1 //===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// This file implements the OpenMPIRBuilder class, which is used as a 11 /// convenient way to create LLVM instructions for OpenMP directives. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ScalarEvolution.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/PassManager.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/MC/TargetRegistry.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/FileSystem.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/CodeExtractor.h" 43 #include "llvm/Transforms/Utils/LoopPeel.h" 44 #include "llvm/Transforms/Utils/UnrollLoop.h" 45 46 #include <cstdint> 47 #include <optional> 48 49 #define DEBUG_TYPE "openmp-ir-builder" 50 51 using namespace llvm; 52 using namespace omp; 53 54 static cl::opt<bool> 55 OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden, 56 cl::desc("Use optimistic attributes describing " 57 "'as-if' properties of runtime calls."), 58 cl::init(false)); 59 60 static cl::opt<double> UnrollThresholdFactor( 61 "openmp-ir-builder-unroll-threshold-factor", cl::Hidden, 62 cl::desc("Factor for the unroll threshold to account for code " 63 "simplifications still taking place"), 64 cl::init(1.5)); 65 66 #ifndef NDEBUG 67 /// Return whether IP1 and IP2 are ambiguous, i.e. that inserting instructions 68 /// at position IP1 may change the meaning of IP2 or vice-versa. This is because 69 /// an InsertPoint stores the instruction before something is inserted. For 70 /// instance, if both point to the same instruction, two IRBuilders alternating 71 /// creating instruction will cause the instructions to be interleaved. 72 static bool isConflictIP(IRBuilder<>::InsertPoint IP1, 73 IRBuilder<>::InsertPoint IP2) { 74 if (!IP1.isSet() || !IP2.isSet()) 75 return false; 76 return IP1.getBlock() == IP2.getBlock() && IP1.getPoint() == IP2.getPoint(); 77 } 78 79 static bool isValidWorkshareLoopScheduleType(OMPScheduleType SchedType) { 80 // Valid ordered/unordered and base algorithm combinations. 81 switch (SchedType & ~OMPScheduleType::MonotonicityMask) { 82 case OMPScheduleType::UnorderedStaticChunked: 83 case OMPScheduleType::UnorderedStatic: 84 case OMPScheduleType::UnorderedDynamicChunked: 85 case OMPScheduleType::UnorderedGuidedChunked: 86 case OMPScheduleType::UnorderedRuntime: 87 case OMPScheduleType::UnorderedAuto: 88 case OMPScheduleType::UnorderedTrapezoidal: 89 case OMPScheduleType::UnorderedGreedy: 90 case OMPScheduleType::UnorderedBalanced: 91 case OMPScheduleType::UnorderedGuidedIterativeChunked: 92 case OMPScheduleType::UnorderedGuidedAnalyticalChunked: 93 case OMPScheduleType::UnorderedSteal: 94 case OMPScheduleType::UnorderedStaticBalancedChunked: 95 case OMPScheduleType::UnorderedGuidedSimd: 96 case OMPScheduleType::UnorderedRuntimeSimd: 97 case OMPScheduleType::OrderedStaticChunked: 98 case OMPScheduleType::OrderedStatic: 99 case OMPScheduleType::OrderedDynamicChunked: 100 case OMPScheduleType::OrderedGuidedChunked: 101 case OMPScheduleType::OrderedRuntime: 102 case OMPScheduleType::OrderedAuto: 103 case OMPScheduleType::OrderdTrapezoidal: 104 case OMPScheduleType::NomergeUnorderedStaticChunked: 105 case OMPScheduleType::NomergeUnorderedStatic: 106 case OMPScheduleType::NomergeUnorderedDynamicChunked: 107 case OMPScheduleType::NomergeUnorderedGuidedChunked: 108 case OMPScheduleType::NomergeUnorderedRuntime: 109 case OMPScheduleType::NomergeUnorderedAuto: 110 case OMPScheduleType::NomergeUnorderedTrapezoidal: 111 case OMPScheduleType::NomergeUnorderedGreedy: 112 case OMPScheduleType::NomergeUnorderedBalanced: 113 case OMPScheduleType::NomergeUnorderedGuidedIterativeChunked: 114 case OMPScheduleType::NomergeUnorderedGuidedAnalyticalChunked: 115 case OMPScheduleType::NomergeUnorderedSteal: 116 case OMPScheduleType::NomergeOrderedStaticChunked: 117 case OMPScheduleType::NomergeOrderedStatic: 118 case OMPScheduleType::NomergeOrderedDynamicChunked: 119 case OMPScheduleType::NomergeOrderedGuidedChunked: 120 case OMPScheduleType::NomergeOrderedRuntime: 121 case OMPScheduleType::NomergeOrderedAuto: 122 case OMPScheduleType::NomergeOrderedTrapezoidal: 123 break; 124 default: 125 return false; 126 } 127 128 // Must not set both monotonicity modifiers at the same time. 129 OMPScheduleType MonotonicityFlags = 130 SchedType & OMPScheduleType::MonotonicityMask; 131 if (MonotonicityFlags == OMPScheduleType::MonotonicityMask) 132 return false; 133 134 return true; 135 } 136 #endif 137 138 /// Determine which scheduling algorithm to use, determined from schedule clause 139 /// arguments. 140 static OMPScheduleType 141 getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind, bool HasChunks, 142 bool HasSimdModifier) { 143 // Currently, the default schedule it static. 144 switch (ClauseKind) { 145 case OMP_SCHEDULE_Default: 146 case OMP_SCHEDULE_Static: 147 return HasChunks ? OMPScheduleType::BaseStaticChunked 148 : OMPScheduleType::BaseStatic; 149 case OMP_SCHEDULE_Dynamic: 150 return OMPScheduleType::BaseDynamicChunked; 151 case OMP_SCHEDULE_Guided: 152 return HasSimdModifier ? OMPScheduleType::BaseGuidedSimd 153 : OMPScheduleType::BaseGuidedChunked; 154 case OMP_SCHEDULE_Auto: 155 return llvm::omp::OMPScheduleType::BaseAuto; 156 case OMP_SCHEDULE_Runtime: 157 return HasSimdModifier ? OMPScheduleType::BaseRuntimeSimd 158 : OMPScheduleType::BaseRuntime; 159 } 160 llvm_unreachable("unhandled schedule clause argument"); 161 } 162 163 /// Adds ordering modifier flags to schedule type. 164 static OMPScheduleType 165 getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType, 166 bool HasOrderedClause) { 167 assert((BaseScheduleType & OMPScheduleType::ModifierMask) == 168 OMPScheduleType::None && 169 "Must not have ordering nor monotonicity flags already set"); 170 171 OMPScheduleType OrderingModifier = HasOrderedClause 172 ? OMPScheduleType::ModifierOrdered 173 : OMPScheduleType::ModifierUnordered; 174 OMPScheduleType OrderingScheduleType = BaseScheduleType | OrderingModifier; 175 176 // Unsupported combinations 177 if (OrderingScheduleType == 178 (OMPScheduleType::BaseGuidedSimd | OMPScheduleType::ModifierOrdered)) 179 return OMPScheduleType::OrderedGuidedChunked; 180 else if (OrderingScheduleType == (OMPScheduleType::BaseRuntimeSimd | 181 OMPScheduleType::ModifierOrdered)) 182 return OMPScheduleType::OrderedRuntime; 183 184 return OrderingScheduleType; 185 } 186 187 /// Adds monotonicity modifier flags to schedule type. 188 static OMPScheduleType 189 getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType, 190 bool HasSimdModifier, bool HasMonotonic, 191 bool HasNonmonotonic, bool HasOrderedClause) { 192 assert((ScheduleType & OMPScheduleType::MonotonicityMask) == 193 OMPScheduleType::None && 194 "Must not have monotonicity flags already set"); 195 assert((!HasMonotonic || !HasNonmonotonic) && 196 "Monotonic and Nonmonotonic are contradicting each other"); 197 198 if (HasMonotonic) { 199 return ScheduleType | OMPScheduleType::ModifierMonotonic; 200 } else if (HasNonmonotonic) { 201 return ScheduleType | OMPScheduleType::ModifierNonmonotonic; 202 } else { 203 // OpenMP 5.1, 2.11.4 Worksharing-Loop Construct, Description. 204 // If the static schedule kind is specified or if the ordered clause is 205 // specified, and if the nonmonotonic modifier is not specified, the 206 // effect is as if the monotonic modifier is specified. Otherwise, unless 207 // the monotonic modifier is specified, the effect is as if the 208 // nonmonotonic modifier is specified. 209 OMPScheduleType BaseScheduleType = 210 ScheduleType & ~OMPScheduleType::ModifierMask; 211 if ((BaseScheduleType == OMPScheduleType::BaseStatic) || 212 (BaseScheduleType == OMPScheduleType::BaseStaticChunked) || 213 HasOrderedClause) { 214 // The monotonic is used by default in openmp runtime library, so no need 215 // to set it. 216 return ScheduleType; 217 } else { 218 return ScheduleType | OMPScheduleType::ModifierNonmonotonic; 219 } 220 } 221 } 222 223 /// Determine the schedule type using schedule and ordering clause arguments. 224 static OMPScheduleType 225 computeOpenMPScheduleType(ScheduleKind ClauseKind, bool HasChunks, 226 bool HasSimdModifier, bool HasMonotonicModifier, 227 bool HasNonmonotonicModifier, bool HasOrderedClause) { 228 OMPScheduleType BaseSchedule = 229 getOpenMPBaseScheduleType(ClauseKind, HasChunks, HasSimdModifier); 230 OMPScheduleType OrderedSchedule = 231 getOpenMPOrderingScheduleType(BaseSchedule, HasOrderedClause); 232 OMPScheduleType Result = getOpenMPMonotonicityScheduleType( 233 OrderedSchedule, HasSimdModifier, HasMonotonicModifier, 234 HasNonmonotonicModifier, HasOrderedClause); 235 236 assert(isValidWorkshareLoopScheduleType(Result)); 237 return Result; 238 } 239 240 /// Make \p Source branch to \p Target. 241 /// 242 /// Handles two situations: 243 /// * \p Source already has an unconditional branch. 244 /// * \p Source is a degenerate block (no terminator because the BB is 245 /// the current head of the IR construction). 246 static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) { 247 if (Instruction *Term = Source->getTerminator()) { 248 auto *Br = cast<BranchInst>(Term); 249 assert(!Br->isConditional() && 250 "BB's terminator must be an unconditional branch (or degenerate)"); 251 BasicBlock *Succ = Br->getSuccessor(0); 252 Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true); 253 Br->setSuccessor(0, Target); 254 return; 255 } 256 257 auto *NewBr = BranchInst::Create(Target, Source); 258 NewBr->setDebugLoc(DL); 259 } 260 261 void llvm::spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New, 262 bool CreateBranch) { 263 assert(New->getFirstInsertionPt() == New->begin() && 264 "Target BB must not have PHI nodes"); 265 266 // Move instructions to new block. 267 BasicBlock *Old = IP.getBlock(); 268 New->splice(New->begin(), Old, IP.getPoint(), Old->end()); 269 270 if (CreateBranch) 271 BranchInst::Create(New, Old); 272 } 273 274 void llvm::spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch) { 275 DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); 276 BasicBlock *Old = Builder.GetInsertBlock(); 277 278 spliceBB(Builder.saveIP(), New, CreateBranch); 279 if (CreateBranch) 280 Builder.SetInsertPoint(Old->getTerminator()); 281 else 282 Builder.SetInsertPoint(Old); 283 284 // SetInsertPoint also updates the Builder's debug location, but we want to 285 // keep the one the Builder was configured to use. 286 Builder.SetCurrentDebugLocation(DebugLoc); 287 } 288 289 BasicBlock *llvm::splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch, 290 llvm::Twine Name) { 291 BasicBlock *Old = IP.getBlock(); 292 BasicBlock *New = BasicBlock::Create( 293 Old->getContext(), Name.isTriviallyEmpty() ? Old->getName() : Name, 294 Old->getParent(), Old->getNextNode()); 295 spliceBB(IP, New, CreateBranch); 296 New->replaceSuccessorsPhiUsesWith(Old, New); 297 return New; 298 } 299 300 BasicBlock *llvm::splitBB(IRBuilderBase &Builder, bool CreateBranch, 301 llvm::Twine Name) { 302 DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); 303 BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name); 304 if (CreateBranch) 305 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator()); 306 else 307 Builder.SetInsertPoint(Builder.GetInsertBlock()); 308 // SetInsertPoint also updates the Builder's debug location, but we want to 309 // keep the one the Builder was configured to use. 310 Builder.SetCurrentDebugLocation(DebugLoc); 311 return New; 312 } 313 314 BasicBlock *llvm::splitBB(IRBuilder<> &Builder, bool CreateBranch, 315 llvm::Twine Name) { 316 DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); 317 BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name); 318 if (CreateBranch) 319 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator()); 320 else 321 Builder.SetInsertPoint(Builder.GetInsertBlock()); 322 // SetInsertPoint also updates the Builder's debug location, but we want to 323 // keep the one the Builder was configured to use. 324 Builder.SetCurrentDebugLocation(DebugLoc); 325 return New; 326 } 327 328 BasicBlock *llvm::splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch, 329 llvm::Twine Suffix) { 330 BasicBlock *Old = Builder.GetInsertBlock(); 331 return splitBB(Builder, CreateBranch, Old->getName() + Suffix); 332 } 333 334 void OpenMPIRBuilder::getKernelArgsVector(TargetKernelArgs &KernelArgs, 335 IRBuilderBase &Builder, 336 SmallVector<Value *> &ArgsVector) { 337 Value *Version = Builder.getInt32(OMP_KERNEL_ARG_VERSION); 338 Value *PointerNum = Builder.getInt32(KernelArgs.NumTargetItems); 339 auto Int32Ty = Type::getInt32Ty(Builder.getContext()); 340 Value *ZeroArray = Constant::getNullValue(ArrayType::get(Int32Ty, 3)); 341 Value *Flags = Builder.getInt64(KernelArgs.HasNoWait); 342 343 Value *NumTeams3D = 344 Builder.CreateInsertValue(ZeroArray, KernelArgs.NumTeams, {0}); 345 Value *NumThreads3D = 346 Builder.CreateInsertValue(ZeroArray, KernelArgs.NumThreads, {0}); 347 348 ArgsVector = {Version, 349 PointerNum, 350 KernelArgs.RTArgs.BasePointersArray, 351 KernelArgs.RTArgs.PointersArray, 352 KernelArgs.RTArgs.SizesArray, 353 KernelArgs.RTArgs.MapTypesArray, 354 KernelArgs.RTArgs.MapNamesArray, 355 KernelArgs.RTArgs.MappersArray, 356 KernelArgs.NumIterations, 357 Flags, 358 NumTeams3D, 359 NumThreads3D, 360 KernelArgs.DynCGGroupMem}; 361 } 362 363 void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) { 364 LLVMContext &Ctx = Fn.getContext(); 365 Triple T(M.getTargetTriple()); 366 367 // Get the function's current attributes. 368 auto Attrs = Fn.getAttributes(); 369 auto FnAttrs = Attrs.getFnAttrs(); 370 auto RetAttrs = Attrs.getRetAttrs(); 371 SmallVector<AttributeSet, 4> ArgAttrs; 372 for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo) 373 ArgAttrs.emplace_back(Attrs.getParamAttrs(ArgNo)); 374 375 // Add AS to FnAS while taking special care with integer extensions. 376 auto addAttrSet = [&](AttributeSet &FnAS, const AttributeSet &AS, 377 bool Param = true) -> void { 378 bool HasSignExt = AS.hasAttribute(Attribute::SExt); 379 bool HasZeroExt = AS.hasAttribute(Attribute::ZExt); 380 if (HasSignExt || HasZeroExt) { 381 assert(AS.getNumAttributes() == 1 && 382 "Currently not handling extension attr combined with others."); 383 if (Param) { 384 if (auto AK = TargetLibraryInfo::getExtAttrForI32Param(T, HasSignExt)) 385 FnAS = FnAS.addAttribute(Ctx, AK); 386 } else 387 if (auto AK = TargetLibraryInfo::getExtAttrForI32Return(T, HasSignExt)) 388 FnAS = FnAS.addAttribute(Ctx, AK); 389 } else { 390 FnAS = FnAS.addAttributes(Ctx, AS); 391 } 392 }; 393 394 #define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet; 395 #include "llvm/Frontend/OpenMP/OMPKinds.def" 396 397 // Add attributes to the function declaration. 398 switch (FnID) { 399 #define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets) \ 400 case Enum: \ 401 FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet); \ 402 addAttrSet(RetAttrs, RetAttrSet, /*Param*/false); \ 403 for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo) \ 404 addAttrSet(ArgAttrs[ArgNo], ArgAttrSets[ArgNo]); \ 405 Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs)); \ 406 break; 407 #include "llvm/Frontend/OpenMP/OMPKinds.def" 408 default: 409 // Attributes are optional. 410 break; 411 } 412 } 413 414 FunctionCallee 415 OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) { 416 FunctionType *FnTy = nullptr; 417 Function *Fn = nullptr; 418 419 // Try to find the declation in the module first. 420 switch (FnID) { 421 #define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...) \ 422 case Enum: \ 423 FnTy = FunctionType::get(ReturnType, ArrayRef<Type *>{__VA_ARGS__}, \ 424 IsVarArg); \ 425 Fn = M.getFunction(Str); \ 426 break; 427 #include "llvm/Frontend/OpenMP/OMPKinds.def" 428 } 429 430 if (!Fn) { 431 // Create a new declaration if we need one. 432 switch (FnID) { 433 #define OMP_RTL(Enum, Str, ...) \ 434 case Enum: \ 435 Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M); \ 436 break; 437 #include "llvm/Frontend/OpenMP/OMPKinds.def" 438 } 439 440 // Add information if the runtime function takes a callback function 441 if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) { 442 if (!Fn->hasMetadata(LLVMContext::MD_callback)) { 443 LLVMContext &Ctx = Fn->getContext(); 444 MDBuilder MDB(Ctx); 445 // Annotate the callback behavior of the runtime function: 446 // - The callback callee is argument number 2 (microtask). 447 // - The first two arguments of the callback callee are unknown (-1). 448 // - All variadic arguments to the runtime function are passed to the 449 // callback callee. 450 Fn->addMetadata( 451 LLVMContext::MD_callback, 452 *MDNode::get(Ctx, {MDB.createCallbackEncoding( 453 2, {-1, -1}, /* VarArgsArePassed */ true)})); 454 } 455 } 456 457 LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName() 458 << " with type " << *Fn->getFunctionType() << "\n"); 459 addAttributes(FnID, *Fn); 460 461 } else { 462 LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName() 463 << " with type " << *Fn->getFunctionType() << "\n"); 464 } 465 466 assert(Fn && "Failed to create OpenMP runtime function"); 467 468 return {FnTy, Fn}; 469 } 470 471 Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) { 472 FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID); 473 auto *Fn = dyn_cast<llvm::Function>(RTLFn.getCallee()); 474 assert(Fn && "Failed to create OpenMP runtime function pointer"); 475 return Fn; 476 } 477 478 void OpenMPIRBuilder::initialize(StringRef HostFilePath) { 479 initializeTypes(M); 480 481 if (HostFilePath.empty()) 482 return; 483 484 auto Buf = MemoryBuffer::getFile(HostFilePath); 485 if (std::error_code Err = Buf.getError()) { 486 report_fatal_error(("error opening host file from host file path inside of " 487 "OpenMPIRBuilder: " + 488 Err.message()) 489 .c_str()); 490 } 491 492 LLVMContext Ctx; 493 auto M = expectedToErrorOrAndEmitErrors( 494 Ctx, parseBitcodeFile(Buf.get()->getMemBufferRef(), Ctx)); 495 if (std::error_code Err = M.getError()) { 496 report_fatal_error( 497 ("error parsing host file inside of OpenMPIRBuilder: " + Err.message()) 498 .c_str()); 499 } 500 501 loadOffloadInfoMetadata(*M.get()); 502 } 503 504 void OpenMPIRBuilder::finalize(Function *Fn) { 505 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet; 506 SmallVector<BasicBlock *, 32> Blocks; 507 SmallVector<OutlineInfo, 16> DeferredOutlines; 508 for (OutlineInfo &OI : OutlineInfos) { 509 // Skip functions that have not finalized yet; may happen with nested 510 // function generation. 511 if (Fn && OI.getFunction() != Fn) { 512 DeferredOutlines.push_back(OI); 513 continue; 514 } 515 516 ParallelRegionBlockSet.clear(); 517 Blocks.clear(); 518 OI.collectBlocks(ParallelRegionBlockSet, Blocks); 519 520 Function *OuterFn = OI.getFunction(); 521 CodeExtractorAnalysisCache CEAC(*OuterFn); 522 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, 523 /* AggregateArgs */ true, 524 /* BlockFrequencyInfo */ nullptr, 525 /* BranchProbabilityInfo */ nullptr, 526 /* AssumptionCache */ nullptr, 527 /* AllowVarArgs */ true, 528 /* AllowAlloca */ true, 529 /* AllocaBlock*/ OI.OuterAllocaBB, 530 /* Suffix */ ".omp_par"); 531 532 LLVM_DEBUG(dbgs() << "Before outlining: " << *OuterFn << "\n"); 533 LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName() 534 << " Exit: " << OI.ExitBB->getName() << "\n"); 535 assert(Extractor.isEligible() && 536 "Expected OpenMP outlining to be possible!"); 537 538 for (auto *V : OI.ExcludeArgsFromAggregate) 539 Extractor.excludeArgFromAggregate(V); 540 541 Function *OutlinedFn = Extractor.extractCodeRegion(CEAC); 542 543 LLVM_DEBUG(dbgs() << "After outlining: " << *OuterFn << "\n"); 544 LLVM_DEBUG(dbgs() << " Outlined function: " << *OutlinedFn << "\n"); 545 assert(OutlinedFn->getReturnType()->isVoidTy() && 546 "OpenMP outlined functions should not return a value!"); 547 548 // For compability with the clang CG we move the outlined function after the 549 // one with the parallel region. 550 OutlinedFn->removeFromParent(); 551 M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn); 552 553 // Remove the artificial entry introduced by the extractor right away, we 554 // made our own entry block after all. 555 { 556 BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock(); 557 assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB); 558 assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry); 559 // Move instructions from the to-be-deleted ArtificialEntry to the entry 560 // basic block of the parallel region. CodeExtractor generates 561 // instructions to unwrap the aggregate argument and may sink 562 // allocas/bitcasts for values that are solely used in the outlined region 563 // and do not escape. 