1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This library implements `print` family of functions in classes like 10 // Module, Function, Value, etc. In-memory representation of those classes is 11 // converted to IR strings. 12 // 13 // Note that these routines must be extremely tolerant of various errors in the 14 // LLVM code, because it can be used for debugging transformations. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/iterator_range.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/AssemblyAnnotationWriter.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Comdat.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/IRPrintingPasses.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSlotTracker.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/TypeFinder.h" 63 #include "llvm/IR/TypedPointerType.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/User.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/Support/AtomicOrdering.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/Compiler.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/Format.h" 73 #include "llvm/Support/FormattedStream.h" 74 #include "llvm/Support/SaveAndRestore.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <memory> 83 #include <optional> 84 #include <string> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 // Make virtual table appear in this compilation unit. 92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default; 93 94 //===----------------------------------------------------------------------===// 95 // Helper Functions 96 //===----------------------------------------------------------------------===// 97 98 using OrderMap = MapVector<const Value *, unsigned>; 99 100 using UseListOrderMap = 101 DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>; 102 103 /// Look for a value that might be wrapped as metadata, e.g. a value in a 104 /// metadata operand. Returns the input value as-is if it is not wrapped. 105 static const Value *skipMetadataWrapper(const Value *V) { 106 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) 107 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata())) 108 return VAM->getValue(); 109 return V; 110 } 111 112 static void orderValue(const Value *V, OrderMap &OM) { 113 if (OM.lookup(V)) 114 return; 115 116 if (const Constant *C = dyn_cast<Constant>(V)) 117 if (C->getNumOperands() && !isa<GlobalValue>(C)) 118 for (const Value *Op : C->operands()) 119 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 120 orderValue(Op, OM); 121 122 // Note: we cannot cache this lookup above, since inserting into the map 123 // changes the map's size, and thus affects the other IDs. 124 unsigned ID = OM.size() + 1; 125 OM[V] = ID; 126 } 127 128 static OrderMap orderModule(const Module *M) { 129 OrderMap OM; 130 131 for (const GlobalVariable &G : M->globals()) { 132 if (G.hasInitializer()) 133 if (!isa<GlobalValue>(G.getInitializer())) 134 orderValue(G.getInitializer(), OM); 135 orderValue(&G, OM); 136 } 137 for (const GlobalAlias &A : M->aliases()) { 138 if (!isa<GlobalValue>(A.getAliasee())) 139 orderValue(A.getAliasee(), OM); 140 orderValue(&A, OM); 141 } 142 for (const GlobalIFunc &I : M->ifuncs()) { 143 if (!isa<GlobalValue>(I.getResolver())) 144 orderValue(I.getResolver(), OM); 145 orderValue(&I, OM); 146 } 147 for (const Function &F : *M) { 148 for (const Use &U : F.operands()) 149 if (!isa<GlobalValue>(U.get())) 150 orderValue(U.get(), OM); 151 152 orderValue(&F, OM); 153 154 if (F.isDeclaration()) 155 continue; 156 157 for (const Argument &A : F.args()) 158 orderValue(&A, OM); 159 for (const BasicBlock &BB : F) { 160 orderValue(&BB, OM); 161 for (const Instruction &I : BB) { 162 for (const Value *Op : I.operands()) { 163 Op = skipMetadataWrapper(Op); 164 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 165 isa<InlineAsm>(*Op)) 166 orderValue(Op, OM); 167 } 168 orderValue(&I, OM); 169 } 170 } 171 } 172 return OM; 173 } 174 175 static std::vector<unsigned> 176 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) { 177 // Predict use-list order for this one. 178 using Entry = std::pair<const Use *, unsigned>; 179 SmallVector<Entry, 64> List; 180 for (const Use &U : V->uses()) 181 // Check if this user will be serialized. 182 if (OM.lookup(U.getUser())) 183 List.push_back(std::make_pair(&U, List.size())); 184 185 if (List.size() < 2) 186 // We may have lost some users. 187 return {}; 188 189 // When referencing a value before its declaration, a temporary value is 190 // created, which will later be RAUWed with the actual value. This reverses 191 // the use list. This happens for all values apart from basic blocks. 192 bool GetsReversed = !isa<BasicBlock>(V); 193 if (auto *BA = dyn_cast<BlockAddress>(V)) 194 ID = OM.lookup(BA->getBasicBlock()); 195 llvm::sort(List, [&](const Entry &L, const Entry &R) { 196 const Use *LU = L.first; 197 const Use *RU = R.first; 198 if (LU == RU) 199 return false; 200 201 auto LID = OM.lookup(LU->getUser()); 202 auto RID = OM.lookup(RU->getUser()); 203 204 // If ID is 4, then expect: 7 6 5 1 2 3. 205 if (LID < RID) { 206 if (GetsReversed) 207 if (RID <= ID) 208 return true; 209 return false; 210 } 211 if (RID < LID) { 212 if (GetsReversed) 213 if (LID <= ID) 214 return false; 215 return true; 216 } 217 218 // LID and RID are equal, so we have different operands of the same user. 219 // Assume operands are added in order for all instructions. 220 if (GetsReversed) 221 if (LID <= ID) 222 return LU->getOperandNo() < RU->getOperandNo(); 223 return LU->getOperandNo() > RU->getOperandNo(); 224 }); 225 226 if (llvm::is_sorted(List, llvm::less_second())) 227 // Order is already correct. 228 return {}; 229 230 // Store the shuffle. 231 std::vector<unsigned> Shuffle(List.size()); 232 for (size_t I = 0, E = List.size(); I != E; ++I) 233 Shuffle[I] = List[I].second; 234 return Shuffle; 235 } 236 237 static UseListOrderMap predictUseListOrder(const Module *M) { 238 OrderMap OM = orderModule(M); 239 UseListOrderMap ULOM; 240 for (const auto &Pair : OM) { 241 const Value *V = Pair.first; 242 if (V->use_empty() || std::next(V->use_begin()) == V->use_end()) 243 continue; 244 245 std::vector<unsigned> Shuffle = 246 predictValueUseListOrder(V, Pair.second, OM); 247 if (Shuffle.empty()) 248 continue; 249 250 const Function *F = nullptr; 251 if (auto *I = dyn_cast<Instruction>(V)) 252 F = I->getFunction(); 253 if (auto *A = dyn_cast<Argument>(V)) 254 F = A->getParent(); 255 if (auto *BB = dyn_cast<BasicBlock>(V)) 256 F = BB->getParent(); 257 ULOM[F][V] = std::move(Shuffle); 258 } 259 return ULOM; 260 } 261 262 static const Module *getModuleFromVal(const Value *V) { 263 if (const Argument *MA = dyn_cast<Argument>(V)) 264 return MA->getParent() ? MA->getParent()->getParent() : nullptr; 265 266 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 267 return BB->getParent() ? BB->getParent()->getParent() : nullptr; 268 269 if (const Instruction *I = dyn_cast<Instruction>(V)) { 270 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr; 271 return M ? M->getParent() : nullptr; 272 } 273 274 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 275 return GV->getParent(); 276 277 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 278 for (const User *U : MAV->users()) 279 if (isa<Instruction>(U)) 280 if (const Module *M = getModuleFromVal(U)) 281 return M; 282 return nullptr; 283 } 284 285 return nullptr; 286 } 287 288 static void PrintCallingConv(unsigned cc, raw_ostream &Out) { 289 switch (cc) { 290 default: Out << "cc" << cc; break; 291 case CallingConv::Fast: Out << "fastcc"; break; 292 case CallingConv::Cold: Out << "coldcc"; break; 293 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break; 294 case CallingConv::AnyReg: Out << "anyregcc"; break; 295 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break; 296 case CallingConv::PreserveAll: Out << "preserve_allcc"; break; 297 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break; 298 case CallingConv::GHC: Out << "ghccc"; break; 299 case CallingConv::Tail: Out << "tailcc"; break; 300 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break; 301 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; 302 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; 303 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; 304 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break; 305 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break; 306 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; 307 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; 308 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; 309 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; 310 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break; 311 case CallingConv::AArch64_SVE_VectorCall: 312 Out << "aarch64_sve_vector_pcs"; 313 break; 314 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0: 315 Out << "aarch64_sme_preservemost_from_x0"; 316 break; 317 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2: 318 Out << "aarch64_sme_preservemost_from_x2"; 319 break; 320 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; 321 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break; 322 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break; 323 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; 324 case CallingConv::PTX_Device: Out << "ptx_device"; break; 325 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break; 326 case CallingConv::Win64: Out << "win64cc"; break; 327 case CallingConv::SPIR_FUNC: Out << "spir_func"; break; 328 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break; 329 case CallingConv::Swift: Out << "swiftcc"; break; 330 case CallingConv::SwiftTail: Out << "swifttailcc"; break; 331 case CallingConv::X86_INTR: Out << "x86_intrcc"; break; 332 case CallingConv::DUMMY_HHVM: 333 Out << "hhvmcc"; 334 break; 335 case CallingConv::DUMMY_HHVM_C: 336 Out << "hhvm_ccc"; 337 break; 338 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break; 339 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break; 340 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break; 341 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break; 342 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break; 343 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break; 344 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break; 345 case CallingConv::AMDGPU_CS_Chain: 346 Out << "amdgpu_cs_chain"; 347 break; 348 case CallingConv::AMDGPU_CS_ChainPreserve: 349 Out << "amdgpu_cs_chain_preserve"; 350 break; 351 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break; 352 case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break; 353 } 354 } 355 356 enum PrefixType { 357 GlobalPrefix, 358 ComdatPrefix, 359 LabelPrefix, 360 LocalPrefix, 361 NoPrefix 362 }; 363 364 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) { 365 assert(!Name.empty() && "Cannot get empty name!"); 366 367 // Scan the name to see if it needs quotes first. 368 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); 369 if (!NeedsQuotes) { 370 for (unsigned char C : Name) { 371 // By making this unsigned, the value passed in to isalnum will always be 372 // in the range 0-255. This is important when building with MSVC because 373 // its implementation will assert. This situation can arise when dealing 374 // with UTF-8 multibyte characters. 375 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && 376 C != '_') { 377 NeedsQuotes = true; 378 break; 379 } 380 } 381 } 382 383 // If we didn't need any quotes, just write out the name in one blast. 384 if (!NeedsQuotes) { 385 OS << Name; 386 return; 387 } 388 389 // Okay, we need quotes. Output the quotes and escape any scary characters as 390 // needed. 391 OS << '"'; 392 printEscapedString(Name, OS); 393 OS << '"'; 394 } 395 396 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 397 /// (if the string only contains simple characters) or is surrounded with ""'s 398 /// (if it has special chars in it). Print it out. 399 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { 400 switch (Prefix) { 401 case NoPrefix: 402 break; 403 case GlobalPrefix: 404 OS << '@'; 405 break; 406 case ComdatPrefix: 407 OS << '$'; 408 break; 409 case LabelPrefix: 410 break; 411 case LocalPrefix: 412 OS << '%'; 413 break; 414 } 415 printLLVMNameWithoutPrefix(OS, Name); 416 } 417 418 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 419 /// (if the string only contains simple characters) or is surrounded with ""'s 420 /// (if it has special chars in it). Print it out. 421 static void PrintLLVMName(raw_ostream &OS, const Value *V) { 422 PrintLLVMName(OS, V->getName(), 423 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); 424 } 425 426 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) { 427 Out << ", <"; 428 if (isa<ScalableVectorType>(Ty)) 429 Out << "vscale x "; 430 Out << Mask.size() << " x i32> "; 431 bool FirstElt = true; 432 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 433 Out << "zeroinitializer"; 434 } else if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) { 435 Out << "poison"; 436 } else { 437 Out << "<"; 438 for (int Elt : Mask) { 439 if (FirstElt) 440 FirstElt = false; 441 else 442 Out << ", "; 443 Out << "i32 "; 444 if (Elt == PoisonMaskElem) 445 Out << "poison"; 446 else 447 Out << Elt; 448 } 449 Out << ">"; 450 } 451 } 452 453 namespace { 454 455 class TypePrinting { 456 public: 457 TypePrinting(const Module *M = nullptr) : DeferredM(M) {} 458 459 TypePrinting(const TypePrinting &) = delete; 460 TypePrinting &operator=(const TypePrinting &) = delete; 461 462 /// The named types that are used by the current module. 463 TypeFinder &getNamedTypes(); 464 465 /// The numbered types, number to type mapping. 466 std::vector<StructType *> &getNumberedTypes(); 467 468 bool empty(); 469 470 void print(Type *Ty, raw_ostream &OS); 471 472 void printStructBody(StructType *Ty, raw_ostream &OS); 473 474 private: 475 void incorporateTypes(); 476 477 /// A module to process lazily when needed. Set to nullptr as soon as used. 478 const Module *DeferredM; 479 480 TypeFinder NamedTypes; 481 482 // The numbered types, along with their value. 483 DenseMap<StructType *, unsigned> Type2Number; 484 485 std::vector<StructType *> NumberedTypes; 486 }; 487 488 } // end anonymous namespace 489 490 TypeFinder &TypePrinting::getNamedTypes() { 491 incorporateTypes(); 492 return NamedTypes; 493 } 494 495 std::vector<StructType *> &TypePrinting::getNumberedTypes() { 496 incorporateTypes(); 497 498 // We know all the numbers that each type is used and we know that it is a 499 // dense assignment. Convert the map to an index table, if it's not done 500 // already (judging from the sizes): 501 if (NumberedTypes.size() == Type2Number.size()) 502 return NumberedTypes; 503 504 NumberedTypes.resize(Type2Number.size()); 505 for (const auto &P : Type2Number) { 506 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?"); 507 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?"); 508 NumberedTypes[P.second] = P.first; 509 } 510 return NumberedTypes; 511 } 512 513 bool TypePrinting::empty() { 514 incorporateTypes(); 515 return NamedTypes.empty() && Type2Number.empty(); 516 } 517 518 void TypePrinting::incorporateTypes() { 519 if (!DeferredM) 520 return; 521 522 NamedTypes.run(*DeferredM, false); 523 DeferredM = nullptr; 524 525 // The list of struct types we got back includes all the struct types, split 526 // the unnamed ones out to a numbering and remove the anonymous structs. 527 unsigned NextNumber = 0; 528 529 std::vector<StructType *>::iterator NextToUse = NamedTypes.begin(); 530 for (StructType *STy : NamedTypes) { 531 // Ignore anonymous types. 532 if (STy->isLiteral()) 533 continue; 534 535 if (STy->getName().empty()) 536 Type2Number[STy] = NextNumber++; 537 else 538 *NextToUse++ = STy; 539 } 540 541 NamedTypes.erase(NextToUse, NamedTypes.end()); 542 } 543 544 /// Write the specified type to the specified raw_ostream, making use of type 545 /// names or up references to shorten the type name where possible. 546 void TypePrinting::print(Type *Ty, raw_ostream &OS) { 547 switch (Ty->getTypeID()) { 548 case Type::VoidTyID: OS << "void"; return; 549 case Type::HalfTyID: OS << "half"; return; 550 case Type::BFloatTyID: OS << "bfloat"; return; 551 case Type::FloatTyID: OS << "float"; return; 552 case Type::DoubleTyID: OS << "double"; return; 553 case Type::X86_FP80TyID: OS << "x86_fp80"; return; 554 case Type::FP128TyID: OS << "fp128"; return; 555 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return; 556 case Type::LabelTyID: OS << "label"; return; 557 case Type::MetadataTyID: OS << "metadata"; return; 558 case Type::X86_MMXTyID: OS << "x86_mmx"; return; 559 case Type::X86_AMXTyID: OS << "x86_amx"; return; 560 case Type::TokenTyID: OS << "token"; return; 561 case Type::IntegerTyID: 562 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); 563 return; 564 565 case Type::FunctionTyID: { 566 FunctionType *FTy = cast<FunctionType>(Ty); 567 print(FTy->getReturnType(), OS); 568 OS << " ("; 569 ListSeparator LS; 570 for (Type *Ty : FTy->params()) { 571 OS << LS; 572 print(Ty, OS); 573 } 574 if (FTy->isVarArg()) 575 OS << LS << "..."; 576 OS << ')'; 577 return; 578 } 579 case Type::StructTyID: { 580 StructType *STy = cast<StructType>(Ty); 581 582 if (STy->isLiteral()) 583 return printStructBody(STy, OS); 584 585 if (!STy->getName().empty()) 586 return PrintLLVMName(OS, STy->getName(), LocalPrefix); 587 588 incorporateTypes(); 589 const auto I = Type2Number.find(STy); 590 if (I != Type2Number.end()) 591 OS << '%' << I->second; 592 else // Not enumerated, print the hex address. 593 OS << "%\"type " << STy << '\"'; 594 return; 595 } 596 case Type::PointerTyID: { 597 PointerType *PTy = cast<PointerType>(Ty); 598 OS << "ptr"; 599 if (unsigned AddressSpace = PTy->getAddressSpace()) 600 OS << " addrspace(" << AddressSpace << ')'; 601 return; 602 } 603 case Type::ArrayTyID: { 604 ArrayType *ATy = cast<ArrayType>(Ty); 605 OS << '[' << ATy->getNumElements() << " x "; 606 print(ATy->getElementType(), OS); 607 OS << ']'; 608 return; 609 } 610 case Type::FixedVectorTyID: 611 case Type::ScalableVectorTyID: { 612 VectorType *PTy = cast<VectorType>(Ty); 613 ElementCount EC = PTy->getElementCount(); 614 OS << "<"; 615 if (EC.isScalable()) 616 OS << "vscale x "; 617 OS << EC.getKnownMinValue() << " x "; 618 print(PTy->getElementType(), OS); 619 OS << '>'; 620 return; 621 } 622 case Type::TypedPointerTyID: { 623 TypedPointerType *TPTy = cast<TypedPointerType>(Ty); 624 OS << "typedptr(" << *TPTy->getElementType() << ", " 625 << TPTy->getAddressSpace() << ")"; 626 return; 627 } 628 case Type::TargetExtTyID: 629 TargetExtType *TETy = cast<TargetExtType>(Ty); 630 OS << "target(\""; 631 printEscapedString(Ty->getTargetExtName(), OS); 632 OS << "\""; 633 for (Type *Inner : TETy->type_params()) 634 OS << ", " << *Inner; 635 for (unsigned IntParam : TETy->int_params()) 636 OS << ", " << IntParam; 637 OS << ")"; 638 return; 639 } 640 llvm_unreachable("Invalid TypeID"); 641 } 642 643 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { 644 if (STy->isOpaque()) { 645 OS << "opaque"; 646 return; 647 } 648 649 if (STy->isPacked()) 650 OS << '<'; 651 652 if (STy->getNumElements() == 0) { 653 OS << "{}"; 654 } else { 655 OS << "{ "; 656 ListSeparator LS; 657 for (Type *Ty : STy->elements()) { 658 OS << LS; 659 print(Ty, OS); 660 } 661 662 OS << " }"; 663 } 664 if (STy->isPacked()) 665 OS << '>'; 666 } 667 668 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default; 669 670 namespace llvm { 671 672 //===----------------------------------------------------------------------===// 673 // SlotTracker Class: Enumerate slot numbers for unnamed values 674 //===----------------------------------------------------------------------===// 675 /// This class provides computation of slot numbers for LLVM Assembly writing. 676 /// 677 class SlotTracker : public AbstractSlotTrackerStorage { 678 public: 679 /// ValueMap - A mapping of Values to slot numbers. 680 using ValueMap = DenseMap<const Value *, unsigned>; 681 682 private: 683 /// TheModule - The module for which we are holding slot numbers. 684 const Module* TheModule; 685 686 /// TheFunction - The function for which we are holding slot numbers. 