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1441                                        isDigit(StrVal[1]))) &&
1442                "[-+]?[0-9] regex does not match!");
1443         // Reparse stringized version!
1444         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1445           Out << StrVal;
1446           return;
1447         }
1448       }
1449       // Otherwise we could not reparse it to exactly the same value, so we must
1450       // output the string in hexadecimal format!  Note that loading and storing
1451       // floating point types changes the bits of NaNs on some hosts, notably
1452       // x86, so we must not use these types.
1453       static_assert(sizeof(double) == sizeof(uint64_t),
1454                     "assuming that double is 64 bits!");
1455       APFloat apf = APF;
1456       // Floats are represented in ASCII IR as double, convert.
1457       // FIXME: We should allow 32-bit hex float and remove this.
1458       if (!isDouble) {
1459         // A signaling NaN is quieted on conversion, so we need to recreate the
1460         // expected value after convert (quiet bit of the payload is clear).
1461         bool IsSNAN = apf.isSignaling();
1462         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1463                     &ignored);
1464         if (IsSNAN) {
1465           APInt Payload = apf.bitcastToAPInt();
1466           apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1467                                  &Payload);
1468         }
1469       }
1470       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1471       return;
1472     }
1473 
1474     // Either half, bfloat or some form of long double.
1475     // These appear as a magic letter identifying the type, then a
1476     // fixed number of hex digits.
1477     Out << "0x";
1478     APInt API = APF.bitcastToAPInt();
1479     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1480       Out << 'K';
1481       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1482                                   /*Upper=*/true);
1483       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1484                                   /*Upper=*/true);
1485       return;
1486     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1487       Out << 'L';
1488       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1489                                   /*Upper=*/true);
1490       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1491                                   /*Upper=*/true);
1492     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1493       Out << 'M';
1494       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1495                                   /*Upper=*/true);
1496       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1497                                   /*Upper=*/true);
1498     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1499       Out << 'H';
1500       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1501                                   /*Upper=*/true);
1502     } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1503       Out << 'R';
1504       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1505                                   /*Upper=*/true);
1506     } else
1507       llvm_unreachable("Unsupported floating point type");
1508     return;
1509   }
1510 
1511   if (isa<ConstantAggregateZero>(CV) || isa<ConstantTargetNone>(CV)) {
1512     Out << "zeroinitializer";
1513     return;
1514   }
1515 
1516   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1517     Out << "blockaddress(";
1518     WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1519     Out << ", ";
1520     WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1521     Out << ")";
1522     return;
1523   }
1524 
1525   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1526     Out << "dso_local_equivalent ";
1527     WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1528     return;
1529   }
1530 
1531   if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1532     Out << "no_cfi ";
1533     WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1534     return;
1535   }
1536 
1537   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1538     Type *ETy = CA->getType()->getElementType();
1539     Out << '[';
1540     WriterCtx.TypePrinter->print(ETy, Out);
1541     Out << ' ';
1542     WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1543     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1544       Out << ", ";
1545       WriterCtx.TypePrinter->print(ETy, Out);
1546       Out << ' ';
1547       WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1548     }
1549     Out << ']';
1550     return;
1551   }
1552 
1553   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1554     // As a special case, print the array as a string if it is an array of
1555     // i8 with ConstantInt values.
1556     if (CA->isString()) {
1557       Out << "c\"";
1558       printEscapedString(CA->getAsString(), Out);
1559       Out << '"';
1560       return;
1561     }
1562 
1563     Type *ETy = CA->getType()->getElementType();
1564     Out << '[';
1565     WriterCtx.TypePrinter->print(ETy, Out);
1566     Out << ' ';
1567     WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1568     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1569       Out << ", ";
1570       WriterCtx.TypePrinter->print(ETy, Out);
1571       Out << ' ';
1572       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1573     }
1574     Out << ']';
1575     return;
1576   }
1577 
1578   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1579     if (CS->getType()->isPacked())
1580       Out << '<';
1581     Out << '{';
1582     unsigned N = CS->getNumOperands();
1583     if (N) {
1584       Out << ' ';
1585       WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1586       Out << ' ';
1587 
1588       WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1589 
1590       for (unsigned i = 1; i < N; i++) {
1591         Out << ", ";
1592         WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1593         Out << ' ';
1594 
1595         WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1596       }
1597       Out << ' ';
1598     }
1599 
1600     Out << '}';
1601     if (CS->getType()->isPacked())
1602       Out << '>';
1603     return;
1604   }
1605 
1606   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1607     auto *CVVTy = cast<FixedVectorType>(CV->getType());
1608     Type *ETy = CVVTy->getElementType();
1609     Out << '<';
1610     WriterCtx.TypePrinter->print(ETy, Out);
1611     Out << ' ';
1612     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1613     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1614       Out << ", ";
1615       WriterCtx.TypePrinter->print(ETy, Out);
1616       Out << ' ';
1617       WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1618     }
1619     Out << '>';
1620     return;
1621   }
1622 
1623   if (isa<ConstantPointerNull>(CV)) {
1624     Out << "null";
1625     return;
1626   }
1627 
1628   if (isa<ConstantTokenNone>(CV)) {
1629     Out << "none";
1630     return;
1631   }
1632 
1633   if (isa<PoisonValue>(CV)) {
1634     Out << "poison";
1635     return;
1636   }
1637 
1638   if (isa<UndefValue>(CV)) {
1639     Out << "undef";
1640     return;
1641   }
1642 
1643   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1644     Out << CE->getOpcodeName();
1645     WriteOptimizationInfo(Out, CE);
1646     if (CE->isCompare())
1647       Out << ' ' << static_cast<CmpInst::Predicate>(CE->getPredicate());
1648     Out << " (";
1649 
1650     std::optional<unsigned> InRangeOp;
1651     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1652       WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1653       Out << ", ";
1654       InRangeOp = GEP->getInRangeIndex();
1655       if (InRangeOp)
1656         ++*InRangeOp;
1657     }
1658 
1659     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1660       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1661         Out << "inrange ";
1662       WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1663       Out << ' ';
1664       WriteAsOperandInternal(Out, *OI, WriterCtx);
1665       if (OI+1 != CE->op_end())
1666         Out << ", ";
1667     }
1668 
1669     if (CE->isCast()) {
1670       Out << " to ";
1671       WriterCtx.TypePrinter->print(CE->getType(), Out);
1672     }
1673 
1674     if (CE->getOpcode() == Instruction::ShuffleVector)
1675       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1676 
1677     Out << ')';
1678     return;
1679   }
1680 
1681   Out << "<placeholder or erroneous Constant>";
1682 }
1683 
1684 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1685                          AsmWriterContext &WriterCtx) {
1686   Out << "!{";
1687   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1688     const Metadata *MD = Node->getOperand(mi);
1689     if (!MD)
1690       Out << "null";
1691     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1692       Value *V = MDV->getValue();
1693       WriterCtx.TypePrinter->print(V->getType(), Out);
1694       Out << ' ';
1695       WriteAsOperandInternal(Out, V, WriterCtx);
1696     } else {
1697       WriteAsOperandInternal(Out, MD, WriterCtx);
1698       WriterCtx.onWriteMetadataAsOperand(MD);
1699     }
1700     if (mi + 1 != me)
1701       Out << ", ";
1702   }
1703 
1704   Out << "}";
1705 }
1706 
1707 namespace {
1708 
1709 struct FieldSeparator {
1710   bool Skip = true;
1711   const char *Sep;
1712 
1713   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1714 };
1715 
1716 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1717   if (FS.Skip) {
1718     FS.Skip = false;
1719     return OS;
1720   }
1721   return OS << FS.Sep;
1722 }
1723 
1724 struct MDFieldPrinter {
1725   raw_ostream &Out;
1726   FieldSeparator FS;
1727   AsmWriterContext &WriterCtx;
1728 
1729   explicit MDFieldPrinter(raw_ostream &Out)
1730       : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1731   MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1732       : Out(Out), WriterCtx(Ctx) {}
1733 
1734   void printTag(const DINode *N);
1735   void printMacinfoType(const DIMacroNode *N);
1736   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1737   void printString(StringRef Name, StringRef Value,
1738                    bool ShouldSkipEmpty = true);
1739   void printMetadata(StringRef Name, const Metadata *MD,
1740                      bool ShouldSkipNull = true);
1741   template <class IntTy>
1742   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1743   void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1744                   bool ShouldSkipZero);
1745   void printBool(StringRef Name, bool Value,
1746                  std::optional<bool> Default = std::nullopt);
1747   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1748   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1749   template <class IntTy, class Stringifier>
1750   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1751                       bool ShouldSkipZero = true);
1752   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1753   void printNameTableKind(StringRef Name,
1754                           DICompileUnit::DebugNameTableKind NTK);
1755 };
1756 
1757 } // end anonymous namespace
1758 
1759 void MDFieldPrinter::printTag(const DINode *N) {
1760   Out << FS << "tag: ";
1761   auto Tag = dwarf::TagString(N->getTag());
1762   if (!Tag.empty())
1763     Out << Tag;
1764   else
1765     Out << N->getTag();
1766 }
1767 
1768 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1769   Out << FS << "type: ";
1770   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1771   if (!Type.empty())
1772     Out << Type;
1773   else
1774     Out << N->getMacinfoType();
1775 }
1776 
1777 void MDFieldPrinter::printChecksum(
1778     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1779   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1780   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1781 }
1782 
1783 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1784                                  bool ShouldSkipEmpty) {
1785   if (ShouldSkipEmpty && Value.empty())
1786     return;
1787 
1788   Out << FS << Name << ": \"";
1789   printEscapedString(Value, Out);
1790   Out << "\"";
1791 }
1792 
1793 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1794                                    AsmWriterContext &WriterCtx) {
1795   if (!MD) {
1796     Out << "null";
1797     return;
1798   }
1799   WriteAsOperandInternal(Out, MD, WriterCtx);
1800   WriterCtx.onWriteMetadataAsOperand(MD);
1801 }
1802 
1803 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1804                                    bool ShouldSkipNull) {
1805   if (ShouldSkipNull && !MD)
1806     return;
1807 
1808   Out << FS << Name << ": ";
1809   writeMetadataAsOperand(Out, MD, WriterCtx);
1810 }
1811 
1812 template <class IntTy>
1813 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1814   if (ShouldSkipZero && !Int)
1815     return;
1816 
1817   Out << FS << Name << ": " << Int;
1818 }
1819 
1820 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1821                                 bool IsUnsigned, bool ShouldSkipZero) {
1822   if (ShouldSkipZero && Int.isZero())
1823     return;
1824 
1825   Out << FS << Name << ": ";
1826   Int.print(Out, !IsUnsigned);
1827 }
1828 
1829 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1830                                std::optional<bool> Default) {
1831   if (Default && Value == *Default)
1832     return;
1833   Out << FS << Name << ": " << (Value ? "true" : "false");
1834 }
1835 
1836 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1837   if (!Flags)
1838     return;
1839 
1840   Out << FS << Name << ": ";
1841 
1842   SmallVector<DINode::DIFlags, 8> SplitFlags;
1843   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1844 
1845   FieldSeparator FlagsFS(" | ");
1846   for (auto F : SplitFlags) {
1847     auto StringF = DINode::getFlagString(F);
1848     assert(!StringF.empty() && "Expected valid flag");
1849     Out << FlagsFS << StringF;
1850   }
1851   if (Extra || SplitFlags.empty())
1852     Out << FlagsFS << Extra;
1853 }
1854 
1855 void MDFieldPrinter::printDISPFlags(StringRef Name,
1856                                     DISubprogram::DISPFlags Flags) {
1857   // Always print this field, because no flags in the IR at all will be
1858   // interpreted as old-style isDefinition: true.
1859   Out << FS << Name << ": ";
1860 
1861   if (!Flags) {
1862     Out << 0;
1863     return;
1864   }
1865 
1866   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1867   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1868 
1869   FieldSeparator FlagsFS(" | ");
1870   for (auto F : SplitFlags) {
1871     auto StringF = DISubprogram::getFlagString(F);
1872     assert(!StringF.empty() && "Expected valid flag");
1873     Out << FlagsFS << StringF;
1874   }
1875   if (Extra || SplitFlags.empty())
1876     Out << FlagsFS << Extra;
1877 }
1878 
1879 void MDFieldPrinter::printEmissionKind(StringRef Name,
1880                                        DICompileUnit::DebugEmissionKind EK) {
1881   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1882 }
1883 
1884 void MDFieldPrinter::printNameTableKind(StringRef Name,
1885                                         DICompileUnit::DebugNameTableKind NTK) {
1886   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1887     return;
1888   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1889 }
1890 
1891 template <class IntTy, class Stringifier>
1892 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1893                                     Stringifier toString, bool ShouldSkipZero) {
1894   if (!Value)
1895     return;
1896 
1897   Out << FS << Name << ": ";
1898   auto S = toString(Value);
1899   if (!S.empty())
1900     Out << S;
1901   else
1902     Out << Value;
1903 }
1904 
1905 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1906                                AsmWriterContext &WriterCtx) {
1907   Out << "!GenericDINode(";
1908   MDFieldPrinter Printer(Out, WriterCtx);
1909   Printer.printTag(N);
1910   Printer.printString("header", N->getHeader());
1911   if (N->getNumDwarfOperands()) {
1912     Out << Printer.FS << "operands: {";
1913     FieldSeparator IFS;
1914     for (auto &I : N->dwarf_operands()) {
1915       Out << IFS;
1916       writeMetadataAsOperand(Out, I, WriterCtx);
1917     }
1918     Out << "}";
1919   }
1920   Out << ")";
1921 }
1922 
1923 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1924                             AsmWriterContext &WriterCtx) {
1925   Out << "!DILocation(";
1926   MDFieldPrinter Printer(Out, WriterCtx);
1927   // Always output the line, since 0 is a relevant and important value for it.
1928   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1929   Printer.printInt("column", DL->getColumn());
1930   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1931   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1932   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1933                     /* Default */ false);
1934   Out << ")";
1935 }
1936 
1937 static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL,
1938                             AsmWriterContext &WriterCtx) {
1939   Out << "!DIAssignID()";
1940   MDFieldPrinter Printer(Out, WriterCtx);
1941 }
1942 
1943 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1944                             AsmWriterContext &WriterCtx) {
1945   Out << "!DISubrange(";
1946   MDFieldPrinter Printer(Out, WriterCtx);
1947 
1948   auto *Count = N->getRawCountNode();
1949   if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1950     auto *CV = cast<ConstantInt>(CE->getValue());
1951     Printer.printInt("count", CV->getSExtValue(),
1952                      /* ShouldSkipZero */ false);
1953   } else
1954     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1955 
1956   // A lowerBound of constant 0 should not be skipped, since it is different
1957   // from an unspecified lower bound (= nullptr).