564 assert(!ArtificialEntry.empty() && 565 "Expected instructions to add in the outlined region entry"); 566 for (BasicBlock::reverse_iterator It = ArtificialEntry.rbegin(), 567 End = ArtificialEntry.rend(); 568 It != End;) { 569 Instruction &I = *It; 570 It++; 571 572 if (I.isTerminator()) 573 continue; 574 575 I.moveBefore(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt()); 576 } 577 578 OI.EntryBB->moveBefore(&ArtificialEntry); 579 ArtificialEntry.eraseFromParent(); 580 } 581 assert(&OutlinedFn->getEntryBlock() == OI.EntryBB); 582 assert(OutlinedFn && OutlinedFn->getNumUses() == 1); 583 584 // Run a user callback, e.g. to add attributes. 585 if (OI.PostOutlineCB) 586 OI.PostOutlineCB(*OutlinedFn); 587 } 588 589 // Remove work items that have been completed. 590 OutlineInfos = std::move(DeferredOutlines); 591 592 EmitMetadataErrorReportFunctionTy &&ErrorReportFn = 593 [](EmitMetadataErrorKind Kind, 594 const TargetRegionEntryInfo &EntryInfo) -> void { 595 errs() << "Error of kind: " << Kind 596 << " when emitting offload entries and metadata during " 597 "OMPIRBuilder finalization \n"; 598 }; 599 600 if (!OffloadInfoManager.empty()) 601 createOffloadEntriesAndInfoMetadata(ErrorReportFn); 602 } 603 604 OpenMPIRBuilder::~OpenMPIRBuilder() { 605 assert(OutlineInfos.empty() && "There must be no outstanding outlinings"); 606 } 607 608 GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) { 609 IntegerType *I32Ty = Type::getInt32Ty(M.getContext()); 610 auto *GV = 611 new GlobalVariable(M, I32Ty, 612 /* isConstant = */ true, GlobalValue::WeakODRLinkage, 613 ConstantInt::get(I32Ty, Value), Name); 614 GV->setVisibility(GlobalValue::HiddenVisibility); 615 616 return GV; 617 } 618 619 Constant *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr, 620 uint32_t SrcLocStrSize, 621 IdentFlag LocFlags, 622 unsigned Reserve2Flags) { 623 // Enable "C-mode". 624 LocFlags |= OMP_IDENT_FLAG_KMPC; 625 626 Constant *&Ident = 627 IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}]; 628 if (!Ident) { 629 Constant *I32Null = ConstantInt::getNullValue(Int32); 630 Constant *IdentData[] = {I32Null, 631 ConstantInt::get(Int32, uint32_t(LocFlags)), 632 ConstantInt::get(Int32, Reserve2Flags), 633 ConstantInt::get(Int32, SrcLocStrSize), SrcLocStr}; 634 Constant *Initializer = 635 ConstantStruct::get(OpenMPIRBuilder::Ident, IdentData); 636 637 // Look for existing encoding of the location + flags, not needed but 638 // minimizes the difference to the existing solution while we transition. 639 for (GlobalVariable &GV : M.globals()) 640 if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer()) 641 if (GV.getInitializer() == Initializer) 642 Ident = &GV; 643 644 if (!Ident) { 645 auto *GV = new GlobalVariable( 646 M, OpenMPIRBuilder::Ident, 647 /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "", 648 nullptr, GlobalValue::NotThreadLocal, 649 M.getDataLayout().getDefaultGlobalsAddressSpace()); 650 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 651 GV->setAlignment(Align(8)); 652 Ident = GV; 653 } 654 } 655 656 return ConstantExpr::getPointerBitCastOrAddrSpaceCast(Ident, IdentPtr); 657 } 658 659 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr, 660 uint32_t &SrcLocStrSize) { 661 SrcLocStrSize = LocStr.size(); 662 Constant *&SrcLocStr = SrcLocStrMap[LocStr]; 663 if (!SrcLocStr) { 664 Constant *Initializer = 665 ConstantDataArray::getString(M.getContext(), LocStr); 666 667 // Look for existing encoding of the location, not needed but minimizes the 668 // difference to the existing solution while we transition. 669 for (GlobalVariable &GV : M.globals()) 670 if (GV.isConstant() && GV.hasInitializer() && 671 GV.getInitializer() == Initializer) 672 return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr); 673 674 SrcLocStr = Builder.CreateGlobalStringPtr(LocStr, /* Name */ "", 675 /* AddressSpace */ 0, &M); 676 } 677 return SrcLocStr; 678 } 679 680 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName, 681 StringRef FileName, 682 unsigned Line, unsigned Column, 683 uint32_t &SrcLocStrSize) { 684 SmallString<128> Buffer; 685 Buffer.push_back(';'); 686 Buffer.append(FileName); 687 Buffer.push_back(';'); 688 Buffer.append(FunctionName); 689 Buffer.push_back(';'); 690 Buffer.append(std::to_string(Line)); 691 Buffer.push_back(';'); 692 Buffer.append(std::to_string(Column)); 693 Buffer.push_back(';'); 694 Buffer.push_back(';'); 695 return getOrCreateSrcLocStr(Buffer.str(), SrcLocStrSize); 696 } 697 698 Constant * 699 OpenMPIRBuilder::getOrCreateDefaultSrcLocStr(uint32_t &SrcLocStrSize) { 700 StringRef UnknownLoc = ";unknown;unknown;0;0;;"; 701 return getOrCreateSrcLocStr(UnknownLoc, SrcLocStrSize); 702 } 703 704 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL, 705 uint32_t &SrcLocStrSize, 706 Function *F) { 707 DILocation *DIL = DL.get(); 708 if (!DIL) 709 return getOrCreateDefaultSrcLocStr(SrcLocStrSize); 710 StringRef FileName = M.getName(); 711 if (DIFile *DIF = DIL->getFile()) 712 if (std::optional<StringRef> Source = DIF->getSource()) 713 FileName = *Source; 714 StringRef Function = DIL->getScope()->getSubprogram()->getName(); 715 if (Function.empty() && F) 716 Function = F->getName(); 717 return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(), 718 DIL->getColumn(), SrcLocStrSize); 719 } 720 721 Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc, 722 uint32_t &SrcLocStrSize) { 723 return getOrCreateSrcLocStr(Loc.DL, SrcLocStrSize, 724 Loc.IP.getBlock()->getParent()); 725 } 726 727 Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) { 728 return Builder.CreateCall( 729 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident, 730 "omp_global_thread_num"); 731 } 732 733 OpenMPIRBuilder::InsertPointTy 734 OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive DK, 735 bool ForceSimpleCall, bool CheckCancelFlag) { 736 if (!updateToLocation(Loc)) 737 return Loc.IP; 738 return emitBarrierImpl(Loc, DK, ForceSimpleCall, CheckCancelFlag); 739 } 740 741 OpenMPIRBuilder::InsertPointTy 742 OpenMPIRBuilder::emitBarrierImpl(const LocationDescription &Loc, Directive Kind, 743 bool ForceSimpleCall, bool CheckCancelFlag) { 744 // Build call __kmpc_cancel_barrier(loc, thread_id) or 745 // __kmpc_barrier(loc, thread_id); 746 747 IdentFlag BarrierLocFlags; 748 switch (Kind) { 749 case OMPD_for: 750 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR; 751 break; 752 case OMPD_sections: 753 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS; 754 break; 755 case OMPD_single: 756 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE; 757 break; 758 case OMPD_barrier: 759 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL; 760 break; 761 default: 762 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL; 763 break; 764 } 765 766 uint32_t SrcLocStrSize; 767 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 768 Value *Args[] = { 769 getOrCreateIdent(SrcLocStr, SrcLocStrSize, BarrierLocFlags), 770 getOrCreateThreadID(getOrCreateIdent(SrcLocStr, SrcLocStrSize))}; 771 772 // If we are in a cancellable parallel region, barriers are cancellation 773 // points. 774 // TODO: Check why we would force simple calls or to ignore the cancel flag. 775 bool UseCancelBarrier = 776 !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel); 777 778 Value *Result = 779 Builder.CreateCall(getOrCreateRuntimeFunctionPtr( 780 UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier 781 : OMPRTL___kmpc_barrier), 782 Args); 783 784 if (UseCancelBarrier && CheckCancelFlag) 785 emitCancelationCheckImpl(Result, OMPD_parallel); 786 787 return Builder.saveIP(); 788 } 789 790 OpenMPIRBuilder::InsertPointTy 791 OpenMPIRBuilder::createCancel(const LocationDescription &Loc, 792 Value *IfCondition, 793 omp::Directive CanceledDirective) { 794 if (!updateToLocation(Loc)) 795 return Loc.IP; 796 797 // LLVM utilities like blocks with terminators. 798 auto *UI = Builder.CreateUnreachable(); 799 800 Instruction *ThenTI = UI, *ElseTI = nullptr; 801 if (IfCondition) 802 SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI); 803 Builder.SetInsertPoint(ThenTI); 804 805 Value *CancelKind = nullptr; 806 switch (CanceledDirective) { 807 #define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \ 808 case DirectiveEnum: \ 809 CancelKind = Builder.getInt32(Value); \ 810 break; 811 #include "llvm/Frontend/OpenMP/OMPKinds.def" 812 default: 813 llvm_unreachable("Unknown cancel kind!"); 814 } 815 816 uint32_t SrcLocStrSize; 817 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 818 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 819 Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind}; 820 Value *Result = Builder.CreateCall( 821 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args); 822 auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) { 823 if (CanceledDirective == OMPD_parallel) { 824 IRBuilder<>::InsertPointGuard IPG(Builder); 825 Builder.restoreIP(IP); 826 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), 827 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, 828 /* CheckCancelFlag */ false); 829 } 830 }; 831 832 // The actual cancel logic is shared with others, e.g., cancel_barriers. 833 emitCancelationCheckImpl(Result, CanceledDirective, ExitCB); 834 835 // Update the insertion point and remove the terminator we introduced. 836 Builder.SetInsertPoint(UI->getParent()); 837 UI->eraseFromParent(); 838 839 return Builder.saveIP(); 840 } 841 842 void OpenMPIRBuilder::emitOffloadingEntry(Constant *Addr, StringRef Name, 843 uint64_t Size, int32_t Flags, 844 StringRef SectionName) { 845 Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 846 Type *Int32Ty = Type::getInt32Ty(M.getContext()); 847 Type *SizeTy = M.getDataLayout().getIntPtrType(M.getContext()); 848 849 Constant *AddrName = ConstantDataArray::getString(M.getContext(), Name); 850 851 // Create the constant string used to look up the symbol in the device. 852 auto *Str = 853 new llvm::GlobalVariable(M, AddrName->getType(), /*isConstant=*/true, 854 llvm::GlobalValue::InternalLinkage, AddrName, 855 ".omp_offloading.entry_name"); 856 Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 857 858 // Construct the offloading entry. 859 Constant *EntryData[] = { 860 ConstantExpr::getPointerBitCastOrAddrSpaceCast(Addr, Int8PtrTy), 861 ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, Int8PtrTy), 862 ConstantInt::get(SizeTy, Size), 863 ConstantInt::get(Int32Ty, Flags), 864 ConstantInt::get(Int32Ty, 0), 865 }; 866 Constant *EntryInitializer = 867 ConstantStruct::get(OpenMPIRBuilder::OffloadEntry, EntryData); 868 869 auto *Entry = new GlobalVariable( 870 M, OpenMPIRBuilder::OffloadEntry, 871 /* isConstant = */ true, GlobalValue::WeakAnyLinkage, EntryInitializer, 872 ".omp_offloading.entry." + Name, nullptr, GlobalValue::NotThreadLocal, 873 M.getDataLayout().getDefaultGlobalsAddressSpace()); 874 875 // The entry has to be created in the section the linker expects it to be. 876 Entry->setSection(SectionName); 877 Entry->setAlignment(Align(1)); 878 } 879 880 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetKernel( 881 const LocationDescription &Loc, InsertPointTy AllocaIP, Value *&Return, 882 Value *Ident, Value *DeviceID, Value *NumTeams, Value *NumThreads, 883 Value *HostPtr, ArrayRef<Value *> KernelArgs) { 884 if (!updateToLocation(Loc)) 885 return Loc.IP; 886 887 Builder.restoreIP(AllocaIP); 888 auto *KernelArgsPtr = 889 Builder.CreateAlloca(OpenMPIRBuilder::KernelArgs, nullptr, "kernel_args"); 890 Builder.restoreIP(Loc.IP); 891 892 for (unsigned I = 0, Size = KernelArgs.size(); I != Size; ++I) { 893 llvm::Value *Arg = 894 Builder.CreateStructGEP(OpenMPIRBuilder::KernelArgs, KernelArgsPtr, I); 895 Builder.CreateAlignedStore( 896 KernelArgs[I], Arg, 897 M.getDataLayout().getPrefTypeAlign(KernelArgs[I]->getType())); 898 } 899 900 SmallVector<Value *> OffloadingArgs{Ident, DeviceID, NumTeams, 901 NumThreads, HostPtr, KernelArgsPtr}; 902 903 Return = Builder.CreateCall( 904 getOrCreateRuntimeFunction(M, OMPRTL___tgt_target_kernel), 905 OffloadingArgs); 906 907 return Builder.saveIP(); 908 } 909 910 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitKernelLaunch( 911 const LocationDescription &Loc, Function *OutlinedFn, Value *OutlinedFnID, 912 EmitFallbackCallbackTy emitTargetCallFallbackCB, TargetKernelArgs &Args, 913 Value *DeviceID, Value *RTLoc, InsertPointTy AllocaIP) { 914 915 if (!updateToLocation(Loc)) 916 return Loc.IP; 917 918 Builder.restoreIP(Loc.IP); 919 // On top of the arrays that were filled up, the target offloading call 920 // takes as arguments the device id as well as the host pointer. The host 921 // pointer is used by the runtime library to identify the current target 922 // region, so it only has to be unique and not necessarily point to 923 // anything. It could be the pointer to the outlined function that 924 // implements the target region, but we aren't using that so that the 925 // compiler doesn't need to keep that, and could therefore inline the host 926 // function if proven worthwhile during optimization. 927 928 // From this point on, we need to have an ID of the target region defined. 929 assert(OutlinedFnID && "Invalid outlined function ID!"); 930 (void)OutlinedFnID; 931 932 // Return value of the runtime offloading call. 933 Value *Return; 934 935 // Arguments for the target kernel. 936 SmallVector<Value *> ArgsVector; 937 getKernelArgsVector(Args, Builder, ArgsVector); 938 939 // The target region is an outlined function launched by the runtime 940 // via calls to __tgt_target_kernel(). 941 // 942 // Note that on the host and CPU targets, the runtime implementation of 943 // these calls simply call the outlined function without forking threads. 944 // The outlined functions themselves have runtime calls to 945 // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by 946 // the compiler in emitTeamsCall() and emitParallelCall(). 947 // 948 // In contrast, on the NVPTX target, the implementation of 949 // __tgt_target_teams() launches a GPU kernel with the requested number 950 // of teams and threads so no additional calls to the runtime are required. 951 // Check the error code and execute the host version if required. 952 Builder.restoreIP(emitTargetKernel(Builder, AllocaIP, Return, RTLoc, DeviceID, 953 Args.NumTeams, Args.NumThreads, 954 OutlinedFnID, ArgsVector)); 955 956 BasicBlock *OffloadFailedBlock = 957 BasicBlock::Create(Builder.getContext(), "omp_offload.failed"); 958 BasicBlock *OffloadContBlock = 959 BasicBlock::Create(Builder.getContext(), "omp_offload.cont"); 960 Value *Failed = Builder.CreateIsNotNull(Return); 961 Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock); 962 963 auto CurFn = Builder.GetInsertBlock()->getParent(); 964 emitBlock(OffloadFailedBlock, CurFn); 965 Builder.restoreIP(emitTargetCallFallbackCB(Builder.saveIP())); 966 emitBranch(OffloadContBlock); 967 emitBlock(OffloadContBlock, CurFn, /*IsFinished=*/true); 968 return Builder.saveIP(); 969 } 970 971 void OpenMPIRBuilder::emitCancelationCheckImpl(Value *CancelFlag, 972 omp::Directive CanceledDirective, 973 FinalizeCallbackTy ExitCB) { 974 assert(isLastFinalizationInfoCancellable(CanceledDirective) && 975 "Unexpected cancellation!"); 976 977 // For a cancel barrier we create two new blocks. 978 BasicBlock *BB = Builder.GetInsertBlock(); 979 BasicBlock *NonCancellationBlock; 980 if (Builder.GetInsertPoint() == BB->end()) { 981 // TODO: This branch will not be needed once we moved to the 982 // OpenMPIRBuilder codegen completely. 983 NonCancellationBlock = BasicBlock::Create( 984 BB->getContext(), BB->getName() + ".cont", BB->getParent()); 985 } else { 986 NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint()); 987 BB->getTerminator()->eraseFromParent(); 988 Builder.SetInsertPoint(BB); 989 } 990 BasicBlock *CancellationBlock = BasicBlock::Create( 991 BB->getContext(), BB->getName() + ".cncl", BB->getParent()); 992 993 // Jump to them based on the return value. 994 Value *Cmp = Builder.CreateIsNull(CancelFlag); 995 Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock, 996 /* TODO weight */ nullptr, nullptr); 997 998 // From the cancellation block we finalize all variables and go to the 999 // post finalization block that is known to the FiniCB callback. 1000 Builder.SetInsertPoint(CancellationBlock); 1001 if (ExitCB) 1002 ExitCB(Builder.saveIP()); 1003 auto &FI = FinalizationStack.back(); 1004 FI.FiniCB(Builder.saveIP()); 1005 1006 // The continuation block is where code generation continues. 1007 Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin()); 1008 } 1009 1010 IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel( 1011 const LocationDescription &Loc, InsertPointTy OuterAllocaIP, 1012 BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB, 1013 FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads, 1014 omp::ProcBindKind ProcBind, bool IsCancellable) { 1015 assert(!isConflictIP(Loc.IP, OuterAllocaIP) && "IPs must not be ambiguous"); 1016 1017 if (!updateToLocation(Loc)) 1018 return Loc.IP; 1019 1020 uint32_t SrcLocStrSize; 1021 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 1022 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 1023 Value *ThreadID = getOrCreateThreadID(Ident); 1024 1025 if (NumThreads) { 1026 // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads) 1027 Value *Args[] = { 1028 Ident, ThreadID, 1029 Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)}; 1030 Builder.CreateCall( 1031 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args); 1032 } 1033 1034 if (ProcBind != OMP_PROC_BIND_default) { 1035 // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind) 1036 Value *Args[] = { 1037 Ident, ThreadID, 1038 ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)}; 1039 Builder.CreateCall( 1040 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args); 1041 } 1042 1043 BasicBlock *InsertBB = Builder.GetInsertBlock(); 1044 Function *OuterFn = InsertBB->getParent(); 1045 1046 // Save the outer alloca block because the insertion iterator may get 1047 // invalidated and we still need this later. 1048 BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock(); 1049 1050 // Vector to remember instructions we used only during the modeling but which 1051 // we want to delete at the end. 1052 SmallVector<Instruction *, 4> ToBeDeleted; 1053 1054 // Change the location to the outer alloca insertion point to create and 1055 // initialize the allocas we pass into the parallel region. 1056 Builder.restoreIP(OuterAllocaIP); 1057 AllocaInst *TIDAddr = Builder.CreateAlloca(Int32, nullptr, "tid.addr"); 1058 AllocaInst *ZeroAddr = Builder.CreateAlloca(Int32, nullptr, "zero.addr"); 1059 1060 // We only need TIDAddr and ZeroAddr for modeling purposes to get the 1061 // associated arguments in the outlined function, so we delete them later. 1062 ToBeDeleted.push_back(TIDAddr); 1063 ToBeDeleted.push_back(ZeroAddr); 1064 1065 // Create an artificial insertion point that will also ensure the blocks we 1066 // are about to split are not degenerated. 1067 auto *UI = new UnreachableInst(Builder.getContext(), InsertBB); 1068 1069 BasicBlock *EntryBB = UI->getParent(); 1070 BasicBlock *PRegEntryBB = EntryBB->splitBasicBlock(UI, "omp.par.entry"); 1071 BasicBlock *PRegBodyBB = PRegEntryBB->splitBasicBlock(UI, "omp.par.region"); 1072 BasicBlock *PRegPreFiniBB = 1073 PRegBodyBB->splitBasicBlock(UI, "omp.par.pre_finalize"); 1074 BasicBlock *PRegExitBB = PRegPreFiniBB->splitBasicBlock(UI, "omp.par.exit"); 1075 1076 auto FiniCBWrapper = [&](InsertPointTy IP) { 1077 // Hide "open-ended" blocks from the given FiniCB by setting the right jump 1078 // target to the region exit block. 1079 if (IP.getBlock()->end() == IP.getPoint()) { 1080 IRBuilder<>::InsertPointGuard IPG(Builder); 1081 Builder.restoreIP(IP); 1082 Instruction *I = Builder.CreateBr(PRegExitBB); 1083 IP = InsertPointTy(I->getParent(), I->getIterator()); 1084 } 1085 assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 && 1086 IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB && 1087 "Unexpected insertion point for finalization call!"); 1088 return FiniCB(IP); 1089 }; 1090 1091 FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable}); 1092 1093 // Generate the privatization allocas in the block that will become the entry 1094 // of the outlined function. 