687 const Function* TheFunction = nullptr; 688 bool FunctionProcessed = false; 689 bool ShouldInitializeAllMetadata; 690 691 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)> 692 ProcessModuleHookFn; 693 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)> 694 ProcessFunctionHookFn; 695 696 /// The summary index for which we are holding slot numbers. 697 const ModuleSummaryIndex *TheIndex = nullptr; 698 699 /// mMap - The slot map for the module level data. 700 ValueMap mMap; 701 unsigned mNext = 0; 702 703 /// fMap - The slot map for the function level data. 704 ValueMap fMap; 705 unsigned fNext = 0; 706 707 /// mdnMap - Map for MDNodes. 708 DenseMap<const MDNode*, unsigned> mdnMap; 709 unsigned mdnNext = 0; 710 711 /// asMap - The slot map for attribute sets. 712 DenseMap<AttributeSet, unsigned> asMap; 713 unsigned asNext = 0; 714 715 /// ModulePathMap - The slot map for Module paths used in the summary index. 716 StringMap<unsigned> ModulePathMap; 717 unsigned ModulePathNext = 0; 718 719 /// GUIDMap - The slot map for GUIDs used in the summary index. 720 DenseMap<GlobalValue::GUID, unsigned> GUIDMap; 721 unsigned GUIDNext = 0; 722 723 /// TypeIdMap - The slot map for type ids used in the summary index. 724 StringMap<unsigned> TypeIdMap; 725 unsigned TypeIdNext = 0; 726 727 public: 728 /// Construct from a module. 729 /// 730 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 731 /// functions, giving correct numbering for metadata referenced only from 732 /// within a function (even if no functions have been initialized). 733 explicit SlotTracker(const Module *M, 734 bool ShouldInitializeAllMetadata = false); 735 736 /// Construct from a function, starting out in incorp state. 737 /// 738 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 739 /// functions, giving correct numbering for metadata referenced only from 740 /// within a function (even if no functions have been initialized). 741 explicit SlotTracker(const Function *F, 742 bool ShouldInitializeAllMetadata = false); 743 744 /// Construct from a module summary index. 745 explicit SlotTracker(const ModuleSummaryIndex *Index); 746 747 SlotTracker(const SlotTracker &) = delete; 748 SlotTracker &operator=(const SlotTracker &) = delete; 749 750 ~SlotTracker() = default; 751 752 void setProcessHook( 753 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>); 754 void setProcessHook(std::function<void(AbstractSlotTrackerStorage *, 755 const Function *, bool)>); 756 757 unsigned getNextMetadataSlot() override { return mdnNext; } 758 759 void createMetadataSlot(const MDNode *N) override; 760 761 /// Return the slot number of the specified value in it's type 762 /// plane. If something is not in the SlotTracker, return -1. 763 int getLocalSlot(const Value *V); 764 int getGlobalSlot(const GlobalValue *V); 765 int getMetadataSlot(const MDNode *N) override; 766 int getAttributeGroupSlot(AttributeSet AS); 767 int getModulePathSlot(StringRef Path); 768 int getGUIDSlot(GlobalValue::GUID GUID); 769 int getTypeIdSlot(StringRef Id); 770 771 /// If you'd like to deal with a function instead of just a module, use 772 /// this method to get its data into the SlotTracker. 773 void incorporateFunction(const Function *F) { 774 TheFunction = F; 775 FunctionProcessed = false; 776 } 777 778 const Function *getFunction() const { return TheFunction; } 779 780 /// After calling incorporateFunction, use this method to remove the 781 /// most recently incorporated function from the SlotTracker. This 782 /// will reset the state of the machine back to just the module contents. 783 void purgeFunction(); 784 785 /// MDNode map iterators. 786 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator; 787 788 mdn_iterator mdn_begin() { return mdnMap.begin(); } 789 mdn_iterator mdn_end() { return mdnMap.end(); } 790 unsigned mdn_size() const { return mdnMap.size(); } 791 bool mdn_empty() const { return mdnMap.empty(); } 792 793 /// AttributeSet map iterators. 794 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator; 795 796 as_iterator as_begin() { return asMap.begin(); } 797 as_iterator as_end() { return asMap.end(); } 798 unsigned as_size() const { return asMap.size(); } 799 bool as_empty() const { return asMap.empty(); } 800 801 /// GUID map iterators. 802 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator; 803 804 /// These functions do the actual initialization. 805 inline void initializeIfNeeded(); 806 int initializeIndexIfNeeded(); 807 808 // Implementation Details 809 private: 810 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 811 void CreateModuleSlot(const GlobalValue *V); 812 813 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. 814 void CreateMetadataSlot(const MDNode *N); 815 816 /// CreateFunctionSlot - Insert the specified Value* into the slot table. 817 void CreateFunctionSlot(const Value *V); 818 819 /// Insert the specified AttributeSet into the slot table. 820 void CreateAttributeSetSlot(AttributeSet AS); 821 822 inline void CreateModulePathSlot(StringRef Path); 823 void CreateGUIDSlot(GlobalValue::GUID GUID); 824 void CreateTypeIdSlot(StringRef Id); 825 826 /// Add all of the module level global variables (and their initializers) 827 /// and function declarations, but not the contents of those functions. 828 void processModule(); 829 // Returns number of allocated slots 830 int processIndex(); 831 832 /// Add all of the functions arguments, basic blocks, and instructions. 833 void processFunction(); 834 835 /// Add the metadata directly attached to a GlobalObject. 836 void processGlobalObjectMetadata(const GlobalObject &GO); 837 838 /// Add all of the metadata from a function. 839 void processFunctionMetadata(const Function &F); 840 841 /// Add all of the metadata from an instruction. 842 void processInstructionMetadata(const Instruction &I); 843 }; 844 845 } // end namespace llvm 846 847 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M, 848 const Function *F) 849 : M(M), F(F), Machine(&Machine) {} 850 851 ModuleSlotTracker::ModuleSlotTracker(const Module *M, 852 bool ShouldInitializeAllMetadata) 853 : ShouldCreateStorage(M), 854 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {} 855 856 ModuleSlotTracker::~ModuleSlotTracker() = default; 857 858 SlotTracker *ModuleSlotTracker::getMachine() { 859 if (!ShouldCreateStorage) 860 return Machine; 861 862 ShouldCreateStorage = false; 863 MachineStorage = 864 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata); 865 Machine = MachineStorage.get(); 866 if (ProcessModuleHookFn) 867 Machine->setProcessHook(ProcessModuleHookFn); 868 if (ProcessFunctionHookFn) 869 Machine->setProcessHook(ProcessFunctionHookFn); 870 return Machine; 871 } 872 873 void ModuleSlotTracker::incorporateFunction(const Function &F) { 874 // Using getMachine() may lazily create the slot tracker. 875 if (!getMachine()) 876 return; 877 878 // Nothing to do if this is the right function already. 879 if (this->F == &F) 880 return; 881 if (this->F) 882 Machine->purgeFunction(); 883 Machine->incorporateFunction(&F); 884 this->F = &F; 885 } 886 887 int ModuleSlotTracker::getLocalSlot(const Value *V) { 888 assert(F && "No function incorporated"); 889 return Machine->getLocalSlot(V); 890 } 891 892 void ModuleSlotTracker::setProcessHook( 893 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)> 894 Fn) { 895 ProcessModuleHookFn = Fn; 896 } 897 898 void ModuleSlotTracker::setProcessHook( 899 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)> 900 Fn) { 901 ProcessFunctionHookFn = Fn; 902 } 903 904 static SlotTracker *createSlotTracker(const Value *V) { 905 if (const Argument *FA = dyn_cast<Argument>(V)) 906 return new SlotTracker(FA->getParent()); 907 908 if (const Instruction *I = dyn_cast<Instruction>(V)) 909 if (I->getParent()) 910 return new SlotTracker(I->getParent()->getParent()); 911 912 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 913 return new SlotTracker(BB->getParent()); 914 915 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 916 return new SlotTracker(GV->getParent()); 917 918 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 919 return new SlotTracker(GA->getParent()); 920 921 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V)) 922 return new SlotTracker(GIF->getParent()); 923 924 if (const Function *Func = dyn_cast<Function>(V)) 925 return new SlotTracker(Func); 926 927 return nullptr; 928 } 929 930 #if 0 931 #define ST_DEBUG(X) dbgs() << X 932 #else 933 #define ST_DEBUG(X) 934 #endif 935 936 // Module level constructor. Causes the contents of the Module (sans functions) 937 // to be added to the slot table. 938 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) 939 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 940 941 // Function level constructor. Causes the contents of the Module and the one 942 // function provided to be added to the slot table. 943 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) 944 : TheModule(F ? F->getParent() : nullptr), TheFunction(F), 945 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 946 947 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index) 948 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {} 949 950 inline void SlotTracker::initializeIfNeeded() { 951 if (TheModule) { 952 processModule(); 953 TheModule = nullptr; ///< Prevent re-processing next time we're called. 954 } 955 956 if (TheFunction && !FunctionProcessed) 957 processFunction(); 958 } 959 960 int SlotTracker::initializeIndexIfNeeded() { 961 if (!TheIndex) 962 return 0; 963 int NumSlots = processIndex(); 964 TheIndex = nullptr; ///< Prevent re-processing next time we're called. 965 return NumSlots; 966 } 967 968 // Iterate through all the global variables, functions, and global 969 // variable initializers and create slots for them. 970 void SlotTracker::processModule() { 971 ST_DEBUG("begin processModule!\n"); 972 973 // Add all of the unnamed global variables to the value table. 974 for (const GlobalVariable &Var : TheModule->globals()) { 975 if (!Var.hasName()) 976 CreateModuleSlot(&Var); 977 processGlobalObjectMetadata(Var); 978 auto Attrs = Var.getAttributes(); 979 if (Attrs.hasAttributes()) 980 CreateAttributeSetSlot(Attrs); 981 } 982 983 for (const GlobalAlias &A : TheModule->aliases()) { 984 if (!A.hasName()) 985 CreateModuleSlot(&A); 986 } 987 988 for (const GlobalIFunc &I : TheModule->ifuncs()) { 989 if (!I.hasName()) 990 CreateModuleSlot(&I); 991 } 992 993 // Add metadata used by named metadata. 994 for (const NamedMDNode &NMD : TheModule->named_metadata()) { 995 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) 996 CreateMetadataSlot(NMD.getOperand(i)); 997 } 998 999 for (const Function &F : *TheModule) { 1000 if (!F.hasName()) 1001 // Add all the unnamed functions to the table. 1002 CreateModuleSlot(&F); 1003 1004 if (ShouldInitializeAllMetadata) 1005 processFunctionMetadata(F); 1006 1007 // Add all the function attributes to the table. 1008 // FIXME: Add attributes of other objects? 1009 AttributeSet FnAttrs = F.getAttributes().getFnAttrs(); 1010 if (FnAttrs.hasAttributes()) 1011 CreateAttributeSetSlot(FnAttrs); 1012 } 1013 1014 if (ProcessModuleHookFn) 1015 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata); 1016 1017 ST_DEBUG("end processModule!\n"); 1018 } 1019 1020 // Process the arguments, basic blocks, and instructions of a function. 1021 void SlotTracker::processFunction() { 1022 ST_DEBUG("begin processFunction!\n"); 1023 fNext = 0; 1024 1025 // Process function metadata if it wasn't hit at the module-level. 1026 if (!ShouldInitializeAllMetadata) 1027 processFunctionMetadata(*TheFunction); 1028 1029 // Add all the function arguments with no names. 1030 for(Function::const_arg_iterator AI = TheFunction->arg_begin(), 1031 AE = TheFunction->arg_end(); AI != AE; ++AI) 1032 if (!AI->hasName()) 1033 CreateFunctionSlot(&*AI); 1034 1035 ST_DEBUG("Inserting Instructions:\n"); 1036 1037 // Add all of the basic blocks and instructions with no names. 1038 for (auto &BB : *TheFunction) { 1039 if (!BB.hasName()) 1040 CreateFunctionSlot(&BB); 1041 1042 for (auto &I : BB) { 1043 if (!I.getType()->isVoidTy() && !I.hasName()) 1044 CreateFunctionSlot(&I); 1045 1046 // We allow direct calls to any llvm.foo function here, because the 1047 // target may not be linked into the optimizer. 1048 if (const auto *Call = dyn_cast<CallBase>(&I)) { 1049 // Add all the call attributes to the table. 1050 AttributeSet Attrs = Call->getAttributes().getFnAttrs(); 1051 if (Attrs.hasAttributes()) 1052 CreateAttributeSetSlot(Attrs); 1053 } 1054 } 1055 } 1056 1057 if (ProcessFunctionHookFn) 1058 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata); 1059 1060 FunctionProcessed = true; 1061 1062 ST_DEBUG("end processFunction!\n"); 1063 } 1064 1065 // Iterate through all the GUID in the index and create slots for them. 1066 int SlotTracker::processIndex() { 1067 ST_DEBUG("begin processIndex!\n"); 1068 assert(TheIndex); 1069 1070 // The first block of slots are just the module ids, which start at 0 and are 1071 // assigned consecutively. Since the StringMap iteration order isn't 1072 // guaranteed, use a std::map to order by module ID before assigning slots. 1073 std::map<uint64_t, StringRef> ModuleIdToPathMap; 1074 for (auto &[ModPath, ModId] : TheIndex->modulePaths()) 1075 ModuleIdToPathMap[ModId.first] = ModPath; 1076 for (auto &ModPair : ModuleIdToPathMap) 1077 CreateModulePathSlot(ModPair.second); 1078 1079 // Start numbering the GUIDs after the module ids. 1080 GUIDNext = ModulePathNext; 1081 1082 for (auto &GlobalList : *TheIndex) 1083 CreateGUIDSlot(GlobalList.first); 1084 1085 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) 1086 CreateGUIDSlot(GlobalValue::getGUID(TId.first)); 1087 1088 // Start numbering the TypeIds after the GUIDs. 1089 TypeIdNext = GUIDNext; 1090 for (const auto &TID : TheIndex->typeIds()) 1091 CreateTypeIdSlot(TID.second.first); 1092 1093 ST_DEBUG("end processIndex!\n"); 1094 return TypeIdNext; 1095 } 1096 1097 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) { 1098 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1099 GO.getAllMetadata(MDs); 1100 for (auto &MD : MDs) 1101 CreateMetadataSlot(MD.second); 1102 } 1103 1104 void SlotTracker::processFunctionMetadata(const Function &F) { 1105 processGlobalObjectMetadata(F); 1106 for (auto &BB : F) { 1107 for (auto &I : BB) 1108 processInstructionMetadata(I); 1109 } 1110 } 1111 1112 void SlotTracker::processInstructionMetadata(const Instruction &I) { 1113 // Process metadata used directly by intrinsics. 1114 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1115 if (Function *F = CI->getCalledFunction()) 1116 if (F->isIntrinsic()) 1117 for (auto &Op : I.operands()) 1118 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 1119 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) 1120 CreateMetadataSlot(N); 1121 1122 // Process metadata attached to this instruction. 1123 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1124 I.getAllMetadata(MDs); 1125 for (auto &MD : MDs) 1126 CreateMetadataSlot(MD.second); 1127 } 1128 1129 /// Clean up after incorporating a function. This is the only way to get out of 1130 /// the function incorporation state that affects get*Slot/Create*Slot. Function 1131 /// incorporation state is indicated by TheFunction != 0. 1132 void SlotTracker::purgeFunction() { 1133 ST_DEBUG("begin purgeFunction!\n"); 1134 fMap.clear(); // Simply discard the function level map 1135 TheFunction = nullptr; 1136 FunctionProcessed = false; 1137 ST_DEBUG("end purgeFunction!\n"); 1138 } 1139 1140 /// getGlobalSlot - Get the slot number of a global value. 1141 int SlotTracker::getGlobalSlot(const GlobalValue *V) { 1142 // Check for uninitialized state and do lazy initialization. 1143 initializeIfNeeded(); 1144 1145 // Find the value in the module map 1146 ValueMap::iterator MI = mMap.find(V); 1147 return MI == mMap.end() ? -1 : (int)MI->second; 1148 } 1149 1150 void SlotTracker::setProcessHook( 1151 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)> 1152 Fn) { 1153 ProcessModuleHookFn = Fn; 1154 } 1155 1156 void SlotTracker::setProcessHook( 1157 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)> 1158 Fn) { 1159 ProcessFunctionHookFn = Fn; 1160 } 1161 1162 /// getMetadataSlot - Get the slot number of a MDNode. 1163 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); } 1164 1165 /// getMetadataSlot - Get the slot number of a MDNode. 1166 int SlotTracker::getMetadataSlot(const MDNode *N) { 1167 // Check for uninitialized state and do lazy initialization. 1168 initializeIfNeeded(); 1169 1170 // Find the MDNode in the module map 1171 mdn_iterator MI = mdnMap.find(N); 1172 return MI == mdnMap.end() ? -1 : (int)MI->second; 1173 } 1174 1175 /// getLocalSlot - Get the slot number for a value that is local to a function. 1176 int SlotTracker::getLocalSlot(const Value *V) { 1177 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); 1178 1179 // Check for uninitialized state and do lazy initialization. 1180 initializeIfNeeded(); 1181 1182 ValueMap::iterator FI = fMap.find(V); 1183 return FI == fMap.end() ? -1 : (int)FI->second; 1184 } 1185 1186 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { 1187 // Check for uninitialized state and do lazy initialization. 1188 initializeIfNeeded(); 1189 1190 // Find the AttributeSet in the module map. 1191 as_iterator AI = asMap.find(AS); 1192 return AI == asMap.end() ? -1 : (int)AI->second; 1193 } 1194 1195 int SlotTracker::getModulePathSlot(StringRef Path) { 1196 // Check for uninitialized state and do lazy initialization. 1197 initializeIndexIfNeeded(); 1198 1199 // Find the Module path in the map 1200 auto I = ModulePathMap.find(Path); 1201 return I == ModulePathMap.end() ? -1 : (int)I->second; 1202 } 1203 1204 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) { 1205 // Check for uninitialized state and do lazy initialization. 1206 initializeIndexIfNeeded(); 1207 1208 // Find the GUID in the map 1209 guid_iterator I = GUIDMap.find(GUID); 1210 return I == GUIDMap.end() ? -1 : (int)I->second; 1211 } 1212 1213 int SlotTracker::getTypeIdSlot(StringRef Id) { 1214 // Check for uninitialized state and do lazy initialization. 1215 initializeIndexIfNeeded(); 1216 1217 // Find the TypeId string in the map 1218 auto I = TypeIdMap.find(Id); 1219 return I == TypeIdMap.end() ? -1 : (int)I->second; 1220 } 1221 1222 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 1223 void SlotTracker::CreateModuleSlot(const GlobalValue *V) { 1224 assert(V && "Can't insert a null Value into SlotTracker!"); 1225 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); 1226 assert(!V->hasName() && "Doesn't need a slot!"); 1227 1228 unsigned DestSlot = mNext++; 1229 mMap[V] = DestSlot; 1230 1231 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1232 DestSlot << " ["); 1233 // G = Global, F = Function, A = Alias, I = IFunc, o = other 1234 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : 1235 (isa<Function>(V) ? 'F' : 1236 (isa<GlobalAlias>(V) ? 'A' : 1237 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n"); 1238 } 1239 1240 /// CreateSlot - Create a new slot for the specified value if it has no name. 1241 void SlotTracker::CreateFunctionSlot(const Value *V) { 1242 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); 1243 1244 unsigned DestSlot = fNext++; 1245 fMap[V] = DestSlot; 1246 1247 // G = Global, F = Function, o = other 1248 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1249 DestSlot << " [o]\n"); 1250 } 1251 1252 /// CreateModuleSlot - Insert the specified MDNode* into the slot table. 1253 void SlotTracker::CreateMetadataSlot(const MDNode *N) { 1254 assert(N && "Can't insert a null Value into SlotTracker!"); 1255 1256 // Don't make slots for DIExpressions or DIArgLists. We just print them inline 1257 // everywhere. 1258 if (isa<DIExpression>(N) || isa<DIArgList>(N)) 1259 return; 1260 1261 unsigned DestSlot = mdnNext; 1262 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second) 1263 return; 1264 ++mdnNext; 1265 1266 // Recursively add any MDNodes referenced by operands. 