1958   auto *LBound = N->getRawLowerBound();
1959   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1960     auto *LV = cast<ConstantInt>(LE->getValue());
1961     Printer.printInt("lowerBound", LV->getSExtValue(),
1962                      /* ShouldSkipZero */ false);
1963   } else
1964     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1965 
1966   auto *UBound = N->getRawUpperBound();
1967   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1968     auto *UV = cast<ConstantInt>(UE->getValue());
1969     Printer.printInt("upperBound", UV->getSExtValue(),
1970                      /* ShouldSkipZero */ false);
1971   } else
1972     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1973 
1974   auto *Stride = N->getRawStride();
1975   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1976     auto *SV = cast<ConstantInt>(SE->getValue());
1977     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1978   } else
1979     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1980 
1981   Out << ")";
1982 }
1983 
1984 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1985                                    AsmWriterContext &WriterCtx) {
1986   Out << "!DIGenericSubrange(";
1987   MDFieldPrinter Printer(Out, WriterCtx);
1988 
1989   auto IsConstant = [&](Metadata *Bound) -> bool {
1990     if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1991       return BE->isConstant() &&
1992              DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1993                  *BE->isConstant();
1994     }
1995     return false;
1996   };
1997 
1998   auto GetConstant = [&](Metadata *Bound) -> int64_t {
1999     assert(IsConstant(Bound) && "Expected constant");
2000     auto *BE = dyn_cast_or_null<DIExpression>(Bound);
2001     return static_cast<int64_t>(BE->getElement(1));
2002   };
2003 
2004   auto *Count = N->getRawCountNode();
2005   if (IsConstant(Count))
2006     Printer.printInt("count", GetConstant(Count),
2007                      /* ShouldSkipZero */ false);
2008   else
2009     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2010 
2011   auto *LBound = N->getRawLowerBound();
2012   if (IsConstant(LBound))
2013     Printer.printInt("lowerBound", GetConstant(LBound),
2014                      /* ShouldSkipZero */ false);
2015   else
2016     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2017 
2018   auto *UBound = N->getRawUpperBound();
2019   if (IsConstant(UBound))
2020     Printer.printInt("upperBound", GetConstant(UBound),
2021                      /* ShouldSkipZero */ false);
2022   else
2023     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2024 
2025   auto *Stride = N->getRawStride();
2026   if (IsConstant(Stride))
2027     Printer.printInt("stride", GetConstant(Stride),
2028                      /* ShouldSkipZero */ false);
2029   else
2030     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2031 
2032   Out << ")";
2033 }
2034 
2035 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
2036                               AsmWriterContext &) {
2037   Out << "!DIEnumerator(";
2038   MDFieldPrinter Printer(Out);
2039   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
2040   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
2041                      /*ShouldSkipZero=*/false);
2042   if (N->isUnsigned())
2043     Printer.printBool("isUnsigned", true);
2044   Out << ")";
2045 }
2046 
2047 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
2048                              AsmWriterContext &) {
2049   Out << "!DIBasicType(";
2050   MDFieldPrinter Printer(Out);
2051   if (N->getTag() != dwarf::DW_TAG_base_type)
2052     Printer.printTag(N);
2053   Printer.printString("name", N->getName());
2054   Printer.printInt("size", N->getSizeInBits());
2055   Printer.printInt("align", N->getAlignInBits());
2056   Printer.printDwarfEnum("encoding", N->getEncoding(),
2057                          dwarf::AttributeEncodingString);
2058   Printer.printDIFlags("flags", N->getFlags());
2059   Out << ")";
2060 }
2061 
2062 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2063                               AsmWriterContext &WriterCtx) {
2064   Out << "!DIStringType(";
2065   MDFieldPrinter Printer(Out, WriterCtx);
2066   if (N->getTag() != dwarf::DW_TAG_string_type)
2067     Printer.printTag(N);
2068   Printer.printString("name", N->getName());
2069   Printer.printMetadata("stringLength", N->getRawStringLength());
2070   Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2071   Printer.printMetadata("stringLocationExpression",
2072                         N->getRawStringLocationExp());
2073   Printer.printInt("size", N->getSizeInBits());
2074   Printer.printInt("align", N->getAlignInBits());
2075   Printer.printDwarfEnum("encoding", N->getEncoding(),
2076                          dwarf::AttributeEncodingString);
2077   Out << ")";
2078 }
2079 
2080 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2081                                AsmWriterContext &WriterCtx) {
2082   Out << "!DIDerivedType(";
2083   MDFieldPrinter Printer(Out, WriterCtx);
2084   Printer.printTag(N);
2085   Printer.printString("name", N->getName());
2086   Printer.printMetadata("scope", N->getRawScope());
2087   Printer.printMetadata("file", N->getRawFile());
2088   Printer.printInt("line", N->getLine());
2089   Printer.printMetadata("baseType", N->getRawBaseType(),
2090                         /* ShouldSkipNull */ false);
2091   Printer.printInt("size", N->getSizeInBits());
2092   Printer.printInt("align", N->getAlignInBits());
2093   Printer.printInt("offset", N->getOffsetInBits());
2094   Printer.printDIFlags("flags", N->getFlags());
2095   Printer.printMetadata("extraData", N->getRawExtraData());
2096   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2097     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2098                      /* ShouldSkipZero */ false);
2099   Printer.printMetadata("annotations", N->getRawAnnotations());
2100   Out << ")";
2101 }
2102 
2103 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2104                                  AsmWriterContext &WriterCtx) {
2105   Out << "!DICompositeType(";
2106   MDFieldPrinter Printer(Out, WriterCtx);
2107   Printer.printTag(N);
2108   Printer.printString("name", N->getName());
2109   Printer.printMetadata("scope", N->getRawScope());
2110   Printer.printMetadata("file", N->getRawFile());
2111   Printer.printInt("line", N->getLine());
2112   Printer.printMetadata("baseType", N->getRawBaseType());
2113   Printer.printInt("size", N->getSizeInBits());
2114   Printer.printInt("align", N->getAlignInBits());
2115   Printer.printInt("offset", N->getOffsetInBits());
2116   Printer.printDIFlags("flags", N->getFlags());
2117   Printer.printMetadata("elements", N->getRawElements());
2118   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2119                          dwarf::LanguageString);
2120   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2121   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2122   Printer.printString("identifier", N->getIdentifier());
2123   Printer.printMetadata("discriminator", N->getRawDiscriminator());
2124   Printer.printMetadata("dataLocation", N->getRawDataLocation());
2125   Printer.printMetadata("associated", N->getRawAssociated());
2126   Printer.printMetadata("allocated", N->getRawAllocated());
2127   if (auto *RankConst = N->getRankConst())
2128     Printer.printInt("rank", RankConst->getSExtValue(),
2129                      /* ShouldSkipZero */ false);
2130   else
2131     Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2132   Printer.printMetadata("annotations", N->getRawAnnotations());
2133   Out << ")";
2134 }
2135 
2136 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2137                                   AsmWriterContext &WriterCtx) {
2138   Out << "!DISubroutineType(";
2139   MDFieldPrinter Printer(Out, WriterCtx);
2140   Printer.printDIFlags("flags", N->getFlags());
2141   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2142   Printer.printMetadata("types", N->getRawTypeArray(),
2143                         /* ShouldSkipNull */ false);
2144   Out << ")";
2145 }
2146 
2147 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2148   Out << "!DIFile(";
2149   MDFieldPrinter Printer(Out);
2150   Printer.printString("filename", N->getFilename(),
2151                       /* ShouldSkipEmpty */ false);
2152   Printer.printString("directory", N->getDirectory(),
2153                       /* ShouldSkipEmpty */ false);
2154   // Print all values for checksum together, or not at all.
2155   if (N->getChecksum())
2156     Printer.printChecksum(*N->getChecksum());
2157   Printer.printString("source", N->getSource().value_or(StringRef()),
2158                       /* ShouldSkipEmpty */ true);
2159   Out << ")";
2160 }
2161 
2162 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2163                                AsmWriterContext &WriterCtx) {
2164   Out << "!DICompileUnit(";
2165   MDFieldPrinter Printer(Out, WriterCtx);
2166   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2167                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2168   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2169   Printer.printString("producer", N->getProducer());
2170   Printer.printBool("isOptimized", N->isOptimized());
2171   Printer.printString("flags", N->getFlags());
2172   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2173                    /* ShouldSkipZero */ false);
2174   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2175   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2176   Printer.printMetadata("enums", N->getRawEnumTypes());
2177   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2178   Printer.printMetadata("globals", N->getRawGlobalVariables());
2179   Printer.printMetadata("imports", N->getRawImportedEntities());
2180   Printer.printMetadata("macros", N->getRawMacros());
2181   Printer.printInt("dwoId", N->getDWOId());
2182   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2183   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2184                     false);
2185   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2186   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2187   Printer.printString("sysroot", N->getSysRoot());
2188   Printer.printString("sdk", N->getSDK());
2189   Out << ")";
2190 }
2191 
2192 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2193                               AsmWriterContext &WriterCtx) {
2194   Out << "!DISubprogram(";
2195   MDFieldPrinter Printer(Out, WriterCtx);
2196   Printer.printString("name", N->getName());
2197   Printer.printString("linkageName", N->getLinkageName());
2198   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2199   Printer.printMetadata("file", N->getRawFile());
2200   Printer.printInt("line", N->getLine());
2201   Printer.printMetadata("type", N->getRawType());
2202   Printer.printInt("scopeLine", N->getScopeLine());
2203   Printer.printMetadata("containingType", N->getRawContainingType());
2204   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2205       N->getVirtualIndex() != 0)
2206     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2207   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2208   Printer.printDIFlags("flags", N->getFlags());
2209   Printer.printDISPFlags("spFlags", N->getSPFlags());
2210   Printer.printMetadata("unit", N->getRawUnit());
2211   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2212   Printer.printMetadata("declaration", N->getRawDeclaration());
2213   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2214   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2215   Printer.printMetadata("annotations", N->getRawAnnotations());
2216   Printer.printString("targetFuncName", N->getTargetFuncName());
2217   Out << ")";
2218 }
2219 
2220 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2221                                 AsmWriterContext &WriterCtx) {
2222   Out << "!DILexicalBlock(";
2223   MDFieldPrinter Printer(Out, WriterCtx);
2224   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2225   Printer.printMetadata("file", N->getRawFile());
2226   Printer.printInt("line", N->getLine());
2227   Printer.printInt("column", N->getColumn());
2228   Out << ")";
2229 }
2230 
2231 static void writeDILexicalBlockFile(raw_ostream &Out,
2232                                     const DILexicalBlockFile *N,
2233                                     AsmWriterContext &WriterCtx) {
2234   Out << "!DILexicalBlockFile(";
2235   MDFieldPrinter Printer(Out, WriterCtx);
2236   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2237   Printer.printMetadata("file", N->getRawFile());
2238   Printer.printInt("discriminator", N->getDiscriminator(),
2239                    /* ShouldSkipZero */ false);
2240   Out << ")";
2241 }
2242 
2243 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2244                              AsmWriterContext &WriterCtx) {
2245   Out << "!DINamespace(";
2246   MDFieldPrinter Printer(Out, WriterCtx);
2247   Printer.printString("name", N->getName());
2248   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2249   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2250   Out << ")";
2251 }
2252 
2253 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2254                                AsmWriterContext &WriterCtx) {
2255   Out << "!DICommonBlock(";
2256   MDFieldPrinter Printer(Out, WriterCtx);
2257   Printer.printMetadata("scope", N->getRawScope(), false);
2258   Printer.printMetadata("declaration", N->getRawDecl(), false);
2259   Printer.printString("name", N->getName());
2260   Printer.printMetadata("file", N->getRawFile());
2261   Printer.printInt("line", N->getLineNo());
2262   Out << ")";
2263 }
2264 
2265 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2266                          AsmWriterContext &WriterCtx) {
2267   Out << "!DIMacro(";
2268   MDFieldPrinter Printer(Out, WriterCtx);
2269   Printer.printMacinfoType(N);
2270   Printer.printInt("line", N->getLine());
2271   Printer.printString("name", N->getName());
2272   Printer.printString("value", N->getValue());
2273   Out << ")";
2274 }
2275 
2276 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2277                              AsmWriterContext &WriterCtx) {
2278   Out << "!DIMacroFile(";
2279   MDFieldPrinter Printer(Out, WriterCtx);
2280   Printer.printInt("line", N->getLine());
2281   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2282   Printer.printMetadata("nodes", N->getRawElements());
2283   Out << ")";
2284 }
2285 
2286 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2287                           AsmWriterContext &WriterCtx) {
2288   Out << "!DIModule(";
2289   MDFieldPrinter Printer(Out, WriterCtx);
2290   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2291   Printer.printString("name", N->getName());
2292   Printer.printString("configMacros", N->getConfigurationMacros());
2293   Printer.printString("includePath", N->getIncludePath());
2294   Printer.printString("apinotes", N->getAPINotesFile());
2295   Printer.printMetadata("file", N->getRawFile());
2296   Printer.printInt("line", N->getLineNo());
2297   Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2298   Out << ")";
2299 }
2300 
2301 static void writeDITemplateTypeParameter(raw_ostream &Out,
2302                                          const DITemplateTypeParameter *N,
2303                                          AsmWriterContext &WriterCtx) {
2304   Out << "!DITemplateTypeParameter(";
2305   MDFieldPrinter Printer(Out, WriterCtx);
2306   Printer.printString("name", N->getName());
2307   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2308   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2309   Out << ")";
2310 }
2311 
2312 static void writeDITemplateValueParameter(raw_ostream &Out,
2313                                           const DITemplateValueParameter *N,
2314                                           AsmWriterContext &WriterCtx) {
2315   Out << "!DITemplateValueParameter(";
2316   MDFieldPrinter Printer(Out, WriterCtx);
2317   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2318     Printer.printTag(N);
2319   Printer.printString("name", N->getName());
2320   Printer.printMetadata("type", N->getRawType());
2321   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2322   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2323   Out << ")";
2324 }
2325 
2326 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2327                                   AsmWriterContext &WriterCtx) {
2328   Out << "!DIGlobalVariable(";
2329   MDFieldPrinter Printer(Out, WriterCtx);
2330   Printer.printString("name", N->getName());
2331   Printer.printString("linkageName", N->getLinkageName());
2332   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2333   Printer.printMetadata("file", N->getRawFile());
2334   Printer.printInt("line", N->getLine());
2335   Printer.printMetadata("type", N->getRawType());
2336   Printer.printBool("isLocal", N->isLocalToUnit());
2337   Printer.printBool("isDefinition", N->isDefinition());
2338   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2339   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2340   Printer.printInt("align", N->getAlignInBits());
2341   Printer.printMetadata("annotations", N->getRawAnnotations());
2342   Out << ")";
2343 }
2344 
2345 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2346                                  AsmWriterContext &WriterCtx) {
2347   Out << "!DILocalVariable(";
2348   MDFieldPrinter Printer(Out, WriterCtx);
2349   Printer.printString("name", N->getName());
2350   Printer.printInt("arg", N->getArg());
2351   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2352   Printer.printMetadata("file", N->getRawFile());
2353   Printer.printInt("line", N->getLine());
2354   Printer.printMetadata("type", N->getRawType());
2355   Printer.printDIFlags("flags", N->getFlags());
2356   Printer.printInt("align", N->getAlignInBits());
2357   Printer.printMetadata("annotations", N->getRawAnnotations());
2358   Out << ")";
2359 }
2360 
2361 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2362                          AsmWriterContext &WriterCtx) {
2363   Out << "!DILabel(";
2364   MDFieldPrinter Printer(Out, WriterCtx);
2365   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2366   Printer.printString("name", N->getName());
2367   Printer.printMetadata("file", N->getRawFile());
2368   Printer.printInt("line", N->getLine());
2369   Out << ")";
2370 }
2371 
2372 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2373                               AsmWriterContext &WriterCtx) {
2374   Out << "!DIExpression(";
2375   FieldSeparator FS;
2376   if (N->isValid()) {
2377     for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2378       auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2379       assert(!OpStr.empty() && "Expected valid opcode");
2380 
2381       Out << FS << OpStr;
2382       if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2383         Out << FS << Op.getArg(0);
2384         Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2385       } else {
2386         for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2387           Out << FS << Op.getArg(A);
2388       }
2389     }
2390   } else {
2391     for (const auto &I : N->getElements())
2392       Out << FS << I;
2393   }
2394   Out << ")";
2395 }
2396 
2397 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2398                            AsmWriterContext &WriterCtx,
2399                            bool FromValue = false) {
2400   assert(FromValue &&
2401          "Unexpected DIArgList metadata outside of value argument");
2402   Out << "!DIArgList(";
2403   FieldSeparator FS;
2404   MDFieldPrinter Printer(Out, WriterCtx);
2405   for (Metadata *Arg : N->getArgs()) {
2406     Out << FS;
2407     WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2408   }
2409   Out << ")";
2410 }
2411 
2412 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2413                                             const DIGlobalVariableExpression *N,
2414                                             AsmWriterContext &WriterCtx) {
2415   Out << "!DIGlobalVariableExpression(";
2416   MDFieldPrinter Printer(Out, WriterCtx);
2417   Printer.printMetadata("var", N->getVariable());
2418   Printer.printMetadata("expr", N->getExpression());
2419   Out << ")";
2420 }
2421 
2422 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2423                                 AsmWriterContext &WriterCtx) {
2424   Out << "!DIObjCProperty(";
2425   MDFieldPrinter Printer(Out, WriterCtx);
2426   Printer.printString("name", N->getName());
2427   Printer.printMetadata("file", N->getRawFile());
2428   Printer.printInt("line", N->getLine());
2429   Printer.printString("setter", N->getSetterName());
2430   Printer.printString("getter", N->getGetterName());
2431   Printer.printInt("attributes", N->getAttributes());
2432   Printer.printMetadata("type", N->getRawType());
2433   Out << ")";
2434 }
2435 
2436 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2437                                   AsmWriterContext &WriterCtx) {
2438   Out << "!DIImportedEntity(";
2439   MDFieldPrinter Printer(Out, WriterCtx);
2440   Printer.printTag(N);
2441   Printer.printString("name", N->getName());
2442   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2443   Printer.printMetadata("entity", N->getRawEntity());
2444   Printer.printMetadata("file", N->getRawFile());
2445   Printer.printInt("line", N->getLine());
2446   Printer.printMetadata("elements", N->getRawElements());
2447   Out << ")";
2448 }
2449 
2450 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2451                                     AsmWriterContext &Ctx) {
2452   if (Node->isDistinct())
2453     Out << "distinct ";
2454   else if (Node->isTemporary())
