xref: /freebsd/contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp (revision 2d4e511ca269f1908d27f4e5779c53475527391d)
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/UseListOrder.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Support/AtomicOrdering.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormattedStream.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97 
98 namespace {
99 
100 struct OrderMap {
101   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
102 
103   unsigned size() const { return IDs.size(); }
104   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
105 
106   std::pair<unsigned, bool> lookup(const Value *V) const {
107     return IDs.lookup(V);
108   }
109 
110   void index(const Value *V) {
111     // Explicitly sequence get-size and insert-value operations to avoid UB.
112     unsigned ID = IDs.size() + 1;
113     IDs[V].first = ID;
114   }
115 };
116 
117 } // end anonymous namespace
118 
119 static void orderValue(const Value *V, OrderMap &OM) {
120   if (OM.lookup(V).first)
121     return;
122 
123   if (const Constant *C = dyn_cast<Constant>(V))
124     if (C->getNumOperands() && !isa<GlobalValue>(C))
125       for (const Value *Op : C->operands())
126         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
127           orderValue(Op, OM);
128 
129   // Note: we cannot cache this lookup above, since inserting into the map
130   // changes the map's size, and thus affects the other IDs.
131   OM.index(V);
132 }
133 
134 static OrderMap orderModule(const Module *M) {
135   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
136   // and ValueEnumerator::incorporateFunction().
137   OrderMap OM;
138 
139   for (const GlobalVariable &G : M->globals()) {
140     if (G.hasInitializer())
141       if (!isa<GlobalValue>(G.getInitializer()))
142         orderValue(G.getInitializer(), OM);
143     orderValue(&G, OM);
144   }
145   for (const GlobalAlias &A : M->aliases()) {
146     if (!isa<GlobalValue>(A.getAliasee()))
147       orderValue(A.getAliasee(), OM);
148     orderValue(&A, OM);
149   }
150   for (const GlobalIFunc &I : M->ifuncs()) {
151     if (!isa<GlobalValue>(I.getResolver()))
152       orderValue(I.getResolver(), OM);
153     orderValue(&I, OM);
154   }
155   for (const Function &F : *M) {
156     for (const Use &U : F.operands())
157       if (!isa<GlobalValue>(U.get()))
158         orderValue(U.get(), OM);
159 
160     orderValue(&F, OM);
161 
162     if (F.isDeclaration())
163       continue;
164 
165     for (const Argument &A : F.args())
166       orderValue(&A, OM);
167     for (const BasicBlock &BB : F) {
168       orderValue(&BB, OM);
169       for (const Instruction &I : BB) {
170         for (const Value *Op : I.operands())
171           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
172               isa<InlineAsm>(*Op))
173             orderValue(Op, OM);
174         orderValue(&I, OM);
175       }
176     }
177   }
178   return OM;
179 }
180 
181 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
182                                          unsigned ID, const OrderMap &OM,
183                                          UseListOrderStack &Stack) {
184   // Predict use-list order for this one.
185   using Entry = std::pair<const Use *, unsigned>;
186   SmallVector<Entry, 64> List;
187   for (const Use &U : V->uses())
188     // Check if this user will be serialized.
189     if (OM.lookup(U.getUser()).first)
190       List.push_back(std::make_pair(&U, List.size()));
191 
192   if (List.size() < 2)
193     // We may have lost some users.
194     return;
195 
196   bool GetsReversed =
197       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
198   if (auto *BA = dyn_cast<BlockAddress>(V))
199     ID = OM.lookup(BA->getBasicBlock()).first;
200   llvm::sort(List, [&](const Entry &L, const Entry &R) {
201     const Use *LU = L.first;
202     const Use *RU = R.first;
203     if (LU == RU)
204       return false;
205 
206     auto LID = OM.lookup(LU->getUser()).first;
207     auto RID = OM.lookup(RU->getUser()).first;
208 
209     // If ID is 4, then expect: 7 6 5 1 2 3.
210     if (LID < RID) {
211       if (GetsReversed)
212         if (RID <= ID)
213           return true;
214       return false;
215     }
216     if (RID < LID) {
217       if (GetsReversed)
218         if (LID <= ID)
219           return false;
220       return true;
221     }
222 
223     // LID and RID are equal, so we have different operands of the same user.
224     // Assume operands are added in order for all instructions.
225     if (GetsReversed)
226       if (LID <= ID)
227         return LU->getOperandNo() < RU->getOperandNo();
228     return LU->getOperandNo() > RU->getOperandNo();
229   });
230 
231   if (std::is_sorted(
232           List.begin(), List.end(),
233           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
234     // Order is already correct.
235     return;
236 
237   // Store the shuffle.
238   Stack.emplace_back(V, F, List.size());
239   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
240   for (size_t I = 0, E = List.size(); I != E; ++I)
241     Stack.back().Shuffle[I] = List[I].second;
242 }
243 
244 static void predictValueUseListOrder(const Value *V, const Function *F,
245                                      OrderMap &OM, UseListOrderStack &Stack) {
246   auto &IDPair = OM[V];
247   assert(IDPair.first && "Unmapped value");
248   if (IDPair.second)
249     // Already predicted.
250     return;
251 
252   // Do the actual prediction.
253   IDPair.second = true;
254   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
255     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
256 
257   // Recursive descent into constants.
258   if (const Constant *C = dyn_cast<Constant>(V))
259     if (C->getNumOperands()) // Visit GlobalValues.
260       for (const Value *Op : C->operands())
261         if (isa<Constant>(Op)) // Visit GlobalValues.
262           predictValueUseListOrder(Op, F, OM, Stack);
263 }
264 
265 static UseListOrderStack predictUseListOrder(const Module *M) {
266   OrderMap OM = orderModule(M);
267 
268   // Use-list orders need to be serialized after all the users have been added
269   // to a value, or else the shuffles will be incomplete.  Store them per
270   // function in a stack.
271   //
272   // Aside from function order, the order of values doesn't matter much here.
273   UseListOrderStack Stack;
274 
275   // We want to visit the functions backward now so we can list function-local
276   // constants in the last Function they're used in.  Module-level constants
277   // have already been visited above.
278   for (const Function &F : make_range(M->rbegin(), M->rend())) {
279     if (F.isDeclaration())
280       continue;
281     for (const BasicBlock &BB : F)
282       predictValueUseListOrder(&BB, &F, OM, Stack);
283     for (const Argument &A : F.args())
284       predictValueUseListOrder(&A, &F, OM, Stack);
285     for (const BasicBlock &BB : F)
286       for (const Instruction &I : BB)
287         for (const Value *Op : I.operands())
288           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
289             predictValueUseListOrder(Op, &F, OM, Stack);
290     for (const BasicBlock &BB : F)
291       for (const Instruction &I : BB)
292         predictValueUseListOrder(&I, &F, OM, Stack);
293   }
294 
295   // Visit globals last.
296   for (const GlobalVariable &G : M->globals())
297     predictValueUseListOrder(&G, nullptr, OM, Stack);
298   for (const Function &F : *M)
299     predictValueUseListOrder(&F, nullptr, OM, Stack);
300   for (const GlobalAlias &A : M->aliases())
301     predictValueUseListOrder(&A, nullptr, OM, Stack);
302   for (const GlobalIFunc &I : M->ifuncs())
303     predictValueUseListOrder(&I, nullptr, OM, Stack);
304   for (const GlobalVariable &G : M->globals())
305     if (G.hasInitializer())
306       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
307   for (const GlobalAlias &A : M->aliases())
308     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
309   for (const GlobalIFunc &I : M->ifuncs())
310     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
311   for (const Function &F : *M)
312     for (const Use &U : F.operands())
313       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
314 
315   return Stack;
316 }
317 
318 static const Module *getModuleFromVal(const Value *V) {
319   if (const Argument *MA = dyn_cast<Argument>(V))
320     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
321 
322   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
323     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
324 
325   if (const Instruction *I = dyn_cast<Instruction>(V)) {
326     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
327     return M ? M->getParent() : nullptr;
328   }
329 
330   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
331     return GV->getParent();
332 
333   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
334     for (const User *U : MAV->users())
335       if (isa<Instruction>(U))
336         if (const Module *M = getModuleFromVal(U))
337           return M;
338     return nullptr;
339   }
340 
341   return nullptr;
342 }
343 
344 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
345   switch (cc) {
346   default:                         Out << "cc" << cc; break;
347   case CallingConv::Fast:          Out << "fastcc"; break;
348   case CallingConv::Cold:          Out << "coldcc"; break;
349   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
350   case CallingConv::AnyReg:        Out << "anyregcc"; break;
351   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
352   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
353   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
354   case CallingConv::GHC:           Out << "ghccc"; break;
355   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
356   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
357   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
358   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
359   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
360   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
361   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
362   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
363   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
364   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
365   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
366   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
367   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
368   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
369   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
370   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
371   case CallingConv::Win64:         Out << "win64cc"; break;
372   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
373   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
374   case CallingConv::Swift:         Out << "swiftcc"; break;
375   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
376   case CallingConv::HHVM:          Out << "hhvmcc"; break;
377   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
378   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
379   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
380   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
381   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
382   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
383   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
384   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
385   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
386   }
387 }
388 
389 enum PrefixType {
390   GlobalPrefix,
391   ComdatPrefix,
392   LabelPrefix,
393   LocalPrefix,
394   NoPrefix
395 };
396 
397 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
398   assert(!Name.empty() && "Cannot get empty name!");
399 
400   // Scan the name to see if it needs quotes first.
401   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
402   if (!NeedsQuotes) {
403     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
404       // By making this unsigned, the value passed in to isalnum will always be
405       // in the range 0-255.  This is important when building with MSVC because
406       // its implementation will assert.  This situation can arise when dealing
407       // with UTF-8 multibyte characters.
408       unsigned char C = Name[i];
409       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
410           C != '_') {
411         NeedsQuotes = true;
412         break;
413       }
414     }
415   }
416 
417   // If we didn't need any quotes, just write out the name in one blast.
418   if (!NeedsQuotes) {
419     OS << Name;
420     return;
421   }
422 
423   // Okay, we need quotes.  Output the quotes and escape any scary characters as
424   // needed.
425   OS << '"';
426   printEscapedString(Name, OS);
427   OS << '"';
428 }
429 
430 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
431 /// (if the string only contains simple characters) or is surrounded with ""'s
432 /// (if it has special chars in it). Print it out.
433 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
434   switch (Prefix) {
435   case NoPrefix:
436     break;
437   case GlobalPrefix:
438     OS << '@';
439     break;
440   case ComdatPrefix:
441     OS << '$';
442     break;
443   case LabelPrefix:
444     break;
445   case LocalPrefix:
446     OS << '%';
447     break;
448   }
449   printLLVMNameWithoutPrefix(OS, Name);
450 }
451 
452 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
453 /// (if the string only contains simple characters) or is surrounded with ""'s
454 /// (if it has special chars in it). Print it out.
455 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
456   PrintLLVMName(OS, V->getName(),
457                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
458 }
459 
460 namespace {
461 
462 class TypePrinting {
463 public:
464   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
465 
466   TypePrinting(const TypePrinting &) = delete;
467   TypePrinting &operator=(const TypePrinting &) = delete;
468 
469   /// The named types that are used by the current module.
470   TypeFinder &getNamedTypes();
471 
472   /// The numbered types, number to type mapping.
473   std::vector<StructType *> &getNumberedTypes();
474 
475   bool empty();
476 
477   void print(Type *Ty, raw_ostream &OS);
478 
479   void printStructBody(StructType *Ty, raw_ostream &OS);
480 
481 private:
482   void incorporateTypes();
483 
484   /// A module to process lazily when needed. Set to nullptr as soon as used.
485   const Module *DeferredM;
486 
487   TypeFinder NamedTypes;
488 
489   // The numbered types, along with their value.
490   DenseMap<StructType *, unsigned> Type2Number;
491 
492   std::vector<StructType *> NumberedTypes;
493 };
494 
495 } // end anonymous namespace
496 
497 TypeFinder &TypePrinting::getNamedTypes() {
498   incorporateTypes();
499   return NamedTypes;
500 }
501 
502 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
503   incorporateTypes();
504 
505   // We know all the numbers that each type is used and we know that it is a
506   // dense assignment. Convert the map to an index table, if it's not done
507   // already (judging from the sizes):
508   if (NumberedTypes.size() == Type2Number.size())
509     return NumberedTypes;
510 
511   NumberedTypes.resize(Type2Number.size());
512   for (const auto &P : Type2Number) {
513     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
514     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
515     NumberedTypes[P.second] = P.first;
516   }
517   return NumberedTypes;
518 }
519 
520 bool TypePrinting::empty() {
521   incorporateTypes();
522   return NamedTypes.empty() && Type2Number.empty();
523 }
524 
525 void TypePrinting::incorporateTypes() {
526   if (!DeferredM)
527     return;
528 
529   NamedTypes.run(*DeferredM, false);
530   DeferredM = nullptr;
531 
532   // The list of struct types we got back includes all the struct types, split
533   // the unnamed ones out to a numbering and remove the anonymous structs.
534   unsigned NextNumber = 0;
535 
536   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
537   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
538     StructType *STy = *I;
539 
540     // Ignore anonymous types.
541     if (STy->isLiteral())
542       continue;
543 
544     if (STy->getName().empty())
545       Type2Number[STy] = NextNumber++;
546     else
547       *NextToUse++ = STy;
548   }
549 
550   NamedTypes.erase(NextToUse, NamedTypes.end());
551 }
552 
553 /// Write the specified type to the specified raw_ostream, making use of type
554 /// names or up references to shorten the type name where possible.
555 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
556   switch (Ty->getTypeID()) {
557   case Type::VoidTyID:      OS << "void"; return;
558   case Type::HalfTyID:      OS << "half"; return;
559   case Type::FloatTyID:     OS << "float"; return;
560   case Type::DoubleTyID:    OS << "double"; return;
561   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
562   case Type::FP128TyID:     OS << "fp128"; return;
563   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
564   case Type::LabelTyID:     OS << "label"; return;
565   case Type::MetadataTyID:  OS << "metadata"; return;
566   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
567   case Type::TokenTyID:     OS << "token"; return;
568   case Type::IntegerTyID:
569     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
570     return;
571 
572   case Type::FunctionTyID: {
573     FunctionType *FTy = cast<FunctionType>(Ty);
574     print(FTy->getReturnType(), OS);
575     OS << " (";
576     for (FunctionType::param_iterator I = FTy->param_begin(),
577          E = FTy->param_end(); I != E; ++I) {
578       if (I != FTy->param_begin())
579         OS << ", ";
580       print(*I, OS);
581     }
582     if (FTy->isVarArg()) {
583       if (FTy->getNumParams()) OS << ", ";
584       OS << "...";
585     }
586     OS << ')';
587     return;
588   }
589   case Type::StructTyID: {
590     StructType *STy = cast<StructType>(Ty);
591 
592     if (STy->isLiteral())
593       return printStructBody(STy, OS);
594 
595     if (!STy->getName().empty())
596       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
597 
598     incorporateTypes();
599     const auto I = Type2Number.find(STy);
600     if (I != Type2Number.end())
601       OS << '%' << I->second;
602     else  // Not enumerated, print the hex address.
603       OS << "%\"type " << STy << '\"';
604     return;
605   }
606   case Type::PointerTyID: {
607     PointerType *PTy = cast<PointerType>(Ty);
608     print(PTy->getElementType(), OS);
609     if (unsigned AddressSpace = PTy->getAddressSpace())
610       OS << " addrspace(" << AddressSpace << ')';
611     OS << '*';
612     return;
613   }
614   case Type::ArrayTyID: {
615     ArrayType *ATy = cast<ArrayType>(Ty);
616     OS << '[' << ATy->getNumElements() << " x ";
617     print(ATy->getElementType(), OS);
618     OS << ']';
619     return;
620   }
621   case Type::VectorTyID: {
622     VectorType *PTy = cast<VectorType>(Ty);
623     OS << "<";
624     if (PTy->isScalable())
625       OS << "vscale x ";
626     OS << PTy->getNumElements() << " x ";
627     print(PTy->getElementType(), OS);
628     OS << '>';
629     return;
630   }
631   }
632   llvm_unreachable("Invalid TypeID");
633 }
634 
635 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
636   if (STy->isOpaque()) {
637     OS << "opaque";
638     return;
639   }
640 
641   if (STy->isPacked())
642     OS << '<';
643 
644   if (STy->getNumElements() == 0) {
645     OS << "{}";
646   } else {
647     StructType::element_iterator I = STy->element_begin();
648     OS << "{ ";
649     print(*I++, OS);
650     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
651       OS << ", ";
652       print(*I, OS);
653     }
654 
655     OS << " }";
656   }
657   if (STy->isPacked())
658     OS << '>';
659 }
660 
661 namespace llvm {
662 
663 //===----------------------------------------------------------------------===//
664 // SlotTracker Class: Enumerate slot numbers for unnamed values
665 //===----------------------------------------------------------------------===//
666 /// This class provides computation of slot numbers for LLVM Assembly writing.