1267 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1268 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) 1269 CreateMetadataSlot(Op); 1270 } 1271 1272 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { 1273 assert(AS.hasAttributes() && "Doesn't need a slot!"); 1274 1275 as_iterator I = asMap.find(AS); 1276 if (I != asMap.end()) 1277 return; 1278 1279 unsigned DestSlot = asNext++; 1280 asMap[AS] = DestSlot; 1281 } 1282 1283 /// Create a new slot for the specified Module 1284 void SlotTracker::CreateModulePathSlot(StringRef Path) { 1285 ModulePathMap[Path] = ModulePathNext++; 1286 } 1287 1288 /// Create a new slot for the specified GUID 1289 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) { 1290 GUIDMap[GUID] = GUIDNext++; 1291 } 1292 1293 /// Create a new slot for the specified Id 1294 void SlotTracker::CreateTypeIdSlot(StringRef Id) { 1295 TypeIdMap[Id] = TypeIdNext++; 1296 } 1297 1298 namespace { 1299 /// Common instances used by most of the printer functions. 1300 struct AsmWriterContext { 1301 TypePrinting *TypePrinter = nullptr; 1302 SlotTracker *Machine = nullptr; 1303 const Module *Context = nullptr; 1304 1305 AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr) 1306 : TypePrinter(TP), Machine(ST), Context(M) {} 1307 1308 static AsmWriterContext &getEmpty() { 1309 static AsmWriterContext EmptyCtx(nullptr, nullptr); 1310 return EmptyCtx; 1311 } 1312 1313 /// A callback that will be triggered when the underlying printer 1314 /// prints a Metadata as operand. 1315 virtual void onWriteMetadataAsOperand(const Metadata *) {} 1316 1317 virtual ~AsmWriterContext() = default; 1318 }; 1319 } // end anonymous namespace 1320 1321 //===----------------------------------------------------------------------===// 1322 // AsmWriter Implementation 1323 //===----------------------------------------------------------------------===// 1324 1325 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 1326 AsmWriterContext &WriterCtx); 1327 1328 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 1329 AsmWriterContext &WriterCtx, 1330 bool FromValue = false); 1331 1332 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { 1333 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) 1334 Out << FPO->getFastMathFlags(); 1335 1336 if (const OverflowingBinaryOperator *OBO = 1337 dyn_cast<OverflowingBinaryOperator>(U)) { 1338 if (OBO->hasNoUnsignedWrap()) 1339 Out << " nuw"; 1340 if (OBO->hasNoSignedWrap()) 1341 Out << " nsw"; 1342 } else if (const PossiblyExactOperator *Div = 1343 dyn_cast<PossiblyExactOperator>(U)) { 1344 if (Div->isExact()) 1345 Out << " exact"; 1346 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 1347 if (GEP->isInBounds()) 1348 Out << " inbounds"; 1349 } 1350 } 1351 1352 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, 1353 AsmWriterContext &WriterCtx) { 1354 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1355 if (CI->getType()->isIntegerTy(1)) { 1356 Out << (CI->getZExtValue() ? "true" : "false"); 1357 return; 1358 } 1359 Out << CI->getValue(); 1360 return; 1361 } 1362 1363 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1364 const APFloat &APF = CFP->getValueAPF(); 1365 if (&APF.getSemantics() == &APFloat::IEEEsingle() || 1366 &APF.getSemantics() == &APFloat::IEEEdouble()) { 1367 // We would like to output the FP constant value in exponential notation, 1368 // but we cannot do this if doing so will lose precision. Check here to 1369 // make sure that we only output it in exponential format if we can parse 1370 // the value back and get the same value. 1371 // 1372 bool ignored; 1373 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble(); 1374 bool isInf = APF.isInfinity(); 1375 bool isNaN = APF.isNaN(); 1376 if (!isInf && !isNaN) { 1377 double Val = APF.convertToDouble(); 1378 SmallString<128> StrVal; 1379 APF.toString(StrVal, 6, 0, false); 1380 // Check to make sure that the stringized number is not some string like 1381 // "Inf" or NaN, that atof will accept, but the lexer will not. Check 1382 // that the string matches the "[-+]?[0-9]" regex. 1383 // 1384 assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') && 1385 isDigit(StrVal[1]))) && 1386 "[-+]?[0-9] regex does not match!"); 1387 // Reparse stringized version! 1388 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) { 1389 Out << StrVal; 1390 return; 1391 } 1392 } 1393 // Otherwise we could not reparse it to exactly the same value, so we must 1394 // output the string in hexadecimal format! Note that loading and storing 1395 // floating point types changes the bits of NaNs on some hosts, notably 1396 // x86, so we must not use these types. 1397 static_assert(sizeof(double) == sizeof(uint64_t), 1398 "assuming that double is 64 bits!"); 1399 APFloat apf = APF; 1400 // Floats are represented in ASCII IR as double, convert. 1401 // FIXME: We should allow 32-bit hex float and remove this. 1402 if (!isDouble) { 1403 // A signaling NaN is quieted on conversion, so we need to recreate the 1404 // expected value after convert (quiet bit of the payload is clear). 1405 bool IsSNAN = apf.isSignaling(); 1406 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1407 &ignored); 1408 if (IsSNAN) { 1409 APInt Payload = apf.bitcastToAPInt(); 1410 apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(), 1411 &Payload); 1412 } 1413 } 1414 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true); 1415 return; 1416 } 1417 1418 // Either half, bfloat or some form of long double. 1419 // These appear as a magic letter identifying the type, then a 1420 // fixed number of hex digits. 1421 Out << "0x"; 1422 APInt API = APF.bitcastToAPInt(); 1423 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) { 1424 Out << 'K'; 1425 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 1426 /*Upper=*/true); 1427 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1428 /*Upper=*/true); 1429 return; 1430 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) { 1431 Out << 'L'; 1432 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1433 /*Upper=*/true); 1434 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1435 /*Upper=*/true); 1436 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) { 1437 Out << 'M'; 1438 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1439 /*Upper=*/true); 1440 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1441 /*Upper=*/true); 1442 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) { 1443 Out << 'H'; 1444 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1445 /*Upper=*/true); 1446 } else if (&APF.getSemantics() == &APFloat::BFloat()) { 1447 Out << 'R'; 1448 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1449 /*Upper=*/true); 1450 } else 1451 llvm_unreachable("Unsupported floating point type"); 1452 return; 1453 } 1454 1455 if (isa<ConstantAggregateZero>(CV) || isa<ConstantTargetNone>(CV)) { 1456 Out << "zeroinitializer"; 1457 return; 1458 } 1459 1460 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 1461 Out << "blockaddress("; 1462 WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx); 1463 Out << ", "; 1464 WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx); 1465 Out << ")"; 1466 return; 1467 } 1468 1469 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) { 1470 Out << "dso_local_equivalent "; 1471 WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx); 1472 return; 1473 } 1474 1475 if (const auto *NC = dyn_cast<NoCFIValue>(CV)) { 1476 Out << "no_cfi "; 1477 WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx); 1478 return; 1479 } 1480 1481 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 1482 Type *ETy = CA->getType()->getElementType(); 1483 Out << '['; 1484 WriterCtx.TypePrinter->print(ETy, Out); 1485 Out << ' '; 1486 WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx); 1487 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1488 Out << ", "; 1489 WriterCtx.TypePrinter->print(ETy, Out); 1490 Out << ' '; 1491 WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx); 1492 } 1493 Out << ']'; 1494 return; 1495 } 1496 1497 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { 1498 // As a special case, print the array as a string if it is an array of 1499 // i8 with ConstantInt values. 1500 if (CA->isString()) { 1501 Out << "c\""; 1502 printEscapedString(CA->getAsString(), Out); 1503 Out << '"'; 1504 return; 1505 } 1506 1507 Type *ETy = CA->getType()->getElementType(); 1508 Out << '['; 1509 WriterCtx.TypePrinter->print(ETy, Out); 1510 Out << ' '; 1511 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx); 1512 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { 1513 Out << ", "; 1514 WriterCtx.TypePrinter->print(ETy, Out); 1515 Out << ' '; 1516 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx); 1517 } 1518 Out << ']'; 1519 return; 1520 } 1521 1522 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 1523 if (CS->getType()->isPacked()) 1524 Out << '<'; 1525 Out << '{'; 1526 unsigned N = CS->getNumOperands(); 1527 if (N) { 1528 Out << ' '; 1529 WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out); 1530 Out << ' '; 1531 1532 WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx); 1533 1534 for (unsigned i = 1; i < N; i++) { 1535 Out << ", "; 1536 WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out); 1537 Out << ' '; 1538 1539 WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx); 1540 } 1541 Out << ' '; 1542 } 1543 1544 Out << '}'; 1545 if (CS->getType()->isPacked()) 1546 Out << '>'; 1547 return; 1548 } 1549 1550 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { 1551 auto *CVVTy = cast<FixedVectorType>(CV->getType()); 1552 Type *ETy = CVVTy->getElementType(); 1553 Out << '<'; 1554 WriterCtx.TypePrinter->print(ETy, Out); 1555 Out << ' '; 1556 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx); 1557 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) { 1558 Out << ", "; 1559 WriterCtx.TypePrinter->print(ETy, Out); 1560 Out << ' '; 1561 WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx); 1562 } 1563 Out << '>'; 1564 return; 1565 } 1566 1567 if (isa<ConstantPointerNull>(CV)) { 1568 Out << "null"; 1569 return; 1570 } 1571 1572 if (isa<ConstantTokenNone>(CV)) { 1573 Out << "none"; 1574 return; 1575 } 1576 1577 if (isa<PoisonValue>(CV)) { 1578 Out << "poison"; 1579 return; 1580 } 1581 1582 if (isa<UndefValue>(CV)) { 1583 Out << "undef"; 1584 return; 1585 } 1586 1587 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1588 Out << CE->getOpcodeName(); 1589 WriteOptimizationInfo(Out, CE); 1590 if (CE->isCompare()) 1591 Out << ' ' << static_cast<CmpInst::Predicate>(CE->getPredicate()); 1592 Out << " ("; 1593 1594 std::optional<unsigned> InRangeOp; 1595 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) { 1596 WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out); 1597 Out << ", "; 1598 InRangeOp = GEP->getInRangeIndex(); 1599 if (InRangeOp) 1600 ++*InRangeOp; 1601 } 1602 1603 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { 1604 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp) 1605 Out << "inrange "; 1606 WriterCtx.TypePrinter->print((*OI)->getType(), Out); 1607 Out << ' '; 1608 WriteAsOperandInternal(Out, *OI, WriterCtx); 1609 if (OI+1 != CE->op_end()) 1610 Out << ", "; 1611 } 1612 1613 if (CE->isCast()) { 1614 Out << " to "; 1615 WriterCtx.TypePrinter->print(CE->getType(), Out); 1616 } 1617 1618 if (CE->getOpcode() == Instruction::ShuffleVector) 1619 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask()); 1620 1621 Out << ')'; 1622 return; 1623 } 1624 1625 Out << "<placeholder or erroneous Constant>"; 1626 } 1627 1628 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, 1629 AsmWriterContext &WriterCtx) { 1630 Out << "!{"; 1631 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { 1632 const Metadata *MD = Node->getOperand(mi); 1633 if (!MD) 1634 Out << "null"; 1635 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) { 1636 Value *V = MDV->getValue(); 1637 WriterCtx.TypePrinter->print(V->getType(), Out); 1638 Out << ' '; 1639 WriteAsOperandInternal(Out, V, WriterCtx); 1640 } else { 1641 WriteAsOperandInternal(Out, MD, WriterCtx); 1642 WriterCtx.onWriteMetadataAsOperand(MD); 1643 } 1644 if (mi + 1 != me) 1645 Out << ", "; 1646 } 1647 1648 Out << "}"; 1649 } 1650 1651 namespace { 1652 1653 struct FieldSeparator { 1654 bool Skip = true; 1655 const char *Sep; 1656 1657 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {} 1658 }; 1659 1660 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { 1661 if (FS.Skip) { 1662 FS.Skip = false; 1663 return OS; 1664 } 1665 return OS << FS.Sep; 1666 } 1667 1668 struct MDFieldPrinter { 1669 raw_ostream &Out; 1670 FieldSeparator FS; 1671 AsmWriterContext &WriterCtx; 1672 1673 explicit MDFieldPrinter(raw_ostream &Out) 1674 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {} 1675 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx) 1676 : Out(Out), WriterCtx(Ctx) {} 1677 1678 void printTag(const DINode *N); 1679 void printMacinfoType(const DIMacroNode *N); 1680 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N); 1681 void printString(StringRef Name, StringRef Value, 1682 bool ShouldSkipEmpty = true); 1683 void printMetadata(StringRef Name, const Metadata *MD, 1684 bool ShouldSkipNull = true); 1685 template <class IntTy> 1686 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); 1687 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned, 1688 bool ShouldSkipZero); 1689 void printBool(StringRef Name, bool Value, 1690 std::optional<bool> Default = std::nullopt); 1691 void printDIFlags(StringRef Name, DINode::DIFlags Flags); 1692 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags); 1693 template <class IntTy, class Stringifier> 1694 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, 1695 bool ShouldSkipZero = true); 1696 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK); 1697 void printNameTableKind(StringRef Name, 1698 DICompileUnit::DebugNameTableKind NTK); 1699 }; 1700 1701 } // end anonymous namespace 1702 1703 void MDFieldPrinter::printTag(const DINode *N) { 1704 Out << FS << "tag: "; 1705 auto Tag = dwarf::TagString(N->getTag()); 1706 if (!Tag.empty()) 1707 Out << Tag; 1708 else 1709 Out << N->getTag(); 1710 } 1711 1712 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) { 1713 Out << FS << "type: "; 1714 auto Type = dwarf::MacinfoString(N->getMacinfoType()); 1715 if (!Type.empty()) 1716 Out << Type; 1717 else 1718 Out << N->getMacinfoType(); 1719 } 1720 1721 void MDFieldPrinter::printChecksum( 1722 const DIFile::ChecksumInfo<StringRef> &Checksum) { 1723 Out << FS << "checksumkind: " << Checksum.getKindAsString(); 1724 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false); 1725 } 1726 1727 void MDFieldPrinter::printString(StringRef Name, StringRef Value, 1728 bool ShouldSkipEmpty) { 1729 if (ShouldSkipEmpty && Value.empty()) 1730 return; 1731 1732 Out << FS << Name << ": \""; 1733 printEscapedString(Value, Out); 1734 Out << "\""; 1735 } 1736 1737 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, 1738 AsmWriterContext &WriterCtx) { 1739 if (!MD) { 1740 Out << "null"; 1741 return; 1742 } 1743 WriteAsOperandInternal(Out, MD, WriterCtx); 1744 WriterCtx.onWriteMetadataAsOperand(MD); 1745 } 1746 1747 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, 1748 bool ShouldSkipNull) { 1749 if (ShouldSkipNull && !MD) 1750 return; 1751 1752 Out << FS << Name << ": "; 1753 writeMetadataAsOperand(Out, MD, WriterCtx); 1754 } 1755 1756 template <class IntTy> 1757 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { 1758 if (ShouldSkipZero && !Int) 1759 return; 1760 1761 Out << FS << Name << ": " << Int; 1762 } 1763 1764 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int, 1765 bool IsUnsigned, bool ShouldSkipZero) { 1766 if (ShouldSkipZero && Int.isZero()) 1767 return; 1768 1769 Out << FS << Name << ": "; 1770 Int.print(Out, !IsUnsigned); 1771 } 1772 1773 void MDFieldPrinter::printBool(StringRef Name, bool Value, 1774 std::optional<bool> Default) { 1775 if (Default && Value == *Default) 1776 return; 1777 Out << FS << Name << ": " << (Value ? "true" : "false"); 1778 } 1779 1780 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) { 1781 if (!Flags) 1782 return; 1783 1784 Out << FS << Name << ": "; 1785 1786 SmallVector<DINode::DIFlags, 8> SplitFlags; 1787 auto Extra = DINode::splitFlags(Flags, SplitFlags); 1788 1789 FieldSeparator FlagsFS(" | "); 1790 for (auto F : SplitFlags) { 1791 auto StringF = DINode::getFlagString(F); 1792 assert(!StringF.empty() && "Expected valid flag"); 1793 Out << FlagsFS << StringF; 1794 } 1795 if (Extra || SplitFlags.empty()) 1796 Out << FlagsFS << Extra; 1797 } 1798 1799 void MDFieldPrinter::printDISPFlags(StringRef Name, 1800 DISubprogram::DISPFlags Flags) { 1801 // Always print this field, because no flags in the IR at all will be 1802 // interpreted as old-style isDefinition: true. 1803 Out << FS << Name << ": "; 1804 1805 if (!Flags) { 1806 Out << 0; 1807 return; 1808 } 1809 1810 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags; 1811 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags); 1812 1813 FieldSeparator FlagsFS(" | "); 1814 for (auto F : SplitFlags) { 1815 auto StringF = DISubprogram::getFlagString(F); 1816 assert(!StringF.empty() && "Expected valid flag"); 1817 Out << FlagsFS << StringF; 1818 } 1819 if (Extra || SplitFlags.empty()) 1820 Out << FlagsFS << Extra; 1821 } 1822 1823 void MDFieldPrinter::printEmissionKind(StringRef Name, 1824 DICompileUnit::DebugEmissionKind EK) { 1825 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK); 1826 } 1827 1828 void MDFieldPrinter::printNameTableKind(StringRef Name, 1829 DICompileUnit::DebugNameTableKind NTK) { 1830 if (NTK == DICompileUnit::DebugNameTableKind::Default) 1831 return; 1832 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK); 1833 } 1834 1835 template <class IntTy, class Stringifier> 1836 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, 1837 Stringifier toString, bool ShouldSkipZero) { 1838 if (!Value) 1839 return; 1840 1841 Out << FS << Name << ": "; 1842 auto S = toString(Value); 1843 if (!S.empty()) 1844 Out << S; 1845 else 1846 Out << Value; 1847 } 1848 1849 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, 1850 AsmWriterContext &WriterCtx) { 1851 Out << "!GenericDINode("; 1852 MDFieldPrinter Printer(Out, WriterCtx); 1853 Printer.printTag(N); 1854 Printer.printString("header", N->getHeader()); 1855 if (N->getNumDwarfOperands()) { 1856 Out << Printer.FS << "operands: {"; 1857 FieldSeparator IFS; 1858 for (auto &I : N->dwarf_operands()) { 1859 Out << IFS; 1860 writeMetadataAsOperand(Out, I, WriterCtx); 1861 } 1862 Out << "}"; 1863 } 1864 Out << ")"; 1865 } 1866 1867 static void writeDILocation(raw_ostream &Out, const DILocation *DL, 1868 AsmWriterContext &WriterCtx) { 1869 Out << "!DILocation("; 1870 MDFieldPrinter Printer(Out, WriterCtx); 1871 // Always output the line, since 0 is a relevant and important value for it. 1872 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); 1873 Printer.printInt("column", DL->getColumn()); 1874 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); 1875 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); 1876 Printer.printBool("isImplicitCode", DL->isImplicitCode(), 1877 /* Default */ false); 1878 Out << ")"; 1879 } 1880 1881 static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL, 1882 AsmWriterContext &WriterCtx) { 1883 Out << "!DIAssignID()"; 1884 MDFieldPrinter Printer(Out, WriterCtx); 1885 } 1886 1887 static void writeDISubrange(raw_ostream &Out, const DISubrange *N, 1888 AsmWriterContext &WriterCtx) { 1889 Out << "!DISubrange("; 1890 MDFieldPrinter Printer(Out, WriterCtx); 1891 1892 auto *Count = N->getRawCountNode(); 1893 if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) { 1894 auto *CV = cast<ConstantInt>(CE->getValue()); 1895 Printer.printInt("count", CV->getSExtValue(), 1896 /* ShouldSkipZero */ false); 1897 } else 1898 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true); 1899 1900 // A lowerBound of constant 0 should not be skipped, since it is different 1901 // from an unspecified lower bound (= nullptr). 