2455     Out << "<temporary!> "; // Handle broken code.
2456 
2457   switch (Node->getMetadataID()) {
2458   default:
2459     llvm_unreachable("Expected uniquable MDNode");
2460 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2461   case Metadata::CLASS##Kind:                                                  \
2462     write##CLASS(Out, cast<CLASS>(Node), Ctx);                                 \
2463     break;
2464 #include "llvm/IR/Metadata.def"
2465   }
2466 }
2467 
2468 // Full implementation of printing a Value as an operand with support for
2469 // TypePrinting, etc.
2470 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2471                                    AsmWriterContext &WriterCtx) {
2472   if (V->hasName()) {
2473     PrintLLVMName(Out, V);
2474     return;
2475   }
2476 
2477   const Constant *CV = dyn_cast<Constant>(V);
2478   if (CV && !isa<GlobalValue>(CV)) {
2479     assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2480     WriteConstantInternal(Out, CV, WriterCtx);
2481     return;
2482   }
2483 
2484   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2485     Out << "asm ";
2486     if (IA->hasSideEffects())
2487       Out << "sideeffect ";
2488     if (IA->isAlignStack())
2489       Out << "alignstack ";
2490     // We don't emit the AD_ATT dialect as it's the assumed default.
2491     if (IA->getDialect() == InlineAsm::AD_Intel)
2492       Out << "inteldialect ";
2493     if (IA->canThrow())
2494       Out << "unwind ";
2495     Out << '"';
2496     printEscapedString(IA->getAsmString(), Out);
2497     Out << "\", \"";
2498     printEscapedString(IA->getConstraintString(), Out);
2499     Out << '"';
2500     return;
2501   }
2502 
2503   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2504     WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2505                            /* FromValue */ true);
2506     return;
2507   }
2508 
2509   char Prefix = '%';
2510   int Slot;
2511   auto *Machine = WriterCtx.Machine;
2512   // If we have a SlotTracker, use it.
2513   if (Machine) {
2514     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2515       Slot = Machine->getGlobalSlot(GV);
2516       Prefix = '@';
2517     } else {
2518       Slot = Machine->getLocalSlot(V);
2519 
2520       // If the local value didn't succeed, then we may be referring to a value
2521       // from a different function.  Translate it, as this can happen when using
2522       // address of blocks.
2523       if (Slot == -1)
2524         if ((Machine = createSlotTracker(V))) {
2525           Slot = Machine->getLocalSlot(V);
2526           delete Machine;
2527         }
2528     }
2529   } else if ((Machine = createSlotTracker(V))) {
2530     // Otherwise, create one to get the # and then destroy it.
2531     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2532       Slot = Machine->getGlobalSlot(GV);
2533       Prefix = '@';
2534     } else {
2535       Slot = Machine->getLocalSlot(V);
2536     }
2537     delete Machine;
2538     Machine = nullptr;
2539   } else {
2540     Slot = -1;
2541   }
2542 
2543   if (Slot != -1)
2544     Out << Prefix << Slot;
2545   else
2546     Out << "<badref>";
2547 }
2548 
2549 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2550                                    AsmWriterContext &WriterCtx,
2551                                    bool FromValue) {
2552   // Write DIExpressions and DIArgLists inline when used as a value. Improves
2553   // readability of debug info intrinsics.
2554   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2555     writeDIExpression(Out, Expr, WriterCtx);
2556     return;
2557   }
2558   if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2559     writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2560     return;
2561   }
2562 
2563   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2564     std::unique_ptr<SlotTracker> MachineStorage;
2565     SaveAndRestore SARMachine(WriterCtx.Machine);
2566     if (!WriterCtx.Machine) {
2567       MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2568       WriterCtx.Machine = MachineStorage.get();
2569     }
2570     int Slot = WriterCtx.Machine->getMetadataSlot(N);
2571     if (Slot == -1) {
2572       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2573         writeDILocation(Out, Loc, WriterCtx);
2574         return;
2575       }
2576       // Give the pointer value instead of "badref", since this comes up all
2577       // the time when debugging.
2578       Out << "<" << N << ">";
2579     } else
2580       Out << '!' << Slot;
2581     return;
2582   }
2583 
2584   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2585     Out << "!\"";
2586     printEscapedString(MDS->getString(), Out);
2587     Out << '"';
2588     return;
2589   }
2590 
2591   auto *V = cast<ValueAsMetadata>(MD);
2592   assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2593   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2594          "Unexpected function-local metadata outside of value argument");
2595 
2596   WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2597   Out << ' ';
2598   WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2599 }
2600 
2601 namespace {
2602 
2603 class AssemblyWriter {
2604   formatted_raw_ostream &Out;
2605   const Module *TheModule = nullptr;
2606   const ModuleSummaryIndex *TheIndex = nullptr;
2607   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2608   SlotTracker &Machine;
2609   TypePrinting TypePrinter;
2610   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2611   SetVector<const Comdat *> Comdats;
2612   bool IsForDebug;
2613   bool ShouldPreserveUseListOrder;
2614   UseListOrderMap UseListOrders;
2615   SmallVector<StringRef, 8> MDNames;
2616   /// Synchronization scope names registered with LLVMContext.
2617   SmallVector<StringRef, 8> SSNs;
2618   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2619 
2620 public:
2621   /// Construct an AssemblyWriter with an external SlotTracker
2622   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2623                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2624                  bool ShouldPreserveUseListOrder = false);
2625 
2626   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2627                  const ModuleSummaryIndex *Index, bool IsForDebug);
2628 
2629   AsmWriterContext getContext() {
2630     return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2631   }
2632 
2633   void printMDNodeBody(const MDNode *MD);
2634   void printNamedMDNode(const NamedMDNode *NMD);
2635 
2636   void printModule(const Module *M);
2637 
2638   void writeOperand(const Value *Op, bool PrintType);
2639   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2640   void writeOperandBundles(const CallBase *Call);
2641   void writeSyncScope(const LLVMContext &Context,
2642                       SyncScope::ID SSID);
2643   void writeAtomic(const LLVMContext &Context,
2644                    AtomicOrdering Ordering,
2645                    SyncScope::ID SSID);
2646   void writeAtomicCmpXchg(const LLVMContext &Context,
2647                           AtomicOrdering SuccessOrdering,
2648                           AtomicOrdering FailureOrdering,
2649                           SyncScope::ID SSID);
2650 
2651   void writeAllMDNodes();
2652   void writeMDNode(unsigned Slot, const MDNode *Node);
2653   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2654   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2655   void writeAllAttributeGroups();
2656 
2657   void printTypeIdentities();
2658   void printGlobal(const GlobalVariable *GV);
2659   void printAlias(const GlobalAlias *GA);
2660   void printIFunc(const GlobalIFunc *GI);
2661   void printComdat(const Comdat *C);
2662   void printFunction(const Function *F);
2663   void printArgument(const Argument *FA, AttributeSet Attrs);
2664   void printBasicBlock(const BasicBlock *BB);
2665   void printInstructionLine(const Instruction &I);
2666   void printInstruction(const Instruction &I);
2667   void printDPMarker(const DPMarker &DPI);
2668   void printDPValue(const DPValue &DPI);
2669 
2670   void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2671   void printUseLists(const Function *F);
2672 
2673   void printModuleSummaryIndex();
2674   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2675   void printSummary(const GlobalValueSummary &Summary);
2676   void printAliasSummary(const AliasSummary *AS);
2677   void printGlobalVarSummary(const GlobalVarSummary *GS);
2678   void printFunctionSummary(const FunctionSummary *FS);
2679   void printTypeIdSummary(const TypeIdSummary &TIS);
2680   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2681   void printTypeTestResolution(const TypeTestResolution &TTRes);
2682   void printArgs(const std::vector<uint64_t> &Args);
2683   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2684   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2685   void printVFuncId(const FunctionSummary::VFuncId VFId);
2686   void
2687   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2688                       const char *Tag);
2689   void
2690   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2691                    const char *Tag);
2692 
2693 private:
2694   /// Print out metadata attachments.
2695   void printMetadataAttachments(
2696       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2697       StringRef Separator);
2698 
2699   // printInfoComment - Print a little comment after the instruction indicating
2700   // which slot it occupies.
2701   void printInfoComment(const Value &V);
2702 
2703   // printGCRelocateComment - print comment after call to the gc.relocate
2704   // intrinsic indicating base and derived pointer names.
2705   void printGCRelocateComment(const GCRelocateInst &Relocate);
2706 };
2707 
2708 } // end anonymous namespace
2709 
2710 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2711                                const Module *M, AssemblyAnnotationWriter *AAW,
2712                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2713     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2714       IsForDebug(IsForDebug),
2715       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2716   if (!TheModule)
2717     return;
2718   for (const GlobalObject &GO : TheModule->global_objects())
2719     if (const Comdat *C = GO.getComdat())
2720       Comdats.insert(C);
2721 }
2722 
2723 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2724                                const ModuleSummaryIndex *Index, bool IsForDebug)
2725     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2726       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2727 
2728 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2729   if (!Operand) {
2730     Out << "<null operand!>";
2731     return;
2732   }
2733   if (PrintType) {
2734     TypePrinter.print(Operand->getType(), Out);
2735     Out << ' ';
2736   }
2737   auto WriterCtx = getContext();
2738   WriteAsOperandInternal(Out, Operand, WriterCtx);
2739 }
2740 
2741 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2742                                     SyncScope::ID SSID) {
2743   switch (SSID) {
2744   case SyncScope::System: {
2745     break;
2746   }
2747   default: {
2748     if (SSNs.empty())
2749       Context.getSyncScopeNames(SSNs);
2750 
2751     Out << " syncscope(\"";
2752     printEscapedString(SSNs[SSID], Out);
2753     Out << "\")";
2754     break;
2755   }
2756   }
2757 }
2758 
2759 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2760                                  AtomicOrdering Ordering,
2761                                  SyncScope::ID SSID) {
2762   if (Ordering == AtomicOrdering::NotAtomic)
2763     return;
2764 
2765   writeSyncScope(Context, SSID);
2766   Out << " " << toIRString(Ordering);
2767 }
2768 
2769 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2770                                         AtomicOrdering SuccessOrdering,
2771                                         AtomicOrdering FailureOrdering,
2772                                         SyncScope::ID SSID) {
2773   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2774          FailureOrdering != AtomicOrdering::NotAtomic);
2775 
2776   writeSyncScope(Context, SSID);
2777   Out << " " << toIRString(SuccessOrdering);
2778   Out << " " << toIRString(FailureOrdering);
2779 }
2780 
2781 void AssemblyWriter::writeParamOperand(const Value *Operand,
2782                                        AttributeSet Attrs) {
2783   if (!Operand) {
2784     Out << "<null operand!>";
2785     return;
2786   }
2787 
2788   // Print the type
2789   TypePrinter.print(Operand->getType(), Out);
2790   // Print parameter attributes list
2791   if (Attrs.hasAttributes()) {
2792     Out << ' ';
2793     writeAttributeSet(Attrs);
2794   }
2795   Out << ' ';
2796   // Print the operand
2797   auto WriterCtx = getContext();
2798   WriteAsOperandInternal(Out, Operand, WriterCtx);
2799 }
2800 
2801 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2802   if (!Call->hasOperandBundles())
2803     return;
2804 
2805   Out << " [ ";
2806 
2807   bool FirstBundle = true;
2808   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2809     OperandBundleUse BU = Call->getOperandBundleAt(i);
2810 
2811     if (!FirstBundle)
2812       Out << ", ";
2813     FirstBundle = false;
2814 
2815     Out << '"';
2816     printEscapedString(BU.getTagName(), Out);
2817     Out << '"';
2818 
2819     Out << '(';
2820 
2821     bool FirstInput = true;
2822     auto WriterCtx = getContext();
2823     for (const auto &Input : BU.Inputs) {
2824       if (!FirstInput)
2825         Out << ", ";
2826       FirstInput = false;
2827 
2828       if (Input == nullptr)
2829         Out << "<null operand bundle!>";
2830       else {
2831         TypePrinter.print(Input->getType(), Out);
2832         Out << " ";
2833         WriteAsOperandInternal(Out, Input, WriterCtx);
2834       }
2835     }
2836 
2837     Out << ')';
2838   }
2839 
2840   Out << " ]";
2841 }
2842 
2843 void AssemblyWriter::printModule(const Module *M) {
2844   Machine.initializeIfNeeded();
2845 
2846   if (ShouldPreserveUseListOrder)
2847     UseListOrders = predictUseListOrder(M);
2848 
2849   if (!M->getModuleIdentifier().empty() &&
2850       // Don't print the ID if it will start a new line (which would
2851       // require a comment char before it).