667 ///
668 class SlotTracker {
669 public:
670   /// ValueMap - A mapping of Values to slot numbers.
671   using ValueMap = DenseMap<const Value *, unsigned>;
672 
673 private:
674   /// TheModule - The module for which we are holding slot numbers.
675   const Module* TheModule;
676 
677   /// TheFunction - The function for which we are holding slot numbers.
678   const Function* TheFunction = nullptr;
679   bool FunctionProcessed = false;
680   bool ShouldInitializeAllMetadata;
681 
682   /// The summary index for which we are holding slot numbers.
683   const ModuleSummaryIndex *TheIndex = nullptr;
684 
685   /// mMap - The slot map for the module level data.
686   ValueMap mMap;
687   unsigned mNext = 0;
688 
689   /// fMap - The slot map for the function level data.
690   ValueMap fMap;
691   unsigned fNext = 0;
692 
693   /// mdnMap - Map for MDNodes.
694   DenseMap<const MDNode*, unsigned> mdnMap;
695   unsigned mdnNext = 0;
696 
697   /// asMap - The slot map for attribute sets.
698   DenseMap<AttributeSet, unsigned> asMap;
699   unsigned asNext = 0;
700 
701   /// ModulePathMap - The slot map for Module paths used in the summary index.
702   StringMap<unsigned> ModulePathMap;
703   unsigned ModulePathNext = 0;
704 
705   /// GUIDMap - The slot map for GUIDs used in the summary index.
706   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
707   unsigned GUIDNext = 0;
708 
709   /// TypeIdMap - The slot map for type ids used in the summary index.
710   StringMap<unsigned> TypeIdMap;
711   unsigned TypeIdNext = 0;
712 
713 public:
714   /// Construct from a module.
715   ///
716   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
717   /// functions, giving correct numbering for metadata referenced only from
718   /// within a function (even if no functions have been initialized).
719   explicit SlotTracker(const Module *M,
720                        bool ShouldInitializeAllMetadata = false);
721 
722   /// Construct from a function, starting out in incorp state.
723   ///
724   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
725   /// functions, giving correct numbering for metadata referenced only from
726   /// within a function (even if no functions have been initialized).
727   explicit SlotTracker(const Function *F,
728                        bool ShouldInitializeAllMetadata = false);
729 
730   /// Construct from a module summary index.
731   explicit SlotTracker(const ModuleSummaryIndex *Index);
732 
733   SlotTracker(const SlotTracker &) = delete;
734   SlotTracker &operator=(const SlotTracker &) = delete;
735 
736   /// Return the slot number of the specified value in it's type
737   /// plane.  If something is not in the SlotTracker, return -1.
738   int getLocalSlot(const Value *V);
739   int getGlobalSlot(const GlobalValue *V);
740   int getMetadataSlot(const MDNode *N);
741   int getAttributeGroupSlot(AttributeSet AS);
742   int getModulePathSlot(StringRef Path);
743   int getGUIDSlot(GlobalValue::GUID GUID);
744   int getTypeIdSlot(StringRef Id);
745 
746   /// If you'd like to deal with a function instead of just a module, use
747   /// this method to get its data into the SlotTracker.
748   void incorporateFunction(const Function *F) {
749     TheFunction = F;
750     FunctionProcessed = false;
751   }
752 
753   const Function *getFunction() const { return TheFunction; }
754 
755   /// After calling incorporateFunction, use this method to remove the
756   /// most recently incorporated function from the SlotTracker. This
757   /// will reset the state of the machine back to just the module contents.
758   void purgeFunction();
759 
760   /// MDNode map iterators.
761   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
762 
763   mdn_iterator mdn_begin() { return mdnMap.begin(); }
764   mdn_iterator mdn_end() { return mdnMap.end(); }
765   unsigned mdn_size() const { return mdnMap.size(); }
766   bool mdn_empty() const { return mdnMap.empty(); }
767 
768   /// AttributeSet map iterators.
769   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
770 
771   as_iterator as_begin()   { return asMap.begin(); }
772   as_iterator as_end()     { return asMap.end(); }
773   unsigned as_size() const { return asMap.size(); }
774   bool as_empty() const    { return asMap.empty(); }
775 
776   /// GUID map iterators.
777   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
778 
779   /// These functions do the actual initialization.
780   inline void initializeIfNeeded();
781   void initializeIndexIfNeeded();
782 
783   // Implementation Details
784 private:
785   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
786   void CreateModuleSlot(const GlobalValue *V);
787 
788   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
789   void CreateMetadataSlot(const MDNode *N);
790 
791   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
792   void CreateFunctionSlot(const Value *V);
793 
794   /// Insert the specified AttributeSet into the slot table.
795   void CreateAttributeSetSlot(AttributeSet AS);
796 
797   inline void CreateModulePathSlot(StringRef Path);
798   void CreateGUIDSlot(GlobalValue::GUID GUID);
799   void CreateTypeIdSlot(StringRef Id);
800 
801   /// Add all of the module level global variables (and their initializers)
802   /// and function declarations, but not the contents of those functions.
803   void processModule();
804   void processIndex();
805 
806   /// Add all of the functions arguments, basic blocks, and instructions.
807   void processFunction();
808 
809   /// Add the metadata directly attached to a GlobalObject.
810   void processGlobalObjectMetadata(const GlobalObject &GO);
811 
812   /// Add all of the metadata from a function.
813   void processFunctionMetadata(const Function &F);
814 
815   /// Add all of the metadata from an instruction.
816   void processInstructionMetadata(const Instruction &I);
817 };
818 
819 } // end namespace llvm
820 
821 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
822                                      const Function *F)
823     : M(M), F(F), Machine(&Machine) {}
824 
825 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
826                                      bool ShouldInitializeAllMetadata)
827     : ShouldCreateStorage(M),
828       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
829 
830 ModuleSlotTracker::~ModuleSlotTracker() = default;
831 
832 SlotTracker *ModuleSlotTracker::getMachine() {
833   if (!ShouldCreateStorage)
834     return Machine;
835 
836   ShouldCreateStorage = false;
837   MachineStorage =
838       llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
839   Machine = MachineStorage.get();
840   return Machine;
841 }
842 
843 void ModuleSlotTracker::incorporateFunction(const Function &F) {
844   // Using getMachine() may lazily create the slot tracker.
845   if (!getMachine())
846     return;
847 
848   // Nothing to do if this is the right function already.
849   if (this->F == &F)
850     return;
851   if (this->F)
852     Machine->purgeFunction();
853   Machine->incorporateFunction(&F);
854   this->F = &F;
855 }
856 
857 int ModuleSlotTracker::getLocalSlot(const Value *V) {
858   assert(F && "No function incorporated");
859   return Machine->getLocalSlot(V);
860 }
861 
862 static SlotTracker *createSlotTracker(const Value *V) {
863   if (const Argument *FA = dyn_cast<Argument>(V))
864     return new SlotTracker(FA->getParent());
865 
866   if (const Instruction *I = dyn_cast<Instruction>(V))
867     if (I->getParent())
868       return new SlotTracker(I->getParent()->getParent());
869 
870   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
871     return new SlotTracker(BB->getParent());
872 
873   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
874     return new SlotTracker(GV->getParent());
875 
876   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
877     return new SlotTracker(GA->getParent());
878 
879   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
880     return new SlotTracker(GIF->getParent());
881 
882   if (const Function *Func = dyn_cast<Function>(V))
883     return new SlotTracker(Func);
884 
885   return nullptr;
886 }
887 
888 #if 0
889 #define ST_DEBUG(X) dbgs() << X
890 #else
891 #define ST_DEBUG(X)
892 #endif
893 
894 // Module level constructor. Causes the contents of the Module (sans functions)
895 // to be added to the slot table.
896 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
897     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
898 
899 // Function level constructor. Causes the contents of the Module and the one
900 // function provided to be added to the slot table.
901 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
902     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
903       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
904 
905 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
906     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
907 
908 inline void SlotTracker::initializeIfNeeded() {
909   if (TheModule) {
910     processModule();
911     TheModule = nullptr; ///< Prevent re-processing next time we're called.
912   }
913 
914   if (TheFunction && !FunctionProcessed)
915     processFunction();
916 }
917 
918 void SlotTracker::initializeIndexIfNeeded() {
919   if (!TheIndex)
920     return;
921   processIndex();
922   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
923 }
924 
925 // Iterate through all the global variables, functions, and global
926 // variable initializers and create slots for them.
927 void SlotTracker::processModule() {
928   ST_DEBUG("begin processModule!\n");
929 
930   // Add all of the unnamed global variables to the value table.
931   for (const GlobalVariable &Var : TheModule->globals()) {
932     if (!Var.hasName())
933       CreateModuleSlot(&Var);
934     processGlobalObjectMetadata(Var);
935     auto Attrs = Var.getAttributes();
936     if (Attrs.hasAttributes())
937       CreateAttributeSetSlot(Attrs);
938   }
939 
940   for (const GlobalAlias &A : TheModule->aliases()) {
941     if (!A.hasName())
942       CreateModuleSlot(&A);
943   }
944 
945   for (const GlobalIFunc &I : TheModule->ifuncs()) {
946     if (!I.hasName())
947       CreateModuleSlot(&I);
948   }
949 
950   // Add metadata used by named metadata.
951   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
952     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
953       CreateMetadataSlot(NMD.getOperand(i));
954   }
955 
956   for (const Function &F : *TheModule) {
957     if (!F.hasName())
958       // Add all the unnamed functions to the table.
959       CreateModuleSlot(&F);
960 
961     if (ShouldInitializeAllMetadata)
962       processFunctionMetadata(F);
963 
964     // Add all the function attributes to the table.
965     // FIXME: Add attributes of other objects?
966     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
967     if (FnAttrs.hasAttributes())
968       CreateAttributeSetSlot(FnAttrs);
969   }
970 
971   ST_DEBUG("end processModule!\n");
972 }
973 
974 // Process the arguments, basic blocks, and instructions  of a function.
975 void SlotTracker::processFunction() {
976   ST_DEBUG("begin processFunction!\n");
977   fNext = 0;
978 
979   // Process function metadata if it wasn't hit at the module-level.
980   if (!ShouldInitializeAllMetadata)
981     processFunctionMetadata(*TheFunction);
982 
983   // Add all the function arguments with no names.
984   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
985       AE = TheFunction->arg_end(); AI != AE; ++AI)
986     if (!AI->hasName())
987       CreateFunctionSlot(&*AI);
988 
989   ST_DEBUG("Inserting Instructions:\n");
990 
991   // Add all of the basic blocks and instructions with no names.
992   for (auto &BB : *TheFunction) {
993     if (!BB.hasName())
994       CreateFunctionSlot(&BB);
995 
996     for (auto &I : BB) {
997       if (!I.getType()->isVoidTy() && !I.hasName())
998         CreateFunctionSlot(&I);
999 
1000       // We allow direct calls to any llvm.foo function here, because the
1001       // target may not be linked into the optimizer.
1002       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1003         // Add all the call attributes to the table.
1004         AttributeSet Attrs = Call->getAttributes().getFnAttributes();
1005         if (Attrs.hasAttributes())
1006           CreateAttributeSetSlot(Attrs);
1007       }
1008     }
1009   }
1010 
1011   FunctionProcessed = true;
1012 
1013   ST_DEBUG("end processFunction!\n");
1014 }
1015 
1016 // Iterate through all the GUID in the index and create slots for them.
1017 void SlotTracker::processIndex() {
1018   ST_DEBUG("begin processIndex!\n");
1019   assert(TheIndex);
1020 
1021   // The first block of slots are just the module ids, which start at 0 and are
1022   // assigned consecutively. Since the StringMap iteration order isn't
1023   // guaranteed, use a std::map to order by module ID before assigning slots.
1024   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1025   for (auto &ModPath : TheIndex->modulePaths())
1026     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1027   for (auto &ModPair : ModuleIdToPathMap)
1028     CreateModulePathSlot(ModPair.second);
1029 
1030   // Start numbering the GUIDs after the module ids.
1031   GUIDNext = ModulePathNext;
1032 
1033   for (auto &GlobalList : *TheIndex)
1034     CreateGUIDSlot(GlobalList.first);
1035 
1036   // Start numbering the TypeIds after the GUIDs.
1037   TypeIdNext = GUIDNext;
1038 
1039   for (auto TidIter = TheIndex->typeIds().begin();
1040        TidIter != TheIndex->typeIds().end(); TidIter++)
1041     CreateTypeIdSlot(TidIter->second.first);
1042 
1043   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1044     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1045 
1046   ST_DEBUG("end processIndex!\n");
1047 }
1048 
1049 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1050   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1051   GO.getAllMetadata(MDs);
1052   for (auto &MD : MDs)
1053     CreateMetadataSlot(MD.second);
1054 }
1055 
1056 void SlotTracker::processFunctionMetadata(const Function &F) {
1057   processGlobalObjectMetadata(F);
1058   for (auto &BB : F) {
1059     for (auto &I : BB)
1060       processInstructionMetadata(I);
1061   }
1062 }
1063 
1064 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1065   // Process metadata used directly by intrinsics.
1066   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1067     if (Function *F = CI->getCalledFunction())
1068       if (F->isIntrinsic())
1069         for (auto &Op : I.operands())
1070           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1071             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1072               CreateMetadataSlot(N);
1073 
1074   // Process metadata attached to this instruction.
1075   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1076   I.getAllMetadata(MDs);
1077   for (auto &MD : MDs)
1078     CreateMetadataSlot(MD.second);
1079 }
1080 
1081 /// Clean up after incorporating a function. This is the only way to get out of
1082 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1083 /// incorporation state is indicated by TheFunction != 0.
1084 void SlotTracker::purgeFunction() {
1085   ST_DEBUG("begin purgeFunction!\n");
1086   fMap.clear(); // Simply discard the function level map
1087   TheFunction = nullptr;
1088   FunctionProcessed = false;
1089   ST_DEBUG("end purgeFunction!\n");
1090 }
1091 
1092 /// getGlobalSlot - Get the slot number of a global value.
1093 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1094   // Check for uninitialized state and do lazy initialization.
1095   initializeIfNeeded();
1096 
1097   // Find the value in the module map
1098   ValueMap::iterator MI = mMap.find(V);
1099   return MI == mMap.end() ? -1 : (int)MI->second;
1100 }
1101 
1102 /// getMetadataSlot - Get the slot number of a MDNode.
1103 int SlotTracker::getMetadataSlot(const MDNode *N) {
1104   // Check for uninitialized state and do lazy initialization.
1105   initializeIfNeeded();
1106 
1107   // Find the MDNode in the module map
1108   mdn_iterator MI = mdnMap.find(N);
1109   return MI == mdnMap.end() ? -1 : (int)MI->second;
1110 }
1111 
1112 /// getLocalSlot - Get the slot number for a value that is local to a function.
1113 int SlotTracker::getLocalSlot(const Value *V) {
1114   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1115 
1116   // Check for uninitialized state and do lazy initialization.
1117   initializeIfNeeded();
1118 
1119   ValueMap::iterator FI = fMap.find(V);
1120   return FI == fMap.end() ? -1 : (int)FI->second;
1121 }
1122 
1123 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1124   // Check for uninitialized state and do lazy initialization.
1125   initializeIfNeeded();
1126 
1127   // Find the AttributeSet in the module map.
1128   as_iterator AI = asMap.find(AS);
1129   return AI == asMap.end() ? -1 : (int)AI->second;
1130 }
1131 
1132 int SlotTracker::getModulePathSlot(StringRef Path) {
1133   // Check for uninitialized state and do lazy initialization.
1134   initializeIndexIfNeeded();
1135 
1136   // Find the Module path in the map
1137   auto I = ModulePathMap.find(Path);
1138   return I == ModulePathMap.end() ? -1 : (int)I->second;
1139 }
1140 
1141 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1142   // Check for uninitialized state and do lazy initialization.
1143   initializeIndexIfNeeded();
1144 
1145   // Find the GUID in the map
1146   guid_iterator I = GUIDMap.find(GUID);
1147   return I == GUIDMap.end() ? -1 : (int)I->second;
1148 }
1149 
1150 int SlotTracker::getTypeIdSlot(StringRef Id) {
1151   // Check for uninitialized state and do lazy initialization.