1902 auto *LBound = N->getRawLowerBound(); 1903 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) { 1904 auto *LV = cast<ConstantInt>(LE->getValue()); 1905 Printer.printInt("lowerBound", LV->getSExtValue(), 1906 /* ShouldSkipZero */ false); 1907 } else 1908 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true); 1909 1910 auto *UBound = N->getRawUpperBound(); 1911 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) { 1912 auto *UV = cast<ConstantInt>(UE->getValue()); 1913 Printer.printInt("upperBound", UV->getSExtValue(), 1914 /* ShouldSkipZero */ false); 1915 } else 1916 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true); 1917 1918 auto *Stride = N->getRawStride(); 1919 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) { 1920 auto *SV = cast<ConstantInt>(SE->getValue()); 1921 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false); 1922 } else 1923 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true); 1924 1925 Out << ")"; 1926 } 1927 1928 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, 1929 AsmWriterContext &WriterCtx) { 1930 Out << "!DIGenericSubrange("; 1931 MDFieldPrinter Printer(Out, WriterCtx); 1932 1933 auto IsConstant = [&](Metadata *Bound) -> bool { 1934 if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) { 1935 return BE->isConstant() && 1936 DIExpression::SignedOrUnsignedConstant::SignedConstant == 1937 *BE->isConstant(); 1938 } 1939 return false; 1940 }; 1941 1942 auto GetConstant = [&](Metadata *Bound) -> int64_t { 1943 assert(IsConstant(Bound) && "Expected constant"); 1944 auto *BE = dyn_cast_or_null<DIExpression>(Bound); 1945 return static_cast<int64_t>(BE->getElement(1)); 1946 }; 1947 1948 auto *Count = N->getRawCountNode(); 1949 if (IsConstant(Count)) 1950 Printer.printInt("count", GetConstant(Count), 1951 /* ShouldSkipZero */ false); 1952 else 1953 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true); 1954 1955 auto *LBound = N->getRawLowerBound(); 1956 if (IsConstant(LBound)) 1957 Printer.printInt("lowerBound", GetConstant(LBound), 1958 /* ShouldSkipZero */ false); 1959 else 1960 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true); 1961 1962 auto *UBound = N->getRawUpperBound(); 1963 if (IsConstant(UBound)) 1964 Printer.printInt("upperBound", GetConstant(UBound), 1965 /* ShouldSkipZero */ false); 1966 else 1967 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true); 1968 1969 auto *Stride = N->getRawStride(); 1970 if (IsConstant(Stride)) 1971 Printer.printInt("stride", GetConstant(Stride), 1972 /* ShouldSkipZero */ false); 1973 else 1974 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true); 1975 1976 Out << ")"; 1977 } 1978 1979 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, 1980 AsmWriterContext &) { 1981 Out << "!DIEnumerator("; 1982 MDFieldPrinter Printer(Out); 1983 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); 1984 Printer.printAPInt("value", N->getValue(), N->isUnsigned(), 1985 /*ShouldSkipZero=*/false); 1986 if (N->isUnsigned()) 1987 Printer.printBool("isUnsigned", true); 1988 Out << ")"; 1989 } 1990 1991 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, 1992 AsmWriterContext &) { 1993 Out << "!DIBasicType("; 1994 MDFieldPrinter Printer(Out); 1995 if (N->getTag() != dwarf::DW_TAG_base_type) 1996 Printer.printTag(N); 1997 Printer.printString("name", N->getName()); 1998 Printer.printInt("size", N->getSizeInBits()); 1999 Printer.printInt("align", N->getAlignInBits()); 2000 Printer.printDwarfEnum("encoding", N->getEncoding(), 2001 dwarf::AttributeEncodingString); 2002 Printer.printDIFlags("flags", N->getFlags()); 2003 Out << ")"; 2004 } 2005 2006 static void writeDIStringType(raw_ostream &Out, const DIStringType *N, 2007 AsmWriterContext &WriterCtx) { 2008 Out << "!DIStringType("; 2009 MDFieldPrinter Printer(Out, WriterCtx); 2010 if (N->getTag() != dwarf::DW_TAG_string_type) 2011 Printer.printTag(N); 2012 Printer.printString("name", N->getName()); 2013 Printer.printMetadata("stringLength", N->getRawStringLength()); 2014 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp()); 2015 Printer.printMetadata("stringLocationExpression", 2016 N->getRawStringLocationExp()); 2017 Printer.printInt("size", N->getSizeInBits()); 2018 Printer.printInt("align", N->getAlignInBits()); 2019 Printer.printDwarfEnum("encoding", N->getEncoding(), 2020 dwarf::AttributeEncodingString); 2021 Out << ")"; 2022 } 2023 2024 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, 2025 AsmWriterContext &WriterCtx) { 2026 Out << "!DIDerivedType("; 2027 MDFieldPrinter Printer(Out, WriterCtx); 2028 Printer.printTag(N); 2029 Printer.printString("name", N->getName()); 2030 Printer.printMetadata("scope", N->getRawScope()); 2031 Printer.printMetadata("file", N->getRawFile()); 2032 Printer.printInt("line", N->getLine()); 2033 Printer.printMetadata("baseType", N->getRawBaseType(), 2034 /* ShouldSkipNull */ false); 2035 Printer.printInt("size", N->getSizeInBits()); 2036 Printer.printInt("align", N->getAlignInBits()); 2037 Printer.printInt("offset", N->getOffsetInBits()); 2038 Printer.printDIFlags("flags", N->getFlags()); 2039 Printer.printMetadata("extraData", N->getRawExtraData()); 2040 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 2041 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace, 2042 /* ShouldSkipZero */ false); 2043 Printer.printMetadata("annotations", N->getRawAnnotations()); 2044 Out << ")"; 2045 } 2046 2047 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, 2048 AsmWriterContext &WriterCtx) { 2049 Out << "!DICompositeType("; 2050 MDFieldPrinter Printer(Out, WriterCtx); 2051 Printer.printTag(N); 2052 Printer.printString("name", N->getName()); 2053 Printer.printMetadata("scope", N->getRawScope()); 2054 Printer.printMetadata("file", N->getRawFile()); 2055 Printer.printInt("line", N->getLine()); 2056 Printer.printMetadata("baseType", N->getRawBaseType()); 2057 Printer.printInt("size", N->getSizeInBits()); 2058 Printer.printInt("align", N->getAlignInBits()); 2059 Printer.printInt("offset", N->getOffsetInBits()); 2060 Printer.printDIFlags("flags", N->getFlags()); 2061 Printer.printMetadata("elements", N->getRawElements()); 2062 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), 2063 dwarf::LanguageString); 2064 Printer.printMetadata("vtableHolder", N->getRawVTableHolder()); 2065 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2066 Printer.printString("identifier", N->getIdentifier()); 2067 Printer.printMetadata("discriminator", N->getRawDiscriminator()); 2068 Printer.printMetadata("dataLocation", N->getRawDataLocation()); 2069 Printer.printMetadata("associated", N->getRawAssociated()); 2070 Printer.printMetadata("allocated", N->getRawAllocated()); 2071 if (auto *RankConst = N->getRankConst()) 2072 Printer.printInt("rank", RankConst->getSExtValue(), 2073 /* ShouldSkipZero */ false); 2074 else 2075 Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true); 2076 Printer.printMetadata("annotations", N->getRawAnnotations()); 2077 Out << ")"; 2078 } 2079 2080 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, 2081 AsmWriterContext &WriterCtx) { 2082 Out << "!DISubroutineType("; 2083 MDFieldPrinter Printer(Out, WriterCtx); 2084 Printer.printDIFlags("flags", N->getFlags()); 2085 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString); 2086 Printer.printMetadata("types", N->getRawTypeArray(), 2087 /* ShouldSkipNull */ false); 2088 Out << ")"; 2089 } 2090 2091 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) { 2092 Out << "!DIFile("; 2093 MDFieldPrinter Printer(Out); 2094 Printer.printString("filename", N->getFilename(), 2095 /* ShouldSkipEmpty */ false); 2096 Printer.printString("directory", N->getDirectory(), 2097 /* ShouldSkipEmpty */ false); 2098 // Print all values for checksum together, or not at all. 2099 if (N->getChecksum()) 2100 Printer.printChecksum(*N->getChecksum()); 2101 Printer.printString("source", N->getSource().value_or(StringRef()), 2102 /* ShouldSkipEmpty */ true); 2103 Out << ")"; 2104 } 2105 2106 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, 2107 AsmWriterContext &WriterCtx) { 2108 Out << "!DICompileUnit("; 2109 MDFieldPrinter Printer(Out, WriterCtx); 2110 Printer.printDwarfEnum("language", N->getSourceLanguage(), 2111 dwarf::LanguageString, /* ShouldSkipZero */ false); 2112 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2113 Printer.printString("producer", N->getProducer()); 2114 Printer.printBool("isOptimized", N->isOptimized()); 2115 Printer.printString("flags", N->getFlags()); 2116 Printer.printInt("runtimeVersion", N->getRuntimeVersion(), 2117 /* ShouldSkipZero */ false); 2118 Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); 2119 Printer.printEmissionKind("emissionKind", N->getEmissionKind()); 2120 Printer.printMetadata("enums", N->getRawEnumTypes()); 2121 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes()); 2122 Printer.printMetadata("globals", N->getRawGlobalVariables()); 2123 Printer.printMetadata("imports", N->getRawImportedEntities()); 2124 Printer.printMetadata("macros", N->getRawMacros()); 2125 Printer.printInt("dwoId", N->getDWOId()); 2126 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true); 2127 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(), 2128 false); 2129 Printer.printNameTableKind("nameTableKind", N->getNameTableKind()); 2130 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false); 2131 Printer.printString("sysroot", N->getSysRoot()); 2132 Printer.printString("sdk", N->getSDK()); 2133 Out << ")"; 2134 } 2135 2136 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, 2137 AsmWriterContext &WriterCtx) { 2138 Out << "!DISubprogram("; 2139 MDFieldPrinter Printer(Out, WriterCtx); 2140 Printer.printString("name", N->getName()); 2141 Printer.printString("linkageName", N->getLinkageName()); 2142 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2143 Printer.printMetadata("file", N->getRawFile()); 2144 Printer.printInt("line", N->getLine()); 2145 Printer.printMetadata("type", N->getRawType()); 2146 Printer.printInt("scopeLine", N->getScopeLine()); 2147 Printer.printMetadata("containingType", N->getRawContainingType()); 2148 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none || 2149 N->getVirtualIndex() != 0) 2150 Printer.printInt("virtualIndex", N->getVirtualIndex(), false); 2151 Printer.printInt("thisAdjustment", N->getThisAdjustment()); 2152 Printer.printDIFlags("flags", N->getFlags()); 2153 Printer.printDISPFlags("spFlags", N->getSPFlags()); 2154 Printer.printMetadata("unit", N->getRawUnit()); 2155 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2156 Printer.printMetadata("declaration", N->getRawDeclaration()); 2157 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes()); 2158 Printer.printMetadata("thrownTypes", N->getRawThrownTypes()); 2159 Printer.printMetadata("annotations", N->getRawAnnotations()); 2160 Printer.printString("targetFuncName", N->getTargetFuncName()); 2161 Out << ")"; 2162 } 2163 2164 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, 2165 AsmWriterContext &WriterCtx) { 2166 Out << "!DILexicalBlock("; 2167 MDFieldPrinter Printer(Out, WriterCtx); 2168 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2169 Printer.printMetadata("file", N->getRawFile()); 2170 Printer.printInt("line", N->getLine()); 2171 Printer.printInt("column", N->getColumn()); 2172 Out << ")"; 2173 } 2174 2175 static void writeDILexicalBlockFile(raw_ostream &Out, 2176 const DILexicalBlockFile *N, 2177 AsmWriterContext &WriterCtx) { 2178 Out << "!DILexicalBlockFile("; 2179 MDFieldPrinter Printer(Out, WriterCtx); 2180 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2181 Printer.printMetadata("file", N->getRawFile()); 2182 Printer.printInt("discriminator", N->getDiscriminator(), 2183 /* ShouldSkipZero */ false); 2184 Out << ")"; 2185 } 2186 2187 static void writeDINamespace(raw_ostream &Out, const DINamespace *N, 2188 AsmWriterContext &WriterCtx) { 2189 Out << "!DINamespace("; 2190 MDFieldPrinter Printer(Out, WriterCtx); 2191 Printer.printString("name", N->getName()); 2192 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2193 Printer.printBool("exportSymbols", N->getExportSymbols(), false); 2194 Out << ")"; 2195 } 2196 2197 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, 2198 AsmWriterContext &WriterCtx) { 2199 Out << "!DICommonBlock("; 2200 MDFieldPrinter Printer(Out, WriterCtx); 2201 Printer.printMetadata("scope", N->getRawScope(), false); 2202 Printer.printMetadata("declaration", N->getRawDecl(), false); 2203 Printer.printString("name", N->getName()); 2204 Printer.printMetadata("file", N->getRawFile()); 2205 Printer.printInt("line", N->getLineNo()); 2206 Out << ")"; 2207 } 2208 2209 static void writeDIMacro(raw_ostream &Out, const DIMacro *N, 2210 AsmWriterContext &WriterCtx) { 2211 Out << "!DIMacro("; 2212 MDFieldPrinter Printer(Out, WriterCtx); 2213 Printer.printMacinfoType(N); 2214 Printer.printInt("line", N->getLine()); 2215 Printer.printString("name", N->getName()); 2216 Printer.printString("value", N->getValue()); 2217 Out << ")"; 2218 } 2219 2220 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, 2221 AsmWriterContext &WriterCtx) { 2222 Out << "!DIMacroFile("; 2223 MDFieldPrinter Printer(Out, WriterCtx); 2224 Printer.printInt("line", N->getLine()); 2225 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2226 Printer.printMetadata("nodes", N->getRawElements()); 2227 Out << ")"; 2228 } 2229 2230 static void writeDIModule(raw_ostream &Out, const DIModule *N, 2231 AsmWriterContext &WriterCtx) { 2232 Out << "!DIModule("; 2233 MDFieldPrinter Printer(Out, WriterCtx); 2234 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2235 Printer.printString("name", N->getName()); 2236 Printer.printString("configMacros", N->getConfigurationMacros()); 2237 Printer.printString("includePath", N->getIncludePath()); 2238 Printer.printString("apinotes", N->getAPINotesFile()); 2239 Printer.printMetadata("file", N->getRawFile()); 2240 Printer.printInt("line", N->getLineNo()); 2241 Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false); 2242 Out << ")"; 2243 } 2244 2245 static void writeDITemplateTypeParameter(raw_ostream &Out, 2246 const DITemplateTypeParameter *N, 2247 AsmWriterContext &WriterCtx) { 2248 Out << "!DITemplateTypeParameter("; 2249 MDFieldPrinter Printer(Out, WriterCtx); 2250 Printer.printString("name", N->getName()); 2251 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false); 2252 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false); 2253 Out << ")"; 2254 } 2255 2256 static void writeDITemplateValueParameter(raw_ostream &Out, 2257 const DITemplateValueParameter *N, 2258 AsmWriterContext &WriterCtx) { 2259 Out << "!DITemplateValueParameter("; 2260 MDFieldPrinter Printer(Out, WriterCtx); 2261 if (N->getTag() != dwarf::DW_TAG_template_value_parameter) 2262 Printer.printTag(N); 2263 Printer.printString("name", N->getName()); 2264 Printer.printMetadata("type", N->getRawType()); 2265 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false); 2266 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); 2267 Out << ")"; 2268 } 2269 2270 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, 2271 AsmWriterContext &WriterCtx) { 2272 Out << "!DIGlobalVariable("; 2273 MDFieldPrinter Printer(Out, WriterCtx); 2274 Printer.printString("name", N->getName()); 2275 Printer.printString("linkageName", N->getLinkageName()); 2276 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2277 Printer.printMetadata("file", N->getRawFile()); 2278 Printer.printInt("line", N->getLine()); 2279 Printer.printMetadata("type", N->getRawType()); 2280 Printer.printBool("isLocal", N->isLocalToUnit()); 2281 Printer.printBool("isDefinition", N->isDefinition()); 2282 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration()); 2283 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2284 Printer.printInt("align", N->getAlignInBits()); 2285 Printer.printMetadata("annotations", N->getRawAnnotations()); 2286 Out << ")"; 2287 } 2288 2289 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, 2290 AsmWriterContext &WriterCtx) { 2291 Out << "!DILocalVariable("; 2292 MDFieldPrinter Printer(Out, WriterCtx); 2293 Printer.printString("name", N->getName()); 2294 Printer.printInt("arg", N->getArg()); 2295 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2296 Printer.printMetadata("file", N->getRawFile()); 2297 Printer.printInt("line", N->getLine()); 2298 Printer.printMetadata("type", N->getRawType()); 2299 Printer.printDIFlags("flags", N->getFlags()); 2300 Printer.printInt("align", N->getAlignInBits()); 2301 Printer.printMetadata("annotations", N->getRawAnnotations()); 2302 Out << ")"; 2303 } 2304 2305 static void writeDILabel(raw_ostream &Out, const DILabel *N, 2306 AsmWriterContext &WriterCtx) { 2307 Out << "!DILabel("; 2308 MDFieldPrinter Printer(Out, WriterCtx); 2309 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2310 Printer.printString("name", N->getName()); 2311 Printer.printMetadata("file", N->getRawFile()); 2312 Printer.printInt("line", N->getLine()); 2313 Out << ")"; 2314 } 2315 2316 static void writeDIExpression(raw_ostream &Out, const DIExpression *N, 2317 AsmWriterContext &WriterCtx) { 2318 Out << "!DIExpression("; 2319 FieldSeparator FS; 2320 if (N->isValid()) { 2321 for (const DIExpression::ExprOperand &Op : N->expr_ops()) { 2322 auto OpStr = dwarf::OperationEncodingString(Op.getOp()); 2323 assert(!OpStr.empty() && "Expected valid opcode"); 2324 2325 Out << FS << OpStr; 2326 if (Op.getOp() == dwarf::DW_OP_LLVM_convert) { 2327 Out << FS << Op.getArg(0); 2328 Out << FS << dwarf::AttributeEncodingString(Op.getArg(1)); 2329 } else { 2330 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A) 2331 Out << FS << Op.getArg(A); 2332 } 2333 } 2334 } else { 2335 for (const auto &I : N->getElements()) 2336 Out << FS << I; 2337 } 2338 Out << ")"; 2339 } 2340 2341 static void writeDIArgList(raw_ostream &Out, const DIArgList *N, 2342 AsmWriterContext &WriterCtx, 2343 bool FromValue = false) { 2344 assert(FromValue && 2345 "Unexpected DIArgList metadata outside of value argument"); 2346 Out << "!DIArgList("; 2347 FieldSeparator FS; 2348 MDFieldPrinter Printer(Out, WriterCtx); 2349 for (Metadata *Arg : N->getArgs()) { 2350 Out << FS; 2351 WriteAsOperandInternal(Out, Arg, WriterCtx, true); 2352 } 2353 Out << ")"; 2354 } 2355 2356 static void writeDIGlobalVariableExpression(raw_ostream &Out, 2357 const DIGlobalVariableExpression *N, 2358 AsmWriterContext &WriterCtx) { 2359 Out << "!DIGlobalVariableExpression("; 2360 MDFieldPrinter Printer(Out, WriterCtx); 2361 Printer.printMetadata("var", N->getVariable()); 2362 Printer.printMetadata("expr", N->getExpression()); 2363 Out << ")"; 2364 } 2365 2366 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, 2367 AsmWriterContext &WriterCtx) { 2368 Out << "!DIObjCProperty("; 2369 MDFieldPrinter Printer(Out, WriterCtx); 2370 Printer.printString("name", N->getName()); 2371 Printer.printMetadata("file", N->getRawFile()); 2372 Printer.printInt("line", N->getLine()); 2373 Printer.printString("setter", N->getSetterName()); 2374 Printer.printString("getter", N->getGetterName()); 2375 Printer.printInt("attributes", N->getAttributes()); 2376 Printer.printMetadata("type", N->getRawType()); 2377 Out << ")"; 2378 } 2379 2380 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, 2381 AsmWriterContext &WriterCtx) { 2382 Out << "!DIImportedEntity("; 2383 MDFieldPrinter Printer(Out, WriterCtx); 2384 Printer.printTag(N); 2385 Printer.printString("name", N->getName()); 2386 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2387 Printer.printMetadata("entity", N->getRawEntity()); 2388 Printer.printMetadata("file", N->getRawFile()); 2389 Printer.printInt("line", N->getLine()); 2390 Printer.printMetadata("elements", N->getRawElements()); 2391 Out << ")"; 2392 } 2393 2394 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, 2395 AsmWriterContext &Ctx) { 2396 if (Node->isDistinct()) 2397 Out << "distinct "; 2398 else if (Node->isTemporary()) 2399 Out << "<temporary!> "; // Handle broken code. 2400 2401 switch (Node->getMetadataID()) { 2402 default: 2403 llvm_unreachable("Expected uniquable MDNode"); 2404 #define HANDLE_MDNODE_LEAF(CLASS) \ 2405 case Metadata::CLASS##Kind: \ 2406 write##CLASS(Out, cast<CLASS>(Node), Ctx); \ 2407 break; 2408 #include "llvm/IR/Metadata.def" 2409 } 2410 } 2411 2412 // Full implementation of printing a Value as an operand with support for 2413 // TypePrinting, etc. 2414 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 2415 AsmWriterContext &WriterCtx) { 2416 if (V->hasName()) { 2417 PrintLLVMName(Out, V); 2418 return; 2419 } 2420 2421 const Constant *CV = dyn_cast<Constant>(V); 2422 if (CV && !isa<GlobalValue>(CV)) { 2423 assert(WriterCtx.TypePrinter && "Constants require TypePrinting!"); 2424 WriteConstantInternal(Out, CV, WriterCtx); 2425 return; 2426 } 2427 2428 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2429 Out << "asm "; 2430 if (IA->hasSideEffects()) 2431 Out << "sideeffect "; 2432 if (IA->isAlignStack()) 2433 Out << "alignstack "; 2434 // We don't emit the AD_ATT dialect as it's the assumed default. 