2852       M->getModuleIdentifier().find('\n') == std::string::npos)
2853     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2854 
2855   if (!M->getSourceFileName().empty()) {
2856     Out << "source_filename = \"";
2857     printEscapedString(M->getSourceFileName(), Out);
2858     Out << "\"\n";
2859   }
2860 
2861   const std::string &DL = M->getDataLayoutStr();
2862   if (!DL.empty())
2863     Out << "target datalayout = \"" << DL << "\"\n";
2864   if (!M->getTargetTriple().empty())
2865     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2866 
2867   if (!M->getModuleInlineAsm().empty()) {
2868     Out << '\n';
2869 
2870     // Split the string into lines, to make it easier to read the .ll file.
2871     StringRef Asm = M->getModuleInlineAsm();
2872     do {
2873       StringRef Front;
2874       std::tie(Front, Asm) = Asm.split('\n');
2875 
2876       // We found a newline, print the portion of the asm string from the
2877       // last newline up to this newline.
2878       Out << "module asm \"";
2879       printEscapedString(Front, Out);
2880       Out << "\"\n";
2881     } while (!Asm.empty());
2882   }
2883 
2884   printTypeIdentities();
2885 
2886   // Output all comdats.
2887   if (!Comdats.empty())
2888     Out << '\n';
2889   for (const Comdat *C : Comdats) {
2890     printComdat(C);
2891     if (C != Comdats.back())
2892       Out << '\n';
2893   }
2894 
2895   // Output all globals.
2896   if (!M->global_empty()) Out << '\n';
2897   for (const GlobalVariable &GV : M->globals()) {
2898     printGlobal(&GV); Out << '\n';
2899   }
2900 
2901   // Output all aliases.
2902   if (!M->alias_empty()) Out << "\n";
2903   for (const GlobalAlias &GA : M->aliases())
2904     printAlias(&GA);
2905 
2906   // Output all ifuncs.
2907   if (!M->ifunc_empty()) Out << "\n";
2908   for (const GlobalIFunc &GI : M->ifuncs())
2909     printIFunc(&GI);
2910 
2911   // Output all of the functions.
2912   for (const Function &F : *M) {
2913     Out << '\n';
2914     printFunction(&F);
2915   }
2916 
2917   // Output global use-lists.
2918   printUseLists(nullptr);
2919 
2920   // Output all attribute groups.
2921   if (!Machine.as_empty()) {
2922     Out << '\n';
2923     writeAllAttributeGroups();
2924   }
2925 
2926   // Output named metadata.
2927   if (!M->named_metadata_empty()) Out << '\n';
2928 
2929   for (const NamedMDNode &Node : M->named_metadata())
2930     printNamedMDNode(&Node);
2931 
2932   // Output metadata.
2933   if (!Machine.mdn_empty()) {
2934     Out << '\n';
2935     writeAllMDNodes();
2936   }
2937 }
2938 
2939 void AssemblyWriter::printModuleSummaryIndex() {
2940   assert(TheIndex);
2941   int NumSlots = Machine.initializeIndexIfNeeded();
2942 
2943   Out << "\n";
2944 
2945   // Print module path entries. To print in order, add paths to a vector
2946   // indexed by module slot.
2947   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2948   std::string RegularLTOModuleName =
2949       ModuleSummaryIndex::getRegularLTOModuleName();
2950   moduleVec.resize(TheIndex->modulePaths().size());
2951   for (auto &[ModPath, ModHash] : TheIndex->modulePaths())
2952     moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair(
2953         // An empty module path is a special entry for a regular LTO module
2954         // created during the thin link.
2955         ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
2956 
2957   unsigned i = 0;
2958   for (auto &ModPair : moduleVec) {
2959     Out << "^" << i++ << " = module: (";
2960     Out << "path: \"";
2961     printEscapedString(ModPair.first, Out);
2962     Out << "\", hash: (";
2963     FieldSeparator FS;
2964     for (auto Hash : ModPair.second)
2965       Out << FS << Hash;
2966     Out << "))\n";
2967   }
2968 
2969   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2970   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2971   for (auto &GlobalList : *TheIndex) {
2972     auto GUID = GlobalList.first;
2973     for (auto &Summary : GlobalList.second.SummaryList)
2974       SummaryToGUIDMap[Summary.get()] = GUID;
2975   }
2976 
2977   // Print the global value summary entries.
2978   for (auto &GlobalList : *TheIndex) {
2979     auto GUID = GlobalList.first;
2980     auto VI = TheIndex->getValueInfo(GlobalList);
2981     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2982   }
2983 
2984   // Print the TypeIdMap entries.
2985   for (const auto &TID : TheIndex->typeIds()) {
2986     Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2987         << " = typeid: (name: \"" << TID.second.first << "\"";
2988     printTypeIdSummary(TID.second.second);
2989     Out << ") ; guid = " << TID.first << "\n";
2990   }
2991 
2992   // Print the TypeIdCompatibleVtableMap entries.
2993   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2994     auto GUID = GlobalValue::getGUID(TId.first);
2995     Out << "^" << Machine.getTypeIdCompatibleVtableSlot(TId.first)
2996         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2997     printTypeIdCompatibleVtableSummary(TId.second);
2998     Out << ") ; guid = " << GUID << "\n";
2999   }
3000 
3001   // Don't emit flags when it's not really needed (value is zero by default).
3002   if (TheIndex->getFlags()) {
3003     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
3004     ++NumSlots;
3005   }
3006 
3007   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
3008       << "\n";
3009 }
3010 
3011 static const char *
3012 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
3013   switch (K) {
3014   case WholeProgramDevirtResolution::Indir:
3015     return "indir";
3016   case WholeProgramDevirtResolution::SingleImpl:
3017     return "singleImpl";
3018   case WholeProgramDevirtResolution::BranchFunnel:
3019     return "branchFunnel";
3020   }
3021   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
3022 }
3023 
3024 static const char *getWholeProgDevirtResByArgKindName(
3025     WholeProgramDevirtResolution::ByArg::Kind K) {
3026   switch (K) {
3027   case WholeProgramDevirtResolution::ByArg::Indir:
3028     return "indir";
3029   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
3030     return "uniformRetVal";
3031   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
3032     return "uniqueRetVal";
3033   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
3034     return "virtualConstProp";
3035   }
3036   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
3037 }
3038 
3039 static const char *getTTResKindName(TypeTestResolution::Kind K) {
3040   switch (K) {
3041   case TypeTestResolution::Unknown:
3042     return "unknown";
3043   case TypeTestResolution::Unsat:
3044     return "unsat";
3045   case TypeTestResolution::ByteArray:
3046     return "byteArray";
3047   case TypeTestResolution::Inline:
3048     return "inline";
3049   case TypeTestResolution::Single:
3050     return "single";
3051   case TypeTestResolution::AllOnes:
3052     return "allOnes";
3053   }
3054   llvm_unreachable("invalid TypeTestResolution kind");
3055 }
3056 
3057 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3058   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3059       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3060 
3061   // The following fields are only used if the target does not support the use
3062   // of absolute symbols to store constants. Print only if non-zero.
3063   if (TTRes.AlignLog2)
3064     Out << ", alignLog2: " << TTRes.AlignLog2;
3065   if (TTRes.SizeM1)
3066     Out << ", sizeM1: " << TTRes.SizeM1;
3067   if (TTRes.BitMask)
3068     // BitMask is uint8_t which causes it to print the corresponding char.
3069     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3070   if (TTRes.InlineBits)
3071     Out << ", inlineBits: " << TTRes.InlineBits;
3072 
3073   Out << ")";
3074 }
3075 
3076 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3077   Out << ", summary: (";
3078   printTypeTestResolution(TIS.TTRes);
3079   if (!TIS.WPDRes.empty()) {
3080     Out << ", wpdResolutions: (";
3081     FieldSeparator FS;
3082     for (auto &WPDRes : TIS.WPDRes) {
3083       Out << FS;
3084       Out << "(offset: " << WPDRes.first << ", ";
3085       printWPDRes(WPDRes.second);
3086       Out << ")";
3087     }
3088     Out << ")";
3089   }
3090   Out << ")";
3091 }
3092 
3093 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3094     const TypeIdCompatibleVtableInfo &TI) {
3095   Out << ", summary: (";
3096   FieldSeparator FS;
3097   for (auto &P : TI) {
3098     Out << FS;
3099     Out << "(offset: " << P.AddressPointOffset << ", ";
3100     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3101     Out << ")";
3102   }
3103   Out << ")";
3104 }
3105 
3106 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3107   Out << "args: (";
3108   FieldSeparator FS;
3109   for (auto arg : Args) {
3110     Out << FS;
3111     Out << arg;
3112   }
3113   Out << ")";
3114 }
3115 
3116 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3117   Out << "wpdRes: (kind: ";
3118   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3119 
3120   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3121     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3122 
3123   if (!WPDRes.ResByArg.empty()) {
3124     Out << ", resByArg: (";
3125     FieldSeparator FS;
3126     for (auto &ResByArg : WPDRes.ResByArg) {
3127       Out << FS;
3128       printArgs(ResByArg.first);
3129       Out << ", byArg: (kind: ";
3130       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3131       if (ResByArg.second.TheKind ==
3132               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3133           ResByArg.second.TheKind ==
3134               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3135         Out << ", info: " << ResByArg.second.Info;
3136 
3137       // The following fields are only used if the target does not support the
3138       // use of absolute symbols to store constants. Print only if non-zero.
3139       if (ResByArg.second.Byte || ResByArg.second.Bit)
3140         Out << ", byte: " << ResByArg.second.Byte
3141             << ", bit: " << ResByArg.second.Bit;
3142 
3143       Out << ")";
3144     }
3145     Out << ")";
3146   }
3147   Out << ")";
3148 }
3149 
3150 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3151   switch (SK) {
3152   case GlobalValueSummary::AliasKind:
3153     return "alias";
3154   case GlobalValueSummary::FunctionKind:
3155     return "function";
3156   case GlobalValueSummary::GlobalVarKind:
3157     return "variable";
3158   }
3159   llvm_unreachable("invalid summary kind");
3160 }
3161 
3162 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3163   Out << ", aliasee: ";
3164   // The indexes emitted for distributed backends may not include the
3165   // aliasee summary (only if it is being imported directly). Handle
3166   // that case by just emitting "null" as the aliasee.
3167   if (AS->hasAliasee())
3168     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3169   else
3170     Out << "null";
3171 }
3172 
3173 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3174   auto VTableFuncs = GS->vTableFuncs();
3175   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3176       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3177       << "constant: " << GS->VarFlags.Constant;
3178   if (!VTableFuncs.empty())
3179     Out << ", "
3180         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3181   Out << ")";
3182 
3183   if (!VTableFuncs.empty()) {
3184     Out << ", vTableFuncs: (";
3185     FieldSeparator FS;
3186     for (auto &P : VTableFuncs) {
3187       Out << FS;
3188       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3189           << ", offset: " << P.VTableOffset;
3190       Out << ")";
3191     }
3192     Out << ")";
3193   }
3194 }
3195 
3196 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3197   switch (LT) {
3198   case GlobalValue::ExternalLinkage:
3199     return "external";
3200   case GlobalValue::PrivateLinkage:
3201     return "private";
3202   case GlobalValue::InternalLinkage:
3203     return "internal";
3204   case GlobalValue::LinkOnceAnyLinkage:
3205     return "linkonce";
3206   case GlobalValue::LinkOnceODRLinkage:
3207     return "linkonce_odr";
3208   case GlobalValue::WeakAnyLinkage:
3209     return "weak";
3210   case GlobalValue::WeakODRLinkage:
3211     return "weak_odr";
3212   case GlobalValue::CommonLinkage:
3213     return "common";
3214   case GlobalValue::AppendingLinkage:
3215     return "appending";
3216   case GlobalValue::ExternalWeakLinkage:
3217     return "extern_weak";
3218   case GlobalValue::AvailableExternallyLinkage:
3219     return "available_externally";
3220   }
3221   llvm_unreachable("invalid linkage");
3222 }
3223 
3224 // When printing the linkage types in IR where the ExternalLinkage is
3225 // not printed, and other linkage types are expected to be printed with
3226 // a space after the name.
3227 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3228   if (LT == GlobalValue::ExternalLinkage)
3229     return "";
3230   return getLinkageName(LT) + " ";
3231 }
3232 
3233 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3234   switch (Vis) {
3235   case GlobalValue::DefaultVisibility:
3236     return "default";
3237   case GlobalValue::HiddenVisibility:
3238     return "hidden";
3239   case GlobalValue::ProtectedVisibility:
3240     return "protected";
3241   }
3242   llvm_unreachable("invalid visibility");
3243 }
3244 
3245 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3246   Out << ", insts: " << FS->instCount();
3247   if (FS->fflags().anyFlagSet())
3248     Out << ", " << FS->fflags();
3249 
3250   if (!FS->calls().empty()) {
3251     Out << ", calls: (";
3252     FieldSeparator IFS;
3253     for (auto &Call : FS->calls()) {
3254       Out << IFS;
3255       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3256       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3257         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3258       else if (Call.second.RelBlockFreq)
3259         Out << ", relbf: " << Call.second.RelBlockFreq;
3260       // Follow the convention of emitting flags as a boolean value, but only
3261       // emit if true to avoid unnecessary verbosity and test churn.
3262       if (Call.second.HasTailCall)
3263         Out << ", tail: 1";
3264       Out << ")";
3265     }
3266     Out << ")";
3267   }
3268 
3269   if (const auto *TIdInfo = FS->getTypeIdInfo())
3270     printTypeIdInfo(*TIdInfo);
3271 
3272   // The AllocationType identifiers capture the profiled context behavior
3273   // reaching a specific static allocation site (possibly cloned).