1095 Builder.SetInsertPoint(PRegEntryBB->getTerminator()); 1096 InsertPointTy InnerAllocaIP = Builder.saveIP(); 1097 1098 AllocaInst *PrivTIDAddr = 1099 Builder.CreateAlloca(Int32, nullptr, "tid.addr.local"); 1100 Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid"); 1101 1102 // Add some fake uses for OpenMP provided arguments. 1103 ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use")); 1104 Instruction *ZeroAddrUse = 1105 Builder.CreateLoad(Int32, ZeroAddr, "zero.addr.use"); 1106 ToBeDeleted.push_back(ZeroAddrUse); 1107 1108 // EntryBB 1109 // | 1110 // V 1111 // PRegionEntryBB <- Privatization allocas are placed here. 1112 // | 1113 // V 1114 // PRegionBodyBB <- BodeGen is invoked here. 1115 // | 1116 // V 1117 // PRegPreFiniBB <- The block we will start finalization from. 1118 // | 1119 // V 1120 // PRegionExitBB <- A common exit to simplify block collection. 1121 // 1122 1123 LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n"); 1124 1125 // Let the caller create the body. 1126 assert(BodyGenCB && "Expected body generation callback!"); 1127 InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin()); 1128 BodyGenCB(InnerAllocaIP, CodeGenIP); 1129 1130 LLVM_DEBUG(dbgs() << "After body codegen: " << *OuterFn << "\n"); 1131 FunctionCallee RTLFn; 1132 if (IfCondition) 1133 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call_if); 1134 else 1135 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call); 1136 1137 if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) { 1138 if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) { 1139 llvm::LLVMContext &Ctx = F->getContext(); 1140 MDBuilder MDB(Ctx); 1141 // Annotate the callback behavior of the __kmpc_fork_call: 1142 // - The callback callee is argument number 2 (microtask). 1143 // - The first two arguments of the callback callee are unknown (-1). 1144 // - All variadic arguments to the __kmpc_fork_call are passed to the 1145 // callback callee. 1146 F->addMetadata( 1147 llvm::LLVMContext::MD_callback, 1148 *llvm::MDNode::get( 1149 Ctx, {MDB.createCallbackEncoding(2, {-1, -1}, 1150 /* VarArgsArePassed */ true)})); 1151 } 1152 } 1153 1154 OutlineInfo OI; 1155 OI.PostOutlineCB = [=](Function &OutlinedFn) { 1156 // Add some known attributes. 1157 OutlinedFn.addParamAttr(0, Attribute::NoAlias); 1158 OutlinedFn.addParamAttr(1, Attribute::NoAlias); 1159 OutlinedFn.addFnAttr(Attribute::NoUnwind); 1160 OutlinedFn.addFnAttr(Attribute::NoRecurse); 1161 1162 assert(OutlinedFn.arg_size() >= 2 && 1163 "Expected at least tid and bounded tid as arguments"); 1164 unsigned NumCapturedVars = 1165 OutlinedFn.arg_size() - /* tid & bounded tid */ 2; 1166 1167 CallInst *CI = cast<CallInst>(OutlinedFn.user_back()); 1168 CI->getParent()->setName("omp_parallel"); 1169 Builder.SetInsertPoint(CI); 1170 1171 // Build call __kmpc_fork_call[_if](Ident, n, microtask, var1, .., varn); 1172 Value *ForkCallArgs[] = { 1173 Ident, Builder.getInt32(NumCapturedVars), 1174 Builder.CreateBitCast(&OutlinedFn, ParallelTaskPtr)}; 1175 1176 SmallVector<Value *, 16> RealArgs; 1177 RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs)); 1178 if (IfCondition) { 1179 Value *Cond = Builder.CreateSExtOrTrunc(IfCondition, 1180 Type::getInt32Ty(M.getContext())); 1181 RealArgs.push_back(Cond); 1182 } 1183 RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end()); 1184 1185 // __kmpc_fork_call_if always expects a void ptr as the last argument 1186 // If there are no arguments, pass a null pointer. 1187 auto PtrTy = Type::getInt8PtrTy(M.getContext()); 1188 if (IfCondition && NumCapturedVars == 0) { 1189 llvm::Value *Void = ConstantPointerNull::get(PtrTy); 1190 RealArgs.push_back(Void); 1191 } 1192 if (IfCondition && RealArgs.back()->getType() != PtrTy) 1193 RealArgs.back() = Builder.CreateBitCast(RealArgs.back(), PtrTy); 1194 1195 Builder.CreateCall(RTLFn, RealArgs); 1196 1197 LLVM_DEBUG(dbgs() << "With fork_call placed: " 1198 << *Builder.GetInsertBlock()->getParent() << "\n"); 1199 1200 InsertPointTy ExitIP(PRegExitBB, PRegExitBB->end()); 1201 1202 // Initialize the local TID stack location with the argument value. 1203 Builder.SetInsertPoint(PrivTID); 1204 Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin(); 1205 Builder.CreateStore(Builder.CreateLoad(Int32, OutlinedAI), PrivTIDAddr); 1206 1207 CI->eraseFromParent(); 1208 1209 for (Instruction *I : ToBeDeleted) 1210 I->eraseFromParent(); 1211 }; 1212 1213 // Adjust the finalization stack, verify the adjustment, and call the 1214 // finalize function a last time to finalize values between the pre-fini 1215 // block and the exit block if we left the parallel "the normal way". 1216 auto FiniInfo = FinalizationStack.pop_back_val(); 1217 (void)FiniInfo; 1218 assert(FiniInfo.DK == OMPD_parallel && 1219 "Unexpected finalization stack state!"); 1220 1221 Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator(); 1222 1223 InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator()); 1224 FiniCB(PreFiniIP); 1225 1226 OI.OuterAllocaBB = OuterAllocaBlock; 1227 OI.EntryBB = PRegEntryBB; 1228 OI.ExitBB = PRegExitBB; 1229 1230 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet; 1231 SmallVector<BasicBlock *, 32> Blocks; 1232 OI.collectBlocks(ParallelRegionBlockSet, Blocks); 1233 1234 // Ensure a single exit node for the outlined region by creating one. 1235 // We might have multiple incoming edges to the exit now due to finalizations, 1236 // e.g., cancel calls that cause the control flow to leave the region. 1237 BasicBlock *PRegOutlinedExitBB = PRegExitBB; 1238 PRegExitBB = SplitBlock(PRegExitBB, &*PRegExitBB->getFirstInsertionPt()); 1239 PRegOutlinedExitBB->setName("omp.par.outlined.exit"); 1240 Blocks.push_back(PRegOutlinedExitBB); 1241 1242 CodeExtractorAnalysisCache CEAC(*OuterFn); 1243 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, 1244 /* AggregateArgs */ false, 1245 /* BlockFrequencyInfo */ nullptr, 1246 /* BranchProbabilityInfo */ nullptr, 1247 /* AssumptionCache */ nullptr, 1248 /* AllowVarArgs */ true, 1249 /* AllowAlloca */ true, 1250 /* AllocationBlock */ OuterAllocaBlock, 1251 /* Suffix */ ".omp_par"); 1252 1253 // Find inputs to, outputs from the code region. 1254 BasicBlock *CommonExit = nullptr; 1255 SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands; 1256 Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1257 Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands); 1258 1259 LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n"); 1260 1261 FunctionCallee TIDRTLFn = 1262 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num); 1263 1264 auto PrivHelper = [&](Value &V) { 1265 if (&V == TIDAddr || &V == ZeroAddr) { 1266 OI.ExcludeArgsFromAggregate.push_back(&V); 1267 return; 1268 } 1269 1270 SetVector<Use *> Uses; 1271 for (Use &U : V.uses()) 1272 if (auto *UserI = dyn_cast<Instruction>(U.getUser())) 1273 if (ParallelRegionBlockSet.count(UserI->getParent())) 1274 Uses.insert(&U); 1275 1276 // __kmpc_fork_call expects extra arguments as pointers. If the input 1277 // already has a pointer type, everything is fine. Otherwise, store the 1278 // value onto stack and load it back inside the to-be-outlined region. This 1279 // will ensure only the pointer will be passed to the function. 1280 // FIXME: if there are more than 15 trailing arguments, they must be 1281 // additionally packed in a struct. 1282 Value *Inner = &V; 1283 if (!V.getType()->isPointerTy()) { 1284 IRBuilder<>::InsertPointGuard Guard(Builder); 1285 LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n"); 1286 1287 Builder.restoreIP(OuterAllocaIP); 1288 Value *Ptr = 1289 Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded"); 1290 1291 // Store to stack at end of the block that currently branches to the entry 1292 // block of the to-be-outlined region. 1293 Builder.SetInsertPoint(InsertBB, 1294 InsertBB->getTerminator()->getIterator()); 1295 Builder.CreateStore(&V, Ptr); 1296 1297 // Load back next to allocations in the to-be-outlined region. 1298 Builder.restoreIP(InnerAllocaIP); 1299 Inner = Builder.CreateLoad(V.getType(), Ptr); 1300 } 1301 1302 Value *ReplacementValue = nullptr; 1303 CallInst *CI = dyn_cast<CallInst>(&V); 1304 if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) { 1305 ReplacementValue = PrivTID; 1306 } else { 1307 Builder.restoreIP( 1308 PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue)); 1309 assert(ReplacementValue && 1310 "Expected copy/create callback to set replacement value!"); 1311 if (ReplacementValue == &V) 1312 return; 1313 } 1314 1315 for (Use *UPtr : Uses) 1316 UPtr->set(ReplacementValue); 1317 }; 1318 1319 // Reset the inner alloca insertion as it will be used for loading the values 1320 // wrapped into pointers before passing them into the to-be-outlined region. 1321 // Configure it to insert immediately after the fake use of zero address so 1322 // that they are available in the generated body and so that the 1323 // OpenMP-related values (thread ID and zero address pointers) remain leading 1324 // in the argument list. 1325 InnerAllocaIP = IRBuilder<>::InsertPoint( 1326 ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator()); 1327 1328 // Reset the outer alloca insertion point to the entry of the relevant block 1329 // in case it was invalidated. 1330 OuterAllocaIP = IRBuilder<>::InsertPoint( 1331 OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt()); 1332 1333 for (Value *Input : Inputs) { 1334 LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n"); 1335 PrivHelper(*Input); 1336 } 1337 LLVM_DEBUG({ 1338 for (Value *Output : Outputs) 1339 LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n"); 1340 }); 1341 assert(Outputs.empty() && 1342 "OpenMP outlining should not produce live-out values!"); 1343 1344 LLVM_DEBUG(dbgs() << "After privatization: " << *OuterFn << "\n"); 1345 LLVM_DEBUG({ 1346 for (auto *BB : Blocks) 1347 dbgs() << " PBR: " << BB->getName() << "\n"; 1348 }); 1349 1350 // Register the outlined info. 1351 addOutlineInfo(std::move(OI)); 1352 1353 InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end()); 1354 UI->eraseFromParent(); 1355 1356 return AfterIP; 1357 } 1358 1359 void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) { 1360 // Build call void __kmpc_flush(ident_t *loc) 1361 uint32_t SrcLocStrSize; 1362 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 1363 Value *Args[] = {getOrCreateIdent(SrcLocStr, SrcLocStrSize)}; 1364 1365 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args); 1366 } 1367 1368 void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) { 1369 if (!updateToLocation(Loc)) 1370 return; 1371 emitFlush(Loc); 1372 } 1373 1374 void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) { 1375 // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 1376 // global_tid); 1377 uint32_t SrcLocStrSize; 1378 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 1379 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 1380 Value *Args[] = {Ident, getOrCreateThreadID(Ident)}; 1381 1382 // Ignore return result until untied tasks are supported. 1383 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait), 1384 Args); 1385 } 1386 1387 void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) { 1388 if (!updateToLocation(Loc)) 1389 return; 1390 emitTaskwaitImpl(Loc); 1391 } 1392 1393 void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) { 1394 // Build call __kmpc_omp_taskyield(loc, thread_id, 0); 1395 uint32_t SrcLocStrSize; 1396 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 1397 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 1398 Constant *I32Null = ConstantInt::getNullValue(Int32); 1399 Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null}; 1400 1401 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield), 1402 Args); 1403 } 1404 1405 void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) { 1406 if (!updateToLocation(Loc)) 1407 return; 1408 emitTaskyieldImpl(Loc); 1409 } 1410 1411 OpenMPIRBuilder::InsertPointTy 1412 OpenMPIRBuilder::createTask(const LocationDescription &Loc, 1413 InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB, 1414 bool Tied, Value *Final, Value *IfCondition, 1415 SmallVector<DependData> Dependencies) { 1416 if (!updateToLocation(Loc)) 1417 return InsertPointTy(); 1418 1419 uint32_t SrcLocStrSize; 1420 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 1421 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 1422 // The current basic block is split into four basic blocks. After outlining, 1423 // they will be mapped as follows: 1424 // ``` 1425 // def current_fn() { 1426 // current_basic_block: 1427 // br label %task.exit 1428 // task.exit: 1429 // ; instructions after task 1430 // } 1431 // def outlined_fn() { 1432 // task.alloca: 1433 // br label %task.body 1434 // task.body: 1435 // ret void 1436 // } 1437 // ``` 1438 BasicBlock *TaskExitBB = splitBB(Builder, /*CreateBranch=*/true, "task.exit"); 1439 BasicBlock *TaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, "task.body"); 1440 BasicBlock *TaskAllocaBB = 1441 splitBB(Builder, /*CreateBranch=*/true, "task.alloca"); 1442 1443 OutlineInfo OI; 1444 OI.EntryBB = TaskAllocaBB; 1445 OI.OuterAllocaBB = AllocaIP.getBlock(); 1446 OI.ExitBB = TaskExitBB; 1447 OI.PostOutlineCB = [this, Ident, Tied, Final, IfCondition, 1448 Dependencies](Function &OutlinedFn) { 1449 // The input IR here looks like the following- 1450 // ``` 1451 // func @current_fn() { 1452 // outlined_fn(%args) 1453 // } 1454 // func @outlined_fn(%args) { ... } 1455 // ``` 1456 // 1457 // This is changed to the following- 1458 // 1459 // ``` 1460 // func @current_fn() { 1461 // runtime_call(..., wrapper_fn, ...) 1462 // } 1463 // func @wrapper_fn(..., %args) { 1464 // outlined_fn(%args) 1465 // } 1466 // func @outlined_fn(%args) { ... } 1467 // ``` 1468 1469 // The stale call instruction will be replaced with a new call instruction 1470 // for runtime call with a wrapper function. 1471 assert(OutlinedFn.getNumUses() == 1 && 1472 "there must be a single user for the outlined function"); 1473 CallInst *StaleCI = cast<CallInst>(OutlinedFn.user_back()); 1474 1475 // HasTaskData is true if any variables are captured in the outlined region, 1476 // false otherwise. 1477 bool HasTaskData = StaleCI->arg_size() > 0; 1478 Builder.SetInsertPoint(StaleCI); 1479 1480 // Gather the arguments for emitting the runtime call for 1481 // @__kmpc_omp_task_alloc 1482 Function *TaskAllocFn = 1483 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc); 1484 1485 // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID) 1486 // call. 1487 Value *ThreadID = getOrCreateThreadID(Ident); 1488 1489 // Argument - `flags` 1490 // Task is tied iff (Flags & 1) == 1. 1491 // Task is untied iff (Flags & 1) == 0. 1492 // Task is final iff (Flags & 2) == 2. 1493 // Task is not final iff (Flags & 2) == 0. 1494 // TODO: Handle the other flags. 1495 Value *Flags = Builder.getInt32(Tied); 1496 if (Final) { 1497 Value *FinalFlag = 1498 Builder.CreateSelect(Final, Builder.getInt32(2), Builder.getInt32(0)); 1499 Flags = Builder.CreateOr(FinalFlag, Flags); 1500 } 1501 1502 // Argument - `sizeof_kmp_task_t` (TaskSize) 1503 // Tasksize refers to the size in bytes of kmp_task_t data structure 1504 // including private vars accessed in task. 1505 Value *TaskSize = Builder.getInt64(0); 1506 if (HasTaskData) { 1507 AllocaInst *ArgStructAlloca = 1508 dyn_cast<AllocaInst>(StaleCI->getArgOperand(0)); 1509 assert(ArgStructAlloca && 1510 "Unable to find the alloca instruction corresponding to arguments " 1511 "for extracted function"); 1512 StructType *ArgStructType = 1513 dyn_cast<StructType>(ArgStructAlloca->getAllocatedType()); 1514 assert(ArgStructType && "Unable to find struct type corresponding to " 1515 "arguments for extracted function"); 1516 TaskSize = 1517 Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType)); 1518 } 1519 1520 // TODO: Argument - sizeof_shareds 1521 1522 // Argument - task_entry (the wrapper function) 1523 // If the outlined function has some captured variables (i.e. HasTaskData is 1524 // true), then the wrapper function will have an additional argument (the 1525 // struct containing captured variables). Otherwise, no such argument will 1526 // be present. 1527 SmallVector<Type *> WrapperArgTys{Builder.getInt32Ty()}; 1528 if (HasTaskData) 1529 WrapperArgTys.push_back(OutlinedFn.getArg(0)->getType()); 1530 FunctionCallee WrapperFuncVal = M.getOrInsertFunction( 1531 (Twine(OutlinedFn.getName()) + ".wrapper").str(), 1532 FunctionType::get(Builder.getInt32Ty(), WrapperArgTys, false)); 1533 Function *WrapperFunc = dyn_cast<Function>(WrapperFuncVal.getCallee()); 1534 1535 // Emit the @__kmpc_omp_task_alloc runtime call 1536 // The runtime call returns a pointer to an area where the task captured 1537 // variables must be copied before the task is run (NewTaskData) 1538 CallInst *NewTaskData = Builder.CreateCall( 1539 TaskAllocFn, 1540 {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags, 1541 /*sizeof_task=*/TaskSize, /*sizeof_shared=*/Builder.getInt64(0), 1542 /*task_func=*/WrapperFunc}); 1543 1544 // Copy the arguments for outlined function 1545 if (HasTaskData) { 1546 Value *TaskData = StaleCI->getArgOperand(0); 1547 Align Alignment = TaskData->getPointerAlignment(M.getDataLayout()); 1548 Builder.CreateMemCpy(NewTaskData, Alignment, TaskData, Alignment, 1549 TaskSize); 1550 } 1551 1552 Value *DepArrayPtr = nullptr; 1553 if (Dependencies.size()) { 1554 InsertPointTy OldIP = Builder.saveIP(); 1555 Builder.SetInsertPoint( 1556 &OldIP.getBlock()->getParent()->getEntryBlock().back()); 1557 1558 Type *DepArrayTy = ArrayType::get(DependInfo, Dependencies.size()); 1559 Value *DepArray = 1560 Builder.CreateAlloca(DepArrayTy, nullptr, ".dep.arr.addr"); 1561 1562 unsigned P = 0; 1563 for (const DependData &Dep : Dependencies) { 1564 Value *Base = 1565 Builder.CreateConstInBoundsGEP2_64(DepArrayTy, DepArray, 0, P); 1566 // Store the pointer to the variable 1567 Value *Addr = Builder.CreateStructGEP( 1568 DependInfo, Base, 1569 static_cast<unsigned int>(RTLDependInfoFields::BaseAddr)); 1570 Value *DepValPtr = 1571 Builder.CreatePtrToInt(Dep.DepVal, Builder.getInt64Ty()); 1572 Builder.CreateStore(DepValPtr, Addr); 1573 // Store the size of the variable 1574 Value *Size = Builder.CreateStructGEP( 1575 DependInfo, Base, 1576 static_cast<unsigned int>(RTLDependInfoFields::Len)); 1577 Builder.CreateStore(Builder.getInt64(M.getDataLayout().getTypeStoreSize( 1578 Dep.DepValueType)), 1579 Size); 1580 // Store the dependency kind 1581 Value *Flags = Builder.CreateStructGEP( 1582 DependInfo, Base, 1583 static_cast<unsigned int>(RTLDependInfoFields::Flags)); 1584 Builder.CreateStore( 1585 ConstantInt::get(Builder.getInt8Ty(), 1586 static_cast<unsigned int>(Dep.DepKind)), 1587 Flags); 1588 ++P; 1589 } 1590 1591 DepArrayPtr = Builder.CreateBitCast(DepArray, Builder.getInt8PtrTy()); 1592 Builder.restoreIP(OldIP); 1593 } 1594 1595 // In the presence of the `if` clause, the following IR is generated: 1596 // ... 1597 // %data = call @__kmpc_omp_task_alloc(...) 1598 // br i1 %if_condition, label %then, label %else 1599 // then: 1600 // call @__kmpc_omp_task(...) 1601 // br label %exit 1602 // else: 1603 // call @__kmpc_omp_task_begin_if0(...) 1604 // call @wrapper_fn(...) 1605 // call @__kmpc_omp_task_complete_if0(...) 1606 // br label %exit 1607 // exit: 1608 // ... 1609 if (IfCondition) { 1610 // `SplitBlockAndInsertIfThenElse` requires the block to have a 1611 // terminator. 