2435 if (IA->getDialect() == InlineAsm::AD_Intel) 2436 Out << "inteldialect "; 2437 if (IA->canThrow()) 2438 Out << "unwind "; 2439 Out << '"'; 2440 printEscapedString(IA->getAsmString(), Out); 2441 Out << "\", \""; 2442 printEscapedString(IA->getConstraintString(), Out); 2443 Out << '"'; 2444 return; 2445 } 2446 2447 if (auto *MD = dyn_cast<MetadataAsValue>(V)) { 2448 WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx, 2449 /* FromValue */ true); 2450 return; 2451 } 2452 2453 char Prefix = '%'; 2454 int Slot; 2455 auto *Machine = WriterCtx.Machine; 2456 // If we have a SlotTracker, use it. 2457 if (Machine) { 2458 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2459 Slot = Machine->getGlobalSlot(GV); 2460 Prefix = '@'; 2461 } else { 2462 Slot = Machine->getLocalSlot(V); 2463 2464 // If the local value didn't succeed, then we may be referring to a value 2465 // from a different function. Translate it, as this can happen when using 2466 // address of blocks. 2467 if (Slot == -1) 2468 if ((Machine = createSlotTracker(V))) { 2469 Slot = Machine->getLocalSlot(V); 2470 delete Machine; 2471 } 2472 } 2473 } else if ((Machine = createSlotTracker(V))) { 2474 // Otherwise, create one to get the # and then destroy it. 2475 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2476 Slot = Machine->getGlobalSlot(GV); 2477 Prefix = '@'; 2478 } else { 2479 Slot = Machine->getLocalSlot(V); 2480 } 2481 delete Machine; 2482 Machine = nullptr; 2483 } else { 2484 Slot = -1; 2485 } 2486 2487 if (Slot != -1) 2488 Out << Prefix << Slot; 2489 else 2490 Out << "<badref>"; 2491 } 2492 2493 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 2494 AsmWriterContext &WriterCtx, 2495 bool FromValue) { 2496 // Write DIExpressions and DIArgLists inline when used as a value. Improves 2497 // readability of debug info intrinsics. 2498 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) { 2499 writeDIExpression(Out, Expr, WriterCtx); 2500 return; 2501 } 2502 if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) { 2503 writeDIArgList(Out, ArgList, WriterCtx, FromValue); 2504 return; 2505 } 2506 2507 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2508 std::unique_ptr<SlotTracker> MachineStorage; 2509 SaveAndRestore SARMachine(WriterCtx.Machine); 2510 if (!WriterCtx.Machine) { 2511 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context); 2512 WriterCtx.Machine = MachineStorage.get(); 2513 } 2514 int Slot = WriterCtx.Machine->getMetadataSlot(N); 2515 if (Slot == -1) { 2516 if (const DILocation *Loc = dyn_cast<DILocation>(N)) { 2517 writeDILocation(Out, Loc, WriterCtx); 2518 return; 2519 } 2520 // Give the pointer value instead of "badref", since this comes up all 2521 // the time when debugging. 2522 Out << "<" << N << ">"; 2523 } else 2524 Out << '!' << Slot; 2525 return; 2526 } 2527 2528 if (const MDString *MDS = dyn_cast<MDString>(MD)) { 2529 Out << "!\""; 2530 printEscapedString(MDS->getString(), Out); 2531 Out << '"'; 2532 return; 2533 } 2534 2535 auto *V = cast<ValueAsMetadata>(MD); 2536 assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values"); 2537 assert((FromValue || !isa<LocalAsMetadata>(V)) && 2538 "Unexpected function-local metadata outside of value argument"); 2539 2540 WriterCtx.TypePrinter->print(V->getValue()->getType(), Out); 2541 Out << ' '; 2542 WriteAsOperandInternal(Out, V->getValue(), WriterCtx); 2543 } 2544 2545 namespace { 2546 2547 class AssemblyWriter { 2548 formatted_raw_ostream &Out; 2549 const Module *TheModule = nullptr; 2550 const ModuleSummaryIndex *TheIndex = nullptr; 2551 std::unique_ptr<SlotTracker> SlotTrackerStorage; 2552 SlotTracker &Machine; 2553 TypePrinting TypePrinter; 2554 AssemblyAnnotationWriter *AnnotationWriter = nullptr; 2555 SetVector<const Comdat *> Comdats; 2556 bool IsForDebug; 2557 bool ShouldPreserveUseListOrder; 2558 UseListOrderMap UseListOrders; 2559 SmallVector<StringRef, 8> MDNames; 2560 /// Synchronization scope names registered with LLVMContext. 2561 SmallVector<StringRef, 8> SSNs; 2562 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap; 2563 2564 public: 2565 /// Construct an AssemblyWriter with an external SlotTracker 2566 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, 2567 AssemblyAnnotationWriter *AAW, bool IsForDebug, 2568 bool ShouldPreserveUseListOrder = false); 2569 2570 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2571 const ModuleSummaryIndex *Index, bool IsForDebug); 2572 2573 AsmWriterContext getContext() { 2574 return AsmWriterContext(&TypePrinter, &Machine, TheModule); 2575 } 2576 2577 void printMDNodeBody(const MDNode *MD); 2578 void printNamedMDNode(const NamedMDNode *NMD); 2579 2580 void printModule(const Module *M); 2581 2582 void writeOperand(const Value *Op, bool PrintType); 2583 void writeParamOperand(const Value *Operand, AttributeSet Attrs); 2584 void writeOperandBundles(const CallBase *Call); 2585 void writeSyncScope(const LLVMContext &Context, 2586 SyncScope::ID SSID); 2587 void writeAtomic(const LLVMContext &Context, 2588 AtomicOrdering Ordering, 2589 SyncScope::ID SSID); 2590 void writeAtomicCmpXchg(const LLVMContext &Context, 2591 AtomicOrdering SuccessOrdering, 2592 AtomicOrdering FailureOrdering, 2593 SyncScope::ID SSID); 2594 2595 void writeAllMDNodes(); 2596 void writeMDNode(unsigned Slot, const MDNode *Node); 2597 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false); 2598 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false); 2599 void writeAllAttributeGroups(); 2600 2601 void printTypeIdentities(); 2602 void printGlobal(const GlobalVariable *GV); 2603 void printAlias(const GlobalAlias *GA); 2604 void printIFunc(const GlobalIFunc *GI); 2605 void printComdat(const Comdat *C); 2606 void printFunction(const Function *F); 2607 void printArgument(const Argument *FA, AttributeSet Attrs); 2608 void printBasicBlock(const BasicBlock *BB); 2609 void printInstructionLine(const Instruction &I); 2610 void printInstruction(const Instruction &I); 2611 2612 void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle); 2613 void printUseLists(const Function *F); 2614 2615 void printModuleSummaryIndex(); 2616 void printSummaryInfo(unsigned Slot, const ValueInfo &VI); 2617 void printSummary(const GlobalValueSummary &Summary); 2618 void printAliasSummary(const AliasSummary *AS); 2619 void printGlobalVarSummary(const GlobalVarSummary *GS); 2620 void printFunctionSummary(const FunctionSummary *FS); 2621 void printTypeIdSummary(const TypeIdSummary &TIS); 2622 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI); 2623 void printTypeTestResolution(const TypeTestResolution &TTRes); 2624 void printArgs(const std::vector<uint64_t> &Args); 2625 void printWPDRes(const WholeProgramDevirtResolution &WPDRes); 2626 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo); 2627 void printVFuncId(const FunctionSummary::VFuncId VFId); 2628 void 2629 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList, 2630 const char *Tag); 2631 void 2632 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList, 2633 const char *Tag); 2634 2635 private: 2636 /// Print out metadata attachments. 2637 void printMetadataAttachments( 2638 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 2639 StringRef Separator); 2640 2641 // printInfoComment - Print a little comment after the instruction indicating 2642 // which slot it occupies. 2643 void printInfoComment(const Value &V); 2644 2645 // printGCRelocateComment - print comment after call to the gc.relocate 2646 // intrinsic indicating base and derived pointer names. 2647 void printGCRelocateComment(const GCRelocateInst &Relocate); 2648 }; 2649 2650 } // end anonymous namespace 2651 2652 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2653 const Module *M, AssemblyAnnotationWriter *AAW, 2654 bool IsForDebug, bool ShouldPreserveUseListOrder) 2655 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW), 2656 IsForDebug(IsForDebug), 2657 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 2658 if (!TheModule) 2659 return; 2660 for (const GlobalObject &GO : TheModule->global_objects()) 2661 if (const Comdat *C = GO.getComdat()) 2662 Comdats.insert(C); 2663 } 2664 2665 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2666 const ModuleSummaryIndex *Index, bool IsForDebug) 2667 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr), 2668 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {} 2669 2670 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { 2671 if (!Operand) { 2672 Out << "<null operand!>"; 2673 return; 2674 } 2675 if (PrintType) { 2676 TypePrinter.print(Operand->getType(), Out); 2677 Out << ' '; 2678 } 2679 auto WriterCtx = getContext(); 2680 WriteAsOperandInternal(Out, Operand, WriterCtx); 2681 } 2682 2683 void AssemblyWriter::writeSyncScope(const LLVMContext &Context, 2684 SyncScope::ID SSID) { 2685 switch (SSID) { 2686 case SyncScope::System: { 2687 break; 2688 } 2689 default: { 2690 if (SSNs.empty()) 2691 Context.getSyncScopeNames(SSNs); 2692 2693 Out << " syncscope(\""; 2694 printEscapedString(SSNs[SSID], Out); 2695 Out << "\")"; 2696 break; 2697 } 2698 } 2699 } 2700 2701 void AssemblyWriter::writeAtomic(const LLVMContext &Context, 2702 AtomicOrdering Ordering, 2703 SyncScope::ID SSID) { 2704 if (Ordering == AtomicOrdering::NotAtomic) 2705 return; 2706 2707 writeSyncScope(Context, SSID); 2708 Out << " " << toIRString(Ordering); 2709 } 2710 2711 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, 2712 AtomicOrdering SuccessOrdering, 2713 AtomicOrdering FailureOrdering, 2714 SyncScope::ID SSID) { 2715 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 2716 FailureOrdering != AtomicOrdering::NotAtomic); 2717 2718 writeSyncScope(Context, SSID); 2719 Out << " " << toIRString(SuccessOrdering); 2720 Out << " " << toIRString(FailureOrdering); 2721 } 2722 2723 void AssemblyWriter::writeParamOperand(const Value *Operand, 2724 AttributeSet Attrs) { 2725 if (!Operand) { 2726 Out << "<null operand!>"; 2727 return; 2728 } 2729 2730 // Print the type 2731 TypePrinter.print(Operand->getType(), Out); 2732 // Print parameter attributes list 2733 if (Attrs.hasAttributes()) { 2734 Out << ' '; 2735 writeAttributeSet(Attrs); 2736 } 2737 Out << ' '; 2738 // Print the operand 2739 auto WriterCtx = getContext(); 2740 WriteAsOperandInternal(Out, Operand, WriterCtx); 2741 } 2742 2743 void AssemblyWriter::writeOperandBundles(const CallBase *Call) { 2744 if (!Call->hasOperandBundles()) 2745 return; 2746 2747 Out << " [ "; 2748 2749 bool FirstBundle = true; 2750 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) { 2751 OperandBundleUse BU = Call->getOperandBundleAt(i); 2752 2753 if (!FirstBundle) 2754 Out << ", "; 2755 FirstBundle = false; 2756 2757 Out << '"'; 2758 printEscapedString(BU.getTagName(), Out); 2759 Out << '"'; 2760 2761 Out << '('; 2762 2763 bool FirstInput = true; 2764 auto WriterCtx = getContext(); 2765 for (const auto &Input : BU.Inputs) { 2766 if (!FirstInput) 2767 Out << ", "; 2768 FirstInput = false; 2769 2770 if (Input == nullptr) 2771 Out << "<null operand bundle!>"; 2772 else { 2773 TypePrinter.print(Input->getType(), Out); 2774 Out << " "; 2775 WriteAsOperandInternal(Out, Input, WriterCtx); 2776 } 2777 } 2778 2779 Out << ')'; 2780 } 2781 2782 Out << " ]"; 2783 } 2784 2785 void AssemblyWriter::printModule(const Module *M) { 2786 Machine.initializeIfNeeded(); 2787 2788 if (ShouldPreserveUseListOrder) 2789 UseListOrders = predictUseListOrder(M); 2790 2791 if (!M->getModuleIdentifier().empty() && 2792 // Don't print the ID if it will start a new line (which would 2793 // require a comment char before it). 2794 M->getModuleIdentifier().find('\n') == std::string::npos) 2795 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 2796 2797 if (!M->getSourceFileName().empty()) { 2798 Out << "source_filename = \""; 2799 printEscapedString(M->getSourceFileName(), Out); 2800 Out << "\"\n"; 2801 } 2802 2803 const std::string &DL = M->getDataLayoutStr(); 2804 if (!DL.empty()) 2805 Out << "target datalayout = \"" << DL << "\"\n"; 2806 if (!M->getTargetTriple().empty()) 2807 Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; 2808 2809 if (!M->getModuleInlineAsm().empty()) { 2810 Out << '\n'; 2811 2812 // Split the string into lines, to make it easier to read the .ll file. 2813 StringRef Asm = M->getModuleInlineAsm(); 2814 do { 2815 StringRef Front; 2816 std::tie(Front, Asm) = Asm.split('\n'); 2817 2818 // We found a newline, print the portion of the asm string from the 2819 // last newline up to this newline. 2820 Out << "module asm \""; 2821 printEscapedString(Front, Out); 2822 Out << "\"\n"; 2823 } while (!Asm.empty()); 2824 } 2825 2826 printTypeIdentities(); 2827 2828 // Output all comdats. 2829 if (!Comdats.empty()) 2830 Out << '\n'; 2831 for (const Comdat *C : Comdats) { 2832 printComdat(C); 2833 if (C != Comdats.back()) 2834 Out << '\n'; 2835 } 2836 2837 // Output all globals. 2838 if (!M->global_empty()) Out << '\n'; 2839 for (const GlobalVariable &GV : M->globals()) { 2840 printGlobal(&GV); Out << '\n'; 2841 } 2842 2843 // Output all aliases. 2844 if (!M->alias_empty()) Out << "\n"; 2845 for (const GlobalAlias &GA : M->aliases()) 2846 printAlias(&GA); 2847 2848 // Output all ifuncs. 2849 if (!M->ifunc_empty()) Out << "\n"; 2850 for (const GlobalIFunc &GI : M->ifuncs()) 2851 printIFunc(&GI); 2852 2853 // Output all of the functions. 2854 for (const Function &F : *M) { 2855 Out << '\n'; 2856 printFunction(&F); 2857 } 2858 2859 // Output global use-lists. 2860 printUseLists(nullptr); 2861 2862 // Output all attribute groups. 2863 if (!Machine.as_empty()) { 2864 Out << '\n'; 2865 writeAllAttributeGroups(); 2866 } 2867 2868 // Output named metadata. 2869 if (!M->named_metadata_empty()) Out << '\n'; 2870 2871 for (const NamedMDNode &Node : M->named_metadata()) 2872 printNamedMDNode(&Node); 2873 2874 // Output metadata. 2875 if (!Machine.mdn_empty()) { 2876 Out << '\n'; 2877 writeAllMDNodes(); 2878 } 2879 } 2880 2881 void AssemblyWriter::printModuleSummaryIndex() { 2882 assert(TheIndex); 2883 int NumSlots = Machine.initializeIndexIfNeeded(); 2884 2885 Out << "\n"; 2886 2887 // Print module path entries. To print in order, add paths to a vector 2888 // indexed by module slot. 2889 std::vector<std::pair<std::string, ModuleHash>> moduleVec; 2890 std::string RegularLTOModuleName = 2891 ModuleSummaryIndex::getRegularLTOModuleName(); 2892 moduleVec.resize(TheIndex->modulePaths().size()); 2893 for (auto &[ModPath, ModId] : TheIndex->modulePaths()) 2894 moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair( 2895 // A module id of -1 is a special entry for a regular LTO module created 2896 // during the thin link. 2897 ModId.first == -1u ? RegularLTOModuleName : std::string(ModPath), 2898 ModId.second); 2899 2900 unsigned i = 0; 2901 for (auto &ModPair : moduleVec) { 2902 Out << "^" << i++ << " = module: ("; 2903 Out << "path: \""; 2904 printEscapedString(ModPair.first, Out); 2905 Out << "\", hash: ("; 2906 FieldSeparator FS; 2907 for (auto Hash : ModPair.second) 2908 Out << FS << Hash; 2909 Out << "))\n"; 2910 } 2911 2912 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer 2913 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID). 2914 for (auto &GlobalList : *TheIndex) { 2915 auto GUID = GlobalList.first; 2916 for (auto &Summary : GlobalList.second.SummaryList) 2917 SummaryToGUIDMap[Summary.get()] = GUID; 2918 } 2919 2920 // Print the global value summary entries. 2921 for (auto &GlobalList : *TheIndex) { 2922 auto GUID = GlobalList.first; 2923 auto VI = TheIndex->getValueInfo(GlobalList); 2924 printSummaryInfo(Machine.getGUIDSlot(GUID), VI); 2925 } 2926 2927 // Print the TypeIdMap entries. 2928 for (const auto &TID : TheIndex->typeIds()) { 2929 Out << "^" << Machine.getTypeIdSlot(TID.second.first) 2930 << " = typeid: (name: \"" << TID.second.first << "\""; 2931 printTypeIdSummary(TID.second.second); 2932 Out << ") ; guid = " << TID.first << "\n"; 2933 } 2934 2935 // Print the TypeIdCompatibleVtableMap entries. 2936 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) { 2937 auto GUID = GlobalValue::getGUID(TId.first); 2938 Out << "^" << Machine.getGUIDSlot(GUID) 2939 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\""; 2940 printTypeIdCompatibleVtableSummary(TId.second); 2941 Out << ") ; guid = " << GUID << "\n"; 2942 } 2943 2944 // Don't emit flags when it's not really needed (value is zero by default). 2945 if (TheIndex->getFlags()) { 2946 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n"; 2947 ++NumSlots; 2948 } 2949 2950 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount() 2951 << "\n"; 2952 } 2953 2954 static const char * 2955 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) { 2956 switch (K) { 2957 case WholeProgramDevirtResolution::Indir: 2958 return "indir"; 2959 case WholeProgramDevirtResolution::SingleImpl: 2960 return "singleImpl"; 2961 case WholeProgramDevirtResolution::BranchFunnel: 2962 return "branchFunnel"; 2963 } 2964 llvm_unreachable("invalid WholeProgramDevirtResolution kind"); 2965 } 2966 2967 static const char *getWholeProgDevirtResByArgKindName( 2968 WholeProgramDevirtResolution::ByArg::Kind K) { 2969 switch (K) { 2970 case WholeProgramDevirtResolution::ByArg::Indir: 2971 return "indir"; 2972 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 2973 return "uniformRetVal"; 2974 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: 2975 return "uniqueRetVal"; 2976 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: 2977 return "virtualConstProp"; 2978 } 2979 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind"); 2980 } 2981 2982 static const char *getTTResKindName(TypeTestResolution::Kind K) { 2983 switch (K) { 2984 case TypeTestResolution::Unknown: 2985 return "unknown"; 2986 case TypeTestResolution::Unsat: 2987 return "unsat"; 2988 case TypeTestResolution::ByteArray: 2989 return "byteArray"; 2990 case TypeTestResolution::Inline: 2991 return "inline"; 2992 case TypeTestResolution::Single: 2993 return "single"; 2994 case TypeTestResolution::AllOnes: 2995 return "allOnes"; 2996 } 2997 llvm_unreachable("invalid TypeTestResolution kind"); 2998 } 2999 3000 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) { 3001 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind) 3002 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth; 3003 3004 // The following fields are only used if the target does not support the use 3005 // of absolute symbols to store constants. Print only if non-zero. 3006 if (TTRes.AlignLog2) 3007 Out << ", alignLog2: " << TTRes.AlignLog2; 3008 if (TTRes.SizeM1) 3009 Out << ", sizeM1: " << TTRes.SizeM1; 3010 if (TTRes.BitMask) 3011 // BitMask is uint8_t which causes it to print the corresponding char. 3012 Out << ", bitMask: " << (unsigned)TTRes.BitMask; 3013 if (TTRes.InlineBits) 3014 Out << ", inlineBits: " << TTRes.InlineBits; 3015 3016 Out << ")"; 3017 } 3018 3019 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) { 3020 Out << ", summary: ("; 3021 printTypeTestResolution(TIS.TTRes); 3022 if (!TIS.WPDRes.empty()) { 3023 Out << ", wpdResolutions: ("; 3024 FieldSeparator FS; 3025 for (auto &WPDRes : TIS.WPDRes) { 3026 Out << FS; 3027 Out << "(offset: " << WPDRes.first << ", "; 3028 printWPDRes(WPDRes.second); 3029 Out << ")"; 3030 } 3031 Out << ")"; 3032 } 3033 Out << ")"; 3034 } 3035 3036 void AssemblyWriter::printTypeIdCompatibleVtableSummary( 3037 const TypeIdCompatibleVtableInfo &TI) { 3038 Out << ", summary: ("; 3039 FieldSeparator FS; 3040 for (auto &P : TI) { 3041 Out << FS; 3042 Out << "(offset: " << P.AddressPointOffset << ", "; 3043 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID()); 3044 Out << ")"; 3045 } 3046 Out << ")"; 3047 } 3048 3049 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) { 3050 Out << "args: ("; 3051 FieldSeparator FS; 3052 for (auto arg : Args) { 3053 Out << FS; 3054 Out << arg; 3055 } 3056 Out << ")"; 3057 } 3058 3059 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) { 3060 Out << "wpdRes: (kind: "; 3061 Out << getWholeProgDevirtResKindName(WPDRes.TheKind); 3062 3063 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl) 3064 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\""; 3065 3066 if (!WPDRes.ResByArg.empty()) { 3067 Out << ", resByArg: ("; 3068 FieldSeparator FS; 3069 for (auto &ResByArg : WPDRes.ResByArg) { 3070 Out << FS; 3071 printArgs(ResByArg.first); 3072 Out << ", byArg: (kind: "; 3073 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind); 3074 if (ResByArg.second.TheKind == 3075 WholeProgramDevirtResolution::ByArg::UniformRetVal || 3076 ResByArg.second.TheKind == 3077 WholeProgramDevirtResolution::ByArg::UniqueRetVal) 3078 Out << ", info: " << ResByArg.second.Info; 3079 3080 // The following fields are only used if the target does not support the 3081 // use of absolute symbols to store constants. Print only if non-zero. 3082 if (ResByArg.second.Byte || ResByArg.second.Bit) 3083 Out << ", byte: " << ResByArg.second.Byte 3084 << ", bit: " << ResByArg.second.Bit; 3085 3086 Out << ")"; 3087 } 3088 Out << ")"; 3089 } 3090 Out << ")"; 3091 } 3092 3093 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) { 3094 switch (SK) { 3095 case GlobalValueSummary::AliasKind: 3096 return "alias"; 3097 case GlobalValueSummary::FunctionKind: 3098 return "function"; 3099 case GlobalValueSummary::GlobalVarKind: 3100 return "variable"; 3101 } 3102 llvm_unreachable("invalid summary kind"); 3103 } 3104 3105 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) { 3106 Out << ", aliasee: "; 3107 // The indexes emitted for distributed backends may not include the 3108 // aliasee summary (only if it is being imported directly). Handle 3109 // that case by just emitting "null" as the aliasee. 