3274   auto AllocTypeName = [](uint8_t Type) -> const char * {
3275     switch (Type) {
3276     case (uint8_t)AllocationType::None:
3277       return "none";
3278     case (uint8_t)AllocationType::NotCold:
3279       return "notcold";
3280     case (uint8_t)AllocationType::Cold:
3281       return "cold";
3282     case (uint8_t)AllocationType::Hot:
3283       return "hot";
3284     }
3285     llvm_unreachable("Unexpected alloc type");
3286   };
3287 
3288   if (!FS->allocs().empty()) {
3289     Out << ", allocs: (";
3290     FieldSeparator AFS;
3291     for (auto &AI : FS->allocs()) {
3292       Out << AFS;
3293       Out << "(versions: (";
3294       FieldSeparator VFS;
3295       for (auto V : AI.Versions) {
3296         Out << VFS;
3297         Out << AllocTypeName(V);
3298       }
3299       Out << "), memProf: (";
3300       FieldSeparator MIBFS;
3301       for (auto &MIB : AI.MIBs) {
3302         Out << MIBFS;
3303         Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3304         Out << ", stackIds: (";
3305         FieldSeparator SIDFS;
3306         for (auto Id : MIB.StackIdIndices) {
3307           Out << SIDFS;
3308           Out << TheIndex->getStackIdAtIndex(Id);
3309         }
3310         Out << "))";
3311       }
3312       Out << "))";
3313     }
3314     Out << ")";
3315   }
3316 
3317   if (!FS->callsites().empty()) {
3318     Out << ", callsites: (";
3319     FieldSeparator SNFS;
3320     for (auto &CI : FS->callsites()) {
3321       Out << SNFS;
3322       if (CI.Callee)
3323         Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID());
3324       else
3325         Out << "(callee: null";
3326       Out << ", clones: (";
3327       FieldSeparator VFS;
3328       for (auto V : CI.Clones) {
3329         Out << VFS;
3330         Out << V;
3331       }
3332       Out << "), stackIds: (";
3333       FieldSeparator SIDFS;
3334       for (auto Id : CI.StackIdIndices) {
3335         Out << SIDFS;
3336         Out << TheIndex->getStackIdAtIndex(Id);
3337       }
3338       Out << "))";
3339     }
3340     Out << ")";
3341   }
3342 
3343   auto PrintRange = [&](const ConstantRange &Range) {
3344     Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3345   };
3346 
3347   if (!FS->paramAccesses().empty()) {
3348     Out << ", params: (";
3349     FieldSeparator IFS;
3350     for (auto &PS : FS->paramAccesses()) {
3351       Out << IFS;
3352       Out << "(param: " << PS.ParamNo;
3353       Out << ", offset: ";
3354       PrintRange(PS.Use);
3355       if (!PS.Calls.empty()) {
3356         Out << ", calls: (";
3357         FieldSeparator IFS;
3358         for (auto &Call : PS.Calls) {
3359           Out << IFS;
3360           Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3361           Out << ", param: " << Call.ParamNo;
3362           Out << ", offset: ";
3363           PrintRange(Call.Offsets);
3364           Out << ")";
3365         }
3366         Out << ")";
3367       }
3368       Out << ")";
3369     }
3370     Out << ")";
3371   }
3372 }
3373 
3374 void AssemblyWriter::printTypeIdInfo(
3375     const FunctionSummary::TypeIdInfo &TIDInfo) {
3376   Out << ", typeIdInfo: (";
3377   FieldSeparator TIDFS;
3378   if (!TIDInfo.TypeTests.empty()) {
3379     Out << TIDFS;
3380     Out << "typeTests: (";
3381     FieldSeparator FS;
3382     for (auto &GUID : TIDInfo.TypeTests) {
3383       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3384       if (TidIter.first == TidIter.second) {
3385         Out << FS;
3386         Out << GUID;
3387         continue;
3388       }
3389       // Print all type id that correspond to this GUID.
3390       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3391         Out << FS;
3392         auto Slot = Machine.getTypeIdSlot(It->second.first);
3393         assert(Slot != -1);
3394         Out << "^" << Slot;
3395       }
3396     }
3397     Out << ")";
3398   }
3399   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3400     Out << TIDFS;
3401     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3402   }
3403   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3404     Out << TIDFS;
3405     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3406   }
3407   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3408     Out << TIDFS;
3409     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3410                      "typeTestAssumeConstVCalls");
3411   }
3412   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3413     Out << TIDFS;
3414     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3415                      "typeCheckedLoadConstVCalls");
3416   }
3417   Out << ")";
3418 }
3419 
3420 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3421   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3422   if (TidIter.first == TidIter.second) {
3423     Out << "vFuncId: (";
3424     Out << "guid: " << VFId.GUID;
3425     Out << ", offset: " << VFId.Offset;
3426     Out << ")";
3427     return;
3428   }
3429   // Print all type id that correspond to this GUID.
3430   FieldSeparator FS;
3431   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3432     Out << FS;
3433     Out << "vFuncId: (";
3434     auto Slot = Machine.getTypeIdSlot(It->second.first);
3435     assert(Slot != -1);
3436     Out << "^" << Slot;
3437     Out << ", offset: " << VFId.Offset;
3438     Out << ")";
3439   }
3440 }
3441 
3442 void AssemblyWriter::printNonConstVCalls(
3443     const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3444   Out << Tag << ": (";
3445   FieldSeparator FS;
3446   for (auto &VFuncId : VCallList) {
3447     Out << FS;
3448     printVFuncId(VFuncId);
3449   }
3450   Out << ")";
3451 }
3452 
3453 void AssemblyWriter::printConstVCalls(
3454     const std::vector<FunctionSummary::ConstVCall> &VCallList,
3455     const char *Tag) {
3456   Out << Tag << ": (";
3457   FieldSeparator FS;
3458   for (auto &ConstVCall : VCallList) {
3459     Out << FS;
3460     Out << "(";
3461     printVFuncId(ConstVCall.VFunc);
3462     if (!ConstVCall.Args.empty()) {
3463       Out << ", ";
3464       printArgs(ConstVCall.Args);
3465     }
3466     Out << ")";
3467   }
3468   Out << ")";
3469 }
3470 
3471 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3472   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3473   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3474   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3475   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3476       << ", flags: (";
3477   Out << "linkage: " << getLinkageName(LT);
3478   Out << ", visibility: "
3479       << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3480   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3481   Out << ", live: " << GVFlags.Live;
3482   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3483   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3484   Out << ")";
3485 
3486   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3487     printAliasSummary(cast<AliasSummary>(&Summary));
3488   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3489     printFunctionSummary(cast<FunctionSummary>(&Summary));
3490   else
3491     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3492 
3493   auto RefList = Summary.refs();
3494   if (!RefList.empty()) {
3495     Out << ", refs: (";
3496     FieldSeparator FS;
3497     for (auto &Ref : RefList) {
3498       Out << FS;
3499       if (Ref.isReadOnly())
3500         Out << "readonly ";
3501       else if (Ref.isWriteOnly())
3502         Out << "writeonly ";
3503       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3504     }
3505     Out << ")";
3506   }
3507 
3508   Out << ")";
3509 }
3510 
3511 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3512   Out << "^" << Slot << " = gv: (";
3513   if (!VI.name().empty())
3514     Out << "name: \"" << VI.name() << "\"";
3515   else
3516     Out << "guid: " << VI.getGUID();
3517   if (!VI.getSummaryList().empty()) {
3518     Out << ", summaries: (";
3519     FieldSeparator FS;
3520     for (auto &Summary : VI.getSummaryList()) {
3521       Out << FS;
3522       printSummary(*Summary);
3523     }
3524     Out << ")";
3525   }
3526   Out << ")";
3527   if (!VI.name().empty())
3528     Out << " ; guid = " << VI.getGUID();
3529   Out << "\n";
3530 }
3531 
3532 static void printMetadataIdentifier(StringRef Name,
3533                                     formatted_raw_ostream &Out) {
3534   if (Name.empty()) {
3535     Out << "<empty name> ";
3536   } else {
3537     unsigned char FirstC = static_cast<unsigned char>(Name[0]);
3538     if (isalpha(FirstC) || FirstC == '-' || FirstC == '$' || FirstC == '.' ||
3539         FirstC == '_')
3540       Out << FirstC;
3541     else
3542       Out << '\\' << hexdigit(FirstC >> 4) << hexdigit(FirstC & 0x0F);
3543     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3544       unsigned char C = Name[i];
3545       if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
3546         Out << C;
3547       else
3548         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3549     }
3550   }
3551 }
3552 
3553 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3554   Out << '!';
3555   printMetadataIdentifier(NMD->getName(), Out);
3556   Out << " = !{";
3557   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3558     if (i)
3559       Out << ", ";
3560 
3561     // Write DIExpressions inline.
3562     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3563     MDNode *Op = NMD->getOperand(i);
3564     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3565       writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3566       continue;
3567     }
3568 
3569     int Slot = Machine.getMetadataSlot(Op);
3570     if (Slot == -1)
3571       Out << "<badref>";
3572     else
3573       Out << '!' << Slot;
3574   }
3575   Out << "}\n";
3576 }
3577 
3578 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3579                             formatted_raw_ostream &Out) {
3580   switch (Vis) {
3581   case GlobalValue::DefaultVisibility: break;
3582   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3583   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3584   }
3585 }
3586 
3587 static void PrintDSOLocation(const GlobalValue &GV,
3588                              formatted_raw_ostream &Out) {
3589   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3590     Out << "dso_local ";
3591 }
3592 
3593 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3594                                  formatted_raw_ostream &Out) {
3595   switch (SCT) {
3596   case GlobalValue::DefaultStorageClass: break;
3597   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3598   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3599   }
3600 }
3601 
3602 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3603                                   formatted_raw_ostream &Out) {
3604   switch (TLM) {
3605     case GlobalVariable::NotThreadLocal:
3606       break;
3607     case GlobalVariable::GeneralDynamicTLSModel:
3608       Out << "thread_local ";
3609       break;
3610     case GlobalVariable::LocalDynamicTLSModel:
3611       Out << "thread_local(localdynamic) ";
3612       break;
3613     case GlobalVariable::InitialExecTLSModel:
3614       Out << "thread_local(initialexec) ";
3615       break;
3616     case GlobalVariable::LocalExecTLSModel:
3617       Out << "thread_local(localexec) ";
3618       break;
3619   }
3620 }
3621 
3622 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3623   switch (UA) {
3624   case GlobalVariable::UnnamedAddr::None:
3625     return "";
3626   case GlobalVariable::UnnamedAddr::Local:
3627     return "local_unnamed_addr";
3628   case GlobalVariable::UnnamedAddr::Global:
3629     return "unnamed_addr";
3630   }
3631   llvm_unreachable("Unknown UnnamedAddr");
3632 }
3633 
3634 static void maybePrintComdat(formatted_raw_ostream &Out,
3635                              const GlobalObject &GO) {
3636   const Comdat *C = GO.getComdat();
3637   if (!C)
3638     return;
3639 
3640   if (isa<GlobalVariable>(GO))
3641     Out << ',';
3642   Out << " comdat";
3643 
3644   if (GO.getName() == C->getName())
3645     return;
3646 
3647   Out << '(';
3648   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3649   Out << ')';
3650 }
3651 
3652 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3653   if (GV->isMaterializable())
3654     Out << "; Materializable\n";
3655 
3656   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3657   WriteAsOperandInternal(Out, GV, WriterCtx);
3658   Out << " = ";
3659 
3660   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3661     Out << "external ";
3662 
3663   Out << getLinkageNameWithSpace(GV->getLinkage());
3664   PrintDSOLocation(*GV, Out);
3665   PrintVisibility(GV->getVisibility(), Out);
3666   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3667   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3668   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3669   if (!UA.empty())
3670       Out << UA << ' ';
3671 
3672   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3673     Out << "addrspace(" << AddressSpace << ") ";
3674   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3675   Out << (GV->isConstant() ? "constant " : "global ");
3676   TypePrinter.print(GV->getValueType(), Out);
3677 
3678   if (GV->hasInitializer()) {
3679     Out << ' ';
3680     writeOperand(GV->getInitializer(), false);
3681   }
3682 
3683   if (GV->hasSection()) {
3684     Out << ", section \"";
3685     printEscapedString(GV->getSection(), Out);
3686     Out << '"';
3687   }
3688   if (GV->hasPartition()) {
3689     Out << ", partition \"";
3690     printEscapedString(GV->getPartition(), Out);
3691     Out << '"';
3692   }
3693   if (auto CM = GV->getCodeModel()) {
3694     Out << ", code_model \"";
3695     switch (*CM) {
3696     case CodeModel::Tiny:
3697       Out << "tiny";
3698       break;
3699     case CodeModel::Small:
3700       Out << "small";
3701       break;
3702     case CodeModel::Kernel:
3703       Out << "kernel";
3704       break;
3705     case CodeModel::Medium:
3706       Out << "medium";
3707       break;
3708     case CodeModel::Large:
3709       Out << "large";
3710       break;
3711     }
3712     Out << '"';
3713   }
3714 
3715   using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata;
3716   if (GV->hasSanitizerMetadata()) {
3717     SanitizerMetadata MD = GV->getSanitizerMetadata();
3718     if (MD.NoAddress)
3719       Out << ", no_sanitize_address";
3720     if (MD.NoHWAddress)
3721       Out << ", no_sanitize_hwaddress";
3722     if (MD.Memtag)
3723       Out << ", sanitize_memtag";
3724     if (MD.IsDynInit)
3725       Out << ", sanitize_address_dyninit";
3726   }
3727 
3728   maybePrintComdat(Out, *GV);
3729   if (MaybeAlign A = GV->getAlign())
3730     Out << ", align " << A->value();
3731 
3732   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3733   GV->getAllMetadata(MDs);
3734   printMetadataAttachments(MDs, ", ");
3735 
3736   auto Attrs = GV->getAttributes();
3737   if (Attrs.hasAttributes())
3738     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3739 
3740   printInfoComment(*GV);
3741 }
3742 
3743 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3744   if (GA->isMaterializable())
3745     Out << "; Materializable\n";
3746 
3747   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3748   WriteAsOperandInternal(Out, GA, WriterCtx);
3749   Out << " = ";
3750 
3751   Out << getLinkageNameWithSpace(GA->getLinkage());
3752   PrintDSOLocation(*GA, Out);
3753   PrintVisibility(GA->getVisibility(), Out);
3754   PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
3755   PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
3756   StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
3757   if (!UA.empty())
3758       Out << UA << ' ';
3759 
3760   Out << "alias ";
3761 
3762   TypePrinter.print(GA->getValueType(), Out);
3763   Out << ", ";
3764 
3765   if (const Constant *Aliasee = GA->getAliasee()) {
3766     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3767   } else {
3768     TypePrinter.print(GA->getType(), Out);
3769     Out << " <<NULL ALIASEE>>";
3770   }
3771 
3772   if (GA->hasPartition()) {
3773     Out << ", partition \"";
3774     printEscapedString(GA->getPartition(), Out);
3775     Out << '"';
3776   }
3777 
3778   printInfoComment(*GA);
3779   Out << '\n';
3780 }
3781 
3782 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3783   if (GI->isMaterializable())
3784     Out << "; Materializable\n";
3785 
3786   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3787   WriteAsOperandInternal(Out, GI, WriterCtx);
3788   Out << " = ";
3789 
3790   Out << getLinkageNameWithSpace(GI->getLinkage());
3791   PrintDSOLocation(*GI, Out);
3792   PrintVisibility(GI->getVisibility(), Out);
3793 
3794   Out << "ifunc ";
3795 
3796   TypePrinter.print(GI->getValueType(), Out);
3797   Out << ", ";
3798 
3799   if (const Constant *Resolver = GI->getResolver()) {
3800     writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3801   } else {
3802     TypePrinter.print(GI->getType(), Out);
3803     Out << " <<NULL RESOLVER>>";
3804   }
3805 
3806   if (GI->hasPartition()) {
3807     Out << ", partition \"";
3808     printEscapedString(GI->getPartition(), Out);
3809     Out << '"';
3810   }
3811 
3812   printInfoComment(*GI);
3813   Out << '\n';
3814 }
3815 
3816 void AssemblyWriter::printComdat(const Comdat *C) {
3817   C->print(Out);
3818 }
3819 
3820 void AssemblyWriter::printTypeIdentities() {
3821   if (TypePrinter.empty())
3822     return;
3823 
3824   Out << '\n';
3825 
3826   // Emit all numbered types.