1612 BasicBlock *NewBasicBlock = 1613 splitBB(Builder, /*CreateBranch=*/true, "if.end"); 1614 Instruction *IfTerminator = 1615 NewBasicBlock->getSinglePredecessor()->getTerminator(); 1616 Instruction *ThenTI = IfTerminator, *ElseTI = nullptr; 1617 Builder.SetInsertPoint(IfTerminator); 1618 SplitBlockAndInsertIfThenElse(IfCondition, IfTerminator, &ThenTI, 1619 &ElseTI); 1620 Builder.SetInsertPoint(ElseTI); 1621 Function *TaskBeginFn = 1622 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_begin_if0); 1623 Function *TaskCompleteFn = 1624 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_complete_if0); 1625 Builder.CreateCall(TaskBeginFn, {Ident, ThreadID, NewTaskData}); 1626 if (HasTaskData) 1627 Builder.CreateCall(WrapperFunc, {ThreadID, NewTaskData}); 1628 else 1629 Builder.CreateCall(WrapperFunc, {ThreadID}); 1630 Builder.CreateCall(TaskCompleteFn, {Ident, ThreadID, NewTaskData}); 1631 Builder.SetInsertPoint(ThenTI); 1632 } 1633 1634 if (Dependencies.size()) { 1635 Function *TaskFn = 1636 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_with_deps); 1637 Builder.CreateCall( 1638 TaskFn, 1639 {Ident, ThreadID, NewTaskData, Builder.getInt32(Dependencies.size()), 1640 DepArrayPtr, ConstantInt::get(Builder.getInt32Ty(), 0), 1641 ConstantPointerNull::get(Type::getInt8PtrTy(M.getContext()))}); 1642 1643 } else { 1644 // Emit the @__kmpc_omp_task runtime call to spawn the task 1645 Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task); 1646 Builder.CreateCall(TaskFn, {Ident, ThreadID, NewTaskData}); 1647 } 1648 1649 StaleCI->eraseFromParent(); 1650 1651 // Emit the body for wrapper function 1652 BasicBlock *WrapperEntryBB = 1653 BasicBlock::Create(M.getContext(), "", WrapperFunc); 1654 Builder.SetInsertPoint(WrapperEntryBB); 1655 if (HasTaskData) 1656 Builder.CreateCall(&OutlinedFn, {WrapperFunc->getArg(1)}); 1657 else 1658 Builder.CreateCall(&OutlinedFn); 1659 Builder.CreateRet(Builder.getInt32(0)); 1660 }; 1661 1662 addOutlineInfo(std::move(OI)); 1663 1664 InsertPointTy TaskAllocaIP = 1665 InsertPointTy(TaskAllocaBB, TaskAllocaBB->begin()); 1666 InsertPointTy TaskBodyIP = InsertPointTy(TaskBodyBB, TaskBodyBB->begin()); 1667 BodyGenCB(TaskAllocaIP, TaskBodyIP); 1668 Builder.SetInsertPoint(TaskExitBB, TaskExitBB->begin()); 1669 1670 return Builder.saveIP(); 1671 } 1672 1673 OpenMPIRBuilder::InsertPointTy 1674 OpenMPIRBuilder::createTaskgroup(const LocationDescription &Loc, 1675 InsertPointTy AllocaIP, 1676 BodyGenCallbackTy BodyGenCB) { 1677 if (!updateToLocation(Loc)) 1678 return InsertPointTy(); 1679 1680 uint32_t SrcLocStrSize; 1681 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 1682 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 1683 Value *ThreadID = getOrCreateThreadID(Ident); 1684 1685 // Emit the @__kmpc_taskgroup runtime call to start the taskgroup 1686 Function *TaskgroupFn = 1687 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_taskgroup); 1688 Builder.CreateCall(TaskgroupFn, {Ident, ThreadID}); 1689 1690 BasicBlock *TaskgroupExitBB = splitBB(Builder, true, "taskgroup.exit"); 1691 BodyGenCB(AllocaIP, Builder.saveIP()); 1692 1693 Builder.SetInsertPoint(TaskgroupExitBB); 1694 // Emit the @__kmpc_end_taskgroup runtime call to end the taskgroup 1695 Function *EndTaskgroupFn = 1696 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_taskgroup); 1697 Builder.CreateCall(EndTaskgroupFn, {Ident, ThreadID}); 1698 1699 return Builder.saveIP(); 1700 } 1701 1702 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections( 1703 const LocationDescription &Loc, InsertPointTy AllocaIP, 1704 ArrayRef<StorableBodyGenCallbackTy> SectionCBs, PrivatizeCallbackTy PrivCB, 1705 FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) { 1706 assert(!isConflictIP(AllocaIP, Loc.IP) && "Dedicated IP allocas required"); 1707 1708 if (!updateToLocation(Loc)) 1709 return Loc.IP; 1710 1711 auto FiniCBWrapper = [&](InsertPointTy IP) { 1712 if (IP.getBlock()->end() != IP.getPoint()) 1713 return FiniCB(IP); 1714 // This must be done otherwise any nested constructs using FinalizeOMPRegion 1715 // will fail because that function requires the Finalization Basic Block to 1716 // have a terminator, which is already removed by EmitOMPRegionBody. 1717 // IP is currently at cancelation block. 1718 // We need to backtrack to the condition block to fetch 1719 // the exit block and create a branch from cancelation 1720 // to exit block. 1721 IRBuilder<>::InsertPointGuard IPG(Builder); 1722 Builder.restoreIP(IP); 1723 auto *CaseBB = IP.getBlock()->getSinglePredecessor(); 1724 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor(); 1725 auto *ExitBB = CondBB->getTerminator()->getSuccessor(1); 1726 Instruction *I = Builder.CreateBr(ExitBB); 1727 IP = InsertPointTy(I->getParent(), I->getIterator()); 1728 return FiniCB(IP); 1729 }; 1730 1731 FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable}); 1732 1733 // Each section is emitted as a switch case 1734 // Each finalization callback is handled from clang.EmitOMPSectionDirective() 1735 // -> OMP.createSection() which generates the IR for each section 1736 // Iterate through all sections and emit a switch construct: 1737 // switch (IV) { 1738 // case 0: 1739 // <SectionStmt[0]>; 1740 // break; 1741 // ... 1742 // case <NumSection> - 1: 1743 // <SectionStmt[<NumSection> - 1]>; 1744 // break; 1745 // } 1746 // ... 1747 // section_loop.after: 1748 // <FiniCB>; 1749 auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) { 1750 Builder.restoreIP(CodeGenIP); 1751 BasicBlock *Continue = 1752 splitBBWithSuffix(Builder, /*CreateBranch=*/false, ".sections.after"); 1753 Function *CurFn = Continue->getParent(); 1754 SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, Continue); 1755 1756 unsigned CaseNumber = 0; 1757 for (auto SectionCB : SectionCBs) { 1758 BasicBlock *CaseBB = BasicBlock::Create( 1759 M.getContext(), "omp_section_loop.body.case", CurFn, Continue); 1760 SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB); 1761 Builder.SetInsertPoint(CaseBB); 1762 BranchInst *CaseEndBr = Builder.CreateBr(Continue); 1763 SectionCB(InsertPointTy(), 1764 {CaseEndBr->getParent(), CaseEndBr->getIterator()}); 1765 CaseNumber++; 1766 } 1767 // remove the existing terminator from body BB since there can be no 1768 // terminators after switch/case 1769 }; 1770 // Loop body ends here 1771 // LowerBound, UpperBound, and STride for createCanonicalLoop 1772 Type *I32Ty = Type::getInt32Ty(M.getContext()); 1773 Value *LB = ConstantInt::get(I32Ty, 0); 1774 Value *UB = ConstantInt::get(I32Ty, SectionCBs.size()); 1775 Value *ST = ConstantInt::get(I32Ty, 1); 1776 llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop( 1777 Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop"); 1778 InsertPointTy AfterIP = 1779 applyStaticWorkshareLoop(Loc.DL, LoopInfo, AllocaIP, !IsNowait); 1780 1781 // Apply the finalization callback in LoopAfterBB 1782 auto FiniInfo = FinalizationStack.pop_back_val(); 1783 assert(FiniInfo.DK == OMPD_sections && 1784 "Unexpected finalization stack state!"); 1785 if (FinalizeCallbackTy &CB = FiniInfo.FiniCB) { 1786 Builder.restoreIP(AfterIP); 1787 BasicBlock *FiniBB = 1788 splitBBWithSuffix(Builder, /*CreateBranch=*/true, "sections.fini"); 1789 CB(Builder.saveIP()); 1790 AfterIP = {FiniBB, FiniBB->begin()}; 1791 } 1792 1793 return AfterIP; 1794 } 1795 1796 OpenMPIRBuilder::InsertPointTy 1797 OpenMPIRBuilder::createSection(const LocationDescription &Loc, 1798 BodyGenCallbackTy BodyGenCB, 1799 FinalizeCallbackTy FiniCB) { 1800 if (!updateToLocation(Loc)) 1801 return Loc.IP; 1802 1803 auto FiniCBWrapper = [&](InsertPointTy IP) { 1804 if (IP.getBlock()->end() != IP.getPoint()) 1805 return FiniCB(IP); 1806 // This must be done otherwise any nested constructs using FinalizeOMPRegion 1807 // will fail because that function requires the Finalization Basic Block to 1808 // have a terminator, which is already removed by EmitOMPRegionBody. 1809 // IP is currently at cancelation block. 1810 // We need to backtrack to the condition block to fetch 1811 // the exit block and create a branch from cancelation 1812 // to exit block. 1813 IRBuilder<>::InsertPointGuard IPG(Builder); 1814 Builder.restoreIP(IP); 1815 auto *CaseBB = Loc.IP.getBlock(); 1816 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor(); 1817 auto *ExitBB = CondBB->getTerminator()->getSuccessor(1); 1818 Instruction *I = Builder.CreateBr(ExitBB); 1819 IP = InsertPointTy(I->getParent(), I->getIterator()); 1820 return FiniCB(IP); 1821 }; 1822 1823 Directive OMPD = Directive::OMPD_sections; 1824 // Since we are using Finalization Callback here, HasFinalize 1825 // and IsCancellable have to be true 1826 return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper, 1827 /*Conditional*/ false, /*hasFinalize*/ true, 1828 /*IsCancellable*/ true); 1829 } 1830 1831 /// Create a function with a unique name and a "void (i8*, i8*)" signature in 1832 /// the given module and return it. 1833 Function *getFreshReductionFunc(Module &M) { 1834 Type *VoidTy = Type::getVoidTy(M.getContext()); 1835 Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 1836 auto *FuncTy = 1837 FunctionType::get(VoidTy, {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ false); 1838 return Function::Create(FuncTy, GlobalVariable::InternalLinkage, 1839 M.getDataLayout().getDefaultGlobalsAddressSpace(), 1840 ".omp.reduction.func", &M); 1841 } 1842 1843 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createReductions( 1844 const LocationDescription &Loc, InsertPointTy AllocaIP, 1845 ArrayRef<ReductionInfo> ReductionInfos, bool IsNoWait) { 1846 for (const ReductionInfo &RI : ReductionInfos) { 1847 (void)RI; 1848 assert(RI.Variable && "expected non-null variable"); 1849 assert(RI.PrivateVariable && "expected non-null private variable"); 1850 assert(RI.ReductionGen && "expected non-null reduction generator callback"); 1851 assert(RI.Variable->getType() == RI.PrivateVariable->getType() && 1852 "expected variables and their private equivalents to have the same " 1853 "type"); 1854 assert(RI.Variable->getType()->isPointerTy() && 1855 "expected variables to be pointers"); 1856 } 1857 1858 if (!updateToLocation(Loc)) 1859 return InsertPointTy(); 1860 1861 BasicBlock *InsertBlock = Loc.IP.getBlock(); 1862 BasicBlock *ContinuationBlock = 1863 InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize"); 1864 InsertBlock->getTerminator()->eraseFromParent(); 1865 1866 // Create and populate array of type-erased pointers to private reduction 1867 // values. 1868 unsigned NumReductions = ReductionInfos.size(); 1869 Type *RedArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumReductions); 1870 Builder.restoreIP(AllocaIP); 1871 Value *RedArray = Builder.CreateAlloca(RedArrayTy, nullptr, "red.array"); 1872 1873 Builder.SetInsertPoint(InsertBlock, InsertBlock->end()); 1874 1875 for (auto En : enumerate(ReductionInfos)) { 1876 unsigned Index = En.index(); 1877 const ReductionInfo &RI = En.value(); 1878 Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64( 1879 RedArrayTy, RedArray, 0, Index, "red.array.elem." + Twine(Index)); 1880 Value *Casted = 1881 Builder.CreateBitCast(RI.PrivateVariable, Builder.getInt8PtrTy(), 1882 "private.red.var." + Twine(Index) + ".casted"); 1883 Builder.CreateStore(Casted, RedArrayElemPtr); 1884 } 1885 1886 // Emit a call to the runtime function that orchestrates the reduction. 1887 // Declare the reduction function in the process. 1888 Function *Func = Builder.GetInsertBlock()->getParent(); 1889 Module *Module = Func->getParent(); 1890 Value *RedArrayPtr = 1891 Builder.CreateBitCast(RedArray, Builder.getInt8PtrTy(), "red.array.ptr"); 1892 uint32_t SrcLocStrSize; 1893 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 1894 bool CanGenerateAtomic = 1895 llvm::all_of(ReductionInfos, [](const ReductionInfo &RI) { 1896 return RI.AtomicReductionGen; 1897 }); 1898 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize, 1899 CanGenerateAtomic 1900 ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE 1901 : IdentFlag(0)); 1902 Value *ThreadId = getOrCreateThreadID(Ident); 1903 Constant *NumVariables = Builder.getInt32(NumReductions); 1904 const DataLayout &DL = Module->getDataLayout(); 1905 unsigned RedArrayByteSize = DL.getTypeStoreSize(RedArrayTy); 1906 Constant *RedArraySize = Builder.getInt64(RedArrayByteSize); 1907 Function *ReductionFunc = getFreshReductionFunc(*Module); 1908 Value *Lock = getOMPCriticalRegionLock(".reduction"); 1909 Function *ReduceFunc = getOrCreateRuntimeFunctionPtr( 1910 IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait 1911 : RuntimeFunction::OMPRTL___kmpc_reduce); 1912 CallInst *ReduceCall = 1913 Builder.CreateCall(ReduceFunc, 1914 {Ident, ThreadId, NumVariables, RedArraySize, 1915 RedArrayPtr, ReductionFunc, Lock}, 1916 "reduce"); 1917 1918 // Create final reduction entry blocks for the atomic and non-atomic case. 1919 // Emit IR that dispatches control flow to one of the blocks based on the 1920 // reduction supporting the atomic mode. 1921 BasicBlock *NonAtomicRedBlock = 1922 BasicBlock::Create(Module->getContext(), "reduce.switch.nonatomic", Func); 1923 BasicBlock *AtomicRedBlock = 1924 BasicBlock::Create(Module->getContext(), "reduce.switch.atomic", Func); 1925 SwitchInst *Switch = 1926 Builder.CreateSwitch(ReduceCall, ContinuationBlock, /* NumCases */ 2); 1927 Switch->addCase(Builder.getInt32(1), NonAtomicRedBlock); 1928 Switch->addCase(Builder.getInt32(2), AtomicRedBlock); 1929 1930 // Populate the non-atomic reduction using the elementwise reduction function. 1931 // This loads the elements from the global and private variables and reduces 1932 // them before storing back the result to the global variable. 1933 Builder.SetInsertPoint(NonAtomicRedBlock); 1934 for (auto En : enumerate(ReductionInfos)) { 1935 const ReductionInfo &RI = En.value(); 1936 Type *ValueType = RI.ElementType; 1937 Value *RedValue = Builder.CreateLoad(ValueType, RI.Variable, 1938 "red.value." + Twine(En.index())); 1939 Value *PrivateRedValue = 1940 Builder.CreateLoad(ValueType, RI.PrivateVariable, 1941 "red.private.value." + Twine(En.index())); 1942 Value *Reduced; 1943 Builder.restoreIP( 1944 RI.ReductionGen(Builder.saveIP(), RedValue, PrivateRedValue, Reduced)); 1945 if (!Builder.GetInsertBlock()) 1946 return InsertPointTy(); 1947 Builder.CreateStore(Reduced, RI.Variable); 1948 } 1949 Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr( 1950 IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait 1951 : RuntimeFunction::OMPRTL___kmpc_end_reduce); 1952 Builder.CreateCall(EndReduceFunc, {Ident, ThreadId, Lock}); 1953 Builder.CreateBr(ContinuationBlock); 1954 1955 // Populate the atomic reduction using the atomic elementwise reduction 1956 // function. There are no loads/stores here because they will be happening 1957 // inside the atomic elementwise reduction. 1958 Builder.SetInsertPoint(AtomicRedBlock); 1959 if (CanGenerateAtomic) { 1960 for (const ReductionInfo &RI : ReductionInfos) { 1961 Builder.restoreIP(RI.AtomicReductionGen(Builder.saveIP(), RI.ElementType, 1962 RI.Variable, RI.PrivateVariable)); 1963 if (!Builder.GetInsertBlock()) 1964 return InsertPointTy(); 1965 } 1966 Builder.CreateBr(ContinuationBlock); 1967 } else { 1968 Builder.CreateUnreachable(); 1969 } 1970 1971 // Populate the outlined reduction function using the elementwise reduction 1972 // function. Partial values are extracted from the type-erased array of 1973 // pointers to private variables. 1974 BasicBlock *ReductionFuncBlock = 1975 BasicBlock::Create(Module->getContext(), "", ReductionFunc); 1976 Builder.SetInsertPoint(ReductionFuncBlock); 1977 Value *LHSArrayPtr = ReductionFunc->getArg(0); 1978 Value *RHSArrayPtr = ReductionFunc->getArg(1); 1979 1980 for (auto En : enumerate(ReductionInfos)) { 1981 const ReductionInfo &RI = En.value(); 1982 Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( 1983 RedArrayTy, LHSArrayPtr, 0, En.index()); 1984 Value *LHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), LHSI8PtrPtr); 1985 Value *LHSPtr = Builder.CreateBitCast(LHSI8Ptr, RI.Variable->getType()); 1986 Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr); 1987 Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( 1988 RedArrayTy, RHSArrayPtr, 0, En.index()); 1989 Value *RHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), RHSI8PtrPtr); 1990 Value *RHSPtr = 1991 Builder.CreateBitCast(RHSI8Ptr, RI.PrivateVariable->getType()); 1992 Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr); 1993 Value *Reduced; 1994 Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced)); 1995 if (!Builder.GetInsertBlock()) 1996 return InsertPointTy(); 1997 Builder.CreateStore(Reduced, LHSPtr); 1998 } 1999 Builder.CreateRetVoid(); 2000 2001 Builder.SetInsertPoint(ContinuationBlock); 2002 return Builder.saveIP(); 2003 } 2004 2005 OpenMPIRBuilder::InsertPointTy 2006 OpenMPIRBuilder::createMaster(const LocationDescription &Loc, 2007 BodyGenCallbackTy BodyGenCB, 2008 FinalizeCallbackTy FiniCB) { 2009 2010 if (!updateToLocation(Loc)) 2011 return Loc.IP; 2012 2013 Directive OMPD = Directive::OMPD_master; 2014 uint32_t SrcLocStrSize; 2015 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 2016 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 2017 Value *ThreadId = getOrCreateThreadID(Ident); 2018 Value *Args[] = {Ident, ThreadId}; 2019 2020 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master); 2021 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); 2022 2023 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master); 2024 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); 2025 2026 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, 2027 /*Conditional*/ true, /*hasFinalize*/ true); 2028 } 2029 2030 OpenMPIRBuilder::InsertPointTy 2031 OpenMPIRBuilder::createMasked(const LocationDescription &Loc, 2032 BodyGenCallbackTy BodyGenCB, 2033 FinalizeCallbackTy FiniCB, Value *Filter) { 2034 if (!updateToLocation(Loc)) 2035 return Loc.IP; 2036 2037 Directive OMPD = Directive::OMPD_masked; 2038 uint32_t SrcLocStrSize; 2039 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 2040 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 2041 Value *ThreadId = getOrCreateThreadID(Ident); 2042 Value *Args[] = {Ident, ThreadId, Filter}; 2043 Value *ArgsEnd[] = {Ident, ThreadId}; 2044 2045 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked); 2046 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); 2047 2048 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked); 2049 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd); 2050 2051 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, 2052 /*Conditional*/ true, /*hasFinalize*/ true); 2053 } 2054 2055 CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton( 2056 DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore, 2057 BasicBlock *PostInsertBefore, const Twine &Name) { 2058 Module *M = F->getParent(); 2059 LLVMContext &Ctx = M->getContext(); 2060 Type *IndVarTy = TripCount->getType(); 2061 2062 // Create the basic block structure. 2063 BasicBlock *Preheader = 2064 BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore); 2065 BasicBlock *Header = 2066 BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore); 2067 BasicBlock *Cond = 2068 BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore); 2069 BasicBlock *Body = 2070 BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore); 2071 BasicBlock *Latch = 2072 BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore); 2073 BasicBlock *Exit = 2074 BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore); 2075 BasicBlock *After = 2076 BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore); 2077 2078 // Use specified DebugLoc for new instructions. 2079 Builder.SetCurrentDebugLocation(DL); 2080 2081 Builder.SetInsertPoint(Preheader); 2082 Builder.CreateBr(Header); 2083 2084 Builder.SetInsertPoint(Header); 2085 PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv"); 2086 IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader); 2087 Builder.CreateBr(Cond); 2088 2089 Builder.SetInsertPoint(Cond); 2090 Value *Cmp = 2091 Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp"); 2092 Builder.CreateCondBr(Cmp, Body, Exit); 2093 2094 Builder.SetInsertPoint(Body); 2095 Builder.CreateBr(Latch); 2096 2097 Builder.SetInsertPoint(Latch); 2098 Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1), 2099 "omp_" + Name + ".next", /*HasNUW=*/true); 2100 Builder.CreateBr(Header); 2101 IndVarPHI->addIncoming(Next, Latch); 2102 2103 Builder.SetInsertPoint(Exit); 2104 Builder.CreateBr(After); 2105 2106 // Remember and return the canonical control flow. 2107 LoopInfos.emplace_front(); 2108 CanonicalLoopInfo *CL = &LoopInfos.front(); 2109 2110 CL->Header = Header; 2111 CL->Cond = Cond; 2112 CL->Latch = Latch; 2113 CL->Exit = Exit; 2114 2115 #ifndef NDEBUG 2116 CL->assertOK(); 2117 #endif 2118 return CL; 2119 } 2120 2121 CanonicalLoopInfo * 2122 OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc, 2123 LoopBodyGenCallbackTy BodyGenCB, 2124 Value *TripCount, const Twine &Name) { 2125 BasicBlock *BB = Loc.IP.getBlock(); 2126 BasicBlock *NextBB = BB->getNextNode(); 2127 2128 CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(), 2129 NextBB, NextBB, Name); 2130 BasicBlock *After = CL->getAfter(); 2131 2132 // If location is not set, don't connect the loop. 2133 if (updateToLocation(Loc)) { 2134 // Split the loop at the insertion point: Branch to the preheader and move 2135 // every following instruction to after the loop (the After BB). Also, the 2136 // new successor is the loop's after block. 