3110 if (AS->hasAliasee()) 3111 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]); 3112 else 3113 Out << "null"; 3114 } 3115 3116 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) { 3117 auto VTableFuncs = GS->vTableFuncs(); 3118 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", " 3119 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", " 3120 << "constant: " << GS->VarFlags.Constant; 3121 if (!VTableFuncs.empty()) 3122 Out << ", " 3123 << "vcall_visibility: " << GS->VarFlags.VCallVisibility; 3124 Out << ")"; 3125 3126 if (!VTableFuncs.empty()) { 3127 Out << ", vTableFuncs: ("; 3128 FieldSeparator FS; 3129 for (auto &P : VTableFuncs) { 3130 Out << FS; 3131 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID()) 3132 << ", offset: " << P.VTableOffset; 3133 Out << ")"; 3134 } 3135 Out << ")"; 3136 } 3137 } 3138 3139 static std::string getLinkageName(GlobalValue::LinkageTypes LT) { 3140 switch (LT) { 3141 case GlobalValue::ExternalLinkage: 3142 return "external"; 3143 case GlobalValue::PrivateLinkage: 3144 return "private"; 3145 case GlobalValue::InternalLinkage: 3146 return "internal"; 3147 case GlobalValue::LinkOnceAnyLinkage: 3148 return "linkonce"; 3149 case GlobalValue::LinkOnceODRLinkage: 3150 return "linkonce_odr"; 3151 case GlobalValue::WeakAnyLinkage: 3152 return "weak"; 3153 case GlobalValue::WeakODRLinkage: 3154 return "weak_odr"; 3155 case GlobalValue::CommonLinkage: 3156 return "common"; 3157 case GlobalValue::AppendingLinkage: 3158 return "appending"; 3159 case GlobalValue::ExternalWeakLinkage: 3160 return "extern_weak"; 3161 case GlobalValue::AvailableExternallyLinkage: 3162 return "available_externally"; 3163 } 3164 llvm_unreachable("invalid linkage"); 3165 } 3166 3167 // When printing the linkage types in IR where the ExternalLinkage is 3168 // not printed, and other linkage types are expected to be printed with 3169 // a space after the name. 3170 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) { 3171 if (LT == GlobalValue::ExternalLinkage) 3172 return ""; 3173 return getLinkageName(LT) + " "; 3174 } 3175 3176 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) { 3177 switch (Vis) { 3178 case GlobalValue::DefaultVisibility: 3179 return "default"; 3180 case GlobalValue::HiddenVisibility: 3181 return "hidden"; 3182 case GlobalValue::ProtectedVisibility: 3183 return "protected"; 3184 } 3185 llvm_unreachable("invalid visibility"); 3186 } 3187 3188 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) { 3189 Out << ", insts: " << FS->instCount(); 3190 if (FS->fflags().anyFlagSet()) 3191 Out << ", " << FS->fflags(); 3192 3193 if (!FS->calls().empty()) { 3194 Out << ", calls: ("; 3195 FieldSeparator IFS; 3196 for (auto &Call : FS->calls()) { 3197 Out << IFS; 3198 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID()); 3199 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown) 3200 Out << ", hotness: " << getHotnessName(Call.second.getHotness()); 3201 else if (Call.second.RelBlockFreq) 3202 Out << ", relbf: " << Call.second.RelBlockFreq; 3203 Out << ")"; 3204 } 3205 Out << ")"; 3206 } 3207 3208 if (const auto *TIdInfo = FS->getTypeIdInfo()) 3209 printTypeIdInfo(*TIdInfo); 3210 3211 // The AllocationType identifiers capture the profiled context behavior 3212 // reaching a specific static allocation site (possibly cloned). 3213 auto AllocTypeName = [](uint8_t Type) -> const char * { 3214 switch (Type) { 3215 case (uint8_t)AllocationType::None: 3216 return "none"; 3217 case (uint8_t)AllocationType::NotCold: 3218 return "notcold"; 3219 case (uint8_t)AllocationType::Cold: 3220 return "cold"; 3221 case (uint8_t)AllocationType::Hot: 3222 return "hot"; 3223 } 3224 llvm_unreachable("Unexpected alloc type"); 3225 }; 3226 3227 if (!FS->allocs().empty()) { 3228 Out << ", allocs: ("; 3229 FieldSeparator AFS; 3230 for (auto &AI : FS->allocs()) { 3231 Out << AFS; 3232 Out << "(versions: ("; 3233 FieldSeparator VFS; 3234 for (auto V : AI.Versions) { 3235 Out << VFS; 3236 Out << AllocTypeName(V); 3237 } 3238 Out << "), memProf: ("; 3239 FieldSeparator MIBFS; 3240 for (auto &MIB : AI.MIBs) { 3241 Out << MIBFS; 3242 Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType); 3243 Out << ", stackIds: ("; 3244 FieldSeparator SIDFS; 3245 for (auto Id : MIB.StackIdIndices) { 3246 Out << SIDFS; 3247 Out << TheIndex->getStackIdAtIndex(Id); 3248 } 3249 Out << "))"; 3250 } 3251 Out << "))"; 3252 } 3253 Out << ")"; 3254 } 3255 3256 if (!FS->callsites().empty()) { 3257 Out << ", callsites: ("; 3258 FieldSeparator SNFS; 3259 for (auto &CI : FS->callsites()) { 3260 Out << SNFS; 3261 if (CI.Callee) 3262 Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID()); 3263 else 3264 Out << "(callee: null"; 3265 Out << ", clones: ("; 3266 FieldSeparator VFS; 3267 for (auto V : CI.Clones) { 3268 Out << VFS; 3269 Out << V; 3270 } 3271 Out << "), stackIds: ("; 3272 FieldSeparator SIDFS; 3273 for (auto Id : CI.StackIdIndices) { 3274 Out << SIDFS; 3275 Out << TheIndex->getStackIdAtIndex(Id); 3276 } 3277 Out << "))"; 3278 } 3279 Out << ")"; 3280 } 3281 3282 auto PrintRange = [&](const ConstantRange &Range) { 3283 Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]"; 3284 }; 3285 3286 if (!FS->paramAccesses().empty()) { 3287 Out << ", params: ("; 3288 FieldSeparator IFS; 3289 for (auto &PS : FS->paramAccesses()) { 3290 Out << IFS; 3291 Out << "(param: " << PS.ParamNo; 3292 Out << ", offset: "; 3293 PrintRange(PS.Use); 3294 if (!PS.Calls.empty()) { 3295 Out << ", calls: ("; 3296 FieldSeparator IFS; 3297 for (auto &Call : PS.Calls) { 3298 Out << IFS; 3299 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID()); 3300 Out << ", param: " << Call.ParamNo; 3301 Out << ", offset: "; 3302 PrintRange(Call.Offsets); 3303 Out << ")"; 3304 } 3305 Out << ")"; 3306 } 3307 Out << ")"; 3308 } 3309 Out << ")"; 3310 } 3311 } 3312 3313 void AssemblyWriter::printTypeIdInfo( 3314 const FunctionSummary::TypeIdInfo &TIDInfo) { 3315 Out << ", typeIdInfo: ("; 3316 FieldSeparator TIDFS; 3317 if (!TIDInfo.TypeTests.empty()) { 3318 Out << TIDFS; 3319 Out << "typeTests: ("; 3320 FieldSeparator FS; 3321 for (auto &GUID : TIDInfo.TypeTests) { 3322 auto TidIter = TheIndex->typeIds().equal_range(GUID); 3323 if (TidIter.first == TidIter.second) { 3324 Out << FS; 3325 Out << GUID; 3326 continue; 3327 } 3328 // Print all type id that correspond to this GUID. 3329 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3330 Out << FS; 3331 auto Slot = Machine.getTypeIdSlot(It->second.first); 3332 assert(Slot != -1); 3333 Out << "^" << Slot; 3334 } 3335 } 3336 Out << ")"; 3337 } 3338 if (!TIDInfo.TypeTestAssumeVCalls.empty()) { 3339 Out << TIDFS; 3340 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls"); 3341 } 3342 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) { 3343 Out << TIDFS; 3344 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls"); 3345 } 3346 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) { 3347 Out << TIDFS; 3348 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls, 3349 "typeTestAssumeConstVCalls"); 3350 } 3351 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) { 3352 Out << TIDFS; 3353 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls, 3354 "typeCheckedLoadConstVCalls"); 3355 } 3356 Out << ")"; 3357 } 3358 3359 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) { 3360 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID); 3361 if (TidIter.first == TidIter.second) { 3362 Out << "vFuncId: ("; 3363 Out << "guid: " << VFId.GUID; 3364 Out << ", offset: " << VFId.Offset; 3365 Out << ")"; 3366 return; 3367 } 3368 // Print all type id that correspond to this GUID. 3369 FieldSeparator FS; 3370 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3371 Out << FS; 3372 Out << "vFuncId: ("; 3373 auto Slot = Machine.getTypeIdSlot(It->second.first); 3374 assert(Slot != -1); 3375 Out << "^" << Slot; 3376 Out << ", offset: " << VFId.Offset; 3377 Out << ")"; 3378 } 3379 } 3380 3381 void AssemblyWriter::printNonConstVCalls( 3382 const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) { 3383 Out << Tag << ": ("; 3384 FieldSeparator FS; 3385 for (auto &VFuncId : VCallList) { 3386 Out << FS; 3387 printVFuncId(VFuncId); 3388 } 3389 Out << ")"; 3390 } 3391 3392 void AssemblyWriter::printConstVCalls( 3393 const std::vector<FunctionSummary::ConstVCall> &VCallList, 3394 const char *Tag) { 3395 Out << Tag << ": ("; 3396 FieldSeparator FS; 3397 for (auto &ConstVCall : VCallList) { 3398 Out << FS; 3399 Out << "("; 3400 printVFuncId(ConstVCall.VFunc); 3401 if (!ConstVCall.Args.empty()) { 3402 Out << ", "; 3403 printArgs(ConstVCall.Args); 3404 } 3405 Out << ")"; 3406 } 3407 Out << ")"; 3408 } 3409 3410 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) { 3411 GlobalValueSummary::GVFlags GVFlags = Summary.flags(); 3412 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage; 3413 Out << getSummaryKindName(Summary.getSummaryKind()) << ": "; 3414 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath()) 3415 << ", flags: ("; 3416 Out << "linkage: " << getLinkageName(LT); 3417 Out << ", visibility: " 3418 << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility); 3419 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport; 3420 Out << ", live: " << GVFlags.Live; 3421 Out << ", dsoLocal: " << GVFlags.DSOLocal; 3422 Out << ", canAutoHide: " << GVFlags.CanAutoHide; 3423 Out << ")"; 3424 3425 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind) 3426 printAliasSummary(cast<AliasSummary>(&Summary)); 3427 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind) 3428 printFunctionSummary(cast<FunctionSummary>(&Summary)); 3429 else 3430 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary)); 3431 3432 auto RefList = Summary.refs(); 3433 if (!RefList.empty()) { 3434 Out << ", refs: ("; 3435 FieldSeparator FS; 3436 for (auto &Ref : RefList) { 3437 Out << FS; 3438 if (Ref.isReadOnly()) 3439 Out << "readonly "; 3440 else if (Ref.isWriteOnly()) 3441 Out << "writeonly "; 3442 Out << "^" << Machine.getGUIDSlot(Ref.getGUID()); 3443 } 3444 Out << ")"; 3445 } 3446 3447 Out << ")"; 3448 } 3449 3450 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) { 3451 Out << "^" << Slot << " = gv: ("; 3452 if (!VI.name().empty()) 3453 Out << "name: \"" << VI.name() << "\""; 3454 else 3455 Out << "guid: " << VI.getGUID(); 3456 if (!VI.getSummaryList().empty()) { 3457 Out << ", summaries: ("; 3458 FieldSeparator FS; 3459 for (auto &Summary : VI.getSummaryList()) { 3460 Out << FS; 3461 printSummary(*Summary); 3462 } 3463 Out << ")"; 3464 } 3465 Out << ")"; 3466 if (!VI.name().empty()) 3467 Out << " ; guid = " << VI.getGUID(); 3468 Out << "\n"; 3469 } 3470 3471 static void printMetadataIdentifier(StringRef Name, 3472 formatted_raw_ostream &Out) { 3473 if (Name.empty()) { 3474 Out << "<empty name> "; 3475 } else { 3476 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' || 3477 Name[0] == '$' || Name[0] == '.' || Name[0] == '_') 3478 Out << Name[0]; 3479 else 3480 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); 3481 for (unsigned i = 1, e = Name.size(); i != e; ++i) { 3482 unsigned char C = Name[i]; 3483 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' || 3484 C == '.' || C == '_') 3485 Out << C; 3486 else 3487 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 3488 } 3489 } 3490 } 3491 3492 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { 3493 Out << '!'; 3494 printMetadataIdentifier(NMD->getName(), Out); 3495 Out << " = !{"; 3496 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 3497 if (i) 3498 Out << ", "; 3499 3500 // Write DIExpressions inline. 3501 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose. 3502 MDNode *Op = NMD->getOperand(i); 3503 assert(!isa<DIArgList>(Op) && 3504 "DIArgLists should not appear in NamedMDNodes"); 3505 if (auto *Expr = dyn_cast<DIExpression>(Op)) { 3506 writeDIExpression(Out, Expr, AsmWriterContext::getEmpty()); 3507 continue; 3508 } 3509 3510 int Slot = Machine.getMetadataSlot(Op); 3511 if (Slot == -1) 3512 Out << "<badref>"; 3513 else 3514 Out << '!' << Slot; 3515 } 3516 Out << "}\n"; 3517 } 3518 3519 static void PrintVisibility(GlobalValue::VisibilityTypes Vis, 3520 formatted_raw_ostream &Out) { 3521 switch (Vis) { 3522 case GlobalValue::DefaultVisibility: break; 3523 case GlobalValue::HiddenVisibility: Out << "hidden "; break; 3524 case GlobalValue::ProtectedVisibility: Out << "protected "; break; 3525 } 3526 } 3527 3528 static void PrintDSOLocation(const GlobalValue &GV, 3529 formatted_raw_ostream &Out) { 3530 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal()) 3531 Out << "dso_local "; 3532 } 3533 3534 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, 3535 formatted_raw_ostream &Out) { 3536 switch (SCT) { 3537 case GlobalValue::DefaultStorageClass: break; 3538 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break; 3539 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break; 3540 } 3541 } 3542 3543 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, 3544 formatted_raw_ostream &Out) { 3545 switch (TLM) { 3546 case GlobalVariable::NotThreadLocal: 3547 break; 3548 case GlobalVariable::GeneralDynamicTLSModel: 3549 Out << "thread_local "; 3550 break; 3551 case GlobalVariable::LocalDynamicTLSModel: 3552 Out << "thread_local(localdynamic) "; 3553 break; 3554 case GlobalVariable::InitialExecTLSModel: 3555 Out << "thread_local(initialexec) "; 3556 break; 3557 case GlobalVariable::LocalExecTLSModel: 3558 Out << "thread_local(localexec) "; 3559 break; 3560 } 3561 } 3562 3563 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) { 3564 switch (UA) { 3565 case GlobalVariable::UnnamedAddr::None: 3566 return ""; 3567 case GlobalVariable::UnnamedAddr::Local: 3568 return "local_unnamed_addr"; 3569 case GlobalVariable::UnnamedAddr::Global: 3570 return "unnamed_addr"; 3571 } 3572 llvm_unreachable("Unknown UnnamedAddr"); 3573 } 3574 3575 static void maybePrintComdat(formatted_raw_ostream &Out, 3576 const GlobalObject &GO) { 3577 const Comdat *C = GO.getComdat(); 3578 if (!C) 3579 return; 3580 3581 if (isa<GlobalVariable>(GO)) 3582 Out << ','; 3583 Out << " comdat"; 3584 3585 if (GO.getName() == C->getName()) 3586 return; 3587 3588 Out << '('; 3589 PrintLLVMName(Out, C->getName(), ComdatPrefix); 3590 Out << ')'; 3591 } 3592 3593 void AssemblyWriter::printGlobal(const GlobalVariable *GV) { 3594 if (GV->isMaterializable()) 3595 Out << "; Materializable\n"; 3596 3597 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent()); 3598 WriteAsOperandInternal(Out, GV, WriterCtx); 3599 Out << " = "; 3600 3601 if (!GV->hasInitializer() && GV->hasExternalLinkage()) 3602 Out << "external "; 3603 3604 Out << getLinkageNameWithSpace(GV->getLinkage()); 3605 PrintDSOLocation(*GV, Out); 3606 PrintVisibility(GV->getVisibility(), Out); 3607 PrintDLLStorageClass(GV->getDLLStorageClass(), Out); 3608 PrintThreadLocalModel(GV->getThreadLocalMode(), Out); 3609 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr()); 3610 if (!UA.empty()) 3611 Out << UA << ' '; 3612 3613 if (unsigned AddressSpace = GV->getType()->getAddressSpace()) 3614 Out << "addrspace(" << AddressSpace << ") "; 3615 if (GV->isExternallyInitialized()) Out << "externally_initialized "; 3616 Out << (GV->isConstant() ? "constant " : "global "); 3617 TypePrinter.print(GV->getValueType(), Out); 3618 3619 if (GV->hasInitializer()) { 3620 Out << ' '; 3621 writeOperand(GV->getInitializer(), false); 3622 } 3623 3624 if (GV->hasSection()) { 3625 Out << ", section \""; 3626 printEscapedString(GV->getSection(), Out); 3627 Out << '"'; 3628 } 3629 if (GV->hasPartition()) { 3630 Out << ", partition \""; 3631 printEscapedString(GV->getPartition(), Out); 3632 Out << '"'; 3633 } 3634 3635 using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata; 3636 if (GV->hasSanitizerMetadata()) { 3637 SanitizerMetadata MD = GV->getSanitizerMetadata(); 3638 if (MD.NoAddress) 3639 Out << ", no_sanitize_address"; 3640 if (MD.NoHWAddress) 3641 Out << ", no_sanitize_hwaddress"; 3642 if (MD.Memtag) 3643 Out << ", sanitize_memtag"; 3644 if (MD.IsDynInit) 3645 Out << ", sanitize_address_dyninit"; 3646 } 3647 3648 maybePrintComdat(Out, *GV); 3649 if (MaybeAlign A = GV->getAlign()) 3650 Out << ", align " << A->value(); 3651 3652 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3653 GV->getAllMetadata(MDs); 3654 printMetadataAttachments(MDs, ", "); 3655 3656 auto Attrs = GV->getAttributes(); 3657 if (Attrs.hasAttributes()) 3658 Out << " #" << Machine.getAttributeGroupSlot(Attrs); 3659 3660 printInfoComment(*GV); 3661 } 3662 3663 void AssemblyWriter::printAlias(const GlobalAlias *GA) { 3664 if (GA->isMaterializable()) 3665 Out << "; Materializable\n"; 3666 3667 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent()); 3668 WriteAsOperandInternal(Out, GA, WriterCtx); 3669 Out << " = "; 3670 3671 Out << getLinkageNameWithSpace(GA->getLinkage()); 3672 PrintDSOLocation(*GA, Out); 3673 PrintVisibility(GA->getVisibility(), Out); 3674 PrintDLLStorageClass(GA->getDLLStorageClass(), Out); 3675 PrintThreadLocalModel(GA->getThreadLocalMode(), Out); 3676 StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr()); 3677 if (!UA.empty()) 3678 Out << UA << ' '; 3679 3680 Out << "alias "; 3681 3682 TypePrinter.print(GA->getValueType(), Out); 3683 Out << ", "; 3684 3685 if (const Constant *Aliasee = GA->getAliasee()) { 3686 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee)); 3687 } else { 3688 TypePrinter.print(GA->getType(), Out); 3689 Out << " <<NULL ALIASEE>>"; 3690 } 3691 3692 if (GA->hasPartition()) { 3693 Out << ", partition \""; 3694 printEscapedString(GA->getPartition(), Out); 3695 Out << '"'; 3696 } 3697 3698 printInfoComment(*GA); 3699 Out << '\n'; 3700 } 3701 3702 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) { 3703 if (GI->isMaterializable()) 3704 Out << "; Materializable\n"; 3705 3706 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent()); 3707 WriteAsOperandInternal(Out, GI, WriterCtx); 3708 Out << " = "; 3709 3710 Out << getLinkageNameWithSpace(GI->getLinkage()); 3711 PrintDSOLocation(*GI, Out); 3712 PrintVisibility(GI->getVisibility(), Out); 3713 3714 Out << "ifunc "; 3715 3716 TypePrinter.print(GI->getValueType(), Out); 3717 Out << ", "; 3718 3719 if (const Constant *Resolver = GI->getResolver()) { 3720 writeOperand(Resolver, !isa<ConstantExpr>(Resolver)); 3721 } else { 3722 TypePrinter.print(GI->getType(), Out); 3723 Out << " <<NULL RESOLVER>>"; 3724 } 3725 3726 if (GI->hasPartition()) { 3727 Out << ", partition \""; 3728 printEscapedString(GI->getPartition(), Out); 3729 Out << '"'; 3730 } 3731 3732 printInfoComment(*GI); 3733 Out << '\n'; 3734 } 3735 3736 void AssemblyWriter::printComdat(const Comdat *C) { 3737 C->print(Out); 3738 } 3739 3740 void AssemblyWriter::printTypeIdentities() { 3741 if (TypePrinter.empty()) 3742 return; 3743 3744 Out << '\n'; 3745 3746 // Emit all numbered types. 