1152   initializeIndexIfNeeded();
1153 
1154   // Find the TypeId string in the map
1155   auto I = TypeIdMap.find(Id);
1156   return I == TypeIdMap.end() ? -1 : (int)I->second;
1157 }
1158 
1159 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1160 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1161   assert(V && "Can't insert a null Value into SlotTracker!");
1162   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1163   assert(!V->hasName() && "Doesn't need a slot!");
1164 
1165   unsigned DestSlot = mNext++;
1166   mMap[V] = DestSlot;
1167 
1168   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1169            DestSlot << " [");
1170   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1171   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1172             (isa<Function>(V) ? 'F' :
1173              (isa<GlobalAlias>(V) ? 'A' :
1174               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1175 }
1176 
1177 /// CreateSlot - Create a new slot for the specified value if it has no name.
1178 void SlotTracker::CreateFunctionSlot(const Value *V) {
1179   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1180 
1181   unsigned DestSlot = fNext++;
1182   fMap[V] = DestSlot;
1183 
1184   // G = Global, F = Function, o = other
1185   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1186            DestSlot << " [o]\n");
1187 }
1188 
1189 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1190 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1191   assert(N && "Can't insert a null Value into SlotTracker!");
1192 
1193   // Don't make slots for DIExpressions. We just print them inline everywhere.
1194   if (isa<DIExpression>(N))
1195     return;
1196 
1197   unsigned DestSlot = mdnNext;
1198   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1199     return;
1200   ++mdnNext;
1201 
1202   // Recursively add any MDNodes referenced by operands.
1203   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1204     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1205       CreateMetadataSlot(Op);
1206 }
1207 
1208 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1209   assert(AS.hasAttributes() && "Doesn't need a slot!");
1210 
1211   as_iterator I = asMap.find(AS);
1212   if (I != asMap.end())
1213     return;
1214 
1215   unsigned DestSlot = asNext++;
1216   asMap[AS] = DestSlot;
1217 }
1218 
1219 /// Create a new slot for the specified Module
1220 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1221   ModulePathMap[Path] = ModulePathNext++;
1222 }
1223 
1224 /// Create a new slot for the specified GUID
1225 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1226   GUIDMap[GUID] = GUIDNext++;
1227 }
1228 
1229 /// Create a new slot for the specified Id
1230 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1231   TypeIdMap[Id] = TypeIdNext++;
1232 }
1233 
1234 //===----------------------------------------------------------------------===//
1235 // AsmWriter Implementation
1236 //===----------------------------------------------------------------------===//
1237 
1238 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1239                                    TypePrinting *TypePrinter,
1240                                    SlotTracker *Machine,
1241                                    const Module *Context);
1242 
1243 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1244                                    TypePrinting *TypePrinter,
1245                                    SlotTracker *Machine, const Module *Context,
1246                                    bool FromValue = false);
1247 
1248 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1249   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1250     // 'Fast' is an abbreviation for all fast-math-flags.
1251     if (FPO->isFast())
1252       Out << " fast";
1253     else {
1254       if (FPO->hasAllowReassoc())
1255         Out << " reassoc";
1256       if (FPO->hasNoNaNs())
1257         Out << " nnan";
1258       if (FPO->hasNoInfs())
1259         Out << " ninf";
1260       if (FPO->hasNoSignedZeros())
1261         Out << " nsz";
1262       if (FPO->hasAllowReciprocal())
1263         Out << " arcp";
1264       if (FPO->hasAllowContract())
1265         Out << " contract";
1266       if (FPO->hasApproxFunc())
1267         Out << " afn";
1268     }
1269   }
1270 
1271   if (const OverflowingBinaryOperator *OBO =
1272         dyn_cast<OverflowingBinaryOperator>(U)) {
1273     if (OBO->hasNoUnsignedWrap())
1274       Out << " nuw";
1275     if (OBO->hasNoSignedWrap())
1276       Out << " nsw";
1277   } else if (const PossiblyExactOperator *Div =
1278                dyn_cast<PossiblyExactOperator>(U)) {
1279     if (Div->isExact())
1280       Out << " exact";
1281   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1282     if (GEP->isInBounds())
1283       Out << " inbounds";
1284   }
1285 }
1286 
1287 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1288                                   TypePrinting &TypePrinter,
1289                                   SlotTracker *Machine,
1290                                   const Module *Context) {
1291   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1292     if (CI->getType()->isIntegerTy(1)) {
1293       Out << (CI->getZExtValue() ? "true" : "false");
1294       return;
1295     }
1296     Out << CI->getValue();
1297     return;
1298   }
1299 
1300   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1301     const APFloat &APF = CFP->getValueAPF();
1302     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1303         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1304       // We would like to output the FP constant value in exponential notation,
1305       // but we cannot do this if doing so will lose precision.  Check here to
1306       // make sure that we only output it in exponential format if we can parse
1307       // the value back and get the same value.
1308       //
1309       bool ignored;
1310       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1311       bool isInf = APF.isInfinity();
1312       bool isNaN = APF.isNaN();
1313       if (!isInf && !isNaN) {
1314         double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1315         SmallString<128> StrVal;
1316         APF.toString(StrVal, 6, 0, false);
1317         // Check to make sure that the stringized number is not some string like
1318         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1319         // that the string matches the "[-+]?[0-9]" regex.
1320         //
1321         assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1322                 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1323                  (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1324                "[-+]?[0-9] regex does not match!");
1325         // Reparse stringized version!
1326         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1327           Out << StrVal;
1328           return;
1329         }
1330       }
1331       // Otherwise we could not reparse it to exactly the same value, so we must
1332       // output the string in hexadecimal format!  Note that loading and storing
1333       // floating point types changes the bits of NaNs on some hosts, notably
1334       // x86, so we must not use these types.
1335       static_assert(sizeof(double) == sizeof(uint64_t),
1336                     "assuming that double is 64 bits!");
1337       APFloat apf = APF;
1338       // Floats are represented in ASCII IR as double, convert.
1339       if (!isDouble)
1340         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1341                           &ignored);
1342       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1343       return;
1344     }
1345 
1346     // Either half, or some form of long double.
1347     // These appear as a magic letter identifying the type, then a
1348     // fixed number of hex digits.
1349     Out << "0x";
1350     APInt API = APF.bitcastToAPInt();
1351     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1352       Out << 'K';
1353       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1354                                   /*Upper=*/true);
1355       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1356                                   /*Upper=*/true);
1357       return;
1358     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1359       Out << 'L';
1360       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1361                                   /*Upper=*/true);
1362       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1363                                   /*Upper=*/true);
1364     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1365       Out << 'M';
1366       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1367                                   /*Upper=*/true);
1368       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1369                                   /*Upper=*/true);
1370     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1371       Out << 'H';
1372       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1373                                   /*Upper=*/true);
1374     } else
1375       llvm_unreachable("Unsupported floating point type");
1376     return;
1377   }
1378 
1379   if (isa<ConstantAggregateZero>(CV)) {
1380     Out << "zeroinitializer";
1381     return;
1382   }
1383 
1384   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1385     Out << "blockaddress(";
1386     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1387                            Context);
1388     Out << ", ";
1389     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1390                            Context);
1391     Out << ")";
1392     return;
1393   }
1394 
1395   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1396     Type *ETy = CA->getType()->getElementType();
1397     Out << '[';
1398     TypePrinter.print(ETy, Out);
1399     Out << ' ';
1400     WriteAsOperandInternal(Out, CA->getOperand(0),
1401                            &TypePrinter, Machine,
1402                            Context);
1403     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1404       Out << ", ";
1405       TypePrinter.print(ETy, Out);
1406       Out << ' ';
1407       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1408                              Context);
1409     }
1410     Out << ']';
1411     return;
1412   }
1413 
1414   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1415     // As a special case, print the array as a string if it is an array of
1416     // i8 with ConstantInt values.
1417     if (CA->isString()) {
1418       Out << "c\"";
1419       printEscapedString(CA->getAsString(), Out);
1420       Out << '"';
1421       return;
1422     }
1423 
1424     Type *ETy = CA->getType()->getElementType();
1425     Out << '[';
1426     TypePrinter.print(ETy, Out);
1427     Out << ' ';
1428     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1429                            &TypePrinter, Machine,
1430                            Context);
1431     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1432       Out << ", ";
1433       TypePrinter.print(ETy, Out);
1434       Out << ' ';
1435       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1436                              Machine, Context);
1437     }
1438     Out << ']';
1439     return;
1440   }
1441 
1442   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1443     if (CS->getType()->isPacked())
1444       Out << '<';
1445     Out << '{';
1446     unsigned N = CS->getNumOperands();
1447     if (N) {
1448       Out << ' ';
1449       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1450       Out << ' ';
1451 
1452       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1453                              Context);
1454 
1455       for (unsigned i = 1; i < N; i++) {
1456         Out << ", ";
1457         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1458         Out << ' ';
1459 
1460         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1461                                Context);
1462       }
1463       Out << ' ';
1464     }
1465 
1466     Out << '}';
1467     if (CS->getType()->isPacked())
1468       Out << '>';
1469     return;
1470   }
1471 
1472   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1473     Type *ETy = CV->getType()->getVectorElementType();
1474     Out << '<';
1475     TypePrinter.print(ETy, Out);
1476     Out << ' ';
1477     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1478                            Machine, Context);
1479     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1480       Out << ", ";
1481       TypePrinter.print(ETy, Out);
1482       Out << ' ';
1483       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1484                              Machine, Context);
1485     }
1486     Out << '>';
1487     return;
1488   }
1489 
1490   if (isa<ConstantPointerNull>(CV)) {
1491     Out << "null";
1492     return;
1493   }
1494 
1495   if (isa<ConstantTokenNone>(CV)) {
1496     Out << "none";
1497     return;
1498   }
1499 
1500   if (isa<UndefValue>(CV)) {
1501     Out << "undef";
1502     return;
1503   }
1504 
1505   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1506     Out << CE->getOpcodeName();
1507     WriteOptimizationInfo(Out, CE);
1508     if (CE->isCompare())
1509       Out << ' ' << CmpInst::getPredicateName(
1510                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1511     Out << " (";
1512 
1513     Optional<unsigned> InRangeOp;
1514     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1515       TypePrinter.print(GEP->getSourceElementType(), Out);
1516       Out << ", ";
1517       InRangeOp = GEP->getInRangeIndex();
1518       if (InRangeOp)
1519         ++*InRangeOp;
1520     }
1521 
1522     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1523       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1524         Out << "inrange ";
1525       TypePrinter.print((*OI)->getType(), Out);
1526       Out << ' ';
1527       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1528       if (OI+1 != CE->op_end())
1529         Out << ", ";
1530     }
1531 
1532     if (CE->hasIndices()) {
1533       ArrayRef<unsigned> Indices = CE->getIndices();
1534       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1535         Out << ", " << Indices[i];
1536     }
1537 
1538     if (CE->isCast()) {
1539       Out << " to ";
1540       TypePrinter.print(CE->getType(), Out);
1541     }
1542 
1543     Out << ')';
1544     return;
1545   }
1546 
1547   Out << "<placeholder or erroneous Constant>";
1548 }
1549 
1550 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1551                          TypePrinting *TypePrinter, SlotTracker *Machine,
1552                          const Module *Context) {
1553   Out << "!{";
1554   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1555     const Metadata *MD = Node->getOperand(mi);
1556     if (!MD)
1557       Out << "null";
1558     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1559       Value *V = MDV->getValue();
1560       TypePrinter->print(V->getType(), Out);
1561       Out << ' ';
1562       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1563     } else {
1564       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1565     }
1566     if (mi + 1 != me)
1567       Out << ", ";
1568   }
1569 
1570   Out << "}";
1571 }
1572 
1573 namespace {
1574 
1575 struct FieldSeparator {
1576   bool Skip = true;
1577   const char *Sep;
1578 
1579   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1580 };
1581 
1582 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1583   if (FS.Skip) {
1584     FS.Skip = false;
1585     return OS;
1586   }
1587   return OS << FS.Sep;
1588 }
1589 
1590 struct MDFieldPrinter {
1591   raw_ostream &Out;
1592   FieldSeparator FS;
1593   TypePrinting *TypePrinter = nullptr;
1594   SlotTracker *Machine = nullptr;
1595   const Module *Context = nullptr;
1596 
1597   explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1598   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1599                  SlotTracker *Machine, const Module *Context)
1600       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1601   }
1602 
1603   void printTag(const DINode *N);
1604   void printMacinfoType(const DIMacroNode *N);
1605   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1606   void printString(StringRef Name, StringRef Value,
1607                    bool ShouldSkipEmpty = true);
1608   void printMetadata(StringRef Name, const Metadata *MD,
1609                      bool ShouldSkipNull = true);
1610   template <class IntTy>
1611   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1612   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1613   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1614   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1615   template <class IntTy, class Stringifier>
1616   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1617                       bool ShouldSkipZero = true);
1618   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1619   void printNameTableKind(StringRef Name,
1620                           DICompileUnit::DebugNameTableKind NTK);
1621 };
1622 
1623 } // end anonymous namespace
1624 
1625 void MDFieldPrinter::printTag(const DINode *N) {
1626   Out << FS << "tag: ";
1627   auto Tag = dwarf::TagString(N->getTag());
1628   if (!Tag.empty())
1629     Out << Tag;
1630   else
1631     Out << N->getTag();
1632 }
1633 
1634 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1635   Out << FS << "type: ";
1636   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1637   if (!Type.empty())
1638     Out << Type;
1639   else
1640     Out << N->getMacinfoType();
1641 }
1642 
1643 void MDFieldPrinter::printChecksum(
1644     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1645   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1646   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1647 }
1648 
1649 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1650                                  bool ShouldSkipEmpty) {
1651   if (ShouldSkipEmpty && Value.empty())
1652     return;
1653 
1654   Out << FS << Name << ": \"";
1655   printEscapedString(Value, Out);
1656   Out << "\"";
1657 }
1658 
1659 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1660                                    TypePrinting *TypePrinter,
1661                                    SlotTracker *Machine,
1662                                    const Module *Context) {
1663   if (!MD) {
1664     Out << "null";
1665     return;
1666   }
1667   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1668 }
1669 
1670 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1671                                    bool ShouldSkipNull) {
1672   if (ShouldSkipNull && !MD)
1673     return;
1674 
1675   Out << FS << Name << ": ";
1676   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1677 }
1678 
1679 template <class IntTy>
1680 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1681   if (ShouldSkipZero && !Int)
1682     return;
1683 
1684   Out << FS << Name << ": " << Int;
1685 }
1686 
1687 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1688                                Optional<bool> Default) {
1689   if (Default && Value == *Default)
1690     return;
1691   Out << FS << Name << ": " << (Value ? "true" : "false");
1692 }
1693 
1694 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1695   if (!Flags)
1696     return;
1697 
1698   Out << FS << Name << ": ";
1699 
1700   SmallVector<DINode::DIFlags, 8> SplitFlags;
1701   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1702 
1703   FieldSeparator FlagsFS(" | ");
1704   for (auto F : SplitFlags) {
1705     auto StringF = DINode::getFlagString(F);
1706     assert(!StringF.empty() && "Expected valid flag");
1707     Out << FlagsFS << StringF;
1708   }
1709   if (Extra || SplitFlags.empty())
1710     Out << FlagsFS << Extra;
1711 }
1712 
1713 void MDFieldPrinter::printDISPFlags(StringRef Name,
1714                                     DISubprogram::DISPFlags Flags) {
1715   // Always print this field, because no flags in the IR at all will be
1716   // interpreted as old-style isDefinition: true.
1717   Out << FS << Name << ": ";
1718 
1719   if (!Flags) {
1720     Out << 0;
1721     return;
1722   }
1723 
1724   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1725   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1726 
1727   FieldSeparator FlagsFS(" | ");
1728   for (auto F : SplitFlags) {
1729     auto StringF = DISubprogram::getFlagString(F);
1730     assert(!StringF.empty() && "Expected valid flag");
1731     Out << FlagsFS << StringF;
1732   }
1733   if (Extra || SplitFlags.empty())
1734     Out << FlagsFS << Extra;
1735 }
1736 
1737 void MDFieldPrinter::printEmissionKind(StringRef Name,
1738                                        DICompileUnit::DebugEmissionKind EK) {
1739   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1740 }
1741 
1742 void MDFieldPrinter::printNameTableKind(StringRef Name,
1743                                         DICompileUnit::DebugNameTableKind NTK) {
1744   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1745     return;
1746   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1747 }
1748 
1749 template <class IntTy, class Stringifier>
1750 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1751                                     Stringifier toString, bool ShouldSkipZero) {
1752   if (!Value)
1753     return;
1754 
1755   Out << FS << Name << ": ";
1756   auto S = toString(Value);
1757   if (!S.empty())
1758     Out << S;
1759   else
1760     Out << Value;
1761 }
1762 
1763 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1764                                TypePrinting *TypePrinter, SlotTracker *Machine,
1765                                const Module *Context) {
1766   Out << "!GenericDINode(";
1767   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1768   Printer.printTag(N);
1769   Printer.printString("header", N->getHeader());
1770   if (N->getNumDwarfOperands()) {
1771     Out << Printer.FS << "operands: {";
1772     FieldSeparator IFS;
1773     for (auto &I : N->dwarf_operands()) {
1774       Out << IFS;
1775       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1776     }
1777     Out << "}";
1778   }
1779   Out << ")";
1780 }
1781 
1782 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1783                             TypePrinting *TypePrinter, SlotTracker *Machine,
1784                             const Module *Context) {
1785   Out << "!DILocation(";
1786   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1787   // Always output the line, since 0 is a relevant and important value for it.