2137 spliceBB(Builder, After, /*CreateBranch=*/false); 2138 Builder.CreateBr(CL->getPreheader()); 2139 } 2140 2141 // Emit the body content. We do it after connecting the loop to the CFG to 2142 // avoid that the callback encounters degenerate BBs. 2143 BodyGenCB(CL->getBodyIP(), CL->getIndVar()); 2144 2145 #ifndef NDEBUG 2146 CL->assertOK(); 2147 #endif 2148 return CL; 2149 } 2150 2151 CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop( 2152 const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB, 2153 Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop, 2154 InsertPointTy ComputeIP, const Twine &Name) { 2155 2156 // Consider the following difficulties (assuming 8-bit signed integers): 2157 // * Adding \p Step to the loop counter which passes \p Stop may overflow: 2158 // DO I = 1, 100, 50 2159 /// * A \p Step of INT_MIN cannot not be normalized to a positive direction: 2160 // DO I = 100, 0, -128 2161 2162 // Start, Stop and Step must be of the same integer type. 2163 auto *IndVarTy = cast<IntegerType>(Start->getType()); 2164 assert(IndVarTy == Stop->getType() && "Stop type mismatch"); 2165 assert(IndVarTy == Step->getType() && "Step type mismatch"); 2166 2167 LocationDescription ComputeLoc = 2168 ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc; 2169 updateToLocation(ComputeLoc); 2170 2171 ConstantInt *Zero = ConstantInt::get(IndVarTy, 0); 2172 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 2173 2174 // Like Step, but always positive. 2175 Value *Incr = Step; 2176 2177 // Distance between Start and Stop; always positive. 2178 Value *Span; 2179 2180 // Condition whether there are no iterations are executed at all, e.g. because 2181 // UB < LB. 2182 Value *ZeroCmp; 2183 2184 if (IsSigned) { 2185 // Ensure that increment is positive. If not, negate and invert LB and UB. 2186 Value *IsNeg = Builder.CreateICmpSLT(Step, Zero); 2187 Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step); 2188 Value *LB = Builder.CreateSelect(IsNeg, Stop, Start); 2189 Value *UB = Builder.CreateSelect(IsNeg, Start, Stop); 2190 Span = Builder.CreateSub(UB, LB, "", false, true); 2191 ZeroCmp = Builder.CreateICmp( 2192 InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB); 2193 } else { 2194 Span = Builder.CreateSub(Stop, Start, "", true); 2195 ZeroCmp = Builder.CreateICmp( 2196 InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start); 2197 } 2198 2199 Value *CountIfLooping; 2200 if (InclusiveStop) { 2201 CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One); 2202 } else { 2203 // Avoid incrementing past stop since it could overflow. 2204 Value *CountIfTwo = Builder.CreateAdd( 2205 Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One); 2206 Value *OneCmp = Builder.CreateICmp(CmpInst::ICMP_ULE, Span, Incr); 2207 CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo); 2208 } 2209 Value *TripCount = Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping, 2210 "omp_" + Name + ".tripcount"); 2211 2212 auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) { 2213 Builder.restoreIP(CodeGenIP); 2214 Value *Span = Builder.CreateMul(IV, Step); 2215 Value *IndVar = Builder.CreateAdd(Span, Start); 2216 BodyGenCB(Builder.saveIP(), IndVar); 2217 }; 2218 LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP(); 2219 return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name); 2220 } 2221 2222 // Returns an LLVM function to call for initializing loop bounds using OpenMP 2223 // static scheduling depending on `type`. Only i32 and i64 are supported by the 2224 // runtime. Always interpret integers as unsigned similarly to 2225 // CanonicalLoopInfo. 2226 static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M, 2227 OpenMPIRBuilder &OMPBuilder) { 2228 unsigned Bitwidth = Ty->getIntegerBitWidth(); 2229 if (Bitwidth == 32) 2230 return OMPBuilder.getOrCreateRuntimeFunction( 2231 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u); 2232 if (Bitwidth == 64) 2233 return OMPBuilder.getOrCreateRuntimeFunction( 2234 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u); 2235 llvm_unreachable("unknown OpenMP loop iterator bitwidth"); 2236 } 2237 2238 OpenMPIRBuilder::InsertPointTy 2239 OpenMPIRBuilder::applyStaticWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI, 2240 InsertPointTy AllocaIP, 2241 bool NeedsBarrier) { 2242 assert(CLI->isValid() && "Requires a valid canonical loop"); 2243 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && 2244 "Require dedicated allocate IP"); 2245 2246 // Set up the source location value for OpenMP runtime. 2247 Builder.restoreIP(CLI->getPreheaderIP()); 2248 Builder.SetCurrentDebugLocation(DL); 2249 2250 uint32_t SrcLocStrSize; 2251 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); 2252 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 2253 2254 // Declare useful OpenMP runtime functions. 2255 Value *IV = CLI->getIndVar(); 2256 Type *IVTy = IV->getType(); 2257 FunctionCallee StaticInit = getKmpcForStaticInitForType(IVTy, M, *this); 2258 FunctionCallee StaticFini = 2259 getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini); 2260 2261 // Allocate space for computed loop bounds as expected by the "init" function. 2262 Builder.restoreIP(AllocaIP); 2263 Type *I32Type = Type::getInt32Ty(M.getContext()); 2264 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); 2265 Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); 2266 Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); 2267 Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); 2268 2269 // At the end of the preheader, prepare for calling the "init" function by 2270 // storing the current loop bounds into the allocated space. A canonical loop 2271 // always iterates from 0 to trip-count with step 1. Note that "init" expects 2272 // and produces an inclusive upper bound. 2273 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator()); 2274 Constant *Zero = ConstantInt::get(IVTy, 0); 2275 Constant *One = ConstantInt::get(IVTy, 1); 2276 Builder.CreateStore(Zero, PLowerBound); 2277 Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One); 2278 Builder.CreateStore(UpperBound, PUpperBound); 2279 Builder.CreateStore(One, PStride); 2280 2281 Value *ThreadNum = getOrCreateThreadID(SrcLoc); 2282 2283 Constant *SchedulingType = ConstantInt::get( 2284 I32Type, static_cast<int>(OMPScheduleType::UnorderedStatic)); 2285 2286 // Call the "init" function and update the trip count of the loop with the 2287 // value it produced. 2288 Builder.CreateCall(StaticInit, 2289 {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound, 2290 PUpperBound, PStride, One, Zero}); 2291 Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound); 2292 Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound); 2293 Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound); 2294 Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One); 2295 CLI->setTripCount(TripCount); 2296 2297 // Update all uses of the induction variable except the one in the condition 2298 // block that compares it with the actual upper bound, and the increment in 2299 // the latch block. 2300 2301 CLI->mapIndVar([&](Instruction *OldIV) -> Value * { 2302 Builder.SetInsertPoint(CLI->getBody(), 2303 CLI->getBody()->getFirstInsertionPt()); 2304 Builder.SetCurrentDebugLocation(DL); 2305 return Builder.CreateAdd(OldIV, LowerBound); 2306 }); 2307 2308 // In the "exit" block, call the "fini" function. 2309 Builder.SetInsertPoint(CLI->getExit(), 2310 CLI->getExit()->getTerminator()->getIterator()); 2311 Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum}); 2312 2313 // Add the barrier if requested. 2314 if (NeedsBarrier) 2315 createBarrier(LocationDescription(Builder.saveIP(), DL), 2316 omp::Directive::OMPD_for, /* ForceSimpleCall */ false, 2317 /* CheckCancelFlag */ false); 2318 2319 InsertPointTy AfterIP = CLI->getAfterIP(); 2320 CLI->invalidate(); 2321 2322 return AfterIP; 2323 } 2324 2325 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyStaticChunkedWorkshareLoop( 2326 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, 2327 bool NeedsBarrier, Value *ChunkSize) { 2328 assert(CLI->isValid() && "Requires a valid canonical loop"); 2329 assert(ChunkSize && "Chunk size is required"); 2330 2331 LLVMContext &Ctx = CLI->getFunction()->getContext(); 2332 Value *IV = CLI->getIndVar(); 2333 Value *OrigTripCount = CLI->getTripCount(); 2334 Type *IVTy = IV->getType(); 2335 assert(IVTy->getIntegerBitWidth() <= 64 && 2336 "Max supported tripcount bitwidth is 64 bits"); 2337 Type *InternalIVTy = IVTy->getIntegerBitWidth() <= 32 ? Type::getInt32Ty(Ctx) 2338 : Type::getInt64Ty(Ctx); 2339 Type *I32Type = Type::getInt32Ty(M.getContext()); 2340 Constant *Zero = ConstantInt::get(InternalIVTy, 0); 2341 Constant *One = ConstantInt::get(InternalIVTy, 1); 2342 2343 // Declare useful OpenMP runtime functions. 2344 FunctionCallee StaticInit = 2345 getKmpcForStaticInitForType(InternalIVTy, M, *this); 2346 FunctionCallee StaticFini = 2347 getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini); 2348 2349 // Allocate space for computed loop bounds as expected by the "init" function. 2350 Builder.restoreIP(AllocaIP); 2351 Builder.SetCurrentDebugLocation(DL); 2352 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); 2353 Value *PLowerBound = 2354 Builder.CreateAlloca(InternalIVTy, nullptr, "p.lowerbound"); 2355 Value *PUpperBound = 2356 Builder.CreateAlloca(InternalIVTy, nullptr, "p.upperbound"); 2357 Value *PStride = Builder.CreateAlloca(InternalIVTy, nullptr, "p.stride"); 2358 2359 // Set up the source location value for the OpenMP runtime. 2360 Builder.restoreIP(CLI->getPreheaderIP()); 2361 Builder.SetCurrentDebugLocation(DL); 2362 2363 // TODO: Detect overflow in ubsan or max-out with current tripcount. 2364 Value *CastedChunkSize = 2365 Builder.CreateZExtOrTrunc(ChunkSize, InternalIVTy, "chunksize"); 2366 Value *CastedTripCount = 2367 Builder.CreateZExt(OrigTripCount, InternalIVTy, "tripcount"); 2368 2369 Constant *SchedulingType = ConstantInt::get( 2370 I32Type, static_cast<int>(OMPScheduleType::UnorderedStaticChunked)); 2371 Builder.CreateStore(Zero, PLowerBound); 2372 Value *OrigUpperBound = Builder.CreateSub(CastedTripCount, One); 2373 Builder.CreateStore(OrigUpperBound, PUpperBound); 2374 Builder.CreateStore(One, PStride); 2375 2376 // Call the "init" function and update the trip count of the loop with the 2377 // value it produced. 2378 uint32_t SrcLocStrSize; 2379 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); 2380 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 2381 Value *ThreadNum = getOrCreateThreadID(SrcLoc); 2382 Builder.CreateCall(StaticInit, 2383 {/*loc=*/SrcLoc, /*global_tid=*/ThreadNum, 2384 /*schedtype=*/SchedulingType, /*plastiter=*/PLastIter, 2385 /*plower=*/PLowerBound, /*pupper=*/PUpperBound, 2386 /*pstride=*/PStride, /*incr=*/One, 2387 /*chunk=*/CastedChunkSize}); 2388 2389 // Load values written by the "init" function. 2390 Value *FirstChunkStart = 2391 Builder.CreateLoad(InternalIVTy, PLowerBound, "omp_firstchunk.lb"); 2392 Value *FirstChunkStop = 2393 Builder.CreateLoad(InternalIVTy, PUpperBound, "omp_firstchunk.ub"); 2394 Value *FirstChunkEnd = Builder.CreateAdd(FirstChunkStop, One); 2395 Value *ChunkRange = 2396 Builder.CreateSub(FirstChunkEnd, FirstChunkStart, "omp_chunk.range"); 2397 Value *NextChunkStride = 2398 Builder.CreateLoad(InternalIVTy, PStride, "omp_dispatch.stride"); 2399 2400 // Create outer "dispatch" loop for enumerating the chunks. 2401 BasicBlock *DispatchEnter = splitBB(Builder, true); 2402 Value *DispatchCounter; 2403 CanonicalLoopInfo *DispatchCLI = createCanonicalLoop( 2404 {Builder.saveIP(), DL}, 2405 [&](InsertPointTy BodyIP, Value *Counter) { DispatchCounter = Counter; }, 2406 FirstChunkStart, CastedTripCount, NextChunkStride, 2407 /*IsSigned=*/false, /*InclusiveStop=*/false, /*ComputeIP=*/{}, 2408 "dispatch"); 2409 2410 // Remember the BasicBlocks of the dispatch loop we need, then invalidate to 2411 // not have to preserve the canonical invariant. 2412 BasicBlock *DispatchBody = DispatchCLI->getBody(); 2413 BasicBlock *DispatchLatch = DispatchCLI->getLatch(); 2414 BasicBlock *DispatchExit = DispatchCLI->getExit(); 2415 BasicBlock *DispatchAfter = DispatchCLI->getAfter(); 2416 DispatchCLI->invalidate(); 2417 2418 // Rewire the original loop to become the chunk loop inside the dispatch loop. 2419 redirectTo(DispatchAfter, CLI->getAfter(), DL); 2420 redirectTo(CLI->getExit(), DispatchLatch, DL); 2421 redirectTo(DispatchBody, DispatchEnter, DL); 2422 2423 // Prepare the prolog of the chunk loop. 2424 Builder.restoreIP(CLI->getPreheaderIP()); 2425 Builder.SetCurrentDebugLocation(DL); 2426 2427 // Compute the number of iterations of the chunk loop. 2428 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator()); 2429 Value *ChunkEnd = Builder.CreateAdd(DispatchCounter, ChunkRange); 2430 Value *IsLastChunk = 2431 Builder.CreateICmpUGE(ChunkEnd, CastedTripCount, "omp_chunk.is_last"); 2432 Value *CountUntilOrigTripCount = 2433 Builder.CreateSub(CastedTripCount, DispatchCounter); 2434 Value *ChunkTripCount = Builder.CreateSelect( 2435 IsLastChunk, CountUntilOrigTripCount, ChunkRange, "omp_chunk.tripcount"); 2436 Value *BackcastedChunkTC = 2437 Builder.CreateTrunc(ChunkTripCount, IVTy, "omp_chunk.tripcount.trunc"); 2438 CLI->setTripCount(BackcastedChunkTC); 2439 2440 // Update all uses of the induction variable except the one in the condition 2441 // block that compares it with the actual upper bound, and the increment in 2442 // the latch block. 2443 Value *BackcastedDispatchCounter = 2444 Builder.CreateTrunc(DispatchCounter, IVTy, "omp_dispatch.iv.trunc"); 2445 CLI->mapIndVar([&](Instruction *) -> Value * { 2446 Builder.restoreIP(CLI->getBodyIP()); 2447 return Builder.CreateAdd(IV, BackcastedDispatchCounter); 2448 }); 2449 2450 // In the "exit" block, call the "fini" function. 2451 Builder.SetInsertPoint(DispatchExit, DispatchExit->getFirstInsertionPt()); 2452 Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum}); 2453 2454 // Add the barrier if requested. 2455 if (NeedsBarrier) 2456 createBarrier(LocationDescription(Builder.saveIP(), DL), OMPD_for, 2457 /*ForceSimpleCall=*/false, /*CheckCancelFlag=*/false); 2458 2459 #ifndef NDEBUG 2460 // Even though we currently do not support applying additional methods to it, 2461 // the chunk loop should remain a canonical loop. 2462 CLI->assertOK(); 2463 #endif 2464 2465 return {DispatchAfter, DispatchAfter->getFirstInsertionPt()}; 2466 } 2467 2468 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyWorkshareLoop( 2469 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, 2470 bool NeedsBarrier, llvm::omp::ScheduleKind SchedKind, 2471 llvm::Value *ChunkSize, bool HasSimdModifier, bool HasMonotonicModifier, 2472 bool HasNonmonotonicModifier, bool HasOrderedClause) { 2473 OMPScheduleType EffectiveScheduleType = computeOpenMPScheduleType( 2474 SchedKind, ChunkSize, HasSimdModifier, HasMonotonicModifier, 2475 HasNonmonotonicModifier, HasOrderedClause); 2476 2477 bool IsOrdered = (EffectiveScheduleType & OMPScheduleType::ModifierOrdered) == 2478 OMPScheduleType::ModifierOrdered; 2479 switch (EffectiveScheduleType & ~OMPScheduleType::ModifierMask) { 2480 case OMPScheduleType::BaseStatic: 2481 assert(!ChunkSize && "No chunk size with static-chunked schedule"); 2482 if (IsOrdered) 2483 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, 2484 NeedsBarrier, ChunkSize); 2485 // FIXME: Monotonicity ignored? 2486 return applyStaticWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier); 2487 2488 case OMPScheduleType::BaseStaticChunked: 2489 if (IsOrdered) 2490 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, 2491 NeedsBarrier, ChunkSize); 2492 // FIXME: Monotonicity ignored? 2493 return applyStaticChunkedWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier, 2494 ChunkSize); 2495 2496 case OMPScheduleType::BaseRuntime: 2497 case OMPScheduleType::BaseAuto: 2498 case OMPScheduleType::BaseGreedy: 2499 case OMPScheduleType::BaseBalanced: 2500 case OMPScheduleType::BaseSteal: 2501 case OMPScheduleType::BaseGuidedSimd: 2502 case OMPScheduleType::BaseRuntimeSimd: 2503 assert(!ChunkSize && 2504 "schedule type does not support user-defined chunk sizes"); 2505 [[fallthrough]]; 2506 case OMPScheduleType::BaseDynamicChunked: 2507 case OMPScheduleType::BaseGuidedChunked: 2508 case OMPScheduleType::BaseGuidedIterativeChunked: 2509 case OMPScheduleType::BaseGuidedAnalyticalChunked: 2510 case OMPScheduleType::BaseStaticBalancedChunked: 2511 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, 2512 NeedsBarrier, ChunkSize); 2513 2514 default: 2515 llvm_unreachable("Unknown/unimplemented schedule kind"); 2516 } 2517 } 2518 2519 /// Returns an LLVM function to call for initializing loop bounds using OpenMP 2520 /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by 2521 /// the runtime. Always interpret integers as unsigned similarly to 2522 /// CanonicalLoopInfo. 2523 static FunctionCallee 2524 getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { 2525 unsigned Bitwidth = Ty->getIntegerBitWidth(); 2526 if (Bitwidth == 32) 2527 return OMPBuilder.getOrCreateRuntimeFunction( 2528 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u); 2529 if (Bitwidth == 64) 2530 return OMPBuilder.getOrCreateRuntimeFunction( 2531 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u); 2532 llvm_unreachable("unknown OpenMP loop iterator bitwidth"); 2533 } 2534 2535 /// Returns an LLVM function to call for updating the next loop using OpenMP 2536 /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by 2537 /// the runtime. Always interpret integers as unsigned similarly to 2538 /// CanonicalLoopInfo. 2539 static FunctionCallee 2540 getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { 2541 unsigned Bitwidth = Ty->getIntegerBitWidth(); 2542 if (Bitwidth == 32) 2543 return OMPBuilder.getOrCreateRuntimeFunction( 2544 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u); 2545 if (Bitwidth == 64) 2546 return OMPBuilder.getOrCreateRuntimeFunction( 2547 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u); 2548 llvm_unreachable("unknown OpenMP loop iterator bitwidth"); 2549 } 2550 2551 /// Returns an LLVM function to call for finalizing the dynamic loop using 2552 /// depending on `type`. Only i32 and i64 are supported by the runtime. Always 2553 /// interpret integers as unsigned similarly to CanonicalLoopInfo. 2554 static FunctionCallee 2555 getKmpcForDynamicFiniForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { 2556 unsigned Bitwidth = Ty->getIntegerBitWidth(); 2557 if (Bitwidth == 32) 2558 return OMPBuilder.getOrCreateRuntimeFunction( 2559 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_4u); 2560 if (Bitwidth == 64) 2561 return OMPBuilder.getOrCreateRuntimeFunction( 2562 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_8u); 2563 llvm_unreachable("unknown OpenMP loop iterator bitwidth"); 2564 } 2565 2566 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyDynamicWorkshareLoop( 2567 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, 2568 OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) { 2569 assert(CLI->isValid() && "Requires a valid canonical loop"); 2570 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && 2571 "Require dedicated allocate IP"); 2572 assert(isValidWorkshareLoopScheduleType(SchedType) && 2573 "Require valid schedule type"); 2574 2575 bool Ordered = (SchedType & OMPScheduleType::ModifierOrdered) == 2576 OMPScheduleType::ModifierOrdered; 2577 2578 // Set up the source location value for OpenMP runtime. 2579 Builder.SetCurrentDebugLocation(DL); 2580 2581 uint32_t SrcLocStrSize; 2582 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); 2583 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 2584 2585 // Declare useful OpenMP runtime functions. 2586 Value *IV = CLI->getIndVar(); 2587 Type *IVTy = IV->getType(); 2588 FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this); 2589 FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this); 2590 2591 // Allocate space for computed loop bounds as expected by the "init" function. 