3827   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3828   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3829     Out << '%' << I << " = type ";
3830 
3831     // Make sure we print out at least one level of the type structure, so
3832     // that we do not get %2 = type %2
3833     TypePrinter.printStructBody(NumberedTypes[I], Out);
3834     Out << '\n';
3835   }
3836 
3837   auto &NamedTypes = TypePrinter.getNamedTypes();
3838   for (StructType *NamedType : NamedTypes) {
3839     PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3840     Out << " = type ";
3841 
3842     // Make sure we print out at least one level of the type structure, so
3843     // that we do not get %FILE = type %FILE
3844     TypePrinter.printStructBody(NamedType, Out);
3845     Out << '\n';
3846   }
3847 }
3848 
3849 /// printFunction - Print all aspects of a function.
3850 void AssemblyWriter::printFunction(const Function *F) {
3851   bool ConvertBack = F->IsNewDbgInfoFormat;
3852   if (ConvertBack)
3853     const_cast<Function *>(F)->convertFromNewDbgValues();
3854   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3855 
3856   if (F->isMaterializable())
3857     Out << "; Materializable\n";
3858 
3859   const AttributeList &Attrs = F->getAttributes();
3860   if (Attrs.hasFnAttrs()) {
3861     AttributeSet AS = Attrs.getFnAttrs();
3862     std::string AttrStr;
3863 
3864     for (const Attribute &Attr : AS) {
3865       if (!Attr.isStringAttribute()) {
3866         if (!AttrStr.empty()) AttrStr += ' ';
3867         AttrStr += Attr.getAsString();
3868       }
3869     }
3870 
3871     if (!AttrStr.empty())
3872       Out << "; Function Attrs: " << AttrStr << '\n';
3873   }
3874 
3875   Machine.incorporateFunction(F);
3876 
3877   if (F->isDeclaration()) {
3878     Out << "declare";
3879     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3880     F->getAllMetadata(MDs);
3881     printMetadataAttachments(MDs, " ");
3882     Out << ' ';
3883   } else
3884     Out << "define ";
3885 
3886   Out << getLinkageNameWithSpace(F->getLinkage());
3887   PrintDSOLocation(*F, Out);
3888   PrintVisibility(F->getVisibility(), Out);
3889   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3890 
3891   // Print the calling convention.
3892   if (F->getCallingConv() != CallingConv::C) {
3893     PrintCallingConv(F->getCallingConv(), Out);
3894     Out << " ";
3895   }
3896 
3897   FunctionType *FT = F->getFunctionType();
3898   if (Attrs.hasRetAttrs())
3899     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3900   TypePrinter.print(F->getReturnType(), Out);
3901   AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
3902   Out << ' ';
3903   WriteAsOperandInternal(Out, F, WriterCtx);
3904   Out << '(';
3905 
3906   // Loop over the arguments, printing them...
3907   if (F->isDeclaration() && !IsForDebug) {
3908     // We're only interested in the type here - don't print argument names.
3909     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3910       // Insert commas as we go... the first arg doesn't get a comma
3911       if (I)
3912         Out << ", ";
3913       // Output type...
3914       TypePrinter.print(FT->getParamType(I), Out);
3915 
3916       AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
3917       if (ArgAttrs.hasAttributes()) {
3918         Out << ' ';
3919         writeAttributeSet(ArgAttrs);
3920       }
3921     }
3922   } else {
3923     // The arguments are meaningful here, print them in detail.
3924     for (const Argument &Arg : F->args()) {
3925       // Insert commas as we go... the first arg doesn't get a comma
3926       if (Arg.getArgNo() != 0)
3927         Out << ", ";
3928       printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
3929     }
3930   }
3931 
3932   // Finish printing arguments...
3933   if (FT->isVarArg()) {
3934     if (FT->getNumParams()) Out << ", ";
3935     Out << "...";  // Output varargs portion of signature!
3936   }
3937   Out << ')';
3938   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3939   if (!UA.empty())
3940     Out << ' ' << UA;
3941   // We print the function address space if it is non-zero or if we are writing
3942   // a module with a non-zero program address space or if there is no valid
3943   // Module* so that the file can be parsed without the datalayout string.
3944   const Module *Mod = F->getParent();
3945   if (F->getAddressSpace() != 0 || !Mod ||
3946       Mod->getDataLayout().getProgramAddressSpace() != 0)
3947     Out << " addrspace(" << F->getAddressSpace() << ")";
3948   if (Attrs.hasFnAttrs())
3949     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
3950   if (F->hasSection()) {
3951     Out << " section \"";
3952     printEscapedString(F->getSection(), Out);
3953     Out << '"';
3954   }
3955   if (F->hasPartition()) {
3956     Out << " partition \"";
3957     printEscapedString(F->getPartition(), Out);
3958     Out << '"';
3959   }
3960   maybePrintComdat(Out, *F);
3961   if (MaybeAlign A = F->getAlign())
3962     Out << " align " << A->value();
3963   if (F->hasGC())
3964     Out << " gc \"" << F->getGC() << '"';
3965   if (F->hasPrefixData()) {
3966     Out << " prefix ";
3967     writeOperand(F->getPrefixData(), true);
3968   }
3969   if (F->hasPrologueData()) {
3970     Out << " prologue ";
3971     writeOperand(F->getPrologueData(), true);
3972   }
3973   if (F->hasPersonalityFn()) {
3974     Out << " personality ";
3975     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3976   }
3977 
3978   if (F->isDeclaration()) {
3979     Out << '\n';
3980   } else {
3981     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3982     F->getAllMetadata(MDs);
3983     printMetadataAttachments(MDs, " ");
3984 
3985     Out << " {";
3986     // Output all of the function's basic blocks.
3987     for (const BasicBlock &BB : *F)
3988       printBasicBlock(&BB);
3989 
3990     // Output the function's use-lists.
3991     printUseLists(F);
3992 
3993     Out << "}\n";
3994   }
3995 
3996   if (ConvertBack)
3997     const_cast<Function *>(F)->convertToNewDbgValues();
3998   Machine.purgeFunction();
3999 }
4000 
4001 /// printArgument - This member is called for every argument that is passed into
4002 /// the function.  Simply print it out
4003 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
4004   // Output type...
4005   TypePrinter.print(Arg->getType(), Out);
4006 
4007   // Output parameter attributes list
4008   if (Attrs.hasAttributes()) {
4009     Out << ' ';
4010     writeAttributeSet(Attrs);
4011   }
4012 
4013   // Output name, if available...
4014   if (Arg->hasName()) {
4015     Out << ' ';
4016     PrintLLVMName(Out, Arg);
4017   } else {
4018     int Slot = Machine.getLocalSlot(Arg);
4019     assert(Slot != -1 && "expect argument in function here");
4020     Out << " %" << Slot;
4021   }
4022 }
4023 
4024 /// printBasicBlock - This member is called for each basic block in a method.
4025 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
4026   bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
4027   if (BB->hasName()) {              // Print out the label if it exists...
4028     Out << "\n";
4029     PrintLLVMName(Out, BB->getName(), LabelPrefix);
4030     Out << ':';
4031   } else if (!IsEntryBlock) {
4032     Out << "\n";
4033     int Slot = Machine.getLocalSlot(BB);
4034     if (Slot != -1)
4035       Out << Slot << ":";
4036     else
4037       Out << "<badref>:";
4038   }
4039 
4040   if (!IsEntryBlock) {
4041     // Output predecessors for the block.
4042     Out.PadToColumn(50);
4043     Out << ";";
4044     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
4045 
4046     if (PI == PE) {
4047       Out << " No predecessors!";
4048     } else {
4049       Out << " preds = ";
4050       writeOperand(*PI, false);
4051       for (++PI; PI != PE; ++PI) {
4052         Out << ", ";
4053         writeOperand(*PI, false);
4054       }
4055     }
4056   }
4057 
4058   Out << "\n";
4059 
4060   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
4061 
4062   // Output all of the instructions in the basic block...
4063   for (const Instruction &I : *BB) {
4064     printInstructionLine(I);
4065   }
4066 
4067   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
4068 }
4069 
4070 /// printInstructionLine - Print an instruction and a newline character.
4071 void AssemblyWriter::printInstructionLine(const Instruction &I) {
4072   printInstruction(I);
4073   Out << '\n';
4074 }
4075 
4076 /// printGCRelocateComment - print comment after call to the gc.relocate
4077 /// intrinsic indicating base and derived pointer names.
4078 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
4079   Out << " ; (";
4080   writeOperand(Relocate.getBasePtr(), false);
4081   Out << ", ";
4082   writeOperand(Relocate.getDerivedPtr(), false);
4083   Out << ")";
4084 }
4085 
4086 /// printInfoComment - Print a little comment after the instruction indicating
4087 /// which slot it occupies.
4088 void AssemblyWriter::printInfoComment(const Value &V) {
4089   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
4090     printGCRelocateComment(*Relocate);
4091 
4092   if (AnnotationWriter) {
4093     AnnotationWriter->printInfoComment(V, Out);
4094   } else if (const Instruction *I = dyn_cast<Instruction>(&V)) {
4095     if (I->DbgMarker) {
4096       // In the new, experimental DPValue representation of debug-info, print
4097       // out which instructions have DPMarkers and where they are.
4098       Out << "; dbgmarker @ " << I->DbgMarker;
4099     }
4100   }
4101 }
4102 
4103 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
4104                                     raw_ostream &Out) {
4105   // We print the address space of the call if it is non-zero.
4106   if (Operand == nullptr) {
4107     Out << " <cannot get addrspace!>";
4108     return;
4109   }
4110   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
4111   bool PrintAddrSpace = CallAddrSpace != 0;
4112   if (!PrintAddrSpace) {
4113     const Module *Mod = getModuleFromVal(I);
4114     // We also print it if it is zero but not equal to the program address space
4115     // or if we can't find a valid Module* to make it possible to parse
4116     // the resulting file even without a datalayout string.
4117     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
4118       PrintAddrSpace = true;
4119   }
4120   if (PrintAddrSpace)
4121     Out << " addrspace(" << CallAddrSpace << ")";
4122 }
4123 
4124 // This member is called for each Instruction in a function..
4125 void AssemblyWriter::printInstruction(const Instruction &I) {
4126   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
4127 
4128   // Print out indentation for an instruction.
4129   Out << "  ";
4130 
4131   // Print out name if it exists...
4132   if (I.hasName()) {
4133     PrintLLVMName(Out, &I);
4134     Out << " = ";
4135   } else if (!I.getType()->isVoidTy()) {
4136     // Print out the def slot taken.
4137     int SlotNum = Machine.getLocalSlot(&I);
4138     if (SlotNum == -1)
4139       Out << "<badref> = ";
4140     else
4141       Out << '%' << SlotNum << " = ";
4142   }
4143 
4144   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4145     if (CI->isMustTailCall())
4146       Out << "musttail ";
4147     else if (CI->isTailCall())
4148       Out << "tail ";
4149     else if (CI->isNoTailCall())
4150       Out << "notail ";
4151   }
4152 
4153   // Print out the opcode...
4154   Out << I.getOpcodeName();
4155 
4156   // If this is an atomic load or store, print out the atomic marker.
4157   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
4158       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
4159     Out << " atomic";
4160 
4161   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
4162     Out << " weak";
4163 
4164   // If this is a volatile operation, print out the volatile marker.
4165   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
4166       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
4167       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
4168       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
4169     Out << " volatile";
4170 
4171   // Print out optimization information.
4172   WriteOptimizationInfo(Out, &I);
4173 
4174   // Print out the compare instruction predicates
4175   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
4176     Out << ' ' << CI->getPredicate();
4177 
4178   // Print out the atomicrmw operation
4179   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
4180     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
4181 
4182   // Print out the type of the operands...
4183   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4184 
4185   // Special case conditional branches to swizzle the condition out to the front
4186   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
4187     const BranchInst &BI(cast<BranchInst>(I));
4188     Out << ' ';
4189     writeOperand(BI.getCondition(), true);
4190     Out << ", ";
4191     writeOperand(BI.getSuccessor(0), true);
4192     Out << ", ";
4193     writeOperand(BI.getSuccessor(1), true);
4194 
4195   } else if (isa<SwitchInst>(I)) {
4196     const SwitchInst& SI(cast<SwitchInst>(I));
4197     // Special case switch instruction to get formatting nice and correct.
4198     Out << ' ';
4199     writeOperand(SI.getCondition(), true);
4200     Out << ", ";
4201     writeOperand(SI.getDefaultDest(), true);
4202     Out << " [";
4203     for (auto Case : SI.cases()) {
4204       Out << "\n    ";
4205       writeOperand(Case.getCaseValue(), true);
4206       Out << ", ";
4207       writeOperand(Case.getCaseSuccessor(), true);
4208     }
4209     Out << "\n  ]";
4210   } else if (isa<IndirectBrInst>(I)) {
4211     // Special case indirectbr instruction to get formatting nice and correct.