1788   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1789   Printer.printInt("column", DL->getColumn());
1790   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1791   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1792   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1793                     /* Default */ false);
1794   Out << ")";
1795 }
1796 
1797 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1798                             TypePrinting *TypePrinter, SlotTracker *Machine,
1799                             const Module *Context) {
1800   Out << "!DISubrange(";
1801   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1802   if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
1803     Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
1804   else
1805     Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(),
1806                           /*ShouldSkipNull */ false);
1807   Printer.printInt("lowerBound", N->getLowerBound());
1808   Out << ")";
1809 }
1810 
1811 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1812                               TypePrinting *, SlotTracker *, const Module *) {
1813   Out << "!DIEnumerator(";
1814   MDFieldPrinter Printer(Out);
1815   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1816   if (N->isUnsigned()) {
1817     auto Value = static_cast<uint64_t>(N->getValue());
1818     Printer.printInt("value", Value, /* ShouldSkipZero */ false);
1819     Printer.printBool("isUnsigned", true);
1820   } else {
1821     Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1822   }
1823   Out << ")";
1824 }
1825 
1826 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1827                              TypePrinting *, SlotTracker *, const Module *) {
1828   Out << "!DIBasicType(";
1829   MDFieldPrinter Printer(Out);
1830   if (N->getTag() != dwarf::DW_TAG_base_type)
1831     Printer.printTag(N);
1832   Printer.printString("name", N->getName());
1833   Printer.printInt("size", N->getSizeInBits());
1834   Printer.printInt("align", N->getAlignInBits());
1835   Printer.printDwarfEnum("encoding", N->getEncoding(),
1836                          dwarf::AttributeEncodingString);
1837   Printer.printDIFlags("flags", N->getFlags());
1838   Out << ")";
1839 }
1840 
1841 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1842                                TypePrinting *TypePrinter, SlotTracker *Machine,
1843                                const Module *Context) {
1844   Out << "!DIDerivedType(";
1845   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1846   Printer.printTag(N);
1847   Printer.printString("name", N->getName());
1848   Printer.printMetadata("scope", N->getRawScope());
1849   Printer.printMetadata("file", N->getRawFile());
1850   Printer.printInt("line", N->getLine());
1851   Printer.printMetadata("baseType", N->getRawBaseType(),
1852                         /* ShouldSkipNull */ false);
1853   Printer.printInt("size", N->getSizeInBits());
1854   Printer.printInt("align", N->getAlignInBits());
1855   Printer.printInt("offset", N->getOffsetInBits());
1856   Printer.printDIFlags("flags", N->getFlags());
1857   Printer.printMetadata("extraData", N->getRawExtraData());
1858   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1859     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1860                      /* ShouldSkipZero */ false);
1861   Out << ")";
1862 }
1863 
1864 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1865                                  TypePrinting *TypePrinter,
1866                                  SlotTracker *Machine, const Module *Context) {
1867   Out << "!DICompositeType(";
1868   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1869   Printer.printTag(N);
1870   Printer.printString("name", N->getName());
1871   Printer.printMetadata("scope", N->getRawScope());
1872   Printer.printMetadata("file", N->getRawFile());
1873   Printer.printInt("line", N->getLine());
1874   Printer.printMetadata("baseType", N->getRawBaseType());
1875   Printer.printInt("size", N->getSizeInBits());
1876   Printer.printInt("align", N->getAlignInBits());
1877   Printer.printInt("offset", N->getOffsetInBits());
1878   Printer.printDIFlags("flags", N->getFlags());
1879   Printer.printMetadata("elements", N->getRawElements());
1880   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1881                          dwarf::LanguageString);
1882   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1883   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1884   Printer.printString("identifier", N->getIdentifier());
1885   Printer.printMetadata("discriminator", N->getRawDiscriminator());
1886   Out << ")";
1887 }
1888 
1889 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1890                                   TypePrinting *TypePrinter,
1891                                   SlotTracker *Machine, const Module *Context) {
1892   Out << "!DISubroutineType(";
1893   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1894   Printer.printDIFlags("flags", N->getFlags());
1895   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1896   Printer.printMetadata("types", N->getRawTypeArray(),
1897                         /* ShouldSkipNull */ false);
1898   Out << ")";
1899 }
1900 
1901 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1902                         SlotTracker *, const Module *) {
1903   Out << "!DIFile(";
1904   MDFieldPrinter Printer(Out);
1905   Printer.printString("filename", N->getFilename(),
1906                       /* ShouldSkipEmpty */ false);
1907   Printer.printString("directory", N->getDirectory(),
1908                       /* ShouldSkipEmpty */ false);
1909   // Print all values for checksum together, or not at all.
1910   if (N->getChecksum())
1911     Printer.printChecksum(*N->getChecksum());
1912   Printer.printString("source", N->getSource().getValueOr(StringRef()),
1913                       /* ShouldSkipEmpty */ true);
1914   Out << ")";
1915 }
1916 
1917 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1918                                TypePrinting *TypePrinter, SlotTracker *Machine,
1919                                const Module *Context) {
1920   Out << "!DICompileUnit(";
1921   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1922   Printer.printDwarfEnum("language", N->getSourceLanguage(),
1923                          dwarf::LanguageString, /* ShouldSkipZero */ false);
1924   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1925   Printer.printString("producer", N->getProducer());
1926   Printer.printBool("isOptimized", N->isOptimized());
1927   Printer.printString("flags", N->getFlags());
1928   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1929                    /* ShouldSkipZero */ false);
1930   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1931   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1932   Printer.printMetadata("enums", N->getRawEnumTypes());
1933   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1934   Printer.printMetadata("globals", N->getRawGlobalVariables());
1935   Printer.printMetadata("imports", N->getRawImportedEntities());
1936   Printer.printMetadata("macros", N->getRawMacros());
1937   Printer.printInt("dwoId", N->getDWOId());
1938   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1939   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
1940                     false);
1941   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
1942   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
1943   Out << ")";
1944 }
1945 
1946 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1947                               TypePrinting *TypePrinter, SlotTracker *Machine,
1948                               const Module *Context) {
1949   Out << "!DISubprogram(";
1950   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1951   Printer.printString("name", N->getName());
1952   Printer.printString("linkageName", N->getLinkageName());
1953   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1954   Printer.printMetadata("file", N->getRawFile());
1955   Printer.printInt("line", N->getLine());
1956   Printer.printMetadata("type", N->getRawType());
1957   Printer.printInt("scopeLine", N->getScopeLine());
1958   Printer.printMetadata("containingType", N->getRawContainingType());
1959   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1960       N->getVirtualIndex() != 0)
1961     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1962   Printer.printInt("thisAdjustment", N->getThisAdjustment());
1963   Printer.printDIFlags("flags", N->getFlags());
1964   Printer.printDISPFlags("spFlags", N->getSPFlags());
1965   Printer.printMetadata("unit", N->getRawUnit());
1966   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1967   Printer.printMetadata("declaration", N->getRawDeclaration());
1968   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
1969   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
1970   Out << ")";
1971 }
1972 
1973 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1974                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1975                                 const Module *Context) {
1976   Out << "!DILexicalBlock(";
1977   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1978   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1979   Printer.printMetadata("file", N->getRawFile());
1980   Printer.printInt("line", N->getLine());
1981   Printer.printInt("column", N->getColumn());
1982   Out << ")";
1983 }
1984 
1985 static void writeDILexicalBlockFile(raw_ostream &Out,
1986                                     const DILexicalBlockFile *N,
1987                                     TypePrinting *TypePrinter,
1988                                     SlotTracker *Machine,
1989                                     const Module *Context) {
1990   Out << "!DILexicalBlockFile(";
1991   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1992   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1993   Printer.printMetadata("file", N->getRawFile());
1994   Printer.printInt("discriminator", N->getDiscriminator(),
1995                    /* ShouldSkipZero */ false);
1996   Out << ")";
1997 }
1998 
1999 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2000                              TypePrinting *TypePrinter, SlotTracker *Machine,
2001                              const Module *Context) {
2002   Out << "!DINamespace(";
2003   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2004   Printer.printString("name", N->getName());
2005   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2006   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2007   Out << ")";
2008 }
2009 
2010 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2011                                TypePrinting *TypePrinter, SlotTracker *Machine,
2012                                const Module *Context) {
2013   Out << "!DICommonBlock(";
2014   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2015   Printer.printMetadata("scope", N->getRawScope(), false);
2016   Printer.printMetadata("declaration", N->getRawDecl(), false);
2017   Printer.printString("name", N->getName());
2018   Printer.printMetadata("file", N->getRawFile());
2019   Printer.printInt("line", N->getLineNo());
2020   Out << ")";
2021 }
2022 
2023 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2024                          TypePrinting *TypePrinter, SlotTracker *Machine,
2025                          const Module *Context) {
2026   Out << "!DIMacro(";
2027   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2028   Printer.printMacinfoType(N);
2029   Printer.printInt("line", N->getLine());
2030   Printer.printString("name", N->getName());
2031   Printer.printString("value", N->getValue());
2032   Out << ")";
2033 }
2034 
2035 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2036                              TypePrinting *TypePrinter, SlotTracker *Machine,
2037                              const Module *Context) {
2038   Out << "!DIMacroFile(";
2039   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2040   Printer.printInt("line", N->getLine());
2041   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2042   Printer.printMetadata("nodes", N->getRawElements());
2043   Out << ")";
2044 }
2045 
2046 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2047                           TypePrinting *TypePrinter, SlotTracker *Machine,
2048                           const Module *Context) {
2049   Out << "!DIModule(";
2050   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2051   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2052   Printer.printString("name", N->getName());
2053   Printer.printString("configMacros", N->getConfigurationMacros());
2054   Printer.printString("includePath", N->getIncludePath());
2055   Printer.printString("isysroot", N->getISysRoot());
2056   Out << ")";
2057 }
2058 
2059 
2060 static void writeDITemplateTypeParameter(raw_ostream &Out,
2061                                          const DITemplateTypeParameter *N,
2062                                          TypePrinting *TypePrinter,
2063                                          SlotTracker *Machine,
2064                                          const Module *Context) {
2065   Out << "!DITemplateTypeParameter(";
2066   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2067   Printer.printString("name", N->getName());
2068   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2069   Out << ")";
2070 }
2071 
2072 static void writeDITemplateValueParameter(raw_ostream &Out,
2073                                           const DITemplateValueParameter *N,
2074                                           TypePrinting *TypePrinter,
2075                                           SlotTracker *Machine,
2076                                           const Module *Context) {
2077   Out << "!DITemplateValueParameter(";
2078   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2079   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2080     Printer.printTag(N);
2081   Printer.printString("name", N->getName());
2082   Printer.printMetadata("type", N->getRawType());
2083   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2084   Out << ")";
2085 }
2086 
2087 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2088                                   TypePrinting *TypePrinter,
2089                                   SlotTracker *Machine, const Module *Context) {
2090   Out << "!DIGlobalVariable(";
2091   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2092   Printer.printString("name", N->getName());
2093   Printer.printString("linkageName", N->getLinkageName());
2094   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2095   Printer.printMetadata("file", N->getRawFile());
2096   Printer.printInt("line", N->getLine());
2097   Printer.printMetadata("type", N->getRawType());
2098   Printer.printBool("isLocal", N->isLocalToUnit());
2099   Printer.printBool("isDefinition", N->isDefinition());
2100   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2101   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2102   Printer.printInt("align", N->getAlignInBits());
2103   Out << ")";
2104 }
2105 
2106 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2107                                  TypePrinting *TypePrinter,
2108                                  SlotTracker *Machine, const Module *Context) {
2109   Out << "!DILocalVariable(";
2110   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2111   Printer.printString("name", N->getName());
2112   Printer.printInt("arg", N->getArg());
2113   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2114   Printer.printMetadata("file", N->getRawFile());
2115   Printer.printInt("line", N->getLine());
2116   Printer.printMetadata("type", N->getRawType());
2117   Printer.printDIFlags("flags", N->getFlags());
2118   Printer.printInt("align", N->getAlignInBits());
2119   Out << ")";
2120 }
2121 
2122 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2123                          TypePrinting *TypePrinter,
2124                          SlotTracker *Machine, const Module *Context) {
2125   Out << "!DILabel(";
2126   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2127   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2128   Printer.printString("name", N->getName());
2129   Printer.printMetadata("file", N->getRawFile());
2130   Printer.printInt("line", N->getLine());
2131   Out << ")";
2132 }
2133 
2134 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2135                               TypePrinting *TypePrinter, SlotTracker *Machine,
2136                               const Module *Context) {
2137   Out << "!DIExpression(";
2138   FieldSeparator FS;
2139   if (N->isValid()) {
2140     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
2141       auto OpStr = dwarf::OperationEncodingString(I->getOp());
2142       assert(!OpStr.empty() && "Expected valid opcode");
2143 
2144       Out << FS << OpStr;
2145       if (I->getOp() == dwarf::DW_OP_LLVM_convert) {
2146         Out << FS << I->getArg(0);
2147         Out << FS << dwarf::AttributeEncodingString(I->getArg(1));
2148       } else {
2149         for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
2150           Out << FS << I->getArg(A);
2151       }
2152     }
2153   } else {
2154     for (const auto &I : N->getElements())
2155       Out << FS << I;
2156   }
2157   Out << ")";
2158 }
2159 
2160 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2161                                             const DIGlobalVariableExpression *N,
2162                                             TypePrinting *TypePrinter,
2163                                             SlotTracker *Machine,
2164                                             const Module *Context) {
2165   Out << "!DIGlobalVariableExpression(";
2166   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2167   Printer.printMetadata("var", N->getVariable());
2168   Printer.printMetadata("expr", N->getExpression());
2169   Out << ")";
2170 }
2171 
2172 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2173                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2174                                 const Module *Context) {
2175   Out << "!DIObjCProperty(";
2176   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2177   Printer.printString("name", N->getName());
2178   Printer.printMetadata("file", N->getRawFile());
2179   Printer.printInt("line", N->getLine());
2180   Printer.printString("setter", N->getSetterName());
2181   Printer.printString("getter", N->getGetterName());
2182   Printer.printInt("attributes", N->getAttributes());
2183   Printer.printMetadata("type", N->getRawType());
2184   Out << ")";
2185 }
2186 
2187 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2188                                   TypePrinting *TypePrinter,
2189                                   SlotTracker *Machine, const Module *Context) {
2190   Out << "!DIImportedEntity(";
2191   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2192   Printer.printTag(N);
2193   Printer.printString("name", N->getName());
2194   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2195   Printer.printMetadata("entity", N->getRawEntity());
2196   Printer.printMetadata("file", N->getRawFile());
2197   Printer.printInt("line", N->getLine());
2198   Out << ")";
2199 }
2200 
2201 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2202                                     TypePrinting *TypePrinter,
2203                                     SlotTracker *Machine,
2204                                     const Module *Context) {
2205   if (Node->isDistinct())
2206     Out << "distinct ";
2207   else if (Node->isTemporary())
2208     Out << "<temporary!> "; // Handle broken code.
2209 
2210   switch (Node->getMetadataID()) {
2211   default:
2212     llvm_unreachable("Expected uniquable MDNode");
2213 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2214   case Metadata::CLASS##Kind:                                                  \
2215     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
2216     break;
2217 #include "llvm/IR/Metadata.def"
2218   }
2219 }
2220 
2221 // Full implementation of printing a Value as an operand with support for
2222 // TypePrinting, etc.
2223 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2224                                    TypePrinting *TypePrinter,
2225                                    SlotTracker *Machine,
2226                                    const Module *Context) {
2227   if (V->hasName()) {
2228     PrintLLVMName(Out, V);
2229     return;
2230   }
2231 
2232   const Constant *CV = dyn_cast<Constant>(V);
2233   if (CV && !isa<GlobalValue>(CV)) {
2234     assert(TypePrinter && "Constants require TypePrinting!");
2235     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2236     return;
2237   }
2238 
2239   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2240     Out << "asm ";
2241     if (IA->hasSideEffects())
2242       Out << "sideeffect ";
2243     if (IA->isAlignStack())
2244       Out << "alignstack ";
2245     // We don't emit the AD_ATT dialect as it's the assumed default.