2592 Builder.restoreIP(AllocaIP); 2593 Type *I32Type = Type::getInt32Ty(M.getContext()); 2594 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); 2595 Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); 2596 Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); 2597 Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); 2598 2599 // At the end of the preheader, prepare for calling the "init" function by 2600 // storing the current loop bounds into the allocated space. A canonical loop 2601 // always iterates from 0 to trip-count with step 1. Note that "init" expects 2602 // and produces an inclusive upper bound. 2603 BasicBlock *PreHeader = CLI->getPreheader(); 2604 Builder.SetInsertPoint(PreHeader->getTerminator()); 2605 Constant *One = ConstantInt::get(IVTy, 1); 2606 Builder.CreateStore(One, PLowerBound); 2607 Value *UpperBound = CLI->getTripCount(); 2608 Builder.CreateStore(UpperBound, PUpperBound); 2609 Builder.CreateStore(One, PStride); 2610 2611 BasicBlock *Header = CLI->getHeader(); 2612 BasicBlock *Exit = CLI->getExit(); 2613 BasicBlock *Cond = CLI->getCond(); 2614 BasicBlock *Latch = CLI->getLatch(); 2615 InsertPointTy AfterIP = CLI->getAfterIP(); 2616 2617 // The CLI will be "broken" in the code below, as the loop is no longer 2618 // a valid canonical loop. 2619 2620 if (!Chunk) 2621 Chunk = One; 2622 2623 Value *ThreadNum = getOrCreateThreadID(SrcLoc); 2624 2625 Constant *SchedulingType = 2626 ConstantInt::get(I32Type, static_cast<int>(SchedType)); 2627 2628 // Call the "init" function. 2629 Builder.CreateCall(DynamicInit, 2630 {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One, 2631 UpperBound, /* step */ One, Chunk}); 2632 2633 // An outer loop around the existing one. 2634 BasicBlock *OuterCond = BasicBlock::Create( 2635 PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond", 2636 PreHeader->getParent()); 2637 // This needs to be 32-bit always, so can't use the IVTy Zero above. 2638 Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt()); 2639 Value *Res = 2640 Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter, 2641 PLowerBound, PUpperBound, PStride}); 2642 Constant *Zero32 = ConstantInt::get(I32Type, 0); 2643 Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32); 2644 Value *LowerBound = 2645 Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb"); 2646 Builder.CreateCondBr(MoreWork, Header, Exit); 2647 2648 // Change PHI-node in loop header to use outer cond rather than preheader, 2649 // and set IV to the LowerBound. 2650 Instruction *Phi = &Header->front(); 2651 auto *PI = cast<PHINode>(Phi); 2652 PI->setIncomingBlock(0, OuterCond); 2653 PI->setIncomingValue(0, LowerBound); 2654 2655 // Then set the pre-header to jump to the OuterCond 2656 Instruction *Term = PreHeader->getTerminator(); 2657 auto *Br = cast<BranchInst>(Term); 2658 Br->setSuccessor(0, OuterCond); 2659 2660 // Modify the inner condition: 2661 // * Use the UpperBound returned from the DynamicNext call. 2662 // * jump to the loop outer loop when done with one of the inner loops. 2663 Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt()); 2664 UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub"); 2665 Instruction *Comp = &*Builder.GetInsertPoint(); 2666 auto *CI = cast<CmpInst>(Comp); 2667 CI->setOperand(1, UpperBound); 2668 // Redirect the inner exit to branch to outer condition. 2669 Instruction *Branch = &Cond->back(); 2670 auto *BI = cast<BranchInst>(Branch); 2671 assert(BI->getSuccessor(1) == Exit); 2672 BI->setSuccessor(1, OuterCond); 2673 2674 // Call the "fini" function if "ordered" is present in wsloop directive. 2675 if (Ordered) { 2676 Builder.SetInsertPoint(&Latch->back()); 2677 FunctionCallee DynamicFini = getKmpcForDynamicFiniForType(IVTy, M, *this); 2678 Builder.CreateCall(DynamicFini, {SrcLoc, ThreadNum}); 2679 } 2680 2681 // Add the barrier if requested. 2682 if (NeedsBarrier) { 2683 Builder.SetInsertPoint(&Exit->back()); 2684 createBarrier(LocationDescription(Builder.saveIP(), DL), 2685 omp::Directive::OMPD_for, /* ForceSimpleCall */ false, 2686 /* CheckCancelFlag */ false); 2687 } 2688 2689 CLI->invalidate(); 2690 return AfterIP; 2691 } 2692 2693 /// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is, 2694 /// after this \p OldTarget will be orphaned. 2695 static void redirectAllPredecessorsTo(BasicBlock *OldTarget, 2696 BasicBlock *NewTarget, DebugLoc DL) { 2697 for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget))) 2698 redirectTo(Pred, NewTarget, DL); 2699 } 2700 2701 /// Determine which blocks in \p BBs are reachable from outside and remove the 2702 /// ones that are not reachable from the function. 2703 static void removeUnusedBlocksFromParent(ArrayRef<BasicBlock *> BBs) { 2704 SmallPtrSet<BasicBlock *, 6> BBsToErase{BBs.begin(), BBs.end()}; 2705 auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) { 2706 for (Use &U : BB->uses()) { 2707 auto *UseInst = dyn_cast<Instruction>(U.getUser()); 2708 if (!UseInst) 2709 continue; 2710 if (BBsToErase.count(UseInst->getParent())) 2711 continue; 2712 return true; 2713 } 2714 return false; 2715 }; 2716 2717 while (true) { 2718 bool Changed = false; 2719 for (BasicBlock *BB : make_early_inc_range(BBsToErase)) { 2720 if (HasRemainingUses(BB)) { 2721 BBsToErase.erase(BB); 2722 Changed = true; 2723 } 2724 } 2725 if (!Changed) 2726 break; 2727 } 2728 2729 SmallVector<BasicBlock *, 7> BBVec(BBsToErase.begin(), BBsToErase.end()); 2730 DeleteDeadBlocks(BBVec); 2731 } 2732 2733 CanonicalLoopInfo * 2734 OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops, 2735 InsertPointTy ComputeIP) { 2736 assert(Loops.size() >= 1 && "At least one loop required"); 2737 size_t NumLoops = Loops.size(); 2738 2739 // Nothing to do if there is already just one loop. 2740 if (NumLoops == 1) 2741 return Loops.front(); 2742 2743 CanonicalLoopInfo *Outermost = Loops.front(); 2744 CanonicalLoopInfo *Innermost = Loops.back(); 2745 BasicBlock *OrigPreheader = Outermost->getPreheader(); 2746 BasicBlock *OrigAfter = Outermost->getAfter(); 2747 Function *F = OrigPreheader->getParent(); 2748 2749 // Loop control blocks that may become orphaned later. 2750 SmallVector<BasicBlock *, 12> OldControlBBs; 2751 OldControlBBs.reserve(6 * Loops.size()); 2752 for (CanonicalLoopInfo *Loop : Loops) 2753 Loop->collectControlBlocks(OldControlBBs); 2754 2755 // Setup the IRBuilder for inserting the trip count computation. 2756 Builder.SetCurrentDebugLocation(DL); 2757 if (ComputeIP.isSet()) 2758 Builder.restoreIP(ComputeIP); 2759 else 2760 Builder.restoreIP(Outermost->getPreheaderIP()); 2761 2762 // Derive the collapsed' loop trip count. 2763 // TODO: Find common/largest indvar type. 2764 Value *CollapsedTripCount = nullptr; 2765 for (CanonicalLoopInfo *L : Loops) { 2766 assert(L->isValid() && 2767 "All loops to collapse must be valid canonical loops"); 2768 Value *OrigTripCount = L->getTripCount(); 2769 if (!CollapsedTripCount) { 2770 CollapsedTripCount = OrigTripCount; 2771 continue; 2772 } 2773 2774 // TODO: Enable UndefinedSanitizer to diagnose an overflow here. 2775 CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount, 2776 {}, /*HasNUW=*/true); 2777 } 2778 2779 // Create the collapsed loop control flow. 2780 CanonicalLoopInfo *Result = 2781 createLoopSkeleton(DL, CollapsedTripCount, F, 2782 OrigPreheader->getNextNode(), OrigAfter, "collapsed"); 2783 2784 // Build the collapsed loop body code. 2785 // Start with deriving the input loop induction variables from the collapsed 2786 // one, using a divmod scheme. To preserve the original loops' order, the 2787 // innermost loop use the least significant bits. 2788 Builder.restoreIP(Result->getBodyIP()); 2789 2790 Value *Leftover = Result->getIndVar(); 2791 SmallVector<Value *> NewIndVars; 2792 NewIndVars.resize(NumLoops); 2793 for (int i = NumLoops - 1; i >= 1; --i) { 2794 Value *OrigTripCount = Loops[i]->getTripCount(); 2795 2796 Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount); 2797 NewIndVars[i] = NewIndVar; 2798 2799 Leftover = Builder.CreateUDiv(Leftover, OrigTripCount); 2800 } 2801 // Outermost loop gets all the remaining bits. 2802 NewIndVars[0] = Leftover; 2803 2804 // Construct the loop body control flow. 2805 // We progressively construct the branch structure following in direction of 2806 // the control flow, from the leading in-between code, the loop nest body, the 2807 // trailing in-between code, and rejoining the collapsed loop's latch. 2808 // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If 2809 // the ContinueBlock is set, continue with that block. If ContinuePred, use 2810 // its predecessors as sources. 2811 BasicBlock *ContinueBlock = Result->getBody(); 2812 BasicBlock *ContinuePred = nullptr; 2813 auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest, 2814 BasicBlock *NextSrc) { 2815 if (ContinueBlock) 2816 redirectTo(ContinueBlock, Dest, DL); 2817 else 2818 redirectAllPredecessorsTo(ContinuePred, Dest, DL); 2819 2820 ContinueBlock = nullptr; 2821 ContinuePred = NextSrc; 2822 }; 2823 2824 // The code before the nested loop of each level. 2825 // Because we are sinking it into the nest, it will be executed more often 2826 // that the original loop. More sophisticated schemes could keep track of what 2827 // the in-between code is and instantiate it only once per thread. 2828 for (size_t i = 0; i < NumLoops - 1; ++i) 2829 ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader()); 2830 2831 // Connect the loop nest body. 2832 ContinueWith(Innermost->getBody(), Innermost->getLatch()); 2833 2834 // The code after the nested loop at each level. 2835 for (size_t i = NumLoops - 1; i > 0; --i) 2836 ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch()); 2837 2838 // Connect the finished loop to the collapsed loop latch. 2839 ContinueWith(Result->getLatch(), nullptr); 2840 2841 // Replace the input loops with the new collapsed loop. 2842 redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL); 2843 redirectTo(Result->getAfter(), Outermost->getAfter(), DL); 2844 2845 // Replace the input loop indvars with the derived ones. 2846 for (size_t i = 0; i < NumLoops; ++i) 2847 Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]); 2848 2849 // Remove unused parts of the input loops. 2850 removeUnusedBlocksFromParent(OldControlBBs); 2851 2852 for (CanonicalLoopInfo *L : Loops) 2853 L->invalidate(); 2854 2855 #ifndef NDEBUG 2856 Result->assertOK(); 2857 #endif 2858 return Result; 2859 } 2860 2861 std::vector<CanonicalLoopInfo *> 2862 OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops, 2863 ArrayRef<Value *> TileSizes) { 2864 assert(TileSizes.size() == Loops.size() && 2865 "Must pass as many tile sizes as there are loops"); 2866 int NumLoops = Loops.size(); 2867 assert(NumLoops >= 1 && "At least one loop to tile required"); 2868 2869 CanonicalLoopInfo *OutermostLoop = Loops.front(); 2870 CanonicalLoopInfo *InnermostLoop = Loops.back(); 2871 Function *F = OutermostLoop->getBody()->getParent(); 2872 BasicBlock *InnerEnter = InnermostLoop->getBody(); 2873 BasicBlock *InnerLatch = InnermostLoop->getLatch(); 2874 2875 // Loop control blocks that may become orphaned later. 2876 SmallVector<BasicBlock *, 12> OldControlBBs; 2877 OldControlBBs.reserve(6 * Loops.size()); 2878 for (CanonicalLoopInfo *Loop : Loops) 2879 Loop->collectControlBlocks(OldControlBBs); 2880 2881 // Collect original trip counts and induction variable to be accessible by 2882 // index. Also, the structure of the original loops is not preserved during 2883 // the construction of the tiled loops, so do it before we scavenge the BBs of 2884 // any original CanonicalLoopInfo. 2885 SmallVector<Value *, 4> OrigTripCounts, OrigIndVars; 2886 for (CanonicalLoopInfo *L : Loops) { 2887 assert(L->isValid() && "All input loops must be valid canonical loops"); 2888 OrigTripCounts.push_back(L->getTripCount()); 2889 OrigIndVars.push_back(L->getIndVar()); 2890 } 2891 2892 // Collect the code between loop headers. These may contain SSA definitions 2893 // that are used in the loop nest body. To be usable with in the innermost 2894 // body, these BasicBlocks will be sunk into the loop nest body. That is, 2895 // these instructions may be executed more often than before the tiling. 2896 // TODO: It would be sufficient to only sink them into body of the 2897 // corresponding tile loop. 2898 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> InbetweenCode; 2899 for (int i = 0; i < NumLoops - 1; ++i) { 2900 CanonicalLoopInfo *Surrounding = Loops[i]; 2901 CanonicalLoopInfo *Nested = Loops[i + 1]; 2902 2903 BasicBlock *EnterBB = Surrounding->getBody(); 2904 BasicBlock *ExitBB = Nested->getHeader(); 2905 InbetweenCode.emplace_back(EnterBB, ExitBB); 2906 } 2907 2908 // Compute the trip counts of the floor loops. 2909 Builder.SetCurrentDebugLocation(DL); 2910 Builder.restoreIP(OutermostLoop->getPreheaderIP()); 2911 SmallVector<Value *, 4> FloorCount, FloorRems; 2912 for (int i = 0; i < NumLoops; ++i) { 2913 Value *TileSize = TileSizes[i]; 2914 Value *OrigTripCount = OrigTripCounts[i]; 2915 Type *IVType = OrigTripCount->getType(); 2916 2917 Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize); 2918 Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize); 2919 2920 // 0 if tripcount divides the tilesize, 1 otherwise. 2921 // 1 means we need an additional iteration for a partial tile. 2922 // 2923 // Unfortunately we cannot just use the roundup-formula 2924 // (tripcount + tilesize - 1)/tilesize 2925 // because the summation might overflow. We do not want introduce undefined 2926 // behavior when the untiled loop nest did not. 2927 Value *FloorTripOverflow = 2928 Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0)); 2929 2930 FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType); 2931 FloorTripCount = 2932 Builder.CreateAdd(FloorTripCount, FloorTripOverflow, 2933 "omp_floor" + Twine(i) + ".tripcount", true); 2934 2935 // Remember some values for later use. 2936 FloorCount.push_back(FloorTripCount); 2937 FloorRems.push_back(FloorTripRem); 2938 } 2939 2940 // Generate the new loop nest, from the outermost to the innermost. 2941 std::vector<CanonicalLoopInfo *> Result; 2942 Result.reserve(NumLoops * 2); 2943 2944 // The basic block of the surrounding loop that enters the nest generated 2945 // loop. 2946 BasicBlock *Enter = OutermostLoop->getPreheader(); 2947 2948 // The basic block of the surrounding loop where the inner code should 2949 // continue. 2950 BasicBlock *Continue = OutermostLoop->getAfter(); 2951 2952 // Where the next loop basic block should be inserted. 2953 BasicBlock *OutroInsertBefore = InnermostLoop->getExit(); 2954 2955 auto EmbeddNewLoop = 2956 [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore]( 2957 Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * { 2958 CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton( 2959 DL, TripCount, F, InnerEnter, OutroInsertBefore, Name); 2960 redirectTo(Enter, EmbeddedLoop->getPreheader(), DL); 2961 redirectTo(EmbeddedLoop->getAfter(), Continue, DL); 2962 2963 // Setup the position where the next embedded loop connects to this loop. 2964 Enter = EmbeddedLoop->getBody(); 2965 Continue = EmbeddedLoop->getLatch(); 2966 OutroInsertBefore = EmbeddedLoop->getLatch(); 2967 return EmbeddedLoop; 2968 }; 2969 2970 auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef<Value *> TripCounts, 2971 const Twine &NameBase) { 2972 for (auto P : enumerate(TripCounts)) { 2973 CanonicalLoopInfo *EmbeddedLoop = 2974 EmbeddNewLoop(P.value(), NameBase + Twine(P.index())); 2975 Result.push_back(EmbeddedLoop); 2976 } 2977 }; 2978 2979 EmbeddNewLoops(FloorCount, "floor"); 2980 2981 // Within the innermost floor loop, emit the code that computes the tile 2982 // sizes. 2983 Builder.SetInsertPoint(Enter->getTerminator()); 2984 SmallVector<Value *, 4> TileCounts; 2985 for (int i = 0; i < NumLoops; ++i) { 2986 CanonicalLoopInfo *FloorLoop = Result[i]; 2987 Value *TileSize = TileSizes[i]; 2988 2989 Value *FloorIsEpilogue = 2990 Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]); 2991 Value *TileTripCount = 2992 Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize); 2993 2994 TileCounts.push_back(TileTripCount); 2995 } 2996 2997 // Create the tile loops. 2998 EmbeddNewLoops(TileCounts, "tile"); 2999 3000 // Insert the inbetween code into the body. 3001 BasicBlock *BodyEnter = Enter; 3002 BasicBlock *BodyEntered = nullptr; 3003 for (std::pair<BasicBlock *, BasicBlock *> P : InbetweenCode) { 3004 BasicBlock *EnterBB = P.first; 3005 BasicBlock *ExitBB = P.second; 3006 3007 if (BodyEnter) 3008 redirectTo(BodyEnter, EnterBB, DL); 3009 else 3010 redirectAllPredecessorsTo(BodyEntered, EnterBB, DL); 3011 3012 BodyEnter = nullptr; 3013 BodyEntered = ExitBB; 3014 } 3015 3016 // Append the original loop nest body into the generated loop nest body. 3017 if (BodyEnter) 3018 redirectTo(BodyEnter, InnerEnter, DL); 3019 else 3020 redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL); 3021 redirectAllPredecessorsTo(InnerLatch, Continue, DL); 3022 3023 // Replace the original induction variable with an induction variable computed 3024 // from the tile and floor induction variables. 3025 Builder.restoreIP(Result.back()->getBodyIP()); 3026 for (int i = 0; i < NumLoops; ++i) { 3027 CanonicalLoopInfo *FloorLoop = Result[i]; 3028 CanonicalLoopInfo *TileLoop = Result[NumLoops + i]; 3029 Value *OrigIndVar = OrigIndVars[i]; 3030 Value *Size = TileSizes[i]; 3031 3032 Value *Scale = 3033 Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true); 3034 Value *Shift = 3035 Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true); 3036 OrigIndVar->replaceAllUsesWith(Shift); 3037 } 3038 3039 // Remove unused parts of the original loops. 3040 removeUnusedBlocksFromParent(OldControlBBs); 3041 3042 for (CanonicalLoopInfo *L : Loops) 3043 L->invalidate(); 3044 3045 #ifndef NDEBUG 3046 for (CanonicalLoopInfo *GenL : Result) 3047 GenL->assertOK(); 3048 #endif 3049 return Result; 3050 } 3051 3052 /// Attach metadata \p Properties to the basic block described by \p BB. If the 3053 /// basic block already has metadata, the basic block properties are appended. 3054 static void addBasicBlockMetadata(BasicBlock *BB, 3055 ArrayRef<Metadata *> Properties) { 3056 // Nothing to do if no property to attach. 3057 if (Properties.empty()) 3058 return; 3059 3060 LLVMContext &Ctx = BB->getContext(); 3061 SmallVector<Metadata *> NewProperties; 3062 NewProperties.push_back(nullptr); 3063 3064 // If the basic block already has metadata, prepend it to the new metadata. 3065 MDNode *Existing = BB->getTerminator()->getMetadata(LLVMContext::MD_loop); 3066 if (Existing) 3067 append_range(NewProperties, drop_begin(Existing->operands(), 1)); 3068 3069 append_range(NewProperties, Properties); 3070 MDNode *BasicBlockID = MDNode::getDistinct(Ctx, NewProperties); 3071 BasicBlockID->replaceOperandWith(0, BasicBlockID); 3072 3073 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, BasicBlockID); 3074 } 3075 3076 /// Attach loop metadata \p Properties to the loop described by \p Loop. If the 3077 /// loop already has metadata, the loop properties are appended. 3078 static void addLoopMetadata(CanonicalLoopInfo *Loop, 3079 ArrayRef<Metadata *> Properties) { 3080 assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo"); 3081 3082 // Attach metadata to the loop's latch 3083 BasicBlock *Latch = Loop->getLatch(); 3084 assert(Latch && "A valid CanonicalLoopInfo must have a unique latch"); 3085 addBasicBlockMetadata(Latch, Properties); 3086 } 3087 3088 /// Attach llvm.access.group metadata to the memref instructions of \p Block 3089 static void addSimdMetadata(BasicBlock *Block, MDNode *AccessGroup, 3090 LoopInfo &LI) { 3091 for (Instruction &I : *Block) { 3092 if (I.mayReadOrWriteMemory()) { 3093 // TODO: This instruction may already have access group from 3094 // other pragmas e.g. #pragma clang loop vectorize. Append 3095 // so that the existing metadata is not overwritten. 