3747 auto &NumberedTypes = TypePrinter.getNumberedTypes(); 3748 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) { 3749 Out << '%' << I << " = type "; 3750 3751 // Make sure we print out at least one level of the type structure, so 3752 // that we do not get %2 = type %2 3753 TypePrinter.printStructBody(NumberedTypes[I], Out); 3754 Out << '\n'; 3755 } 3756 3757 auto &NamedTypes = TypePrinter.getNamedTypes(); 3758 for (StructType *NamedType : NamedTypes) { 3759 PrintLLVMName(Out, NamedType->getName(), LocalPrefix); 3760 Out << " = type "; 3761 3762 // Make sure we print out at least one level of the type structure, so 3763 // that we do not get %FILE = type %FILE 3764 TypePrinter.printStructBody(NamedType, Out); 3765 Out << '\n'; 3766 } 3767 } 3768 3769 /// printFunction - Print all aspects of a function. 3770 void AssemblyWriter::printFunction(const Function *F) { 3771 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); 3772 3773 if (F->isMaterializable()) 3774 Out << "; Materializable\n"; 3775 3776 const AttributeList &Attrs = F->getAttributes(); 3777 if (Attrs.hasFnAttrs()) { 3778 AttributeSet AS = Attrs.getFnAttrs(); 3779 std::string AttrStr; 3780 3781 for (const Attribute &Attr : AS) { 3782 if (!Attr.isStringAttribute()) { 3783 if (!AttrStr.empty()) AttrStr += ' '; 3784 AttrStr += Attr.getAsString(); 3785 } 3786 } 3787 3788 if (!AttrStr.empty()) 3789 Out << "; Function Attrs: " << AttrStr << '\n'; 3790 } 3791 3792 Machine.incorporateFunction(F); 3793 3794 if (F->isDeclaration()) { 3795 Out << "declare"; 3796 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3797 F->getAllMetadata(MDs); 3798 printMetadataAttachments(MDs, " "); 3799 Out << ' '; 3800 } else 3801 Out << "define "; 3802 3803 Out << getLinkageNameWithSpace(F->getLinkage()); 3804 PrintDSOLocation(*F, Out); 3805 PrintVisibility(F->getVisibility(), Out); 3806 PrintDLLStorageClass(F->getDLLStorageClass(), Out); 3807 3808 // Print the calling convention. 3809 if (F->getCallingConv() != CallingConv::C) { 3810 PrintCallingConv(F->getCallingConv(), Out); 3811 Out << " "; 3812 } 3813 3814 FunctionType *FT = F->getFunctionType(); 3815 if (Attrs.hasRetAttrs()) 3816 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' '; 3817 TypePrinter.print(F->getReturnType(), Out); 3818 AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent()); 3819 Out << ' '; 3820 WriteAsOperandInternal(Out, F, WriterCtx); 3821 Out << '('; 3822 3823 // Loop over the arguments, printing them... 3824 if (F->isDeclaration() && !IsForDebug) { 3825 // We're only interested in the type here - don't print argument names. 3826 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) { 3827 // Insert commas as we go... the first arg doesn't get a comma 3828 if (I) 3829 Out << ", "; 3830 // Output type... 3831 TypePrinter.print(FT->getParamType(I), Out); 3832 3833 AttributeSet ArgAttrs = Attrs.getParamAttrs(I); 3834 if (ArgAttrs.hasAttributes()) { 3835 Out << ' '; 3836 writeAttributeSet(ArgAttrs); 3837 } 3838 } 3839 } else { 3840 // The arguments are meaningful here, print them in detail. 3841 for (const Argument &Arg : F->args()) { 3842 // Insert commas as we go... the first arg doesn't get a comma 3843 if (Arg.getArgNo() != 0) 3844 Out << ", "; 3845 printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo())); 3846 } 3847 } 3848 3849 // Finish printing arguments... 3850 if (FT->isVarArg()) { 3851 if (FT->getNumParams()) Out << ", "; 3852 Out << "..."; // Output varargs portion of signature! 3853 } 3854 Out << ')'; 3855 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr()); 3856 if (!UA.empty()) 3857 Out << ' ' << UA; 3858 // We print the function address space if it is non-zero or if we are writing 3859 // a module with a non-zero program address space or if there is no valid 3860 // Module* so that the file can be parsed without the datalayout string. 3861 const Module *Mod = F->getParent(); 3862 if (F->getAddressSpace() != 0 || !Mod || 3863 Mod->getDataLayout().getProgramAddressSpace() != 0) 3864 Out << " addrspace(" << F->getAddressSpace() << ")"; 3865 if (Attrs.hasFnAttrs()) 3866 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs()); 3867 if (F->hasSection()) { 3868 Out << " section \""; 3869 printEscapedString(F->getSection(), Out); 3870 Out << '"'; 3871 } 3872 if (F->hasPartition()) { 3873 Out << " partition \""; 3874 printEscapedString(F->getPartition(), Out); 3875 Out << '"'; 3876 } 3877 maybePrintComdat(Out, *F); 3878 if (MaybeAlign A = F->getAlign()) 3879 Out << " align " << A->value(); 3880 if (F->hasGC()) 3881 Out << " gc \"" << F->getGC() << '"'; 3882 if (F->hasPrefixData()) { 3883 Out << " prefix "; 3884 writeOperand(F->getPrefixData(), true); 3885 } 3886 if (F->hasPrologueData()) { 3887 Out << " prologue "; 3888 writeOperand(F->getPrologueData(), true); 3889 } 3890 if (F->hasPersonalityFn()) { 3891 Out << " personality "; 3892 writeOperand(F->getPersonalityFn(), /*PrintType=*/true); 3893 } 3894 3895 if (F->isDeclaration()) { 3896 Out << '\n'; 3897 } else { 3898 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3899 F->getAllMetadata(MDs); 3900 printMetadataAttachments(MDs, " "); 3901 3902 Out << " {"; 3903 // Output all of the function's basic blocks. 3904 for (const BasicBlock &BB : *F) 3905 printBasicBlock(&BB); 3906 3907 // Output the function's use-lists. 3908 printUseLists(F); 3909 3910 Out << "}\n"; 3911 } 3912 3913 Machine.purgeFunction(); 3914 } 3915 3916 /// printArgument - This member is called for every argument that is passed into 3917 /// the function. Simply print it out 3918 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) { 3919 // Output type... 3920 TypePrinter.print(Arg->getType(), Out); 3921 3922 // Output parameter attributes list 3923 if (Attrs.hasAttributes()) { 3924 Out << ' '; 3925 writeAttributeSet(Attrs); 3926 } 3927 3928 // Output name, if available... 3929 if (Arg->hasName()) { 3930 Out << ' '; 3931 PrintLLVMName(Out, Arg); 3932 } else { 3933 int Slot = Machine.getLocalSlot(Arg); 3934 assert(Slot != -1 && "expect argument in function here"); 3935 Out << " %" << Slot; 3936 } 3937 } 3938 3939 /// printBasicBlock - This member is called for each basic block in a method. 3940 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { 3941 bool IsEntryBlock = BB->getParent() && BB->isEntryBlock(); 3942 if (BB->hasName()) { // Print out the label if it exists... 3943 Out << "\n"; 3944 PrintLLVMName(Out, BB->getName(), LabelPrefix); 3945 Out << ':'; 3946 } else if (!IsEntryBlock) { 3947 Out << "\n"; 3948 int Slot = Machine.getLocalSlot(BB); 3949 if (Slot != -1) 3950 Out << Slot << ":"; 3951 else 3952 Out << "<badref>:"; 3953 } 3954 3955 if (!IsEntryBlock) { 3956 // Output predecessors for the block. 3957 Out.PadToColumn(50); 3958 Out << ";"; 3959 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 3960 3961 if (PI == PE) { 3962 Out << " No predecessors!"; 3963 } else { 3964 Out << " preds = "; 3965 writeOperand(*PI, false); 3966 for (++PI; PI != PE; ++PI) { 3967 Out << ", "; 3968 writeOperand(*PI, false); 3969 } 3970 } 3971 } 3972 3973 Out << "\n"; 3974 3975 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); 3976 3977 // Output all of the instructions in the basic block... 3978 for (const Instruction &I : *BB) { 3979 printInstructionLine(I); 3980 } 3981 3982 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); 3983 } 3984 3985 /// printInstructionLine - Print an instruction and a newline character. 3986 void AssemblyWriter::printInstructionLine(const Instruction &I) { 3987 printInstruction(I); 3988 Out << '\n'; 3989 } 3990 3991 /// printGCRelocateComment - print comment after call to the gc.relocate 3992 /// intrinsic indicating base and derived pointer names. 3993 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) { 3994 Out << " ; ("; 3995 writeOperand(Relocate.getBasePtr(), false); 3996 Out << ", "; 3997 writeOperand(Relocate.getDerivedPtr(), false); 3998 Out << ")"; 3999 } 4000 4001 /// printInfoComment - Print a little comment after the instruction indicating 4002 /// which slot it occupies. 4003 void AssemblyWriter::printInfoComment(const Value &V) { 4004 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V)) 4005 printGCRelocateComment(*Relocate); 4006 4007 if (AnnotationWriter) 4008 AnnotationWriter->printInfoComment(V, Out); 4009 } 4010 4011 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, 4012 raw_ostream &Out) { 4013 // We print the address space of the call if it is non-zero. 4014 if (Operand == nullptr) { 4015 Out << " <cannot get addrspace!>"; 4016 return; 4017 } 4018 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace(); 4019 bool PrintAddrSpace = CallAddrSpace != 0; 4020 if (!PrintAddrSpace) { 4021 const Module *Mod = getModuleFromVal(I); 4022 // We also print it if it is zero but not equal to the program address space 4023 // or if we can't find a valid Module* to make it possible to parse 4024 // the resulting file even without a datalayout string. 4025 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0) 4026 PrintAddrSpace = true; 4027 } 4028 if (PrintAddrSpace) 4029 Out << " addrspace(" << CallAddrSpace << ")"; 4030 } 4031 4032 // This member is called for each Instruction in a function.. 4033 void AssemblyWriter::printInstruction(const Instruction &I) { 4034 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); 4035 4036 // Print out indentation for an instruction. 4037 Out << " "; 4038 4039 // Print out name if it exists... 4040 if (I.hasName()) { 4041 PrintLLVMName(Out, &I); 4042 Out << " = "; 4043 } else if (!I.getType()->isVoidTy()) { 4044 // Print out the def slot taken. 4045 int SlotNum = Machine.getLocalSlot(&I); 4046 if (SlotNum == -1) 4047 Out << "<badref> = "; 4048 else 4049 Out << '%' << SlotNum << " = "; 4050 } 4051 4052 if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 4053 if (CI->isMustTailCall()) 4054 Out << "musttail "; 4055 else if (CI->isTailCall()) 4056 Out << "tail "; 4057 else if (CI->isNoTailCall()) 4058 Out << "notail "; 4059 } 4060 4061 // Print out the opcode... 4062 Out << I.getOpcodeName(); 4063 4064 // If this is an atomic load or store, print out the atomic marker. 4065 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || 4066 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) 4067 Out << " atomic"; 4068 4069 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak()) 4070 Out << " weak"; 4071 4072 // If this is a volatile operation, print out the volatile marker. 4073 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || 4074 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || 4075 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || 4076 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) 4077 Out << " volatile"; 4078 4079 // Print out optimization information. 4080 WriteOptimizationInfo(Out, &I); 4081 4082 // Print out the compare instruction predicates 4083 if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) 4084 Out << ' ' << CI->getPredicate(); 4085 4086 // Print out the atomicrmw operation 4087 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) 4088 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation()); 4089 4090 // Print out the type of the operands... 4091 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr; 4092 4093 // Special case conditional branches to swizzle the condition out to the front 4094 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { 4095 const BranchInst &BI(cast<BranchInst>(I)); 4096 Out << ' '; 4097 writeOperand(BI.getCondition(), true); 4098 Out << ", "; 4099 writeOperand(BI.getSuccessor(0), true); 4100 Out << ", "; 4101 writeOperand(BI.getSuccessor(1), true); 4102 4103 } else if (isa<SwitchInst>(I)) { 4104 const SwitchInst& SI(cast<SwitchInst>(I)); 4105 // Special case switch instruction to get formatting nice and correct. 4106 Out << ' '; 4107 writeOperand(SI.getCondition(), true); 4108 Out << ", "; 4109 writeOperand(SI.getDefaultDest(), true); 4110 Out << " ["; 4111 for (auto Case : SI.cases()) { 4112 Out << "\n "; 4113 writeOperand(Case.getCaseValue(), true); 4114 Out << ", "; 4115 writeOperand(Case.getCaseSuccessor(), true); 4116 } 4117 Out << "\n ]"; 4118 } else if (isa<IndirectBrInst>(I)) { 4119 // Special case indirectbr instruction to get formatting nice and correct. 4120 Out << ' '; 4121 writeOperand(Operand, true); 4122 Out << ", ["; 4123 4124 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 4125 if (i != 1) 4126 Out << ", "; 4127 writeOperand(I.getOperand(i), true); 4128 } 4129 Out << ']'; 4130 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 4131 Out << ' '; 4132 TypePrinter.print(I.getType(), Out); 4133 Out << ' '; 4134 4135 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { 4136 if (op) Out << ", "; 4137 Out << "[ "; 4138 writeOperand(PN->getIncomingValue(op), false); Out << ", "; 4139 writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; 4140 } 4141 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { 4142 Out << ' '; 4143 writeOperand(I.getOperand(0), true); 4144 for (unsigned i : EVI->indices()) 4145 Out << ", " << i; 4146 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { 4147 Out << ' '; 4148 writeOperand(I.getOperand(0), true); Out << ", "; 4149 writeOperand(I.getOperand(1), true); 4150 for (unsigned i : IVI->indices()) 4151 Out << ", " << i; 4152 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { 4153 Out << ' '; 4154 TypePrinter.print(I.getType(), Out); 4155 if (LPI->isCleanup() || LPI->getNumClauses() != 0) 4156 Out << '\n'; 4157 4158 if (LPI->isCleanup()) 4159 Out << " cleanup"; 4160 4161 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { 4162 if (i != 0 || LPI->isCleanup()) Out << "\n"; 4163 if (LPI->isCatch(i)) 4164 Out << " catch "; 4165 else 4166 Out << " filter "; 4167 4168 writeOperand(LPI->getClause(i), true); 4169 } 4170 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) { 4171 Out << " within "; 4172 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false); 4173 Out << " ["; 4174 unsigned Op = 0; 4175 for (const BasicBlock *PadBB : CatchSwitch->handlers()) { 4176 if (Op > 0) 4177 Out << ", "; 4178 writeOperand(PadBB, /*PrintType=*/true); 4179 ++Op; 4180 } 4181 Out << "] unwind "; 4182 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest()) 4183 writeOperand(UnwindDest, /*PrintType=*/true); 4184 else 4185 Out << "to caller"; 4186 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) { 4187 Out << " within "; 4188 writeOperand(FPI->getParentPad(), /*PrintType=*/false); 4189 Out << " ["; 4190 for (unsigned Op = 0, NumOps = FPI->arg_size(); Op < NumOps; ++Op) { 4191 if (Op > 0) 4192 Out << ", "; 4193 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true); 4194 } 4195 Out << ']'; 4196 } else if (isa<ReturnInst>(I) && !Operand) { 4197 Out << " void"; 4198 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) { 4199 Out << " from "; 4200 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 4201 4202 Out << " to "; 4203 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 4204 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) { 4205 Out << " from "; 4206 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 4207 4208 Out << " unwind "; 4209 if (CRI->hasUnwindDest()) 4210 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 4211 else 4212 Out << "to caller"; 4213 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 4214 // Print the calling convention being used. 4215 if (CI->getCallingConv() != CallingConv::C) { 4216 Out << " "; 4217 PrintCallingConv(CI->getCallingConv(), Out); 4218 } 4219 4220 Operand = CI->getCalledOperand(); 4221 FunctionType *FTy = CI->getFunctionType(); 4222 Type *RetTy = FTy->getReturnType(); 4223 const AttributeList &PAL = CI->getAttributes(); 4224 4225 if (PAL.hasRetAttrs()) 4226 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4227 4228 // Only print addrspace(N) if necessary: 4229 maybePrintCallAddrSpace(Operand, &I, Out); 4230 4231 // If possible, print out the short form of the call instruction. We can 4232 // only do this if the first argument is a pointer to a nonvararg function, 4233 // and if the return type is not a pointer to a function. 4234 Out << ' '; 4235 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4236 Out << ' '; 4237 writeOperand(Operand, false); 4238 Out << '('; 4239 for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) { 4240 if (op > 0) 4241 Out << ", "; 4242 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op)); 4243 } 4244 4245 // Emit an ellipsis if this is a musttail call in a vararg function. This 4246 // is only to aid readability, musttail calls forward varargs by default. 4247 if (CI->isMustTailCall() && CI->getParent() && 4248 CI->getParent()->getParent() && 4249 CI->getParent()->getParent()->isVarArg()) { 4250 if (CI->arg_size() > 0) 4251 Out << ", "; 4252 Out << "..."; 4253 } 4254 4255 Out << ')'; 4256 if (PAL.hasFnAttrs()) 4257 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs()); 4258 4259 writeOperandBundles(CI); 4260 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 4261 Operand = II->getCalledOperand(); 4262 FunctionType *FTy = II->getFunctionType(); 4263 Type *RetTy = FTy->getReturnType(); 4264 const AttributeList &PAL = II->getAttributes(); 4265 4266 // Print the calling convention being used. 4267 if (II->getCallingConv() != CallingConv::C) { 4268 Out << " "; 4269 PrintCallingConv(II->getCallingConv(), Out); 4270 } 4271 4272 if (PAL.hasRetAttrs()) 4273 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4274 4275 // Only print addrspace(N) if necessary: 4276 maybePrintCallAddrSpace(Operand, &I, Out); 4277 4278 // If possible, print out the short form of the invoke instruction. We can 4279 // only do this if the first argument is a pointer to a nonvararg function, 4280 // and if the return type is not a pointer to a function. 4281 // 4282 Out << ' '; 4283 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4284 Out << ' '; 4285 writeOperand(Operand, false); 4286 Out << '('; 4287 for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) { 4288 if (op) 4289 Out << ", "; 4290 writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op)); 4291 } 4292 4293 Out << ')'; 4294 if (PAL.hasFnAttrs()) 4295 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs()); 4296 4297 writeOperandBundles(II); 4298 4299 Out << "\n to "; 4300 writeOperand(II->getNormalDest(), true); 4301 Out << " unwind "; 4302 writeOperand(II->getUnwindDest(), true); 4303 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 4304 Operand = CBI->getCalledOperand(); 4305 FunctionType *FTy = CBI->getFunctionType(); 4306 Type *RetTy = FTy->getReturnType(); 4307 const AttributeList &PAL = CBI->getAttributes(); 4308 4309 // Print the calling convention being used. 4310 if (CBI->getCallingConv() != CallingConv::C) { 4311 Out << " "; 4312 PrintCallingConv(CBI->getCallingConv(), Out); 4313 } 4314 4315 if (PAL.hasRetAttrs()) 4316 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4317 4318 // If possible, print out the short form of the callbr instruction. We can 4319 // only do this if the first argument is a pointer to a nonvararg function, 4320 // and if the return type is not a pointer to a function. 4321 // 4322 Out << ' '; 4323 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4324 Out << ' '; 4325 writeOperand(Operand, false); 4326 Out << '('; 4327 for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) { 4328 if (op) 4329 Out << ", "; 4330 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op)); 4331 } 4332 4333 Out << ')'; 4334 if (PAL.hasFnAttrs()) 4335 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs()); 4336 4337 writeOperandBundles(CBI); 4338 4339 Out << "\n to "; 4340 writeOperand(CBI->getDefaultDest(), true); 4341 Out << " ["; 4342 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) { 4343 if (i != 0) 4344 Out << ", "; 4345 writeOperand(CBI->getIndirectDest(i), true); 4346 } 4347 Out << ']'; 4348 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 4349 Out << ' '; 4350 if (AI->isUsedWithInAlloca()) 4351 Out << "inalloca "; 4352 if (AI->isSwiftError()) 4353 Out << "swifterror "; 4354 TypePrinter.print(AI->getAllocatedType(), Out); 4355 4356 // Explicitly write the array size if the code is broken, if it's an array 4357 // allocation, or if the type is not canonical for scalar allocations. The 4358 // latter case prevents the type from mutating when round-tripping through 4359 // assembly. 