2246     if (IA->getDialect() == InlineAsm::AD_Intel)
2247       Out << "inteldialect ";
2248     Out << '"';
2249     printEscapedString(IA->getAsmString(), Out);
2250     Out << "\", \"";
2251     printEscapedString(IA->getConstraintString(), Out);
2252     Out << '"';
2253     return;
2254   }
2255 
2256   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2257     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2258                            Context, /* FromValue */ true);
2259     return;
2260   }
2261 
2262   char Prefix = '%';
2263   int Slot;
2264   // If we have a SlotTracker, use it.
2265   if (Machine) {
2266     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2267       Slot = Machine->getGlobalSlot(GV);
2268       Prefix = '@';
2269     } else {
2270       Slot = Machine->getLocalSlot(V);
2271 
2272       // If the local value didn't succeed, then we may be referring to a value
2273       // from a different function.  Translate it, as this can happen when using
2274       // address of blocks.
2275       if (Slot == -1)
2276         if ((Machine = createSlotTracker(V))) {
2277           Slot = Machine->getLocalSlot(V);
2278           delete Machine;
2279         }
2280     }
2281   } else if ((Machine = createSlotTracker(V))) {
2282     // Otherwise, create one to get the # and then destroy it.
2283     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2284       Slot = Machine->getGlobalSlot(GV);
2285       Prefix = '@';
2286     } else {
2287       Slot = Machine->getLocalSlot(V);
2288     }
2289     delete Machine;
2290     Machine = nullptr;
2291   } else {
2292     Slot = -1;
2293   }
2294 
2295   if (Slot != -1)
2296     Out << Prefix << Slot;
2297   else
2298     Out << "<badref>";
2299 }
2300 
2301 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2302                                    TypePrinting *TypePrinter,
2303                                    SlotTracker *Machine, const Module *Context,
2304                                    bool FromValue) {
2305   // Write DIExpressions inline when used as a value. Improves readability of
2306   // debug info intrinsics.
2307   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2308     writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2309     return;
2310   }
2311 
2312   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2313     std::unique_ptr<SlotTracker> MachineStorage;
2314     if (!Machine) {
2315       MachineStorage = make_unique<SlotTracker>(Context);
2316       Machine = MachineStorage.get();
2317     }
2318     int Slot = Machine->getMetadataSlot(N);
2319     if (Slot == -1) {
2320       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2321         writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2322         return;
2323       }
2324       // Give the pointer value instead of "badref", since this comes up all
2325       // the time when debugging.
2326       Out << "<" << N << ">";
2327     } else
2328       Out << '!' << Slot;
2329     return;
2330   }
2331 
2332   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2333     Out << "!\"";
2334     printEscapedString(MDS->getString(), Out);
2335     Out << '"';
2336     return;
2337   }
2338 
2339   auto *V = cast<ValueAsMetadata>(MD);
2340   assert(TypePrinter && "TypePrinter required for metadata values");
2341   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2342          "Unexpected function-local metadata outside of value argument");
2343 
2344   TypePrinter->print(V->getValue()->getType(), Out);
2345   Out << ' ';
2346   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2347 }
2348 
2349 namespace {
2350 
2351 class AssemblyWriter {
2352   formatted_raw_ostream &Out;
2353   const Module *TheModule = nullptr;
2354   const ModuleSummaryIndex *TheIndex = nullptr;
2355   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2356   SlotTracker &Machine;
2357   TypePrinting TypePrinter;
2358   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2359   SetVector<const Comdat *> Comdats;
2360   bool IsForDebug;
2361   bool ShouldPreserveUseListOrder;
2362   UseListOrderStack UseListOrders;
2363   SmallVector<StringRef, 8> MDNames;
2364   /// Synchronization scope names registered with LLVMContext.
2365   SmallVector<StringRef, 8> SSNs;
2366   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2367 
2368 public:
2369   /// Construct an AssemblyWriter with an external SlotTracker
2370   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2371                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2372                  bool ShouldPreserveUseListOrder = false);
2373 
2374   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2375                  const ModuleSummaryIndex *Index, bool IsForDebug);
2376 
2377   void printMDNodeBody(const MDNode *MD);
2378   void printNamedMDNode(const NamedMDNode *NMD);
2379 
2380   void printModule(const Module *M);
2381 
2382   void writeOperand(const Value *Op, bool PrintType);
2383   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2384   void writeOperandBundles(const CallBase *Call);
2385   void writeSyncScope(const LLVMContext &Context,
2386                       SyncScope::ID SSID);
2387   void writeAtomic(const LLVMContext &Context,
2388                    AtomicOrdering Ordering,
2389                    SyncScope::ID SSID);
2390   void writeAtomicCmpXchg(const LLVMContext &Context,
2391                           AtomicOrdering SuccessOrdering,
2392                           AtomicOrdering FailureOrdering,
2393                           SyncScope::ID SSID);
2394 
2395   void writeAllMDNodes();
2396   void writeMDNode(unsigned Slot, const MDNode *Node);
2397   void writeAllAttributeGroups();
2398 
2399   void printTypeIdentities();
2400   void printGlobal(const GlobalVariable *GV);
2401   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2402   void printComdat(const Comdat *C);
2403   void printFunction(const Function *F);
2404   void printArgument(const Argument *FA, AttributeSet Attrs);
2405   void printBasicBlock(const BasicBlock *BB);
2406   void printInstructionLine(const Instruction &I);
2407   void printInstruction(const Instruction &I);
2408 
2409   void printUseListOrder(const UseListOrder &Order);
2410   void printUseLists(const Function *F);
2411 
2412   void printModuleSummaryIndex();
2413   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2414   void printSummary(const GlobalValueSummary &Summary);
2415   void printAliasSummary(const AliasSummary *AS);
2416   void printGlobalVarSummary(const GlobalVarSummary *GS);
2417   void printFunctionSummary(const FunctionSummary *FS);
2418   void printTypeIdSummary(const TypeIdSummary &TIS);
2419   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2420   void printTypeTestResolution(const TypeTestResolution &TTRes);
2421   void printArgs(const std::vector<uint64_t> &Args);
2422   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2423   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2424   void printVFuncId(const FunctionSummary::VFuncId VFId);
2425   void
2426   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
2427                       const char *Tag);
2428   void
2429   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
2430                    const char *Tag);
2431 
2432 private:
2433   /// Print out metadata attachments.
2434   void printMetadataAttachments(
2435       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2436       StringRef Separator);
2437 
2438   // printInfoComment - Print a little comment after the instruction indicating
2439   // which slot it occupies.
2440   void printInfoComment(const Value &V);
2441 
2442   // printGCRelocateComment - print comment after call to the gc.relocate
2443   // intrinsic indicating base and derived pointer names.
2444   void printGCRelocateComment(const GCRelocateInst &Relocate);
2445 };
2446 
2447 } // end anonymous namespace
2448 
2449 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2450                                const Module *M, AssemblyAnnotationWriter *AAW,
2451                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2452     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2453       IsForDebug(IsForDebug),
2454       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2455   if (!TheModule)
2456     return;
2457   for (const GlobalObject &GO : TheModule->global_objects())
2458     if (const Comdat *C = GO.getComdat())
2459       Comdats.insert(C);
2460 }
2461 
2462 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2463                                const ModuleSummaryIndex *Index, bool IsForDebug)
2464     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2465       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2466 
2467 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2468   if (!Operand) {
2469     Out << "<null operand!>";
2470     return;
2471   }
2472   if (PrintType) {
2473     TypePrinter.print(Operand->getType(), Out);
2474     Out << ' ';
2475   }
2476   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2477 }
2478 
2479 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2480                                     SyncScope::ID SSID) {
2481   switch (SSID) {
2482   case SyncScope::System: {
2483     break;
2484   }
2485   default: {
2486     if (SSNs.empty())
2487       Context.getSyncScopeNames(SSNs);
2488 
2489     Out << " syncscope(\"";
2490     printEscapedString(SSNs[SSID], Out);
2491     Out << "\")";
2492     break;
2493   }
2494   }
2495 }
2496 
2497 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2498                                  AtomicOrdering Ordering,
2499                                  SyncScope::ID SSID) {
2500   if (Ordering == AtomicOrdering::NotAtomic)
2501     return;
2502 
2503   writeSyncScope(Context, SSID);
2504   Out << " " << toIRString(Ordering);
2505 }
2506 
2507 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2508                                         AtomicOrdering SuccessOrdering,
2509                                         AtomicOrdering FailureOrdering,
2510                                         SyncScope::ID SSID) {
2511   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2512          FailureOrdering != AtomicOrdering::NotAtomic);
2513 
2514   writeSyncScope(Context, SSID);
2515   Out << " " << toIRString(SuccessOrdering);
2516   Out << " " << toIRString(FailureOrdering);
2517 }
2518 
2519 void AssemblyWriter::writeParamOperand(const Value *Operand,
2520                                        AttributeSet Attrs) {
2521   if (!Operand) {
2522     Out << "<null operand!>";
2523     return;
2524   }
2525 
2526   // Print the type
2527   TypePrinter.print(Operand->getType(), Out);
2528   // Print parameter attributes list
2529   if (Attrs.hasAttributes())
2530     Out << ' ' << Attrs.getAsString();
2531   Out << ' ';
2532   // Print the operand
2533   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2534 }
2535 
2536 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2537   if (!Call->hasOperandBundles())
2538     return;
2539 
2540   Out << " [ ";
2541 
2542   bool FirstBundle = true;
2543   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2544     OperandBundleUse BU = Call->getOperandBundleAt(i);
2545 
2546     if (!FirstBundle)
2547       Out << ", ";
2548     FirstBundle = false;
2549 
2550     Out << '"';
2551     printEscapedString(BU.getTagName(), Out);
2552     Out << '"';
2553 
2554     Out << '(';
2555 
2556     bool FirstInput = true;
2557     for (const auto &Input : BU.Inputs) {
2558       if (!FirstInput)
2559         Out << ", ";
2560       FirstInput = false;
2561 
2562       TypePrinter.print(Input->getType(), Out);
2563       Out << " ";
2564       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2565     }
2566 
2567     Out << ')';
2568   }
2569 
2570   Out << " ]";
2571 }
2572 
2573 void AssemblyWriter::printModule(const Module *M) {
2574   Machine.initializeIfNeeded();
2575 
2576   if (ShouldPreserveUseListOrder)
2577     UseListOrders = predictUseListOrder(M);
2578 
2579   if (!M->getModuleIdentifier().empty() &&
2580       // Don't print the ID if it will start a new line (which would
2581       // require a comment char before it).
2582       M->getModuleIdentifier().find('\n') == std::string::npos)
2583     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2584 
2585   if (!M->getSourceFileName().empty()) {
2586     Out << "source_filename = \"";
2587     printEscapedString(M->getSourceFileName(), Out);
2588     Out << "\"\n";
2589   }
2590 
2591   const std::string &DL = M->getDataLayoutStr();
2592   if (!DL.empty())
2593     Out << "target datalayout = \"" << DL << "\"\n";
2594   if (!M->getTargetTriple().empty())
2595     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2596 
2597   if (!M->getModuleInlineAsm().empty()) {
2598     Out << '\n';
2599 
2600     // Split the string into lines, to make it easier to read the .ll file.
2601     StringRef Asm = M->getModuleInlineAsm();
2602     do {
2603       StringRef Front;
2604       std::tie(Front, Asm) = Asm.split('\n');
2605 
2606       // We found a newline, print the portion of the asm string from the
2607       // last newline up to this newline.
2608       Out << "module asm \"";
2609       printEscapedString(Front, Out);
2610       Out << "\"\n";
2611     } while (!Asm.empty());
2612   }
2613 
2614   printTypeIdentities();
2615 
2616   // Output all comdats.
2617   if (!Comdats.empty())
2618     Out << '\n';
2619   for (const Comdat *C : Comdats) {
2620     printComdat(C);
2621     if (C != Comdats.back())
2622       Out << '\n';
2623   }
2624 
2625   // Output all globals.
2626   if (!M->global_empty()) Out << '\n';
2627   for (const GlobalVariable &GV : M->globals()) {
2628     printGlobal(&GV); Out << '\n';
2629   }
2630 
2631   // Output all aliases.
2632   if (!M->alias_empty()) Out << "\n";
2633   for (const GlobalAlias &GA : M->aliases())
2634     printIndirectSymbol(&GA);
2635 
2636   // Output all ifuncs.
2637   if (!M->ifunc_empty()) Out << "\n";
2638   for (const GlobalIFunc &GI : M->ifuncs())
2639     printIndirectSymbol(&GI);
2640 
2641   // Output global use-lists.
2642   printUseLists(nullptr);
2643 
2644   // Output all of the functions.
2645   for (const Function &F : *M)
2646     printFunction(&F);
2647   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2648 
2649   // Output all attribute groups.
2650   if (!Machine.as_empty()) {
2651     Out << '\n';
2652     writeAllAttributeGroups();
2653   }
2654 
2655   // Output named metadata.
2656   if (!M->named_metadata_empty()) Out << '\n';
2657 
2658   for (const NamedMDNode &Node : M->named_metadata())
2659     printNamedMDNode(&Node);
2660 
2661   // Output metadata.
2662   if (!Machine.mdn_empty()) {
2663     Out << '\n';
2664     writeAllMDNodes();
2665   }
2666 }
2667 
2668 void AssemblyWriter::printModuleSummaryIndex() {
2669   assert(TheIndex);
2670   Machine.initializeIndexIfNeeded();
2671 
2672   Out << "\n";
2673 
2674   // Print module path entries. To print in order, add paths to a vector
2675   // indexed by module slot.
2676   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2677   std::string RegularLTOModuleName = "[Regular LTO]";
2678   moduleVec.resize(TheIndex->modulePaths().size());
2679   for (auto &ModPath : TheIndex->modulePaths())
2680     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2681         // A module id of -1 is a special entry for a regular LTO module created
2682         // during the thin link.
2683         ModPath.second.first == -1u ? RegularLTOModuleName
2684                                     : (std::string)ModPath.first(),
2685         ModPath.second.second);
2686 
2687   unsigned i = 0;
2688   for (auto &ModPair : moduleVec) {
2689     Out << "^" << i++ << " = module: (";
2690     Out << "path: \"";
2691     printEscapedString(ModPair.first, Out);
2692     Out << "\", hash: (";
2693     FieldSeparator FS;
2694     for (auto Hash : ModPair.second)
2695       Out << FS << Hash;
2696     Out << "))\n";
2697   }
2698 
2699   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2700   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2701   for (auto &GlobalList : *TheIndex) {
2702     auto GUID = GlobalList.first;
2703     for (auto &Summary : GlobalList.second.SummaryList)
2704       SummaryToGUIDMap[Summary.get()] = GUID;
2705   }
2706 
2707   // Print the global value summary entries.
2708   for (auto &GlobalList : *TheIndex) {
2709     auto GUID = GlobalList.first;
2710     auto VI = TheIndex->getValueInfo(GlobalList);
2711     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2712   }
2713 
2714   // Print the TypeIdMap entries.
2715   for (auto TidIter = TheIndex->typeIds().begin();
2716        TidIter != TheIndex->typeIds().end(); TidIter++) {
2717     Out << "^" << Machine.getTypeIdSlot(TidIter->second.first)
2718         << " = typeid: (name: \"" << TidIter->second.first << "\"";
2719     printTypeIdSummary(TidIter->second.second);
2720     Out << ") ; guid = " << TidIter->first << "\n";
2721   }
2722 
2723   // Print the TypeIdCompatibleVtableMap entries.
2724   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2725     auto GUID = GlobalValue::getGUID(TId.first);
2726     Out << "^" << Machine.getGUIDSlot(GUID)
2727         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2728     printTypeIdCompatibleVtableSummary(TId.second);
2729     Out << ") ; guid = " << GUID << "\n";
2730   }
2731 }
2732 
2733 static const char *
2734 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2735   switch (K) {
2736   case WholeProgramDevirtResolution::Indir:
2737     return "indir";
2738   case WholeProgramDevirtResolution::SingleImpl:
2739     return "singleImpl";
2740   case WholeProgramDevirtResolution::BranchFunnel:
2741     return "branchFunnel";
2742   }
2743   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2744 }
2745 
2746 static const char *getWholeProgDevirtResByArgKindName(
2747     WholeProgramDevirtResolution::ByArg::Kind K) {
2748   switch (K) {
2749   case WholeProgramDevirtResolution::ByArg::Indir:
2750     return "indir";
2751   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2752     return "uniformRetVal";
2753   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2754     return "uniqueRetVal";
2755   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2756     return "virtualConstProp";
2757   }
2758   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2759 }
2760 
2761 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2762   switch (K) {
2763   case TypeTestResolution::Unsat:
2764     return "unsat";
2765   case TypeTestResolution::ByteArray:
2766     return "byteArray";
2767   case TypeTestResolution::Inline:
2768     return "inline";
2769   case TypeTestResolution::Single:
2770     return "single";
2771   case TypeTestResolution::AllOnes:
2772     return "allOnes";
2773   }
2774   llvm_unreachable("invalid TypeTestResolution kind");
2775 }
2776 
2777 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2778   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2779       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2780 
2781   // The following fields are only used if the target does not support the use
2782   // of absolute symbols to store constants. Print only if non-zero.