3096 I.setMetadata(LLVMContext::MD_access_group, AccessGroup); 3097 } 3098 } 3099 } 3100 3101 void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) { 3102 LLVMContext &Ctx = Builder.getContext(); 3103 addLoopMetadata( 3104 Loop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), 3105 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full"))}); 3106 } 3107 3108 void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) { 3109 LLVMContext &Ctx = Builder.getContext(); 3110 addLoopMetadata( 3111 Loop, { 3112 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), 3113 }); 3114 } 3115 3116 void OpenMPIRBuilder::createIfVersion(CanonicalLoopInfo *CanonicalLoop, 3117 Value *IfCond, ValueToValueMapTy &VMap, 3118 const Twine &NamePrefix) { 3119 Function *F = CanonicalLoop->getFunction(); 3120 3121 // Define where if branch should be inserted 3122 Instruction *SplitBefore; 3123 if (Instruction::classof(IfCond)) { 3124 SplitBefore = dyn_cast<Instruction>(IfCond); 3125 } else { 3126 SplitBefore = CanonicalLoop->getPreheader()->getTerminator(); 3127 } 3128 3129 // TODO: We should not rely on pass manager. Currently we use pass manager 3130 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo 3131 // object. We should have a method which returns all blocks between 3132 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter() 3133 FunctionAnalysisManager FAM; 3134 FAM.registerPass([]() { return DominatorTreeAnalysis(); }); 3135 FAM.registerPass([]() { return LoopAnalysis(); }); 3136 FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); 3137 3138 // Get the loop which needs to be cloned 3139 LoopAnalysis LIA; 3140 LoopInfo &&LI = LIA.run(*F, FAM); 3141 Loop *L = LI.getLoopFor(CanonicalLoop->getHeader()); 3142 3143 // Create additional blocks for the if statement 3144 BasicBlock *Head = SplitBefore->getParent(); 3145 Instruction *HeadOldTerm = Head->getTerminator(); 3146 llvm::LLVMContext &C = Head->getContext(); 3147 llvm::BasicBlock *ThenBlock = llvm::BasicBlock::Create( 3148 C, NamePrefix + ".if.then", Head->getParent(), Head->getNextNode()); 3149 llvm::BasicBlock *ElseBlock = llvm::BasicBlock::Create( 3150 C, NamePrefix + ".if.else", Head->getParent(), CanonicalLoop->getExit()); 3151 3152 // Create if condition branch. 3153 Builder.SetInsertPoint(HeadOldTerm); 3154 Instruction *BrInstr = 3155 Builder.CreateCondBr(IfCond, ThenBlock, /*ifFalse*/ ElseBlock); 3156 InsertPointTy IP{BrInstr->getParent(), ++BrInstr->getIterator()}; 3157 // Then block contains branch to omp loop which needs to be vectorized 3158 spliceBB(IP, ThenBlock, false); 3159 ThenBlock->replaceSuccessorsPhiUsesWith(Head, ThenBlock); 3160 3161 Builder.SetInsertPoint(ElseBlock); 3162 3163 // Clone loop for the else branch 3164 SmallVector<BasicBlock *, 8> NewBlocks; 3165 3166 VMap[CanonicalLoop->getPreheader()] = ElseBlock; 3167 for (BasicBlock *Block : L->getBlocks()) { 3168 BasicBlock *NewBB = CloneBasicBlock(Block, VMap, "", F); 3169 NewBB->moveBefore(CanonicalLoop->getExit()); 3170 VMap[Block] = NewBB; 3171 NewBlocks.push_back(NewBB); 3172 } 3173 remapInstructionsInBlocks(NewBlocks, VMap); 3174 Builder.CreateBr(NewBlocks.front()); 3175 } 3176 3177 unsigned 3178 OpenMPIRBuilder::getOpenMPDefaultSimdAlign(const Triple &TargetTriple, 3179 const StringMap<bool> &Features) { 3180 if (TargetTriple.isX86()) { 3181 if (Features.lookup("avx512f")) 3182 return 512; 3183 else if (Features.lookup("avx")) 3184 return 256; 3185 return 128; 3186 } 3187 if (TargetTriple.isPPC()) 3188 return 128; 3189 if (TargetTriple.isWasm()) 3190 return 128; 3191 return 0; 3192 } 3193 3194 void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CanonicalLoop, 3195 MapVector<Value *, Value *> AlignedVars, 3196 Value *IfCond, OrderKind Order, 3197 ConstantInt *Simdlen, ConstantInt *Safelen) { 3198 LLVMContext &Ctx = Builder.getContext(); 3199 3200 Function *F = CanonicalLoop->getFunction(); 3201 3202 // TODO: We should not rely on pass manager. Currently we use pass manager 3203 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo 3204 // object. We should have a method which returns all blocks between 3205 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter() 3206 FunctionAnalysisManager FAM; 3207 FAM.registerPass([]() { return DominatorTreeAnalysis(); }); 3208 FAM.registerPass([]() { return LoopAnalysis(); }); 3209 FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); 3210 3211 LoopAnalysis LIA; 3212 LoopInfo &&LI = LIA.run(*F, FAM); 3213 3214 Loop *L = LI.getLoopFor(CanonicalLoop->getHeader()); 3215 if (AlignedVars.size()) { 3216 InsertPointTy IP = Builder.saveIP(); 3217 Builder.SetInsertPoint(CanonicalLoop->getPreheader()->getTerminator()); 3218 for (auto &AlignedItem : AlignedVars) { 3219 Value *AlignedPtr = AlignedItem.first; 3220 Value *Alignment = AlignedItem.second; 3221 Builder.CreateAlignmentAssumption(F->getParent()->getDataLayout(), 3222 AlignedPtr, Alignment); 3223 } 3224 Builder.restoreIP(IP); 3225 } 3226 3227 if (IfCond) { 3228 ValueToValueMapTy VMap; 3229 createIfVersion(CanonicalLoop, IfCond, VMap, "simd"); 3230 // Add metadata to the cloned loop which disables vectorization 3231 Value *MappedLatch = VMap.lookup(CanonicalLoop->getLatch()); 3232 assert(MappedLatch && 3233 "Cannot find value which corresponds to original loop latch"); 3234 assert(isa<BasicBlock>(MappedLatch) && 3235 "Cannot cast mapped latch block value to BasicBlock"); 3236 BasicBlock *NewLatchBlock = dyn_cast<BasicBlock>(MappedLatch); 3237 ConstantAsMetadata *BoolConst = 3238 ConstantAsMetadata::get(ConstantInt::getFalse(Type::getInt1Ty(Ctx))); 3239 addBasicBlockMetadata( 3240 NewLatchBlock, 3241 {MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), 3242 BoolConst})}); 3243 } 3244 3245 SmallSet<BasicBlock *, 8> Reachable; 3246 3247 // Get the basic blocks from the loop in which memref instructions 3248 // can be found. 3249 // TODO: Generalize getting all blocks inside a CanonicalizeLoopInfo, 3250 // preferably without running any passes. 3251 for (BasicBlock *Block : L->getBlocks()) { 3252 if (Block == CanonicalLoop->getCond() || 3253 Block == CanonicalLoop->getHeader()) 3254 continue; 3255 Reachable.insert(Block); 3256 } 3257 3258 SmallVector<Metadata *> LoopMDList; 3259 3260 // In presence of finite 'safelen', it may be unsafe to mark all 3261 // the memory instructions parallel, because loop-carried 3262 // dependences of 'safelen' iterations are possible. 3263 // If clause order(concurrent) is specified then the memory instructions 3264 // are marked parallel even if 'safelen' is finite. 3265 if ((Safelen == nullptr) || (Order == OrderKind::OMP_ORDER_concurrent)) { 3266 // Add access group metadata to memory-access instructions. 3267 MDNode *AccessGroup = MDNode::getDistinct(Ctx, {}); 3268 for (BasicBlock *BB : Reachable) 3269 addSimdMetadata(BB, AccessGroup, LI); 3270 // TODO: If the loop has existing parallel access metadata, have 3271 // to combine two lists. 3272 LoopMDList.push_back(MDNode::get( 3273 Ctx, {MDString::get(Ctx, "llvm.loop.parallel_accesses"), AccessGroup})); 3274 } 3275 3276 // Use the above access group metadata to create loop level 3277 // metadata, which should be distinct for each loop. 3278 ConstantAsMetadata *BoolConst = 3279 ConstantAsMetadata::get(ConstantInt::getTrue(Type::getInt1Ty(Ctx))); 3280 LoopMDList.push_back(MDNode::get( 3281 Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), BoolConst})); 3282 3283 if (Simdlen || Safelen) { 3284 // If both simdlen and safelen clauses are specified, the value of the 3285 // simdlen parameter must be less than or equal to the value of the safelen 3286 // parameter. Therefore, use safelen only in the absence of simdlen. 3287 ConstantInt *VectorizeWidth = Simdlen == nullptr ? Safelen : Simdlen; 3288 LoopMDList.push_back( 3289 MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.width"), 3290 ConstantAsMetadata::get(VectorizeWidth)})); 3291 } 3292 3293 addLoopMetadata(CanonicalLoop, LoopMDList); 3294 } 3295 3296 /// Create the TargetMachine object to query the backend for optimization 3297 /// preferences. 3298 /// 3299 /// Ideally, this would be passed from the front-end to the OpenMPBuilder, but 3300 /// e.g. Clang does not pass it to its CodeGen layer and creates it only when 3301 /// needed for the LLVM pass pipline. We use some default options to avoid 3302 /// having to pass too many settings from the frontend that probably do not 3303 /// matter. 3304 /// 3305 /// Currently, TargetMachine is only used sometimes by the unrollLoopPartial 3306 /// method. If we are going to use TargetMachine for more purposes, especially 3307 /// those that are sensitive to TargetOptions, RelocModel and CodeModel, it 3308 /// might become be worth requiring front-ends to pass on their TargetMachine, 3309 /// or at least cache it between methods. Note that while fontends such as Clang 3310 /// have just a single main TargetMachine per translation unit, "target-cpu" and 3311 /// "target-features" that determine the TargetMachine are per-function and can 3312 /// be overrided using __attribute__((target("OPTIONS"))). 3313 static std::unique_ptr<TargetMachine> 3314 createTargetMachine(Function *F, CodeGenOpt::Level OptLevel) { 3315 Module *M = F->getParent(); 3316 3317 StringRef CPU = F->getFnAttribute("target-cpu").getValueAsString(); 3318 StringRef Features = F->getFnAttribute("target-features").getValueAsString(); 3319 const std::string &Triple = M->getTargetTriple(); 3320 3321 std::string Error; 3322 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 3323 if (!TheTarget) 3324 return {}; 3325 3326 llvm::TargetOptions Options; 3327 return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine( 3328 Triple, CPU, Features, Options, /*RelocModel=*/std::nullopt, 3329 /*CodeModel=*/std::nullopt, OptLevel)); 3330 } 3331 3332 /// Heuristically determine the best-performant unroll factor for \p CLI. This 3333 /// depends on the target processor. We are re-using the same heuristics as the 3334 /// LoopUnrollPass. 3335 static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) { 3336 Function *F = CLI->getFunction(); 3337 3338 // Assume the user requests the most aggressive unrolling, even if the rest of 3339 // the code is optimized using a lower setting. 3340 CodeGenOpt::Level OptLevel = CodeGenOpt::Aggressive; 3341 std::unique_ptr<TargetMachine> TM = createTargetMachine(F, OptLevel); 3342 3343 FunctionAnalysisManager FAM; 3344 FAM.registerPass([]() { return TargetLibraryAnalysis(); }); 3345 FAM.registerPass([]() { return AssumptionAnalysis(); }); 3346 FAM.registerPass([]() { return DominatorTreeAnalysis(); }); 3347 FAM.registerPass([]() { return LoopAnalysis(); }); 3348 FAM.registerPass([]() { return ScalarEvolutionAnalysis(); }); 3349 FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); 3350 TargetIRAnalysis TIRA; 3351 if (TM) 3352 TIRA = TargetIRAnalysis( 3353 [&](const Function &F) { return TM->getTargetTransformInfo(F); }); 3354 FAM.registerPass([&]() { return TIRA; }); 3355 3356 TargetIRAnalysis::Result &&TTI = TIRA.run(*F, FAM); 3357 ScalarEvolutionAnalysis SEA; 3358 ScalarEvolution &&SE = SEA.run(*F, FAM); 3359 DominatorTreeAnalysis DTA; 3360 DominatorTree &&DT = DTA.run(*F, FAM); 3361 LoopAnalysis LIA; 3362 LoopInfo &&LI = LIA.run(*F, FAM); 3363 AssumptionAnalysis ACT; 3364 AssumptionCache &&AC = ACT.run(*F, FAM); 3365 OptimizationRemarkEmitter ORE{F}; 3366 3367 Loop *L = LI.getLoopFor(CLI->getHeader()); 3368 assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop"); 3369 3370 TargetTransformInfo::UnrollingPreferences UP = 3371 gatherUnrollingPreferences(L, SE, TTI, 3372 /*BlockFrequencyInfo=*/nullptr, 3373 /*ProfileSummaryInfo=*/nullptr, ORE, OptLevel, 3374 /*UserThreshold=*/std::nullopt, 3375 /*UserCount=*/std::nullopt, 3376 /*UserAllowPartial=*/true, 3377 /*UserAllowRuntime=*/true, 3378 /*UserUpperBound=*/std::nullopt, 3379 /*UserFullUnrollMaxCount=*/std::nullopt); 3380 3381 UP.Force = true; 3382 3383 // Account for additional optimizations taking place before the LoopUnrollPass 3384 // would unroll the loop. 3385 UP.Threshold *= UnrollThresholdFactor; 3386 UP.PartialThreshold *= UnrollThresholdFactor; 3387 3388 // Use normal unroll factors even if the rest of the code is optimized for 3389 // size. 3390 UP.OptSizeThreshold = UP.Threshold; 3391 UP.PartialOptSizeThreshold = UP.PartialThreshold; 3392 3393 LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n" 3394 << " Threshold=" << UP.Threshold << "\n" 3395 << " PartialThreshold=" << UP.PartialThreshold << "\n" 3396 << " OptSizeThreshold=" << UP.OptSizeThreshold << "\n" 3397 << " PartialOptSizeThreshold=" 3398 << UP.PartialOptSizeThreshold << "\n"); 3399 3400 // Disable peeling. 3401 TargetTransformInfo::PeelingPreferences PP = 3402 gatherPeelingPreferences(L, SE, TTI, 3403 /*UserAllowPeeling=*/false, 3404 /*UserAllowProfileBasedPeeling=*/false, 3405 /*UnrollingSpecficValues=*/false); 3406 3407 SmallPtrSet<const Value *, 32> EphValues; 3408 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 3409 3410 // Assume that reads and writes to stack variables can be eliminated by 3411 // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's 3412 // size. 3413 for (BasicBlock *BB : L->blocks()) { 3414 for (Instruction &I : *BB) { 3415 Value *Ptr; 3416 if (auto *Load = dyn_cast<LoadInst>(&I)) { 3417 Ptr = Load->getPointerOperand(); 3418 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 3419 Ptr = Store->getPointerOperand(); 3420 } else 3421 continue; 3422 3423 Ptr = Ptr->stripPointerCasts(); 3424 3425 if (auto *Alloca = dyn_cast<AllocaInst>(Ptr)) { 3426 if (Alloca->getParent() == &F->getEntryBlock()) 3427 EphValues.insert(&I); 3428 } 3429 } 3430 } 3431 3432 unsigned NumInlineCandidates; 3433 bool NotDuplicatable; 3434 bool Convergent; 3435 InstructionCost LoopSizeIC = 3436 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 3437 TTI, EphValues, UP.BEInsns); 3438 LLVM_DEBUG(dbgs() << "Estimated loop size is " << LoopSizeIC << "\n"); 3439 3440 // Loop is not unrollable if the loop contains certain instructions. 3441 if (NotDuplicatable || Convergent || !LoopSizeIC.isValid()) { 3442 LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n"); 3443 return 1; 3444 } 3445 unsigned LoopSize = *LoopSizeIC.getValue(); 3446 3447 // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might 3448 // be able to use it. 3449 int TripCount = 0; 3450 int MaxTripCount = 0; 3451 bool MaxOrZero = false; 3452 unsigned TripMultiple = 0; 3453 3454 bool UseUpperBound = false; 3455 computeUnrollCount(L, TTI, DT, &LI, &AC, SE, EphValues, &ORE, TripCount, 3456 MaxTripCount, MaxOrZero, TripMultiple, LoopSize, UP, PP, 3457 UseUpperBound); 3458 unsigned Factor = UP.Count; 3459 LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n"); 3460 3461 // This function returns 1 to signal to not unroll a loop. 3462 if (Factor == 0) 3463 return 1; 3464 return Factor; 3465 } 3466 3467 void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop, 3468 int32_t Factor, 3469 CanonicalLoopInfo **UnrolledCLI) { 3470 assert(Factor >= 0 && "Unroll factor must not be negative"); 3471 3472 Function *F = Loop->getFunction(); 3473 LLVMContext &Ctx = F->getContext(); 3474 3475 // If the unrolled loop is not used for another loop-associated directive, it 3476 // is sufficient to add metadata for the LoopUnrollPass. 3477 if (!UnrolledCLI) { 3478 SmallVector<Metadata *, 2> LoopMetadata; 3479 LoopMetadata.push_back( 3480 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable"))); 3481 3482 if (Factor >= 1) { 3483 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( 3484 ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); 3485 LoopMetadata.push_back(MDNode::get( 3486 Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})); 3487 } 3488 3489 addLoopMetadata(Loop, LoopMetadata); 3490 return; 3491 } 3492 3493 // Heuristically determine the unroll factor. 3494 if (Factor == 0) 3495 Factor = computeHeuristicUnrollFactor(Loop); 3496 3497 // No change required with unroll factor 1. 3498 if (Factor == 1) { 3499 *UnrolledCLI = Loop; 3500 return; 3501 } 3502 3503 assert(Factor >= 2 && 3504 "unrolling only makes sense with a factor of 2 or larger"); 3505 3506 Type *IndVarTy = Loop->getIndVarType(); 3507 3508 // Apply partial unrolling by tiling the loop by the unroll-factor, then fully 3509 // unroll the inner loop. 3510 Value *FactorVal = 3511 ConstantInt::get(IndVarTy, APInt(IndVarTy->getIntegerBitWidth(), Factor, 3512 /*isSigned=*/false)); 3513 std::vector<CanonicalLoopInfo *> LoopNest = 3514 tileLoops(DL, {Loop}, {FactorVal}); 3515 assert(LoopNest.size() == 2 && "Expect 2 loops after tiling"); 3516 *UnrolledCLI = LoopNest[0]; 3517 CanonicalLoopInfo *InnerLoop = LoopNest[1]; 3518 3519 // LoopUnrollPass can only fully unroll loops with constant trip count. 3520 // Unroll by the unroll factor with a fallback epilog for the remainder 3521 // iterations if necessary. 3522 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( 3523 ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); 3524 addLoopMetadata( 3525 InnerLoop, 3526 {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), 3527 MDNode::get( 3528 Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})}); 3529 3530 #ifndef NDEBUG 3531 (*UnrolledCLI)->assertOK(); 3532 #endif 3533 } 3534 3535 OpenMPIRBuilder::InsertPointTy 3536 OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc, 3537 llvm::Value *BufSize, llvm::Value *CpyBuf, 3538 llvm::Value *CpyFn, llvm::Value *DidIt) { 3539 if (!updateToLocation(Loc)) 3540 return Loc.IP; 3541 3542 uint32_t SrcLocStrSize; 3543 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3544 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3545 Value *ThreadId = getOrCreateThreadID(Ident); 3546 3547 llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt); 3548 3549 Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD}; 3550 3551 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate); 3552 Builder.CreateCall(Fn, Args); 3553 3554 return Builder.saveIP(); 3555 } 3556 3557 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSingle( 3558 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, 3559 FinalizeCallbackTy FiniCB, bool IsNowait, llvm::Value *DidIt) { 3560 3561 if (!updateToLocation(Loc)) 3562 return Loc.IP; 3563 3564 // If needed (i.e. not null), initialize `DidIt` with 0 3565 if (DidIt) { 3566 Builder.CreateStore(Builder.getInt32(0), DidIt); 3567 } 3568 3569 Directive OMPD = Directive::OMPD_single; 3570 uint32_t SrcLocStrSize; 3571 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3572 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3573 Value *ThreadId = getOrCreateThreadID(Ident); 3574 Value *Args[] = {Ident, ThreadId}; 3575 3576 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single); 3577 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); 3578 3579 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single); 3580 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); 3581 3582 // generates the following: 3583 // if (__kmpc_single()) { 3584 // .... single region ... 3585 // __kmpc_end_single 3586 // } 3587 // __kmpc_barrier 3588 3589 EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, 3590 /*Conditional*/ true, 3591 /*hasFinalize*/ true); 3592 if (!IsNowait) 3593 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), 3594 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, 3595 /* CheckCancelFlag */ false); 3596 return Builder.saveIP(); 3597 } 3598 3599 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical( 3600 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, 3601 FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) { 3602 3603 if (!updateToLocation(Loc)) 3604 return Loc.IP; 3605 3606 Directive OMPD = Directive::OMPD_critical; 3607 uint32_t SrcLocStrSize; 3608 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3609 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3610 Value *ThreadId = getOrCreateThreadID(Ident); 3611 Value *LockVar = getOMPCriticalRegionLock(CriticalName); 3612 Value *Args[] = {Ident, ThreadId, LockVar}; 3613 3614 SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), std::end(Args)); 3615 Function *RTFn = nullptr; 3616 if (HintInst) { 3617 // Add Hint to entry Args and create call 3618 EnterArgs.push_back(HintInst); 3619 RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint); 3620 } else { 3621 RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical); 3622 } 3623 Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs); 3624 3625 Function *ExitRTLFn = 3626 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical); 3627 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); 3628 3629 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, 3630 /*Conditional*/ false, /*hasFinalize*/ true); 3631 } 3632 3633 OpenMPIRBuilder::InsertPointTy 3634 OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc, 3635 InsertPointTy AllocaIP, unsigned NumLoops, 3636 ArrayRef<llvm::Value *> StoreValues, 3637 const Twine &Name, bool IsDependSource) { 3638 assert( 3639 llvm::all_of(StoreValues, 3640 [](Value *SV) { return SV->getType()->isIntegerTy(64); }) && 3641 "OpenMP runtime requires depend vec with i64 type"); 3642 3643 if (!updateToLocation(Loc)) 3644 return Loc.IP; 3645 3646 // Allocate space for vector and generate alloc instruction. 