4212     Out << ' ';
4213     writeOperand(Operand, true);
4214     Out << ", [";
4215 
4216     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4217       if (i != 1)
4218         Out << ", ";
4219       writeOperand(I.getOperand(i), true);
4220     }
4221     Out << ']';
4222   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4223     Out << ' ';
4224     TypePrinter.print(I.getType(), Out);
4225     Out << ' ';
4226 
4227     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4228       if (op) Out << ", ";
4229       Out << "[ ";
4230       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4231       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4232     }
4233   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4234     Out << ' ';
4235     writeOperand(I.getOperand(0), true);
4236     for (unsigned i : EVI->indices())
4237       Out << ", " << i;
4238   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4239     Out << ' ';
4240     writeOperand(I.getOperand(0), true); Out << ", ";
4241     writeOperand(I.getOperand(1), true);
4242     for (unsigned i : IVI->indices())
4243       Out << ", " << i;
4244   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4245     Out << ' ';
4246     TypePrinter.print(I.getType(), Out);
4247     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4248       Out << '\n';
4249 
4250     if (LPI->isCleanup())
4251       Out << "          cleanup";
4252 
4253     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4254       if (i != 0 || LPI->isCleanup()) Out << "\n";
4255       if (LPI->isCatch(i))
4256         Out << "          catch ";
4257       else
4258         Out << "          filter ";
4259 
4260       writeOperand(LPI->getClause(i), true);
4261     }
4262   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4263     Out << " within ";
4264     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4265     Out << " [";
4266     unsigned Op = 0;
4267     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4268       if (Op > 0)
4269         Out << ", ";
4270       writeOperand(PadBB, /*PrintType=*/true);
4271       ++Op;
4272     }
4273     Out << "] unwind ";
4274     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4275       writeOperand(UnwindDest, /*PrintType=*/true);
4276     else
4277       Out << "to caller";
4278   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4279     Out << " within ";
4280     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4281     Out << " [";
4282     for (unsigned Op = 0, NumOps = FPI->arg_size(); Op < NumOps; ++Op) {
4283       if (Op > 0)
4284         Out << ", ";
4285       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4286     }
4287     Out << ']';
4288   } else if (isa<ReturnInst>(I) && !Operand) {
4289     Out << " void";
4290   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4291     Out << " from ";
4292     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4293 
4294     Out << " to ";
4295     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4296   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4297     Out << " from ";
4298     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4299 
4300     Out << " unwind ";
4301     if (CRI->hasUnwindDest())
4302       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4303     else
4304       Out << "to caller";
4305   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4306     // Print the calling convention being used.
4307     if (CI->getCallingConv() != CallingConv::C) {
4308       Out << " ";
4309       PrintCallingConv(CI->getCallingConv(), Out);
4310     }
4311 
4312     Operand = CI->getCalledOperand();
4313     FunctionType *FTy = CI->getFunctionType();
4314     Type *RetTy = FTy->getReturnType();
4315     const AttributeList &PAL = CI->getAttributes();
4316 
4317     if (PAL.hasRetAttrs())
4318       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4319 
4320     // Only print addrspace(N) if necessary:
4321     maybePrintCallAddrSpace(Operand, &I, Out);
4322 
4323     // If possible, print out the short form of the call instruction.  We can
4324     // only do this if the first argument is a pointer to a nonvararg function,
4325     // and if the return type is not a pointer to a function.
4326     Out << ' ';
4327     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4328     Out << ' ';
4329     writeOperand(Operand, false);
4330     Out << '(';
4331     for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4332       if (op > 0)
4333         Out << ", ";
4334       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4335     }
4336 
4337     // Emit an ellipsis if this is a musttail call in a vararg function.  This
4338     // is only to aid readability, musttail calls forward varargs by default.
4339     if (CI->isMustTailCall() && CI->getParent() &&
4340         CI->getParent()->getParent() &&
4341         CI->getParent()->getParent()->isVarArg()) {
4342       if (CI->arg_size() > 0)
4343         Out << ", ";
4344       Out << "...";
4345     }
4346 
4347     Out << ')';
4348     if (PAL.hasFnAttrs())
4349       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4350 
4351     writeOperandBundles(CI);
4352   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4353     Operand = II->getCalledOperand();
4354     FunctionType *FTy = II->getFunctionType();
4355     Type *RetTy = FTy->getReturnType();
4356     const AttributeList &PAL = II->getAttributes();
4357 
4358     // Print the calling convention being used.
4359     if (II->getCallingConv() != CallingConv::C) {
4360       Out << " ";
4361       PrintCallingConv(II->getCallingConv(), Out);
4362     }
4363 
4364     if (PAL.hasRetAttrs())
4365       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4366 
4367     // Only print addrspace(N) if necessary:
4368     maybePrintCallAddrSpace(Operand, &I, Out);
4369 
4370     // If possible, print out the short form of the invoke instruction. We can
4371     // only do this if the first argument is a pointer to a nonvararg function,
4372     // and if the return type is not a pointer to a function.
4373     //
4374     Out << ' ';
4375     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4376     Out << ' ';
4377     writeOperand(Operand, false);
4378     Out << '(';
4379     for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4380       if (op)
4381         Out << ", ";
4382       writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4383     }
4384 
4385     Out << ')';
4386     if (PAL.hasFnAttrs())
4387       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4388 
4389     writeOperandBundles(II);
4390 
4391     Out << "\n          to ";
4392     writeOperand(II->getNormalDest(), true);
4393     Out << " unwind ";
4394     writeOperand(II->getUnwindDest(), true);
4395   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4396     Operand = CBI->getCalledOperand();
4397     FunctionType *FTy = CBI->getFunctionType();
4398     Type *RetTy = FTy->getReturnType();
4399     const AttributeList &PAL = CBI->getAttributes();
4400 
4401     // Print the calling convention being used.
4402     if (CBI->getCallingConv() != CallingConv::C) {
4403       Out << " ";
4404       PrintCallingConv(CBI->getCallingConv(), Out);
4405     }
4406 
4407     if (PAL.hasRetAttrs())
4408       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4409 
4410     // If possible, print out the short form of the callbr instruction. We can
4411     // only do this if the first argument is a pointer to a nonvararg function,
4412     // and if the return type is not a pointer to a function.
4413     //
4414     Out << ' ';
4415     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4416     Out << ' ';
4417     writeOperand(Operand, false);
4418     Out << '(';
4419     for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4420       if (op)
4421         Out << ", ";
4422       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4423     }
4424 
4425     Out << ')';
4426     if (PAL.hasFnAttrs())
4427       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4428 
4429     writeOperandBundles(CBI);
4430 
4431     Out << "\n          to ";
4432     writeOperand(CBI->getDefaultDest(), true);
4433     Out << " [";
4434     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4435       if (i != 0)
4436         Out << ", ";
4437       writeOperand(CBI->getIndirectDest(i), true);
4438     }
4439     Out << ']';
4440   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4441     Out << ' ';
4442     if (AI->isUsedWithInAlloca())
4443       Out << "inalloca ";
4444     if (AI->isSwiftError())
4445       Out << "swifterror ";
4446     TypePrinter.print(AI->getAllocatedType(), Out);
4447 
4448     // Explicitly write the array size if the code is broken, if it's an array
4449     // allocation, or if the type is not canonical for scalar allocations.  The
4450     // latter case prevents the type from mutating when round-tripping through
4451     // assembly.
4452     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4453         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4454       Out << ", ";
4455       writeOperand(AI->getArraySize(), true);
4456     }
4457     if (MaybeAlign A = AI->getAlign()) {
4458       Out << ", align " << A->value();
4459     }
4460 
4461     unsigned AddrSpace = AI->getAddressSpace();
4462     if (AddrSpace != 0) {
4463       Out << ", addrspace(" << AddrSpace << ')';
4464     }
4465   } else if (isa<CastInst>(I)) {
4466     if (Operand) {
4467       Out << ' ';
4468       writeOperand(Operand, true);   // Work with broken code
4469     }
4470     Out << " to ";
4471     TypePrinter.print(I.getType(), Out);
4472   } else if (isa<VAArgInst>(I)) {
4473     if (Operand) {
4474       Out << ' ';
4475       writeOperand(Operand, true);   // Work with broken code
4476     }
4477     Out << ", ";
4478     TypePrinter.print(I.getType(), Out);
4479   } else if (Operand) {   // Print the normal way.
4480     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4481       Out << ' ';
4482       TypePrinter.print(GEP->getSourceElementType(), Out);
4483       Out << ',';
4484     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4485       Out << ' ';
4486       TypePrinter.print(LI->getType(), Out);
4487       Out << ',';
4488     }
4489 
4490     // PrintAllTypes - Instructions who have operands of all the same type
4491     // omit the type from all but the first operand.  If the instruction has
4492     // different type operands (for example br), then they are all printed.
4493     bool PrintAllTypes = false;
4494     Type *TheType = Operand->getType();
4495 
4496     // Select, Store, ShuffleVector, CmpXchg and AtomicRMW always print all
4497     // types.
4498     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) ||
4499         isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I) ||
4500         isa<AtomicRMWInst>(I)) {
4501       PrintAllTypes = true;
4502     } else {
4503       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4504         Operand = I.getOperand(i);
4505         // note that Operand shouldn't be null, but the test helps make dump()
4506         // more tolerant of malformed IR
4507         if (Operand && Operand->getType() != TheType) {
4508           PrintAllTypes = true;    // We have differing types!  Print them all!
4509           break;
4510         }
4511       }
4512     }
4513 
4514     if (!PrintAllTypes) {
4515       Out << ' ';
4516       TypePrinter.print(TheType, Out);
4517     }
4518 
4519     Out << ' ';
4520     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4521       if (i) Out << ", ";
4522       writeOperand(I.getOperand(i), PrintAllTypes);
4523     }
4524   }
4525 
4526   // Print atomic ordering/alignment for memory operations
4527   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4528     if (LI->isAtomic())
4529       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4530     if (MaybeAlign A = LI->getAlign())
4531       Out << ", align " << A->value();
4532   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4533     if (SI->isAtomic())
4534       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4535     if (MaybeAlign A = SI->getAlign())
4536       Out << ", align " << A->value();
4537   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4538     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4539                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4540     Out << ", align " << CXI->getAlign().value();
4541   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4542     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4543                 RMWI->getSyncScopeID());
4544     Out << ", align " << RMWI->getAlign().value();
4545   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4546     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4547   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4548     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4549   }
4550 
4551   // Print Metadata info.
4552   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4553   I.getAllMetadata(InstMD);
4554   printMetadataAttachments(InstMD, ", ");
4555 
4556   // Print a nice comment.
4557   printInfoComment(I);
4558 }
4559 
4560 void AssemblyWriter::printDPMarker(const DPMarker &Marker) {
4561   // There's no formal representation of a DPMarker -- print purely as a
4562   // debugging aid.
4563   for (const DPValue &DPI2 : Marker.StoredDPValues) {
4564     printDPValue(DPI2);
4565     Out << "\n";
4566   }
4567 
4568   Out << "  DPMarker -> { ";
4569   printInstruction(*Marker.MarkedInstr);
4570   Out << " }";
4571   return;
4572 }
4573 
4574 void AssemblyWriter::printDPValue(const DPValue &Value) {
4575   // There's no formal representation of a DPValue -- print purely as a
4576   // debugging aid.
4577   Out << "  DPValue ";
4578 
4579   switch (Value.getType()) {
4580   case DPValue::LocationType::Value:
4581     Out << "value";
4582     break;
4583   case DPValue::LocationType::Declare:
4584     Out << "declare";
4585     break;
4586   case DPValue::LocationType::Assign:
4587     Out << "assign";
4588     break;
4589   default:
4590     llvm_unreachable("Tried to print a DPValue with an invalid LocationType!");
4591   }
4592   Out << " { ";
4593   auto WriterCtx = getContext();
4594   WriteAsOperandInternal(Out, Value.getRawLocation(), WriterCtx, true);
4595   Out << ", ";
4596   WriteAsOperandInternal(Out, Value.getVariable(), WriterCtx, true);
4597   Out << ", ";
4598   WriteAsOperandInternal(Out, Value.getExpression(), WriterCtx, true);
4599   Out << ", ";
4600   if (Value.isDbgAssign()) {
4601     WriteAsOperandInternal(Out, Value.getAssignID(), WriterCtx, true);
4602     Out << ", ";
4603     WriteAsOperandInternal(Out, Value.getRawAddress(), WriterCtx, true);
4604     Out << ", ";
4605     WriteAsOperandInternal(Out, Value.getAddressExpression(), WriterCtx, true);
4606     Out << ", ";
4607   }
4608   WriteAsOperandInternal(Out, Value.getDebugLoc().get(), WriterCtx, true);
4609   Out << " marker @" << Value.getMarker();
4610   Out << " }";
4611 }
4612 
4613 void AssemblyWriter::printMetadataAttachments(
4614     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4615     StringRef Separator) {
4616   if (MDs.empty())
4617     return;
4618 
4619   if (MDNames.empty())
4620     MDs[0].second->getContext().getMDKindNames(MDNames);
4621 
4622   auto WriterCtx = getContext();
4623   for (const auto &I : MDs) {
4624     unsigned Kind = I.first;
4625     Out << Separator;
4626     if (Kind < MDNames.size()) {
4627       Out << "!";
4628       printMetadataIdentifier(MDNames[Kind], Out);
4629     } else
4630       Out << "!<unknown kind #" << Kind << ">";
4631     Out << ' ';
4632     WriteAsOperandInternal(Out, I.second, WriterCtx);
4633   }
4634 }
4635 
4636 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4637   Out << '!' << Slot << " = ";
4638   printMDNodeBody(Node);
4639   Out << "\n";
4640 }
4641 
4642 void AssemblyWriter::writeAllMDNodes() {
4643   SmallVector<const MDNode *, 16> Nodes;
4644   Nodes.resize(Machine.mdn_size());
4645   for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4646     Nodes[I.second] = cast<MDNode>(I.first);
4647 
4648   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4649     writeMDNode(i, Nodes[i]);
4650   }
4651 }
4652 
4653 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4654   auto WriterCtx = getContext();
4655   WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4656 }
4657 
4658 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4659   if (!Attr.isTypeAttribute()) {
4660     Out << Attr.getAsString(InAttrGroup);
4661     return;
4662   }
4663 
4664   Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4665   if (Type *Ty = Attr.getValueAsType()) {
4666     Out << '(';
4667     TypePrinter.print(Ty, Out);
4668     Out << ')';
4669   }
4670 }
4671 
4672 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4673                                        bool InAttrGroup) {
4674   bool FirstAttr = true;
4675   for (const auto &Attr : AttrSet) {
4676     if (!FirstAttr)
4677       Out << ' ';
4678     writeAttribute(Attr, InAttrGroup);
4679     FirstAttr = false;
4680   }
4681 }
4682 
4683 void AssemblyWriter::writeAllAttributeGroups() {
4684   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4685   asVec.resize(Machine.as_size());
4686 
4687   for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4688     asVec[I.second] = I;
4689 
4690   for (const auto &I : asVec)
4691     Out << "attributes #" << I.second << " = { "
4692         << I.first.getAsString(true) << " }\n";
4693 }
4694 
4695 void AssemblyWriter::printUseListOrder(const Value *V,
4696                                        const std::vector<unsigned> &Shuffle) {
4697   bool IsInFunction = Machine.getFunction();
4698   if (IsInFunction)
4699     Out << "  ";
4700 
4701   Out << "uselistorder";
4702   if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4703     Out << "_bb ";
4704     writeOperand(BB->getParent(), false);
4705     Out << ", ";
4706     writeOperand(BB, false);
4707   } else {
4708     Out << " ";
4709     writeOperand(V, true);
4710   }
4711   Out << ", { ";
4712 
4713   assert(Shuffle.size() >= 2 && "Shuffle too small");
4714   Out << Shuffle[0];
4715   for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4716     Out << ", " << Shuffle[I];
4717   Out << " }\n";
4718 }
4719 
4720 void AssemblyWriter::printUseLists(const Function *F) {
4721   auto It = UseListOrders.find(F);
4722   if (It == UseListOrders.end())
4723     return;
4724 
4725   Out << "\n; uselistorder directives\n";
4726   for (const auto &Pair : It->second)
4727     printUseListOrder(Pair.first, Pair.second);
4728 }
4729 
4730 //===----------------------------------------------------------------------===//
4731 //                       External Interface declarations
4732 //===----------------------------------------------------------------------===//
4733 
4734 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4735                      bool ShouldPreserveUseListOrder,
4736                      bool IsForDebug) const {
4737   SlotTracker SlotTable(this->getParent());
4738   formatted_raw_ostream OS(ROS);
4739   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4740                    IsForDebug,
4741                    ShouldPreserveUseListOrder);
4742   W.printFunction(this);
4743 }
4744 
4745 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4746                      bool ShouldPreserveUseListOrder,
4747                      bool IsForDebug) const {
4748   SlotTracker SlotTable(this->getParent());
4749   formatted_raw_ostream OS(ROS);
4750   AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4751                    IsForDebug,
4752                    ShouldPreserveUseListOrder);
4753   W.printBasicBlock(this);
4754 }
4755 
4756 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4757                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4758   // RemoveDIs: always print with debug-info in intrinsic format.