2783   if (TTRes.AlignLog2)
2784     Out << ", alignLog2: " << TTRes.AlignLog2;
2785   if (TTRes.SizeM1)
2786     Out << ", sizeM1: " << TTRes.SizeM1;
2787   if (TTRes.BitMask)
2788     // BitMask is uint8_t which causes it to print the corresponding char.
2789     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2790   if (TTRes.InlineBits)
2791     Out << ", inlineBits: " << TTRes.InlineBits;
2792 
2793   Out << ")";
2794 }
2795 
2796 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2797   Out << ", summary: (";
2798   printTypeTestResolution(TIS.TTRes);
2799   if (!TIS.WPDRes.empty()) {
2800     Out << ", wpdResolutions: (";
2801     FieldSeparator FS;
2802     for (auto &WPDRes : TIS.WPDRes) {
2803       Out << FS;
2804       Out << "(offset: " << WPDRes.first << ", ";
2805       printWPDRes(WPDRes.second);
2806       Out << ")";
2807     }
2808     Out << ")";
2809   }
2810   Out << ")";
2811 }
2812 
2813 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
2814     const TypeIdCompatibleVtableInfo &TI) {
2815   Out << ", summary: (";
2816   FieldSeparator FS;
2817   for (auto &P : TI) {
2818     Out << FS;
2819     Out << "(offset: " << P.AddressPointOffset << ", ";
2820     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
2821     Out << ")";
2822   }
2823   Out << ")";
2824 }
2825 
2826 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
2827   Out << "args: (";
2828   FieldSeparator FS;
2829   for (auto arg : Args) {
2830     Out << FS;
2831     Out << arg;
2832   }
2833   Out << ")";
2834 }
2835 
2836 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
2837   Out << "wpdRes: (kind: ";
2838   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
2839 
2840   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
2841     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
2842 
2843   if (!WPDRes.ResByArg.empty()) {
2844     Out << ", resByArg: (";
2845     FieldSeparator FS;
2846     for (auto &ResByArg : WPDRes.ResByArg) {
2847       Out << FS;
2848       printArgs(ResByArg.first);
2849       Out << ", byArg: (kind: ";
2850       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
2851       if (ResByArg.second.TheKind ==
2852               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
2853           ResByArg.second.TheKind ==
2854               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
2855         Out << ", info: " << ResByArg.second.Info;
2856 
2857       // The following fields are only used if the target does not support the
2858       // use of absolute symbols to store constants. Print only if non-zero.
2859       if (ResByArg.second.Byte || ResByArg.second.Bit)
2860         Out << ", byte: " << ResByArg.second.Byte
2861             << ", bit: " << ResByArg.second.Bit;
2862 
2863       Out << ")";
2864     }
2865     Out << ")";
2866   }
2867   Out << ")";
2868 }
2869 
2870 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
2871   switch (SK) {
2872   case GlobalValueSummary::AliasKind:
2873     return "alias";
2874   case GlobalValueSummary::FunctionKind:
2875     return "function";
2876   case GlobalValueSummary::GlobalVarKind:
2877     return "variable";
2878   }
2879   llvm_unreachable("invalid summary kind");
2880 }
2881 
2882 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
2883   Out << ", aliasee: ";
2884   // The indexes emitted for distributed backends may not include the
2885   // aliasee summary (only if it is being imported directly). Handle
2886   // that case by just emitting "null" as the aliasee.
2887   if (AS->hasAliasee())
2888     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
2889   else
2890     Out << "null";
2891 }
2892 
2893 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
2894   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
2895       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ")";
2896 
2897   auto VTableFuncs = GS->vTableFuncs();
2898   if (!VTableFuncs.empty()) {
2899     Out << ", vTableFuncs: (";
2900     FieldSeparator FS;
2901     for (auto &P : VTableFuncs) {
2902       Out << FS;
2903       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
2904           << ", offset: " << P.VTableOffset;
2905       Out << ")";
2906     }
2907     Out << ")";
2908   }
2909 }
2910 
2911 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
2912   switch (LT) {
2913   case GlobalValue::ExternalLinkage:
2914     return "external";
2915   case GlobalValue::PrivateLinkage:
2916     return "private";
2917   case GlobalValue::InternalLinkage:
2918     return "internal";
2919   case GlobalValue::LinkOnceAnyLinkage:
2920     return "linkonce";
2921   case GlobalValue::LinkOnceODRLinkage:
2922     return "linkonce_odr";
2923   case GlobalValue::WeakAnyLinkage:
2924     return "weak";
2925   case GlobalValue::WeakODRLinkage:
2926     return "weak_odr";
2927   case GlobalValue::CommonLinkage:
2928     return "common";
2929   case GlobalValue::AppendingLinkage:
2930     return "appending";
2931   case GlobalValue::ExternalWeakLinkage:
2932     return "extern_weak";
2933   case GlobalValue::AvailableExternallyLinkage:
2934     return "available_externally";
2935   }
2936   llvm_unreachable("invalid linkage");
2937 }
2938 
2939 // When printing the linkage types in IR where the ExternalLinkage is
2940 // not printed, and other linkage types are expected to be printed with
2941 // a space after the name.
2942 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
2943   if (LT == GlobalValue::ExternalLinkage)
2944     return "";
2945   return getLinkageName(LT) + " ";
2946 }
2947 
2948 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
2949   Out << ", insts: " << FS->instCount();
2950 
2951   FunctionSummary::FFlags FFlags = FS->fflags();
2952   if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
2953       FFlags.ReturnDoesNotAlias) {
2954     Out << ", funcFlags: (";
2955     Out << "readNone: " << FFlags.ReadNone;
2956     Out << ", readOnly: " << FFlags.ReadOnly;
2957     Out << ", noRecurse: " << FFlags.NoRecurse;
2958     Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
2959     Out << ", noInline: " << FFlags.NoInline;
2960     Out << ")";
2961   }
2962   if (!FS->calls().empty()) {
2963     Out << ", calls: (";
2964     FieldSeparator IFS;
2965     for (auto &Call : FS->calls()) {
2966       Out << IFS;
2967       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
2968       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
2969         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
2970       else if (Call.second.RelBlockFreq)
2971         Out << ", relbf: " << Call.second.RelBlockFreq;
2972       Out << ")";
2973     }
2974     Out << ")";
2975   }
2976 
2977   if (const auto *TIdInfo = FS->getTypeIdInfo())
2978     printTypeIdInfo(*TIdInfo);
2979 }
2980 
2981 void AssemblyWriter::printTypeIdInfo(
2982     const FunctionSummary::TypeIdInfo &TIDInfo) {
2983   Out << ", typeIdInfo: (";
2984   FieldSeparator TIDFS;
2985   if (!TIDInfo.TypeTests.empty()) {
2986     Out << TIDFS;
2987     Out << "typeTests: (";
2988     FieldSeparator FS;
2989     for (auto &GUID : TIDInfo.TypeTests) {
2990       auto TidIter = TheIndex->typeIds().equal_range(GUID);
2991       if (TidIter.first == TidIter.second) {
2992         Out << FS;
2993         Out << GUID;
2994         continue;
2995       }
2996       // Print all type id that correspond to this GUID.
2997       for (auto It = TidIter.first; It != TidIter.second; ++It) {
2998         Out << FS;
2999         auto Slot = Machine.getTypeIdSlot(It->second.first);
3000         assert(Slot != -1);
3001         Out << "^" << Slot;
3002       }
3003     }
3004     Out << ")";
3005   }
3006   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3007     Out << TIDFS;
3008     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3009   }
3010   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3011     Out << TIDFS;
3012     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3013   }
3014   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3015     Out << TIDFS;
3016     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3017                      "typeTestAssumeConstVCalls");
3018   }
3019   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3020     Out << TIDFS;
3021     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3022                      "typeCheckedLoadConstVCalls");
3023   }
3024   Out << ")";
3025 }
3026 
3027 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3028   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3029   if (TidIter.first == TidIter.second) {
3030     Out << "vFuncId: (";
3031     Out << "guid: " << VFId.GUID;
3032     Out << ", offset: " << VFId.Offset;
3033     Out << ")";
3034     return;
3035   }
3036   // Print all type id that correspond to this GUID.
3037   FieldSeparator FS;
3038   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3039     Out << FS;
3040     Out << "vFuncId: (";
3041     auto Slot = Machine.getTypeIdSlot(It->second.first);
3042     assert(Slot != -1);
3043     Out << "^" << Slot;
3044     Out << ", offset: " << VFId.Offset;
3045     Out << ")";
3046   }
3047 }
3048 
3049 void AssemblyWriter::printNonConstVCalls(
3050     const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
3051   Out << Tag << ": (";
3052   FieldSeparator FS;
3053   for (auto &VFuncId : VCallList) {
3054     Out << FS;
3055     printVFuncId(VFuncId);
3056   }
3057   Out << ")";
3058 }
3059 
3060 void AssemblyWriter::printConstVCalls(
3061     const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
3062   Out << Tag << ": (";
3063   FieldSeparator FS;
3064   for (auto &ConstVCall : VCallList) {
3065     Out << FS;
3066     Out << "(";
3067     printVFuncId(ConstVCall.VFunc);
3068     if (!ConstVCall.Args.empty()) {
3069       Out << ", ";
3070       printArgs(ConstVCall.Args);
3071     }
3072     Out << ")";
3073   }
3074   Out << ")";
3075 }
3076 
3077 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3078   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3079   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3080   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3081   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3082       << ", flags: (";
3083   Out << "linkage: " << getLinkageName(LT);
3084   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3085   Out << ", live: " << GVFlags.Live;
3086   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3087   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3088   Out << ")";
3089 
3090   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3091     printAliasSummary(cast<AliasSummary>(&Summary));
3092   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3093     printFunctionSummary(cast<FunctionSummary>(&Summary));
3094   else
3095     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3096 
3097   auto RefList = Summary.refs();
3098   if (!RefList.empty()) {
3099     Out << ", refs: (";
3100     FieldSeparator FS;
3101     for (auto &Ref : RefList) {
3102       Out << FS;
3103       if (Ref.isReadOnly())
3104         Out << "readonly ";
3105       else if (Ref.isWriteOnly())
3106         Out << "writeonly ";
3107       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3108     }
3109     Out << ")";
3110   }
3111 
3112   Out << ")";
3113 }
3114 
3115 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3116   Out << "^" << Slot << " = gv: (";
3117   if (!VI.name().empty())
3118     Out << "name: \"" << VI.name() << "\"";
3119   else
3120     Out << "guid: " << VI.getGUID();
3121   if (!VI.getSummaryList().empty()) {
3122     Out << ", summaries: (";
3123     FieldSeparator FS;
3124     for (auto &Summary : VI.getSummaryList()) {
3125       Out << FS;
3126       printSummary(*Summary);
3127     }
3128     Out << ")";
3129   }
3130   Out << ")";
3131   if (!VI.name().empty())
3132     Out << " ; guid = " << VI.getGUID();
3133   Out << "\n";
3134 }
3135 
3136 static void printMetadataIdentifier(StringRef Name,
3137                                     formatted_raw_ostream &Out) {
3138   if (Name.empty()) {
3139     Out << "<empty name> ";
3140   } else {
3141     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3142         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3143       Out << Name[0];
3144     else
3145       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3146     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3147       unsigned char C = Name[i];
3148       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3149           C == '.' || C == '_')
3150         Out << C;
3151       else
3152         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3153     }
3154   }
3155 }
3156 
3157 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3158   Out << '!';
3159   printMetadataIdentifier(NMD->getName(), Out);
3160   Out << " = !{";
3161   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3162     if (i)
3163       Out << ", ";
3164 
3165     // Write DIExpressions inline.
3166     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3167     MDNode *Op = NMD->getOperand(i);
3168     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3169       writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3170       continue;
3171     }
3172 
3173     int Slot = Machine.getMetadataSlot(Op);
3174     if (Slot == -1)
3175       Out << "<badref>";
3176     else
3177       Out << '!' << Slot;
3178   }
3179   Out << "}\n";
3180 }
3181 
3182 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3183                             formatted_raw_ostream &Out) {
3184   switch (Vis) {
3185   case GlobalValue::DefaultVisibility: break;
3186   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3187   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3188   }
3189 }
3190 
3191 static void PrintDSOLocation(const GlobalValue &GV,
3192                              formatted_raw_ostream &Out) {
3193   // GVs with local linkage or non default visibility are implicitly dso_local,
3194   // so we don't print it.
3195   bool Implicit = GV.hasLocalLinkage() ||
3196                   (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility());
3197   if (GV.isDSOLocal() && !Implicit)
3198     Out << "dso_local ";
3199 }
3200 
3201 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3202                                  formatted_raw_ostream &Out) {
3203   switch (SCT) {
3204   case GlobalValue::DefaultStorageClass: break;
3205   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3206   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3207   }
3208 }
3209 
3210 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3211                                   formatted_raw_ostream &Out) {
3212   switch (TLM) {
3213     case GlobalVariable::NotThreadLocal:
3214       break;
3215     case GlobalVariable::GeneralDynamicTLSModel:
3216       Out << "thread_local ";
3217       break;
3218     case GlobalVariable::LocalDynamicTLSModel:
3219       Out << "thread_local(localdynamic) ";
3220       break;
3221     case GlobalVariable::InitialExecTLSModel:
3222       Out << "thread_local(initialexec) ";
3223       break;
3224     case GlobalVariable::LocalExecTLSModel:
3225       Out << "thread_local(localexec) ";
3226       break;
3227   }
3228 }
3229 
3230 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3231   switch (UA) {
3232   case GlobalVariable::UnnamedAddr::None:
3233     return "";
3234   case GlobalVariable::UnnamedAddr::Local:
3235     return "local_unnamed_addr";
3236   case GlobalVariable::UnnamedAddr::Global:
3237     return "unnamed_addr";
3238   }
3239   llvm_unreachable("Unknown UnnamedAddr");
3240 }
3241 
3242 static void maybePrintComdat(formatted_raw_ostream &Out,
3243                              const GlobalObject &GO) {
3244   const Comdat *C = GO.getComdat();
3245   if (!C)
3246     return;
3247 
3248   if (isa<GlobalVariable>(GO))
3249     Out << ',';
3250   Out << " comdat";
3251 
3252   if (GO.getName() == C->getName())
3253     return;
3254 
3255   Out << '(';
3256   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3257   Out << ')';
3258 }
3259 
3260 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3261   if (GV->isMaterializable())
3262     Out << "; Materializable\n";
3263 
3264   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3265   Out << " = ";
3266 
3267   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3268     Out << "external ";
3269 
3270   Out << getLinkageNameWithSpace(GV->getLinkage());
3271   PrintDSOLocation(*GV, Out);
3272   PrintVisibility(GV->getVisibility(), Out);
3273   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3274   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3275   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3276   if (!UA.empty())
3277       Out << UA << ' ';
3278 
3279   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3280     Out << "addrspace(" << AddressSpace << ") ";
3281   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3282   Out << (GV->isConstant() ? "constant " : "global ");
3283   TypePrinter.print(GV->getValueType(), Out);
3284 
3285   if (GV->hasInitializer()) {
3286     Out << ' ';
3287     writeOperand(GV->getInitializer(), false);
3288   }
3289 
3290   if (GV->hasSection()) {
3291     Out << ", section \"";
3292     printEscapedString(GV->getSection(), Out);
3293     Out << '"';
3294   }
3295   if (GV->hasPartition()) {
3296     Out << ", partition \"";
3297     printEscapedString(GV->getPartition(), Out);
3298     Out << '"';
3299   }
3300 
3301   maybePrintComdat(Out, *GV);
3302   if (GV->getAlignment())
3303     Out << ", align " << GV->getAlignment();
3304 
3305   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3306   GV->getAllMetadata(MDs);
3307   printMetadataAttachments(MDs, ", ");
3308 
3309   auto Attrs = GV->getAttributes();
3310   if (Attrs.hasAttributes())
3311     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3312 
3313   printInfoComment(*GV);
3314 }
3315 
3316 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3317   if (GIS->isMaterializable())
3318     Out << "; Materializable\n";
3319 
3320   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3321   Out << " = ";
3322 
3323   Out << getLinkageNameWithSpace(GIS->getLinkage());
3324   PrintDSOLocation(*GIS, Out);
3325   PrintVisibility(GIS->getVisibility(), Out);
3326   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3327   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3328   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3329   if (!UA.empty())
3330       Out << UA << ' ';
3331 
3332   if (isa<GlobalAlias>(GIS))
3333     Out << "alias ";
3334   else if (isa<GlobalIFunc>(GIS))
3335     Out << "ifunc ";
3336   else
3337     llvm_unreachable("Not an alias or ifunc!");
3338 
3339   TypePrinter.print(GIS->getValueType(), Out);
3340 
3341   Out << ", ";
3342 
3343   const Constant *IS = GIS->getIndirectSymbol();
3344 
3345   if (!IS) {
3346     TypePrinter.print(GIS->getType(), Out);
3347     Out << " <<NULL ALIASEE>>";
3348   } else {
3349     writeOperand(IS, !isa<ConstantExpr>(IS));
3350   }
3351 
3352   if (GIS->hasPartition()) {
3353     Out << ", partition \"";
3354     printEscapedString(GIS->getPartition(), Out);
3355     Out << '"';
3356   }
3357 
3358   printInfoComment(*GIS);
3359   Out << '\n';
3360 }
3361 
3362 void AssemblyWriter::printComdat(const Comdat *C) {
3363   C->print(Out);
3364 }
3365 
3366 void AssemblyWriter::printTypeIdentities() {
3367   if (TypePrinter.empty())
3368     return;
3369 
3370   Out << '\n';
3371 
3372   // Emit all numbered types.