4360 if (!AI->getArraySize() || AI->isArrayAllocation() || 4361 !AI->getArraySize()->getType()->isIntegerTy(32)) { 4362 Out << ", "; 4363 writeOperand(AI->getArraySize(), true); 4364 } 4365 if (MaybeAlign A = AI->getAlign()) { 4366 Out << ", align " << A->value(); 4367 } 4368 4369 unsigned AddrSpace = AI->getAddressSpace(); 4370 if (AddrSpace != 0) { 4371 Out << ", addrspace(" << AddrSpace << ')'; 4372 } 4373 } else if (isa<CastInst>(I)) { 4374 if (Operand) { 4375 Out << ' '; 4376 writeOperand(Operand, true); // Work with broken code 4377 } 4378 Out << " to "; 4379 TypePrinter.print(I.getType(), Out); 4380 } else if (isa<VAArgInst>(I)) { 4381 if (Operand) { 4382 Out << ' '; 4383 writeOperand(Operand, true); // Work with broken code 4384 } 4385 Out << ", "; 4386 TypePrinter.print(I.getType(), Out); 4387 } else if (Operand) { // Print the normal way. 4388 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4389 Out << ' '; 4390 TypePrinter.print(GEP->getSourceElementType(), Out); 4391 Out << ','; 4392 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) { 4393 Out << ' '; 4394 TypePrinter.print(LI->getType(), Out); 4395 Out << ','; 4396 } 4397 4398 // PrintAllTypes - Instructions who have operands of all the same type 4399 // omit the type from all but the first operand. If the instruction has 4400 // different type operands (for example br), then they are all printed. 4401 bool PrintAllTypes = false; 4402 Type *TheType = Operand->getType(); 4403 4404 // Select, Store, ShuffleVector, CmpXchg and AtomicRMW always print all 4405 // types. 4406 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) || 4407 isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I) || 4408 isa<AtomicRMWInst>(I)) { 4409 PrintAllTypes = true; 4410 } else { 4411 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { 4412 Operand = I.getOperand(i); 4413 // note that Operand shouldn't be null, but the test helps make dump() 4414 // more tolerant of malformed IR 4415 if (Operand && Operand->getType() != TheType) { 4416 PrintAllTypes = true; // We have differing types! Print them all! 4417 break; 4418 } 4419 } 4420 } 4421 4422 if (!PrintAllTypes) { 4423 Out << ' '; 4424 TypePrinter.print(TheType, Out); 4425 } 4426 4427 Out << ' '; 4428 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { 4429 if (i) Out << ", "; 4430 writeOperand(I.getOperand(i), PrintAllTypes); 4431 } 4432 } 4433 4434 // Print atomic ordering/alignment for memory operations 4435 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 4436 if (LI->isAtomic()) 4437 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID()); 4438 if (MaybeAlign A = LI->getAlign()) 4439 Out << ", align " << A->value(); 4440 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 4441 if (SI->isAtomic()) 4442 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID()); 4443 if (MaybeAlign A = SI->getAlign()) 4444 Out << ", align " << A->value(); 4445 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { 4446 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(), 4447 CXI->getFailureOrdering(), CXI->getSyncScopeID()); 4448 Out << ", align " << CXI->getAlign().value(); 4449 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { 4450 writeAtomic(RMWI->getContext(), RMWI->getOrdering(), 4451 RMWI->getSyncScopeID()); 4452 Out << ", align " << RMWI->getAlign().value(); 4453 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { 4454 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID()); 4455 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) { 4456 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask()); 4457 } 4458 4459 // Print Metadata info. 4460 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD; 4461 I.getAllMetadata(InstMD); 4462 printMetadataAttachments(InstMD, ", "); 4463 4464 // Print a nice comment. 4465 printInfoComment(I); 4466 } 4467 4468 void AssemblyWriter::printMetadataAttachments( 4469 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 4470 StringRef Separator) { 4471 if (MDs.empty()) 4472 return; 4473 4474 if (MDNames.empty()) 4475 MDs[0].second->getContext().getMDKindNames(MDNames); 4476 4477 auto WriterCtx = getContext(); 4478 for (const auto &I : MDs) { 4479 unsigned Kind = I.first; 4480 Out << Separator; 4481 if (Kind < MDNames.size()) { 4482 Out << "!"; 4483 printMetadataIdentifier(MDNames[Kind], Out); 4484 } else 4485 Out << "!<unknown kind #" << Kind << ">"; 4486 Out << ' '; 4487 WriteAsOperandInternal(Out, I.second, WriterCtx); 4488 } 4489 } 4490 4491 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) { 4492 Out << '!' << Slot << " = "; 4493 printMDNodeBody(Node); 4494 Out << "\n"; 4495 } 4496 4497 void AssemblyWriter::writeAllMDNodes() { 4498 SmallVector<const MDNode *, 16> Nodes; 4499 Nodes.resize(Machine.mdn_size()); 4500 for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end())) 4501 Nodes[I.second] = cast<MDNode>(I.first); 4502 4503 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 4504 writeMDNode(i, Nodes[i]); 4505 } 4506 } 4507 4508 void AssemblyWriter::printMDNodeBody(const MDNode *Node) { 4509 auto WriterCtx = getContext(); 4510 WriteMDNodeBodyInternal(Out, Node, WriterCtx); 4511 } 4512 4513 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) { 4514 if (!Attr.isTypeAttribute()) { 4515 Out << Attr.getAsString(InAttrGroup); 4516 return; 4517 } 4518 4519 Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum()); 4520 if (Type *Ty = Attr.getValueAsType()) { 4521 Out << '('; 4522 TypePrinter.print(Ty, Out); 4523 Out << ')'; 4524 } 4525 } 4526 4527 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet, 4528 bool InAttrGroup) { 4529 bool FirstAttr = true; 4530 for (const auto &Attr : AttrSet) { 4531 if (!FirstAttr) 4532 Out << ' '; 4533 writeAttribute(Attr, InAttrGroup); 4534 FirstAttr = false; 4535 } 4536 } 4537 4538 void AssemblyWriter::writeAllAttributeGroups() { 4539 std::vector<std::pair<AttributeSet, unsigned>> asVec; 4540 asVec.resize(Machine.as_size()); 4541 4542 for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end())) 4543 asVec[I.second] = I; 4544 4545 for (const auto &I : asVec) 4546 Out << "attributes #" << I.second << " = { " 4547 << I.first.getAsString(true) << " }\n"; 4548 } 4549 4550 void AssemblyWriter::printUseListOrder(const Value *V, 4551 const std::vector<unsigned> &Shuffle) { 4552 bool IsInFunction = Machine.getFunction(); 4553 if (IsInFunction) 4554 Out << " "; 4555 4556 Out << "uselistorder"; 4557 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) { 4558 Out << "_bb "; 4559 writeOperand(BB->getParent(), false); 4560 Out << ", "; 4561 writeOperand(BB, false); 4562 } else { 4563 Out << " "; 4564 writeOperand(V, true); 4565 } 4566 Out << ", { "; 4567 4568 assert(Shuffle.size() >= 2 && "Shuffle too small"); 4569 Out << Shuffle[0]; 4570 for (unsigned I = 1, E = Shuffle.size(); I != E; ++I) 4571 Out << ", " << Shuffle[I]; 4572 Out << " }\n"; 4573 } 4574 4575 void AssemblyWriter::printUseLists(const Function *F) { 4576 auto It = UseListOrders.find(F); 4577 if (It == UseListOrders.end()) 4578 return; 4579 4580 Out << "\n; uselistorder directives\n"; 4581 for (const auto &Pair : It->second) 4582 printUseListOrder(Pair.first, Pair.second); 4583 } 4584 4585 //===----------------------------------------------------------------------===// 4586 // External Interface declarations 4587 //===----------------------------------------------------------------------===// 4588 4589 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4590 bool ShouldPreserveUseListOrder, 4591 bool IsForDebug) const { 4592 SlotTracker SlotTable(this->getParent()); 4593 formatted_raw_ostream OS(ROS); 4594 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW, 4595 IsForDebug, 4596 ShouldPreserveUseListOrder); 4597 W.printFunction(this); 4598 } 4599 4600 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4601 bool ShouldPreserveUseListOrder, 4602 bool IsForDebug) const { 4603 SlotTracker SlotTable(this->getParent()); 4604 formatted_raw_ostream OS(ROS); 4605 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW, 4606 IsForDebug, 4607 ShouldPreserveUseListOrder); 4608 W.printBasicBlock(this); 4609 } 4610 4611 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4612 bool ShouldPreserveUseListOrder, bool IsForDebug) const { 4613 SlotTracker SlotTable(this); 4614 formatted_raw_ostream OS(ROS); 4615 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug, 4616 ShouldPreserveUseListOrder); 4617 W.printModule(this); 4618 } 4619 4620 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const { 4621 SlotTracker SlotTable(getParent()); 4622 formatted_raw_ostream OS(ROS); 4623 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug); 4624 W.printNamedMDNode(this); 4625 } 4626 4627 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4628 bool IsForDebug) const { 4629 std::optional<SlotTracker> LocalST; 4630 SlotTracker *SlotTable; 4631 if (auto *ST = MST.getMachine()) 4632 SlotTable = ST; 4633 else { 4634 LocalST.emplace(getParent()); 4635 SlotTable = &*LocalST; 4636 } 4637 4638 formatted_raw_ostream OS(ROS); 4639 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug); 4640 W.printNamedMDNode(this); 4641 } 4642 4643 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const { 4644 PrintLLVMName(ROS, getName(), ComdatPrefix); 4645 ROS << " = comdat "; 4646 4647 switch (getSelectionKind()) { 4648 case Comdat::Any: 4649 ROS << "any"; 4650 break; 4651 case Comdat::ExactMatch: 4652 ROS << "exactmatch"; 4653 break; 4654 case Comdat::Largest: 4655 ROS << "largest"; 4656 break; 4657 case Comdat::NoDeduplicate: 4658 ROS << "nodeduplicate"; 4659 break; 4660 case Comdat::SameSize: 4661 ROS << "samesize"; 4662 break; 4663 } 4664 4665 ROS << '\n'; 4666 } 4667 4668 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const { 4669 TypePrinting TP; 4670 TP.print(const_cast<Type*>(this), OS); 4671 4672 if (NoDetails) 4673 return; 4674 4675 // If the type is a named struct type, print the body as well. 4676 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) 4677 if (!STy->isLiteral()) { 4678 OS << " = type "; 4679 TP.printStructBody(STy, OS); 4680 } 4681 } 4682 4683 static bool isReferencingMDNode(const Instruction &I) { 4684 if (const auto *CI = dyn_cast<CallInst>(&I)) 4685 if (Function *F = CI->getCalledFunction()) 4686 if (F->isIntrinsic()) 4687 for (auto &Op : I.operands()) 4688 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 4689 if (isa<MDNode>(V->getMetadata())) 4690 return true; 4691 return false; 4692 } 4693 4694 void Value::print(raw_ostream &ROS, bool IsForDebug) const { 4695 bool ShouldInitializeAllMetadata = false; 4696 if (auto *I = dyn_cast<Instruction>(this)) 4697 ShouldInitializeAllMetadata = isReferencingMDNode(*I); 4698 else if (isa<Function>(this) || isa<MetadataAsValue>(this)) 4699 ShouldInitializeAllMetadata = true; 4700 4701 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata); 4702 print(ROS, MST, IsForDebug); 4703 } 4704 4705 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4706 bool IsForDebug) const { 4707 formatted_raw_ostream OS(ROS); 4708 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr)); 4709 SlotTracker &SlotTable = 4710 MST.getMachine() ? *MST.getMachine() : EmptySlotTable; 4711 auto incorporateFunction = [&](const Function *F) { 4712 if (F) 4713 MST.incorporateFunction(*F); 4714 }; 4715 4716 if (const Instruction *I = dyn_cast<Instruction>(this)) { 4717 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr); 4718 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug); 4719 W.printInstruction(*I); 4720 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { 4721 incorporateFunction(BB->getParent()); 4722 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug); 4723 W.printBasicBlock(BB); 4724 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 4725 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug); 4726 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) 4727 W.printGlobal(V); 4728 else if (const Function *F = dyn_cast<Function>(GV)) 4729 W.printFunction(F); 4730 else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV)) 4731 W.printAlias(A); 4732 else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV)) 4733 W.printIFunc(I); 4734 else 4735 llvm_unreachable("Unknown GlobalValue to print out!"); 4736 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) { 4737 V->getMetadata()->print(ROS, MST, getModuleFromVal(V)); 4738 } else if (const Constant *C = dyn_cast<Constant>(this)) { 4739 TypePrinting TypePrinter; 4740 TypePrinter.print(C->getType(), OS); 4741 OS << ' '; 4742 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine()); 4743 WriteConstantInternal(OS, C, WriterCtx); 4744 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) { 4745 this->printAsOperand(OS, /* PrintType */ true, MST); 4746 } else { 4747 llvm_unreachable("Unknown value to print out!"); 4748 } 4749 } 4750 4751 /// Print without a type, skipping the TypePrinting object. 4752 /// 4753 /// \return \c true iff printing was successful. 4754 static bool printWithoutType(const Value &V, raw_ostream &O, 4755 SlotTracker *Machine, const Module *M) { 4756 if (V.hasName() || isa<GlobalValue>(V) || 4757 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) { 4758 AsmWriterContext WriterCtx(nullptr, Machine, M); 4759 WriteAsOperandInternal(O, &V, WriterCtx); 4760 return true; 4761 } 4762 return false; 4763 } 4764 4765 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, 4766 ModuleSlotTracker &MST) { 4767 TypePrinting TypePrinter(MST.getModule()); 4768 if (PrintType) { 4769 TypePrinter.print(V.getType(), O); 4770 O << ' '; 4771 } 4772 4773 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule()); 4774 WriteAsOperandInternal(O, &V, WriterCtx); 4775 } 4776 4777 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4778 const Module *M) const { 4779 if (!M) 4780 M = getModuleFromVal(this); 4781 4782 if (!PrintType) 4783 if (printWithoutType(*this, O, nullptr, M)) 4784 return; 4785 4786 SlotTracker Machine( 4787 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this)); 4788 ModuleSlotTracker MST(Machine, M); 4789 printAsOperandImpl(*this, O, PrintType, MST); 4790 } 4791 4792 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4793 ModuleSlotTracker &MST) const { 4794 if (!PrintType) 4795 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule())) 4796 return; 4797 4798 printAsOperandImpl(*this, O, PrintType, MST); 4799 } 4800 4801 /// Recursive version of printMetadataImpl. 4802 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD, 4803 AsmWriterContext &WriterCtx) { 4804 formatted_raw_ostream OS(ROS); 4805 WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true); 4806 4807 auto *N = dyn_cast<MDNode>(&MD); 4808 if (!N || isa<DIExpression>(MD) || isa<DIArgList>(MD)) 4809 return; 4810 4811 OS << " = "; 4812 WriteMDNodeBodyInternal(OS, N, WriterCtx); 4813 } 4814 4815 namespace { 4816 struct MDTreeAsmWriterContext : public AsmWriterContext { 4817 unsigned Level; 4818 // {Level, Printed string} 4819 using EntryTy = std::pair<unsigned, std::string>; 4820 SmallVector<EntryTy, 4> Buffer; 4821 4822 // Used to break the cycle in case there is any. 4823 SmallPtrSet<const Metadata *, 4> Visited; 4824 4825 raw_ostream &MainOS; 4826 4827 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M, 4828 raw_ostream &OS, const Metadata *InitMD) 4829 : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {} 4830 4831 void onWriteMetadataAsOperand(const Metadata *MD) override { 4832 if (!Visited.insert(MD).second) 4833 return; 4834 4835 std::string Str; 4836 raw_string_ostream SS(Str); 4837 ++Level; 4838 // A placeholder entry to memorize the correct 4839 // position in buffer. 4840 Buffer.emplace_back(std::make_pair(Level, "")); 4841 unsigned InsertIdx = Buffer.size() - 1; 4842 4843 printMetadataImplRec(SS, *MD, *this); 4844 Buffer[InsertIdx].second = std::move(SS.str()); 4845 --Level; 4846 } 4847 4848 ~MDTreeAsmWriterContext() { 4849 for (const auto &Entry : Buffer) { 4850 MainOS << "\n"; 4851 unsigned NumIndent = Entry.first * 2U; 4852 MainOS.indent(NumIndent) << Entry.second; 4853 } 4854 } 4855 }; 4856 } // end anonymous namespace 4857 4858 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, 4859 ModuleSlotTracker &MST, const Module *M, 4860 bool OnlyAsOperand, bool PrintAsTree = false) { 4861 formatted_raw_ostream OS(ROS); 4862 4863 TypePrinting TypePrinter(M); 4864 4865 std::unique_ptr<AsmWriterContext> WriterCtx; 4866 if (PrintAsTree && !OnlyAsOperand) 4867 WriterCtx = std::make_unique<MDTreeAsmWriterContext>( 4868 &TypePrinter, MST.getMachine(), M, OS, &MD); 4869 else 4870 WriterCtx = 4871 std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M); 4872 4873 WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true); 4874 4875 auto *N = dyn_cast<MDNode>(&MD); 4876 if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD)) 4877 return; 4878 4879 OS << " = "; 4880 WriteMDNodeBodyInternal(OS, N, *WriterCtx); 4881 } 4882 4883 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const { 4884 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4885 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4886 } 4887 4888 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST, 4889 const Module *M) const { 4890 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4891 } 4892 4893 void Metadata::print(raw_ostream &OS, const Module *M, 4894 bool /*IsForDebug*/) const { 4895 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4896 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4897 } 4898 4899 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST, 4900 const Module *M, bool /*IsForDebug*/) const { 4901 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4902 } 4903 4904 void MDNode::printTree(raw_ostream &OS, const Module *M) const { 4905 ModuleSlotTracker MST(M, true); 4906 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false, 4907 /*PrintAsTree=*/true); 4908 } 4909 4910 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST, 4911 const Module *M) const { 4912 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false, 4913 /*PrintAsTree=*/true); 4914 } 4915 4916 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const { 4917 SlotTracker SlotTable(this); 4918 formatted_raw_ostream OS(ROS); 4919 AssemblyWriter W(OS, SlotTable, this, IsForDebug); 4920 W.printModuleSummaryIndex(); 4921 } 4922 4923 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB, 4924 unsigned UB) const { 4925 SlotTracker *ST = MachineStorage.get(); 4926 if (!ST) 4927 return; 4928 4929 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end())) 4930 if (I.second >= LB && I.second < UB) 4931 L.push_back(std::make_pair(I.second, I.first)); 4932 } 4933 4934 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4935 // Value::dump - allow easy printing of Values from the debugger. 4936 LLVM_DUMP_METHOD 4937 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4938 4939 // Type::dump - allow easy printing of Types from the debugger. 4940 LLVM_DUMP_METHOD 4941 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4942 4943 // Module::dump() - Allow printing of Modules from the debugger. 4944 LLVM_DUMP_METHOD 4945 void Module::dump() const { 4946 print(dbgs(), nullptr, 4947 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true); 4948 } 4949 4950 // Allow printing of Comdats from the debugger. 4951 LLVM_DUMP_METHOD 4952 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4953 4954 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. 4955 LLVM_DUMP_METHOD 4956 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4957 4958 LLVM_DUMP_METHOD 4959 void Metadata::dump() const { dump(nullptr); } 4960 4961 LLVM_DUMP_METHOD 4962 void Metadata::dump(const Module *M) const { 4963 print(dbgs(), M, /*IsForDebug=*/true); 4964 dbgs() << '\n'; 4965 } 4966 4967 LLVM_DUMP_METHOD 4968 void MDNode::dumpTree() const { dumpTree(nullptr); } 4969 4970 LLVM_DUMP_METHOD 4971 void MDNode::dumpTree(const Module *M) const { 4972 printTree(dbgs(), M); 4973 dbgs() << '\n'; 4974 } 4975 4976 // Allow printing of ModuleSummaryIndex from the debugger. 4977 LLVM_DUMP_METHOD 4978 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4979 #endif 4980