4759   bool ConvertAfter = IsNewDbgInfoFormat;
4760   if (IsNewDbgInfoFormat)
4761     const_cast<Module *>(this)->convertFromNewDbgValues();
4762 
4763   SlotTracker SlotTable(this);
4764   formatted_raw_ostream OS(ROS);
4765   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4766                    ShouldPreserveUseListOrder);
4767   W.printModule(this);
4768 
4769   if (ConvertAfter)
4770     const_cast<Module *>(this)->convertToNewDbgValues();
4771 }
4772 
4773 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4774   SlotTracker SlotTable(getParent());
4775   formatted_raw_ostream OS(ROS);
4776   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4777   W.printNamedMDNode(this);
4778 }
4779 
4780 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4781                         bool IsForDebug) const {
4782   std::optional<SlotTracker> LocalST;
4783   SlotTracker *SlotTable;
4784   if (auto *ST = MST.getMachine())
4785     SlotTable = ST;
4786   else {
4787     LocalST.emplace(getParent());
4788     SlotTable = &*LocalST;
4789   }
4790 
4791   formatted_raw_ostream OS(ROS);
4792   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4793   W.printNamedMDNode(this);
4794 }
4795 
4796 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4797   PrintLLVMName(ROS, getName(), ComdatPrefix);
4798   ROS << " = comdat ";
4799 
4800   switch (getSelectionKind()) {
4801   case Comdat::Any:
4802     ROS << "any";
4803     break;
4804   case Comdat::ExactMatch:
4805     ROS << "exactmatch";
4806     break;
4807   case Comdat::Largest:
4808     ROS << "largest";
4809     break;
4810   case Comdat::NoDeduplicate:
4811     ROS << "nodeduplicate";
4812     break;
4813   case Comdat::SameSize:
4814     ROS << "samesize";
4815     break;
4816   }
4817 
4818   ROS << '\n';
4819 }
4820 
4821 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4822   TypePrinting TP;
4823   TP.print(const_cast<Type*>(this), OS);
4824 
4825   if (NoDetails)
4826     return;
4827 
4828   // If the type is a named struct type, print the body as well.
4829   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4830     if (!STy->isLiteral()) {
4831       OS << " = type ";
4832       TP.printStructBody(STy, OS);
4833     }
4834 }
4835 
4836 static bool isReferencingMDNode(const Instruction &I) {
4837   if (const auto *CI = dyn_cast<CallInst>(&I))
4838     if (Function *F = CI->getCalledFunction())
4839       if (F->isIntrinsic())
4840         for (auto &Op : I.operands())
4841           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4842             if (isa<MDNode>(V->getMetadata()))
4843               return true;
4844   return false;
4845 }
4846 
4847 void DPMarker::print(raw_ostream &ROS, bool IsForDebug) const {
4848 
4849   ModuleSlotTracker MST(getModuleFromDPI(this), true);
4850   print(ROS, MST, IsForDebug);
4851 }
4852 
4853 void DPValue::print(raw_ostream &ROS, bool IsForDebug) const {
4854 
4855   ModuleSlotTracker MST(getModuleFromDPI(this), true);
4856   print(ROS, MST, IsForDebug);
4857 }
4858 
4859 void DPMarker::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4860                      bool IsForDebug) const {
4861   // There's no formal representation of a DPMarker -- print purely as a
4862   // debugging aid.
4863   formatted_raw_ostream OS(ROS);
4864   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4865   SlotTracker &SlotTable =
4866       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4867   auto incorporateFunction = [&](const Function *F) {
4868     if (F)
4869       MST.incorporateFunction(*F);
4870   };
4871   incorporateFunction(getParent() ? getParent()->getParent() : nullptr);
4872   AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
4873   W.printDPMarker(*this);
4874 }
4875 
4876 void DPValue::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4877                     bool IsForDebug) const {
4878   // There's no formal representation of a DPValue -- print purely as a
4879   // debugging aid.
4880   formatted_raw_ostream OS(ROS);
4881   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4882   SlotTracker &SlotTable =
4883       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4884   auto incorporateFunction = [&](const Function *F) {
4885     if (F)
4886       MST.incorporateFunction(*F);
4887   };
4888   incorporateFunction(Marker->getParent() ? Marker->getParent()->getParent()
4889                                           : nullptr);
4890   AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
4891   W.printDPValue(*this);
4892 }
4893 
4894 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4895   bool ShouldInitializeAllMetadata = false;
4896   if (auto *I = dyn_cast<Instruction>(this))
4897     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4898   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4899     ShouldInitializeAllMetadata = true;
4900 
4901   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4902   print(ROS, MST, IsForDebug);
4903 }
4904 
4905 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4906                   bool IsForDebug) const {
4907   formatted_raw_ostream OS(ROS);
4908   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4909   SlotTracker &SlotTable =
4910       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4911   auto incorporateFunction = [&](const Function *F) {
4912     if (F)
4913       MST.incorporateFunction(*F);
4914   };
4915 
4916   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4917     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4918     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4919     W.printInstruction(*I);
4920   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4921     incorporateFunction(BB->getParent());
4922     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4923     W.printBasicBlock(BB);
4924   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4925     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4926     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4927       W.printGlobal(V);
4928     else if (const Function *F = dyn_cast<Function>(GV))
4929       W.printFunction(F);
4930     else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
4931       W.printAlias(A);
4932     else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
4933       W.printIFunc(I);
4934     else
4935       llvm_unreachable("Unknown GlobalValue to print out!");
4936   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4937     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4938   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4939     TypePrinting TypePrinter;
4940     TypePrinter.print(C->getType(), OS);
4941     OS << ' ';
4942     AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
4943     WriteConstantInternal(OS, C, WriterCtx);
4944   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4945     this->printAsOperand(OS, /* PrintType */ true, MST);
4946   } else {
4947     llvm_unreachable("Unknown value to print out!");
4948   }
4949 }
4950 
4951 /// Print without a type, skipping the TypePrinting object.
4952 ///
4953 /// \return \c true iff printing was successful.
4954 static bool printWithoutType(const Value &V, raw_ostream &O,
4955                              SlotTracker *Machine, const Module *M) {
4956   if (V.hasName() || isa<GlobalValue>(V) ||
4957       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4958     AsmWriterContext WriterCtx(nullptr, Machine, M);
4959     WriteAsOperandInternal(O, &V, WriterCtx);
4960     return true;
4961   }
4962   return false;
4963 }
4964 
4965 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4966                                ModuleSlotTracker &MST) {
4967   TypePrinting TypePrinter(MST.getModule());
4968   if (PrintType) {
4969     TypePrinter.print(V.getType(), O);
4970     O << ' ';
4971   }
4972 
4973   AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
4974   WriteAsOperandInternal(O, &V, WriterCtx);
4975 }
4976 
4977 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4978                            const Module *M) const {
4979   if (!M)
4980     M = getModuleFromVal(this);
4981 
4982   if (!PrintType)
4983     if (printWithoutType(*this, O, nullptr, M))
4984       return;
4985 
4986   SlotTracker Machine(
4987       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4988   ModuleSlotTracker MST(Machine, M);
4989   printAsOperandImpl(*this, O, PrintType, MST);
4990 }
4991 
4992 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4993                            ModuleSlotTracker &MST) const {
4994   if (!PrintType)
4995     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4996       return;
4997 
4998   printAsOperandImpl(*this, O, PrintType, MST);
4999 }
5000 
5001 /// Recursive version of printMetadataImpl.
5002 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
5003                                  AsmWriterContext &WriterCtx) {
5004   formatted_raw_ostream OS(ROS);
5005   WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
5006 
5007   auto *N = dyn_cast<MDNode>(&MD);
5008   if (!N || isa<DIExpression>(MD))
5009     return;
5010 
5011   OS << " = ";
5012   WriteMDNodeBodyInternal(OS, N, WriterCtx);
5013 }
5014 
5015 namespace {
5016 struct MDTreeAsmWriterContext : public AsmWriterContext {
5017   unsigned Level;
5018   // {Level, Printed string}
5019   using EntryTy = std::pair<unsigned, std::string>;
5020   SmallVector<EntryTy, 4> Buffer;
5021 
5022   // Used to break the cycle in case there is any.
5023   SmallPtrSet<const Metadata *, 4> Visited;
5024 
5025   raw_ostream &MainOS;
5026 
5027   MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
5028                          raw_ostream &OS, const Metadata *InitMD)
5029       : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
5030 
5031   void onWriteMetadataAsOperand(const Metadata *MD) override {
5032     if (!Visited.insert(MD).second)
5033       return;
5034 
5035     std::string Str;
5036     raw_string_ostream SS(Str);
5037     ++Level;
5038     // A placeholder entry to memorize the correct
5039     // position in buffer.
5040     Buffer.emplace_back(std::make_pair(Level, ""));
5041     unsigned InsertIdx = Buffer.size() - 1;
5042 
5043     printMetadataImplRec(SS, *MD, *this);
5044     Buffer[InsertIdx].second = std::move(SS.str());
5045     --Level;
5046   }
5047 
5048   ~MDTreeAsmWriterContext() {
5049     for (const auto &Entry : Buffer) {
5050       MainOS << "\n";
5051       unsigned NumIndent = Entry.first * 2U;
5052       MainOS.indent(NumIndent) << Entry.second;
5053     }
5054   }
5055 };
5056 } // end anonymous namespace
5057 
5058 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
5059                               ModuleSlotTracker &MST, const Module *M,
5060                               bool OnlyAsOperand, bool PrintAsTree = false) {
5061   formatted_raw_ostream OS(ROS);
5062 
5063   TypePrinting TypePrinter(M);
5064 
5065   std::unique_ptr<AsmWriterContext> WriterCtx;
5066   if (PrintAsTree && !OnlyAsOperand)
5067     WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5068         &TypePrinter, MST.getMachine(), M, OS, &MD);
5069   else
5070     WriterCtx =
5071         std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
5072 
5073   WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
5074 
5075   auto *N = dyn_cast<MDNode>(&MD);
5076   if (OnlyAsOperand || !N || isa<DIExpression>(MD))
5077     return;
5078 
5079   OS << " = ";
5080   WriteMDNodeBodyInternal(OS, N, *WriterCtx);
5081 }
5082 
5083 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
5084   ModuleSlotTracker MST(M, isa<MDNode>(this));
5085   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5086 }
5087 
5088 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
5089                               const Module *M) const {
5090   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5091 }
5092 
5093 void Metadata::print(raw_ostream &OS, const Module *M,
5094                      bool /*IsForDebug*/) const {
5095   ModuleSlotTracker MST(M, isa<MDNode>(this));
5096   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5097 }
5098 
5099 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
5100                      const Module *M, bool /*IsForDebug*/) const {
5101   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5102 }
5103 
5104 void MDNode::printTree(raw_ostream &OS, const Module *M) const {
5105   ModuleSlotTracker MST(M, true);
5106   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5107                     /*PrintAsTree=*/true);
5108 }
5109 
5110 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
5111                        const Module *M) const {
5112   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5113                     /*PrintAsTree=*/true);
5114 }
5115 
5116 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
5117   SlotTracker SlotTable(this);
5118   formatted_raw_ostream OS(ROS);
5119   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
5120   W.printModuleSummaryIndex();
5121 }
5122 
5123 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
5124                                        unsigned UB) const {
5125   SlotTracker *ST = MachineStorage.get();
5126   if (!ST)
5127     return;
5128 
5129   for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
5130     if (I.second >= LB && I.second < UB)
5131       L.push_back(std::make_pair(I.second, I.first));
5132 }
5133 
5134 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5135 // Value::dump - allow easy printing of Values from the debugger.
5136 LLVM_DUMP_METHOD
5137 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5138 
5139 // Value::dump - allow easy printing of Values from the debugger.
5140 LLVM_DUMP_METHOD
5141 void DPMarker::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5142 
5143 // Value::dump - allow easy printing of Values from the debugger.
5144 LLVM_DUMP_METHOD
5145 void DPValue::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5146 
5147 // Type::dump - allow easy printing of Types from the debugger.
5148 LLVM_DUMP_METHOD
5149 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5150 
5151 // Module::dump() - Allow printing of Modules from the debugger.
5152 LLVM_DUMP_METHOD
5153 void Module::dump() const {
5154   print(dbgs(), nullptr,
5155         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
5156 }
5157 
5158 // Allow printing of Comdats from the debugger.
5159 LLVM_DUMP_METHOD
5160 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5161 
5162 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
5163 LLVM_DUMP_METHOD
5164 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5165 
5166 LLVM_DUMP_METHOD
5167 void Metadata::dump() const { dump(nullptr); }
5168 
5169 LLVM_DUMP_METHOD
5170 void Metadata::dump(const Module *M) const {
5171   print(dbgs(), M, /*IsForDebug=*/true);
5172   dbgs() << '\n';
5173 }
5174 
5175 LLVM_DUMP_METHOD
5176 void MDNode::dumpTree() const { dumpTree(nullptr); }
5177 
5178 LLVM_DUMP_METHOD
5179 void MDNode::dumpTree(const Module *M) const {
5180   printTree(dbgs(), M);
5181   dbgs() << '\n';
5182 }
5183 
5184 // Allow printing of ModuleSummaryIndex from the debugger.
5185 LLVM_DUMP_METHOD
5186 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5187 #endif
5188