3373   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3374   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3375     Out << '%' << I << " = type ";
3376 
3377     // Make sure we print out at least one level of the type structure, so
3378     // that we do not get %2 = type %2
3379     TypePrinter.printStructBody(NumberedTypes[I], Out);
3380     Out << '\n';
3381   }
3382 
3383   auto &NamedTypes = TypePrinter.getNamedTypes();
3384   for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3385     PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3386     Out << " = type ";
3387 
3388     // Make sure we print out at least one level of the type structure, so
3389     // that we do not get %FILE = type %FILE
3390     TypePrinter.printStructBody(NamedTypes[I], Out);
3391     Out << '\n';
3392   }
3393 }
3394 
3395 /// printFunction - Print all aspects of a function.
3396 void AssemblyWriter::printFunction(const Function *F) {
3397   // Print out the return type and name.
3398   Out << '\n';
3399 
3400   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3401 
3402   if (F->isMaterializable())
3403     Out << "; Materializable\n";
3404 
3405   const AttributeList &Attrs = F->getAttributes();
3406   if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3407     AttributeSet AS = Attrs.getFnAttributes();
3408     std::string AttrStr;
3409 
3410     for (const Attribute &Attr : AS) {
3411       if (!Attr.isStringAttribute()) {
3412         if (!AttrStr.empty()) AttrStr += ' ';
3413         AttrStr += Attr.getAsString();
3414       }
3415     }
3416 
3417     if (!AttrStr.empty())
3418       Out << "; Function Attrs: " << AttrStr << '\n';
3419   }
3420 
3421   Machine.incorporateFunction(F);
3422 
3423   if (F->isDeclaration()) {
3424     Out << "declare";
3425     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3426     F->getAllMetadata(MDs);
3427     printMetadataAttachments(MDs, " ");
3428     Out << ' ';
3429   } else
3430     Out << "define ";
3431 
3432   Out << getLinkageNameWithSpace(F->getLinkage());
3433   PrintDSOLocation(*F, Out);
3434   PrintVisibility(F->getVisibility(), Out);
3435   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3436 
3437   // Print the calling convention.
3438   if (F->getCallingConv() != CallingConv::C) {
3439     PrintCallingConv(F->getCallingConv(), Out);
3440     Out << " ";
3441   }
3442 
3443   FunctionType *FT = F->getFunctionType();
3444   if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3445     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3446   TypePrinter.print(F->getReturnType(), Out);
3447   Out << ' ';
3448   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3449   Out << '(';
3450 
3451   // Loop over the arguments, printing them...
3452   if (F->isDeclaration() && !IsForDebug) {
3453     // We're only interested in the type here - don't print argument names.
3454     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3455       // Insert commas as we go... the first arg doesn't get a comma
3456       if (I)
3457         Out << ", ";
3458       // Output type...
3459       TypePrinter.print(FT->getParamType(I), Out);
3460 
3461       AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3462       if (ArgAttrs.hasAttributes())
3463         Out << ' ' << ArgAttrs.getAsString();
3464     }
3465   } else {
3466     // The arguments are meaningful here, print them in detail.
3467     for (const Argument &Arg : F->args()) {
3468       // Insert commas as we go... the first arg doesn't get a comma
3469       if (Arg.getArgNo() != 0)
3470         Out << ", ";
3471       printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3472     }
3473   }
3474 
3475   // Finish printing arguments...
3476   if (FT->isVarArg()) {
3477     if (FT->getNumParams()) Out << ", ";
3478     Out << "...";  // Output varargs portion of signature!
3479   }
3480   Out << ')';
3481   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3482   if (!UA.empty())
3483     Out << ' ' << UA;
3484   // We print the function address space if it is non-zero or if we are writing
3485   // a module with a non-zero program address space or if there is no valid
3486   // Module* so that the file can be parsed without the datalayout string.
3487   const Module *Mod = F->getParent();
3488   if (F->getAddressSpace() != 0 || !Mod ||
3489       Mod->getDataLayout().getProgramAddressSpace() != 0)
3490     Out << " addrspace(" << F->getAddressSpace() << ")";
3491   if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3492     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3493   if (F->hasSection()) {
3494     Out << " section \"";
3495     printEscapedString(F->getSection(), Out);
3496     Out << '"';
3497   }
3498   if (F->hasPartition()) {
3499     Out << " partition \"";
3500     printEscapedString(F->getPartition(), Out);
3501     Out << '"';
3502   }
3503   maybePrintComdat(Out, *F);
3504   if (F->getAlignment())
3505     Out << " align " << F->getAlignment();
3506   if (F->hasGC())
3507     Out << " gc \"" << F->getGC() << '"';
3508   if (F->hasPrefixData()) {
3509     Out << " prefix ";
3510     writeOperand(F->getPrefixData(), true);
3511   }
3512   if (F->hasPrologueData()) {
3513     Out << " prologue ";
3514     writeOperand(F->getPrologueData(), true);
3515   }
3516   if (F->hasPersonalityFn()) {
3517     Out << " personality ";
3518     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3519   }
3520 
3521   if (F->isDeclaration()) {
3522     Out << '\n';
3523   } else {
3524     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3525     F->getAllMetadata(MDs);
3526     printMetadataAttachments(MDs, " ");
3527 
3528     Out << " {";
3529     // Output all of the function's basic blocks.
3530     for (const BasicBlock &BB : *F)
3531       printBasicBlock(&BB);
3532 
3533     // Output the function's use-lists.
3534     printUseLists(F);
3535 
3536     Out << "}\n";
3537   }
3538 
3539   Machine.purgeFunction();
3540 }
3541 
3542 /// printArgument - This member is called for every argument that is passed into
3543 /// the function.  Simply print it out
3544 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3545   // Output type...
3546   TypePrinter.print(Arg->getType(), Out);
3547 
3548   // Output parameter attributes list
3549   if (Attrs.hasAttributes())
3550     Out << ' ' << Attrs.getAsString();
3551 
3552   // Output name, if available...
3553   if (Arg->hasName()) {
3554     Out << ' ';
3555     PrintLLVMName(Out, Arg);
3556   }
3557 }
3558 
3559 /// printBasicBlock - This member is called for each basic block in a method.
3560 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3561   bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock();
3562   if (BB->hasName()) {              // Print out the label if it exists...
3563     Out << "\n";
3564     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3565     Out << ':';
3566   } else if (!IsEntryBlock) {
3567     Out << "\n";
3568     int Slot = Machine.getLocalSlot(BB);
3569     if (Slot != -1)
3570       Out << Slot << ":";
3571     else
3572       Out << "<badref>:";
3573   }
3574 
3575   if (!BB->getParent()) {
3576     Out.PadToColumn(50);
3577     Out << "; Error: Block without parent!";
3578   } else if (!IsEntryBlock) {
3579     // Output predecessors for the block.
3580     Out.PadToColumn(50);
3581     Out << ";";
3582     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3583 
3584     if (PI == PE) {
3585       Out << " No predecessors!";
3586     } else {
3587       Out << " preds = ";
3588       writeOperand(*PI, false);
3589       for (++PI; PI != PE; ++PI) {
3590         Out << ", ";
3591         writeOperand(*PI, false);
3592       }
3593     }
3594   }
3595 
3596   Out << "\n";
3597 
3598   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3599 
3600   // Output all of the instructions in the basic block...
3601   for (const Instruction &I : *BB) {
3602     printInstructionLine(I);
3603   }
3604 
3605   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3606 }
3607 
3608 /// printInstructionLine - Print an instruction and a newline character.
3609 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3610   printInstruction(I);
3611   Out << '\n';
3612 }
3613 
3614 /// printGCRelocateComment - print comment after call to the gc.relocate
3615 /// intrinsic indicating base and derived pointer names.
3616 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3617   Out << " ; (";
3618   writeOperand(Relocate.getBasePtr(), false);
3619   Out << ", ";
3620   writeOperand(Relocate.getDerivedPtr(), false);
3621   Out << ")";
3622 }
3623 
3624 /// printInfoComment - Print a little comment after the instruction indicating
3625 /// which slot it occupies.
3626 void AssemblyWriter::printInfoComment(const Value &V) {
3627   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3628     printGCRelocateComment(*Relocate);
3629 
3630   if (AnnotationWriter)
3631     AnnotationWriter->printInfoComment(V, Out);
3632 }
3633 
3634 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3635                                     raw_ostream &Out) {
3636   // We print the address space of the call if it is non-zero.
3637   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3638   bool PrintAddrSpace = CallAddrSpace != 0;
3639   if (!PrintAddrSpace) {
3640     const Module *Mod = getModuleFromVal(I);
3641     // We also print it if it is zero but not equal to the program address space
3642     // or if we can't find a valid Module* to make it possible to parse
3643     // the resulting file even without a datalayout string.
3644     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3645       PrintAddrSpace = true;
3646   }
3647   if (PrintAddrSpace)
3648     Out << " addrspace(" << CallAddrSpace << ")";
3649 }
3650 
3651 // This member is called for each Instruction in a function..
3652 void AssemblyWriter::printInstruction(const Instruction &I) {
3653   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3654 
3655   // Print out indentation for an instruction.
3656   Out << "  ";
3657 
3658   // Print out name if it exists...
3659   if (I.hasName()) {
3660     PrintLLVMName(Out, &I);
3661     Out << " = ";
3662   } else if (!I.getType()->isVoidTy()) {
3663     // Print out the def slot taken.
3664     int SlotNum = Machine.getLocalSlot(&I);
3665     if (SlotNum == -1)
3666       Out << "<badref> = ";
3667     else
3668       Out << '%' << SlotNum << " = ";
3669   }
3670 
3671   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3672     if (CI->isMustTailCall())
3673       Out << "musttail ";
3674     else if (CI->isTailCall())
3675       Out << "tail ";
3676     else if (CI->isNoTailCall())
3677       Out << "notail ";
3678   }
3679 
3680   // Print out the opcode...
3681   Out << I.getOpcodeName();
3682 
3683   // If this is an atomic load or store, print out the atomic marker.
3684   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3685       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3686     Out << " atomic";
3687 
3688   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3689     Out << " weak";
3690 
3691   // If this is a volatile operation, print out the volatile marker.
3692   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3693       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3694       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3695       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3696     Out << " volatile";
3697 
3698   // Print out optimization information.
3699   WriteOptimizationInfo(Out, &I);
3700 
3701   // Print out the compare instruction predicates
3702   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3703     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3704 
3705   // Print out the atomicrmw operation
3706   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3707     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3708 
3709   // Print out the type of the operands...
3710   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3711 
3712   // Special case conditional branches to swizzle the condition out to the front
3713   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3714     const BranchInst &BI(cast<BranchInst>(I));
3715     Out << ' ';
3716     writeOperand(BI.getCondition(), true);
3717     Out << ", ";
3718     writeOperand(BI.getSuccessor(0), true);
3719     Out << ", ";
3720     writeOperand(BI.getSuccessor(1), true);
3721 
3722   } else if (isa<SwitchInst>(I)) {
3723     const SwitchInst& SI(cast<SwitchInst>(I));
3724     // Special case switch instruction to get formatting nice and correct.
3725     Out << ' ';
3726     writeOperand(SI.getCondition(), true);
3727     Out << ", ";
3728     writeOperand(SI.getDefaultDest(), true);
3729     Out << " [";
3730     for (auto Case : SI.cases()) {
3731       Out << "\n    ";
3732       writeOperand(Case.getCaseValue(), true);
3733       Out << ", ";
3734       writeOperand(Case.getCaseSuccessor(), true);
3735     }
3736     Out << "\n  ]";
3737   } else if (isa<IndirectBrInst>(I)) {
3738     // Special case indirectbr instruction to get formatting nice and correct.
3739     Out << ' ';
3740     writeOperand(Operand, true);
3741     Out << ", [";
3742 
3743     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3744       if (i != 1)
3745         Out << ", ";
3746       writeOperand(I.getOperand(i), true);
3747     }
3748     Out << ']';
3749   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
3750     Out << ' ';
3751     TypePrinter.print(I.getType(), Out);
3752     Out << ' ';
3753 
3754     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
3755       if (op) Out << ", ";
3756       Out << "[ ";
3757       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
3758       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
3759     }
3760   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
3761     Out << ' ';
3762     writeOperand(I.getOperand(0), true);
3763     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3764       Out << ", " << *i;
3765   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3766     Out << ' ';
3767     writeOperand(I.getOperand(0), true); Out << ", ";
3768     writeOperand(I.getOperand(1), true);
3769     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3770       Out << ", " << *i;
3771   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3772     Out << ' ';
3773     TypePrinter.print(I.getType(), Out);
3774     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3775       Out << '\n';
3776 
3777     if (LPI->isCleanup())
3778       Out << "          cleanup";
3779 
3780     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3781       if (i != 0 || LPI->isCleanup()) Out << "\n";
3782       if (LPI->isCatch(i))
3783         Out << "          catch ";
3784       else
3785         Out << "          filter ";
3786 
3787       writeOperand(LPI->getClause(i), true);
3788     }
3789   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3790     Out << " within ";
3791     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3792     Out << " [";
3793     unsigned Op = 0;
3794     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3795       if (Op > 0)
3796         Out << ", ";
3797       writeOperand(PadBB, /*PrintType=*/true);
3798       ++Op;
3799     }
3800     Out << "] unwind ";
3801     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3802       writeOperand(UnwindDest, /*PrintType=*/true);
3803     else
3804       Out << "to caller";
3805   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3806     Out << " within ";
3807     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3808     Out << " [";
3809     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3810          ++Op) {
3811       if (Op > 0)
3812         Out << ", ";
3813       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3814     }
3815     Out << ']';
3816   } else if (isa<ReturnInst>(I) && !Operand) {
3817     Out << " void";
3818   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3819     Out << " from ";
3820     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3821 
3822     Out << " to ";
3823     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3824   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3825     Out << " from ";
3826     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3827 
3828     Out << " unwind ";
3829     if (CRI->hasUnwindDest())
3830       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3831     else
3832       Out << "to caller";
3833   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3834     // Print the calling convention being used.
3835     if (CI->getCallingConv() != CallingConv::C) {
3836       Out << " ";
3837       PrintCallingConv(CI->getCallingConv(), Out);
3838     }
3839 
3840     Operand = CI->getCalledValue();
3841     FunctionType *FTy = CI->getFunctionType();
3842     Type *RetTy = FTy->getReturnType();
3843     const AttributeList &PAL = CI->getAttributes();
3844 
3845     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3846       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3847 
3848     // Only print addrspace(N) if necessary:
3849     maybePrintCallAddrSpace(Operand, &I, Out);
3850 
3851     // If possible, print out the short form of the call instruction.  We can
3852     // only do this if the first argument is a pointer to a nonvararg function,
3853     // and if the return type is not a pointer to a function.
3854     //
3855     Out << ' ';
3856     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3857     Out << ' ';
3858     writeOperand(Operand, false);
3859     Out << '(';
3860     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3861       if (op > 0)
3862         Out << ", ";
3863       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
3864     }
3865 
3866     // Emit an ellipsis if this is a musttail call in a vararg function.  This
3867     // is only to aid readability, musttail calls forward varargs by default.
3868     if (CI->isMustTailCall() && CI->getParent() &&
3869         CI->getParent()->getParent() &&
3870         CI->getParent()->getParent()->isVarArg())
3871       Out << ", ...";
3872 
3873     Out << ')';
3874     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3875       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3876 
3877     writeOperandBundles(CI);
3878   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3879     Operand = II->getCalledValue();
3880     FunctionType *FTy = II->getFunctionType();
3881     Type *RetTy = FTy->getReturnType();
3882     const AttributeList &PAL = II->getAttributes();
3883 
3884     // Print the calling convention being used.
3885     if (II->getCallingConv() != CallingConv::C) {
3886       Out << " ";
3887       PrintCallingConv(II->getCallingConv(), Out);
3888     }
3889 
3890     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3891       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3892 
3893     // Only print addrspace(N) if necessary:
3894     maybePrintCallAddrSpace(Operand, &I, Out);
3895 
3896     // If possible, print out the short form of the invoke instruction. We can
3897     // only do this if the first argument is a pointer to a nonvararg function,
3898     // and if the return type is not a pointer to a function.
3899     //
3900     Out << ' ';
3901     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3902     Out << ' ';
3903     writeOperand(Operand, false);
3904     Out << '(';
3905     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3906       if (op)
3907         Out << ", ";
3908       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
3909     }
3910 
3911     Out << ')';
3912     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3913       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3914 
3915     writeOperandBundles(II);
3916 
3917     Out << "\n          to ";
3918     writeOperand(II->getNormalDest(), true);
3919     Out << " unwind ";
3920     writeOperand(II->getUnwindDest(), true);
3921   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
3922     Operand = CBI->getCalledValue();
3923     FunctionType *FTy = CBI->getFunctionType();
3924     Type *RetTy = FTy->getReturnType();
3925     const AttributeList &PAL = CBI->getAttributes();
3926 
3927     // Print the calling convention being used.
3928     if (CBI->getCallingConv() != CallingConv::C) {
3929       Out << " ";
3930       PrintCallingConv(CBI->getCallingConv(), Out);
3931     }
3932 
3933     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3934       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3935 
3936     // If possible, print out the short form of the callbr instruction. We can
3937     // only do this if the first argument is a pointer to a nonvararg function,
3938     // and if the return type is not a pointer to a function.
3939     //
3940     Out << ' ';
3941     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3942     Out << ' ';
3943     writeOperand(Operand, false);
3944     Out << '(';
3945     for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
3946       if (op)
3947         Out << ", ";
3948       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
3949     }
3950 
3951     Out << ')';
3952     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3953       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3954 
3955     writeOperandBundles(CBI);
3956 
3957     Out << "\n          to ";
3958     writeOperand(CBI->getDefaultDest(), true);
3959     Out << " [";
3960     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
3961       if (i != 0)
3962         Out << ", ";
3963       writeOperand(CBI->getIndirectDest(i), true);
3964     }
3965     Out << ']';
3966   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3967     Out << ' ';
3968     if (AI->isUsedWithInAlloca())
3969       Out << "inalloca ";
3970     if (AI->isSwiftError())
3971       Out << "swifterror ";
3972     TypePrinter.print(AI->getAllocatedType(), Out);
3973 
3974     // Explicitly write the array size if the code is broken, if it's an array
3975     // allocation, or if the type is not canonical for scalar allocations.  The
3976     // latter case prevents the type from mutating when round-tripping through
3977     // assembly.
3978     if (!AI->getArraySize() || AI->isArrayAllocation() ||
3979         !AI->getArraySize()->getType()->isIntegerTy(32)) {
3980       Out << ", ";
3981       writeOperand(AI->getArraySize(), true);
3982     }
3983     if (AI->getAlignment()) {
3984       Out << ", align " << AI->getAlignment();
3985     }
3986 
3987     unsigned AddrSpace = AI->getType()->getAddressSpace();
3988     if (AddrSpace != 0) {
3989       Out << ", addrspace(" << AddrSpace << ')';
3990     }
3991   } else if (isa<CastInst>(I)) {
3992     if (Operand) {
3993       Out << ' ';
3994       writeOperand(Operand, true);   // Work with broken code
3995     }
3996     Out << " to ";
3997     TypePrinter.print(I.getType(), Out);
3998   } else if (isa<VAArgInst>(I)) {
3999     if (Operand) {
4000       Out << ' ';
4001       writeOperand(Operand, true);   // Work with broken code
4002     }
4003     Out << ", ";
4004     TypePrinter.print(I.getType(), Out);
4005   } else if (Operand) {   // Print the normal way.
4006     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4007       Out << ' ';
4008       TypePrinter.print(GEP->getSourceElementType(), Out);
4009       Out << ',';
4010     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4011       Out << ' ';
4012       TypePrinter.print(LI->getType(), Out);
4013       Out << ',';
4014     }
4015 
4016     // PrintAllTypes - Instructions who have operands of all the same type
4017     // omit the type from all but the first operand.  If the instruction has
4018     // different type operands (for example br), then they are all printed.
4019     bool PrintAllTypes = false;
4020     Type *TheType = Operand->getType();
4021 
4022     // Select, Store and ShuffleVector always print all types.
4023     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4024         || isa<ReturnInst>(I)) {
4025       PrintAllTypes = true;
4026     } else {
4027       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4028         Operand = I.getOperand(i);
4029         // note that Operand shouldn't be null, but the test helps make dump()
4030         // more tolerant of malformed IR
4031         if (Operand && Operand->getType() != TheType) {
4032           PrintAllTypes = true;    // We have differing types!  Print them all!
4033           break;
4034         }
4035       }
4036     }
4037 
4038     if (!PrintAllTypes) {
4039       Out << ' ';
4040       TypePrinter.print(TheType, Out);
4041     }
4042 
4043     Out << ' ';
4044     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4045       if (i) Out << ", ";
4046       writeOperand(I.getOperand(i), PrintAllTypes);
4047     }
4048   }
4049 
4050   // Print atomic ordering/alignment for memory operations
4051   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4052     if (LI->isAtomic())
4053       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4054     if (LI->getAlignment())
4055       Out << ", align " << LI->getAlignment();
4056   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4057     if (SI->isAtomic())
4058       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4059     if (SI->getAlignment())
4060       Out << ", align " << SI->getAlignment();
4061   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4062     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4063                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4064   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4065     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4066                 RMWI->getSyncScopeID());
4067   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4068     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4069   }
4070 
4071   // Print Metadata info.
4072   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4073   I.getAllMetadata(InstMD);
4074   printMetadataAttachments(InstMD, ", ");
4075 
4076   // Print a nice comment.
4077   printInfoComment(I);
4078 }
4079 
4080 void AssemblyWriter::printMetadataAttachments(
4081     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4082     StringRef Separator) {
4083   if (MDs.empty())
4084     return;
4085 
4086   if (MDNames.empty())
4087     MDs[0].second->getContext().getMDKindNames(MDNames);
4088 
4089   for (const auto &I : MDs) {
4090     unsigned Kind = I.first;
4091     Out << Separator;
4092     if (Kind < MDNames.size()) {
4093       Out << "!";
4094       printMetadataIdentifier(MDNames[Kind], Out);
4095     } else
4096       Out << "!<unknown kind #" << Kind << ">";
4097     Out << ' ';
4098     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4099   }
4100 }
4101 
4102 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4103   Out << '!' << Slot << " = ";
4104   printMDNodeBody(Node);
4105   Out << "\n";
4106 }
4107 
4108 void AssemblyWriter::writeAllMDNodes() {
4109   SmallVector<const MDNode *, 16> Nodes;
4110   Nodes.resize(Machine.mdn_size());
4111   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
4112        I != E; ++I)
4113     Nodes[I->second] = cast<MDNode>(I->first);
4114 
4115   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4116     writeMDNode(i, Nodes[i]);
4117   }
4118 }
4119 
4120 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4121   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4122 }
4123 
4124 void AssemblyWriter::writeAllAttributeGroups() {
4125   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4126   asVec.resize(Machine.as_size());
4127 
4128   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
4129        I != E; ++I)
4130     asVec[I->second] = *I;
4131 
4132   for (const auto &I : asVec)
4133     Out << "attributes #" << I.second << " = { "
4134         << I.first.getAsString(true) << " }\n";
4135 }
4136 
4137 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
4138   bool IsInFunction = Machine.getFunction();
4139   if (IsInFunction)
4140     Out << "  ";
4141 
4142   Out << "uselistorder";
4143   if (const BasicBlock *BB =
4144           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
4145     Out << "_bb ";
4146     writeOperand(BB->getParent(), false);
4147     Out << ", ";
4148     writeOperand(BB, false);
4149   } else {
4150     Out << " ";
4151     writeOperand(Order.V, true);
4152   }
4153   Out << ", { ";
4154 
4155   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
4156   Out << Order.Shuffle[0];
4157   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
4158     Out << ", " << Order.Shuffle[I];
4159   Out << " }\n";
4160 }
4161 
4162 void AssemblyWriter::printUseLists(const Function *F) {
4163   auto hasMore =
4164       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
4165   if (!hasMore())
4166     // Nothing to do.
4167     return;
4168 
4169   Out << "\n; uselistorder directives\n";
4170   while (hasMore()) {
4171     printUseListOrder(UseListOrders.back());
4172     UseListOrders.pop_back();
4173   }
4174 }
4175 
4176 //===----------------------------------------------------------------------===//
4177 //                       External Interface declarations
4178 //===----------------------------------------------------------------------===//
4179 
4180 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4181                      bool ShouldPreserveUseListOrder,
4182                      bool IsForDebug) const {
4183   SlotTracker SlotTable(this->getParent());
4184   formatted_raw_ostream OS(ROS);
4185   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4186                    IsForDebug,
4187                    ShouldPreserveUseListOrder);
4188   W.printFunction(this);
4189 }
4190 
4191 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4192                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4193   SlotTracker SlotTable(this);
4194   formatted_raw_ostream OS(ROS);
4195   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4196                    ShouldPreserveUseListOrder);
4197   W.printModule(this);
4198 }
4199 
4200 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4201   SlotTracker SlotTable(getParent());
4202   formatted_raw_ostream OS(ROS);
4203   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4204   W.printNamedMDNode(this);
4205 }
4206 
4207 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4208                         bool IsForDebug) const {
4209   Optional<SlotTracker> LocalST;
4210   SlotTracker *SlotTable;
4211   if (auto *ST = MST.getMachine())
4212     SlotTable = ST;
4213   else {
4214     LocalST.emplace(getParent());
4215     SlotTable = &*LocalST;
4216   }
4217 
4218   formatted_raw_ostream OS(ROS);
4219   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4220   W.printNamedMDNode(this);
4221 }
4222 
4223 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4224   PrintLLVMName(ROS, getName(), ComdatPrefix);
4225   ROS << " = comdat ";
4226 
4227   switch (getSelectionKind()) {
4228   case Comdat::Any:
4229     ROS << "any";
4230     break;
4231   case Comdat::ExactMatch:
4232     ROS << "exactmatch";
4233     break;
4234   case Comdat::Largest:
4235     ROS << "largest";
4236     break;
4237   case Comdat::NoDuplicates:
4238     ROS << "noduplicates";
4239     break;
4240   case Comdat::SameSize:
4241     ROS << "samesize";
4242     break;
4243   }
4244 
4245   ROS << '\n';
4246 }
4247 
4248 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4249   TypePrinting TP;
4250   TP.print(const_cast<Type*>(this), OS);
4251 
4252   if (NoDetails)
4253     return;
4254 
4255   // If the type is a named struct type, print the body as well.
4256   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4257     if (!STy->isLiteral()) {
4258       OS << " = type ";
4259       TP.printStructBody(STy, OS);
4260     }
4261 }
4262 
4263 static bool isReferencingMDNode(const Instruction &I) {
4264   if (const auto *CI = dyn_cast<CallInst>(&I))
4265     if (Function *F = CI->getCalledFunction())
4266       if (F->isIntrinsic())
4267         for (auto &Op : I.operands())
4268           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4269             if (isa<MDNode>(V->getMetadata()))
4270               return true;
4271   return false;
4272 }
4273 
4274 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4275   bool ShouldInitializeAllMetadata = false;
4276   if (auto *I = dyn_cast<Instruction>(this))
4277     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4278   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4279     ShouldInitializeAllMetadata = true;
4280 
4281   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4282   print(ROS, MST, IsForDebug);
4283 }
4284 
4285 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4286                   bool IsForDebug) const {
4287   formatted_raw_ostream OS(ROS);
4288   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4289   SlotTracker &SlotTable =
4290       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4291   auto incorporateFunction = [&](const Function *F) {
4292     if (F)
4293       MST.incorporateFunction(*F);
4294   };
4295 
4296   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4297     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4298     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4299     W.printInstruction(*I);
4300   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4301     incorporateFunction(BB->getParent());
4302     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4303     W.printBasicBlock(BB);
4304   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4305     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4306     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4307       W.printGlobal(V);
4308     else if (const Function *F = dyn_cast<Function>(GV))
4309       W.printFunction(F);
4310     else
4311       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4312   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4313     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4314   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4315     TypePrinting TypePrinter;
4316     TypePrinter.print(C->getType(), OS);
4317     OS << ' ';
4318     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4319   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4320     this->printAsOperand(OS, /* PrintType */ true, MST);
4321   } else {
4322     llvm_unreachable("Unknown value to print out!");
4323   }
4324 }
4325 
4326 /// Print without a type, skipping the TypePrinting object.
4327 ///
4328 /// \return \c true iff printing was successful.
4329 static bool printWithoutType(const Value &V, raw_ostream &O,
4330                              SlotTracker *Machine, const Module *M) {
4331   if (V.hasName() || isa<GlobalValue>(V) ||
4332       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4333     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4334     return true;
4335   }
4336   return false;
4337 }
4338 
4339 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4340                                ModuleSlotTracker &MST) {
4341   TypePrinting TypePrinter(MST.getModule());
4342   if (PrintType) {
4343     TypePrinter.print(V.getType(), O);
4344     O << ' ';
4345   }
4346 
4347   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4348                          MST.getModule());
4349 }
4350 
4351 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4352                            const Module *M) const {
4353   if (!M)
4354     M = getModuleFromVal(this);
4355 
4356   if (!PrintType)
4357     if (printWithoutType(*this, O, nullptr, M))
4358       return;
4359 
4360   SlotTracker Machine(
4361       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4362   ModuleSlotTracker MST(Machine, M);
4363   printAsOperandImpl(*this, O, PrintType, MST);
4364 }
4365 
4366 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4367                            ModuleSlotTracker &MST) const {
4368   if (!PrintType)
4369     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4370       return;
4371 
4372   printAsOperandImpl(*this, O, PrintType, MST);
4373 }
4374 
4375 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4376                               ModuleSlotTracker &MST, const Module *M,
4377                               bool OnlyAsOperand) {
4378   formatted_raw_ostream OS(ROS);
4379 
4380   TypePrinting TypePrinter(M);
4381 
4382   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4383                          /* FromValue */ true);
4384 
4385   auto *N = dyn_cast<MDNode>(&MD);
4386   if (OnlyAsOperand || !N || isa<DIExpression>(MD))
4387     return;
4388 
4389   OS << " = ";
4390   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4391 }
4392 
4393 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4394   ModuleSlotTracker MST(M, isa<MDNode>(this));
4395   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4396 }
4397 
4398 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4399                               const Module *M) const {
4400   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4401 }
4402 
4403 void Metadata::print(raw_ostream &OS, const Module *M,
4404                      bool /*IsForDebug*/) const {
4405   ModuleSlotTracker MST(M, isa<MDNode>(this));
4406   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4407 }
4408 
4409 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4410                      const Module *M, bool /*IsForDebug*/) const {
4411   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4412 }
4413 
4414 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4415   SlotTracker SlotTable(this);
4416   formatted_raw_ostream OS(ROS);
4417   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4418   W.printModuleSummaryIndex();
4419 }
4420 
4421 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4422 // Value::dump - allow easy printing of Values from the debugger.
4423 LLVM_DUMP_METHOD
4424 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4425 
4426 // Type::dump - allow easy printing of Types from the debugger.
4427 LLVM_DUMP_METHOD
4428 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4429 
4430 // Module::dump() - Allow printing of Modules from the debugger.
4431 LLVM_DUMP_METHOD
4432 void Module::dump() const {
4433   print(dbgs(), nullptr,
4434         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4435 }
4436 
4437 // Allow printing of Comdats from the debugger.
4438 LLVM_DUMP_METHOD
4439 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4440 
4441 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4442 LLVM_DUMP_METHOD
4443 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4444 
4445 LLVM_DUMP_METHOD
4446 void Metadata::dump() const { dump(nullptr); }
4447 
4448 LLVM_DUMP_METHOD
4449 void Metadata::dump(const Module *M) const {
4450   print(dbgs(), M, /*IsForDebug=*/true);
4451   dbgs() << '\n';
4452 }
4453 
4454 // Allow printing of ModuleSummaryIndex from the debugger.
4455 LLVM_DUMP_METHOD
4456 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4457 #endif
4458