3647 auto *ArrI64Ty = ArrayType::get(Int64, NumLoops); 3648 Builder.restoreIP(AllocaIP); 3649 AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI64Ty, nullptr, Name); 3650 ArgsBase->setAlignment(Align(8)); 3651 Builder.restoreIP(Loc.IP); 3652 3653 // Store the index value with offset in depend vector. 3654 for (unsigned I = 0; I < NumLoops; ++I) { 3655 Value *DependAddrGEPIter = Builder.CreateInBoundsGEP( 3656 ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(I)}); 3657 StoreInst *STInst = Builder.CreateStore(StoreValues[I], DependAddrGEPIter); 3658 STInst->setAlignment(Align(8)); 3659 } 3660 3661 Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP( 3662 ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(0)}); 3663 3664 uint32_t SrcLocStrSize; 3665 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3666 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3667 Value *ThreadId = getOrCreateThreadID(Ident); 3668 Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP}; 3669 3670 Function *RTLFn = nullptr; 3671 if (IsDependSource) 3672 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_post); 3673 else 3674 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_wait); 3675 Builder.CreateCall(RTLFn, Args); 3676 3677 return Builder.saveIP(); 3678 } 3679 3680 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedThreadsSimd( 3681 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, 3682 FinalizeCallbackTy FiniCB, bool IsThreads) { 3683 if (!updateToLocation(Loc)) 3684 return Loc.IP; 3685 3686 Directive OMPD = Directive::OMPD_ordered; 3687 Instruction *EntryCall = nullptr; 3688 Instruction *ExitCall = nullptr; 3689 3690 if (IsThreads) { 3691 uint32_t SrcLocStrSize; 3692 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3693 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3694 Value *ThreadId = getOrCreateThreadID(Ident); 3695 Value *Args[] = {Ident, ThreadId}; 3696 3697 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_ordered); 3698 EntryCall = Builder.CreateCall(EntryRTLFn, Args); 3699 3700 Function *ExitRTLFn = 3701 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_ordered); 3702 ExitCall = Builder.CreateCall(ExitRTLFn, Args); 3703 } 3704 3705 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, 3706 /*Conditional*/ false, /*hasFinalize*/ true); 3707 } 3708 3709 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion( 3710 Directive OMPD, Instruction *EntryCall, Instruction *ExitCall, 3711 BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional, 3712 bool HasFinalize, bool IsCancellable) { 3713 3714 if (HasFinalize) 3715 FinalizationStack.push_back({FiniCB, OMPD, IsCancellable}); 3716 3717 // Create inlined region's entry and body blocks, in preparation 3718 // for conditional creation 3719 BasicBlock *EntryBB = Builder.GetInsertBlock(); 3720 Instruction *SplitPos = EntryBB->getTerminator(); 3721 if (!isa_and_nonnull<BranchInst>(SplitPos)) 3722 SplitPos = new UnreachableInst(Builder.getContext(), EntryBB); 3723 BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end"); 3724 BasicBlock *FiniBB = 3725 EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize"); 3726 3727 Builder.SetInsertPoint(EntryBB->getTerminator()); 3728 emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional); 3729 3730 // generate body 3731 BodyGenCB(/* AllocaIP */ InsertPointTy(), 3732 /* CodeGenIP */ Builder.saveIP()); 3733 3734 // emit exit call and do any needed finalization. 3735 auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt()); 3736 assert(FiniBB->getTerminator()->getNumSuccessors() == 1 && 3737 FiniBB->getTerminator()->getSuccessor(0) == ExitBB && 3738 "Unexpected control flow graph state!!"); 3739 emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize); 3740 assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB && 3741 "Unexpected Control Flow State!"); 3742 MergeBlockIntoPredecessor(FiniBB); 3743 3744 // If we are skipping the region of a non conditional, remove the exit 3745 // block, and clear the builder's insertion point. 3746 assert(SplitPos->getParent() == ExitBB && 3747 "Unexpected Insertion point location!"); 3748 auto merged = MergeBlockIntoPredecessor(ExitBB); 3749 BasicBlock *ExitPredBB = SplitPos->getParent(); 3750 auto InsertBB = merged ? ExitPredBB : ExitBB; 3751 if (!isa_and_nonnull<BranchInst>(SplitPos)) 3752 SplitPos->eraseFromParent(); 3753 Builder.SetInsertPoint(InsertBB); 3754 3755 return Builder.saveIP(); 3756 } 3757 3758 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry( 3759 Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) { 3760 // if nothing to do, Return current insertion point. 3761 if (!Conditional || !EntryCall) 3762 return Builder.saveIP(); 3763 3764 BasicBlock *EntryBB = Builder.GetInsertBlock(); 3765 Value *CallBool = Builder.CreateIsNotNull(EntryCall); 3766 auto *ThenBB = BasicBlock::Create(M.getContext(), "omp_region.body"); 3767 auto *UI = new UnreachableInst(Builder.getContext(), ThenBB); 3768 3769 // Emit thenBB and set the Builder's insertion point there for 3770 // body generation next. Place the block after the current block. 3771 Function *CurFn = EntryBB->getParent(); 3772 CurFn->insert(std::next(EntryBB->getIterator()), ThenBB); 3773 3774 // Move Entry branch to end of ThenBB, and replace with conditional 3775 // branch (If-stmt) 3776 Instruction *EntryBBTI = EntryBB->getTerminator(); 3777 Builder.CreateCondBr(CallBool, ThenBB, ExitBB); 3778 EntryBBTI->removeFromParent(); 3779 Builder.SetInsertPoint(UI); 3780 Builder.Insert(EntryBBTI); 3781 UI->eraseFromParent(); 3782 Builder.SetInsertPoint(ThenBB->getTerminator()); 3783 3784 // return an insertion point to ExitBB. 3785 return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt()); 3786 } 3787 3788 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveExit( 3789 omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall, 3790 bool HasFinalize) { 3791 3792 Builder.restoreIP(FinIP); 3793 3794 // If there is finalization to do, emit it before the exit call 3795 if (HasFinalize) { 3796 assert(!FinalizationStack.empty() && 3797 "Unexpected finalization stack state!"); 3798 3799 FinalizationInfo Fi = FinalizationStack.pop_back_val(); 3800 assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!"); 3801 3802 Fi.FiniCB(FinIP); 3803 3804 BasicBlock *FiniBB = FinIP.getBlock(); 3805 Instruction *FiniBBTI = FiniBB->getTerminator(); 3806 3807 // set Builder IP for call creation 3808 Builder.SetInsertPoint(FiniBBTI); 3809 } 3810 3811 if (!ExitCall) 3812 return Builder.saveIP(); 3813 3814 // place the Exitcall as last instruction before Finalization block terminator 3815 ExitCall->removeFromParent(); 3816 Builder.Insert(ExitCall); 3817 3818 return IRBuilder<>::InsertPoint(ExitCall->getParent(), 3819 ExitCall->getIterator()); 3820 } 3821 3822 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks( 3823 InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr, 3824 llvm::IntegerType *IntPtrTy, bool BranchtoEnd) { 3825 if (!IP.isSet()) 3826 return IP; 3827 3828 IRBuilder<>::InsertPointGuard IPG(Builder); 3829 3830 // creates the following CFG structure 3831 // OMP_Entry : (MasterAddr != PrivateAddr)? 3832 // F T 3833 // | \ 3834 // | copin.not.master 3835 // | / 3836 // v / 3837 // copyin.not.master.end 3838 // | 3839 // v 3840 // OMP.Entry.Next 3841 3842 BasicBlock *OMP_Entry = IP.getBlock(); 3843 Function *CurFn = OMP_Entry->getParent(); 3844 BasicBlock *CopyBegin = 3845 BasicBlock::Create(M.getContext(), "copyin.not.master", CurFn); 3846 BasicBlock *CopyEnd = nullptr; 3847 3848 // If entry block is terminated, split to preserve the branch to following 3849 // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is. 3850 if (isa_and_nonnull<BranchInst>(OMP_Entry->getTerminator())) { 3851 CopyEnd = OMP_Entry->splitBasicBlock(OMP_Entry->getTerminator(), 3852 "copyin.not.master.end"); 3853 OMP_Entry->getTerminator()->eraseFromParent(); 3854 } else { 3855 CopyEnd = 3856 BasicBlock::Create(M.getContext(), "copyin.not.master.end", CurFn); 3857 } 3858 3859 Builder.SetInsertPoint(OMP_Entry); 3860 Value *MasterPtr = Builder.CreatePtrToInt(MasterAddr, IntPtrTy); 3861 Value *PrivatePtr = Builder.CreatePtrToInt(PrivateAddr, IntPtrTy); 3862 Value *cmp = Builder.CreateICmpNE(MasterPtr, PrivatePtr); 3863 Builder.CreateCondBr(cmp, CopyBegin, CopyEnd); 3864 3865 Builder.SetInsertPoint(CopyBegin); 3866 if (BranchtoEnd) 3867 Builder.SetInsertPoint(Builder.CreateBr(CopyEnd)); 3868 3869 return Builder.saveIP(); 3870 } 3871 3872 CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc, 3873 Value *Size, Value *Allocator, 3874 std::string Name) { 3875 IRBuilder<>::InsertPointGuard IPG(Builder); 3876 Builder.restoreIP(Loc.IP); 3877 3878 uint32_t SrcLocStrSize; 3879 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3880 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3881 Value *ThreadId = getOrCreateThreadID(Ident); 3882 Value *Args[] = {ThreadId, Size, Allocator}; 3883 3884 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_alloc); 3885 3886 return Builder.CreateCall(Fn, Args, Name); 3887 } 3888 3889 CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc, 3890 Value *Addr, Value *Allocator, 3891 std::string Name) { 3892 IRBuilder<>::InsertPointGuard IPG(Builder); 3893 Builder.restoreIP(Loc.IP); 3894 3895 uint32_t SrcLocStrSize; 3896 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3897 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3898 Value *ThreadId = getOrCreateThreadID(Ident); 3899 Value *Args[] = {ThreadId, Addr, Allocator}; 3900 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_free); 3901 return Builder.CreateCall(Fn, Args, Name); 3902 } 3903 3904 CallInst *OpenMPIRBuilder::createOMPInteropInit( 3905 const LocationDescription &Loc, Value *InteropVar, 3906 omp::OMPInteropType InteropType, Value *Device, Value *NumDependences, 3907 Value *DependenceAddress, bool HaveNowaitClause) { 3908 IRBuilder<>::InsertPointGuard IPG(Builder); 3909 Builder.restoreIP(Loc.IP); 3910 3911 uint32_t SrcLocStrSize; 3912 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3913 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3914 Value *ThreadId = getOrCreateThreadID(Ident); 3915 if (Device == nullptr) 3916 Device = ConstantInt::get(Int32, -1); 3917 Constant *InteropTypeVal = ConstantInt::get(Int32, (int)InteropType); 3918 if (NumDependences == nullptr) { 3919 NumDependences = ConstantInt::get(Int32, 0); 3920 PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext()); 3921 DependenceAddress = ConstantPointerNull::get(PointerTypeVar); 3922 } 3923 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); 3924 Value *Args[] = { 3925 Ident, ThreadId, InteropVar, InteropTypeVal, 3926 Device, NumDependences, DependenceAddress, HaveNowaitClauseVal}; 3927 3928 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_init); 3929 3930 return Builder.CreateCall(Fn, Args); 3931 } 3932 3933 CallInst *OpenMPIRBuilder::createOMPInteropDestroy( 3934 const LocationDescription &Loc, Value *InteropVar, Value *Device, 3935 Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) { 3936 IRBuilder<>::InsertPointGuard IPG(Builder); 3937 Builder.restoreIP(Loc.IP); 3938 3939 uint32_t SrcLocStrSize; 3940 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3941 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3942 Value *ThreadId = getOrCreateThreadID(Ident); 3943 if (Device == nullptr) 3944 Device = ConstantInt::get(Int32, -1); 3945 if (NumDependences == nullptr) { 3946 NumDependences = ConstantInt::get(Int32, 0); 3947 PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext()); 3948 DependenceAddress = ConstantPointerNull::get(PointerTypeVar); 3949 } 3950 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); 3951 Value *Args[] = { 3952 Ident, ThreadId, InteropVar, Device, 3953 NumDependences, DependenceAddress, HaveNowaitClauseVal}; 3954 3955 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_destroy); 3956 3957 return Builder.CreateCall(Fn, Args); 3958 } 3959 3960 CallInst *OpenMPIRBuilder::createOMPInteropUse(const LocationDescription &Loc, 3961 Value *InteropVar, Value *Device, 3962 Value *NumDependences, 3963 Value *DependenceAddress, 3964 bool HaveNowaitClause) { 3965 IRBuilder<>::InsertPointGuard IPG(Builder); 3966 Builder.restoreIP(Loc.IP); 3967 uint32_t SrcLocStrSize; 3968 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3969 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3970 Value *ThreadId = getOrCreateThreadID(Ident); 3971 if (Device == nullptr) 3972 Device = ConstantInt::get(Int32, -1); 3973 if (NumDependences == nullptr) { 3974 NumDependences = ConstantInt::get(Int32, 0); 3975 PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext()); 3976 DependenceAddress = ConstantPointerNull::get(PointerTypeVar); 3977 } 3978 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); 3979 Value *Args[] = { 3980 Ident, ThreadId, InteropVar, Device, 3981 NumDependences, DependenceAddress, HaveNowaitClauseVal}; 3982 3983 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_use); 3984 3985 return Builder.CreateCall(Fn, Args); 3986 } 3987 3988 CallInst *OpenMPIRBuilder::createCachedThreadPrivate( 3989 const LocationDescription &Loc, llvm::Value *Pointer, 3990 llvm::ConstantInt *Size, const llvm::Twine &Name) { 3991 IRBuilder<>::InsertPointGuard IPG(Builder); 3992 Builder.restoreIP(Loc.IP); 3993 3994 uint32_t SrcLocStrSize; 3995 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 3996 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 3997 Value *ThreadId = getOrCreateThreadID(Ident); 3998 Constant *ThreadPrivateCache = 3999 getOrCreateInternalVariable(Int8PtrPtr, Name.str()); 4000 llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache}; 4001 4002 Function *Fn = 4003 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_threadprivate_cached); 4004 4005 return Builder.CreateCall(Fn, Args); 4006 } 4007 4008 OpenMPIRBuilder::InsertPointTy 4009 OpenMPIRBuilder::createTargetInit(const LocationDescription &Loc, bool IsSPMD) { 4010 if (!updateToLocation(Loc)) 4011 return Loc.IP; 4012 4013 uint32_t SrcLocStrSize; 4014 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 4015 Constant *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 4016 ConstantInt *IsSPMDVal = ConstantInt::getSigned( 4017 IntegerType::getInt8Ty(Int8->getContext()), 4018 IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC); 4019 ConstantInt *UseGenericStateMachine = 4020 ConstantInt::getBool(Int32->getContext(), !IsSPMD); 4021 4022 Function *Fn = getOrCreateRuntimeFunctionPtr( 4023 omp::RuntimeFunction::OMPRTL___kmpc_target_init); 4024 4025 CallInst *ThreadKind = Builder.CreateCall( 4026 Fn, {Ident, IsSPMDVal, UseGenericStateMachine}); 4027 4028 Value *ExecUserCode = Builder.CreateICmpEQ( 4029 ThreadKind, ConstantInt::get(ThreadKind->getType(), -1), 4030 "exec_user_code"); 4031 4032 // ThreadKind = __kmpc_target_init(...) 4033 // if (ThreadKind == -1) 4034 // user_code 4035 // else 4036 // return; 4037 4038 auto *UI = Builder.CreateUnreachable(); 4039 BasicBlock *CheckBB = UI->getParent(); 4040 BasicBlock *UserCodeEntryBB = CheckBB->splitBasicBlock(UI, "user_code.entry"); 4041 4042 BasicBlock *WorkerExitBB = BasicBlock::Create( 4043 CheckBB->getContext(), "worker.exit", CheckBB->getParent()); 4044 Builder.SetInsertPoint(WorkerExitBB); 4045 Builder.CreateRetVoid(); 4046 4047 auto *CheckBBTI = CheckBB->getTerminator(); 4048 Builder.SetInsertPoint(CheckBBTI); 4049 Builder.CreateCondBr(ExecUserCode, UI->getParent(), WorkerExitBB); 4050 4051 CheckBBTI->eraseFromParent(); 4052 UI->eraseFromParent(); 4053 4054 // Continue in the "user_code" block, see diagram above and in 4055 // openmp/libomptarget/deviceRTLs/common/include/target.h . 4056 return InsertPointTy(UserCodeEntryBB, UserCodeEntryBB->getFirstInsertionPt()); 4057 } 4058 4059 void OpenMPIRBuilder::createTargetDeinit(const LocationDescription &Loc, 4060 bool IsSPMD) { 4061 if (!updateToLocation(Loc)) 4062 return; 4063 4064 uint32_t SrcLocStrSize; 4065 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 4066 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 4067 ConstantInt *IsSPMDVal = ConstantInt::getSigned( 4068 IntegerType::getInt8Ty(Int8->getContext()), 4069 IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC); 4070 4071 Function *Fn = getOrCreateRuntimeFunctionPtr( 4072 omp::RuntimeFunction::OMPRTL___kmpc_target_deinit); 4073 4074 Builder.CreateCall(Fn, {Ident, IsSPMDVal}); 4075 } 4076 4077 void OpenMPIRBuilder::setOutlinedTargetRegionFunctionAttributes( 4078 Function *OutlinedFn, int32_t NumTeams, int32_t NumThreads) { 4079 if (Config.isTargetDevice()) { 4080 OutlinedFn->setLinkage(GlobalValue::WeakODRLinkage); 4081 // TODO: Determine if DSO local can be set to true. 4082 OutlinedFn->setDSOLocal(false); 4083 OutlinedFn->setVisibility(GlobalValue::ProtectedVisibility); 4084 if (Triple(M.getTargetTriple()).isAMDGCN()) 4085 OutlinedFn->setCallingConv(CallingConv::AMDGPU_KERNEL); 4086 } 4087 4088 if (NumTeams > 0) 4089 OutlinedFn->addFnAttr("omp_target_num_teams", std::to_string(NumTeams)); 4090 if (NumThreads > 0) 4091 OutlinedFn->addFnAttr("omp_target_thread_limit", 4092 std::to_string(NumThreads)); 4093 } 4094 4095 Constant *OpenMPIRBuilder::createOutlinedFunctionID(Function *OutlinedFn, 4096 StringRef EntryFnIDName) { 4097 if (Config.isTargetDevice()) { 4098 assert(OutlinedFn && "The outlined function must exist if embedded"); 4099 return ConstantExpr::getBitCast(OutlinedFn, Builder.getInt8PtrTy()); 4100 } 4101 4102 return new GlobalVariable( 4103 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::WeakAnyLinkage, 4104 Constant::getNullValue(Builder.getInt8Ty()), EntryFnIDName); 4105 } 4106 4107 Constant *OpenMPIRBuilder::createTargetRegionEntryAddr(Function *OutlinedFn, 4108 StringRef EntryFnName) { 4109 if (OutlinedFn) 4110 return OutlinedFn; 4111 4112 assert(!M.getGlobalVariable(EntryFnName, true) && 4113 "Named kernel already exists?"); 4114 return new GlobalVariable( 4115 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::InternalLinkage, 4116 Constant::getNullValue(Builder.getInt8Ty()), EntryFnName); 4117 } 4118 4119 void OpenMPIRBuilder::emitTargetRegionFunction( 4120 TargetRegionEntryInfo &EntryInfo, 4121 FunctionGenCallback &GenerateFunctionCallback, int32_t NumTeams, 4122 int32_t NumThreads, bool IsOffloadEntry, Function *&OutlinedFn, 4123 Constant *&OutlinedFnID) { 4124 4125 SmallString<64> EntryFnName; 4126 OffloadInfoManager.getTargetRegionEntryFnName(EntryFnName, EntryInfo); 4127 4128 OutlinedFn = Config.isTargetDevice() || !Config.openMPOffloadMandatory() 4129 ? GenerateFunctionCallback(EntryFnName) 4130 : nullptr; 4131 4132 // If this target outline function is not an offload entry, we don't need to 4133 // register it. This may be in the case of a false if clause, or if there are 4134 // no OpenMP targets. 4135 if (!IsOffloadEntry) 4136 return; 4137 4138 std::string EntryFnIDName = 4139 Config.isTargetDevice() 4140 ? std::string(EntryFnName) 4141 : createPlatformSpecificName({EntryFnName, "region_id"}); 4142 4143 OutlinedFnID = registerTargetRegionFunction( 4144 EntryInfo, OutlinedFn, EntryFnName, EntryFnIDName, NumTeams, NumThreads); 4145 } 4146 4147 Constant *OpenMPIRBuilder::registerTargetRegionFunction( 4148 TargetRegionEntryInfo &EntryInfo, Function *OutlinedFn, 4149 StringRef EntryFnName, StringRef EntryFnIDName, int32_t NumTeams, 4150 int32_t NumThreads) { 4151 if (OutlinedFn) 4152 setOutlinedTargetRegionFunctionAttributes(OutlinedFn, NumTeams, NumThreads); 4153 auto OutlinedFnID = createOutlinedFunctionID(OutlinedFn, EntryFnIDName); 4154 auto EntryAddr = createTargetRegionEntryAddr(OutlinedFn, EntryFnName); 4155 OffloadInfoManager.registerTargetRegionEntryInfo( 4156 EntryInfo, EntryAddr, OutlinedFnID, 4157 OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion); 4158 return OutlinedFnID; 4159 } 4160 4161 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTargetData( 4162 const LocationDescription &Loc, InsertPointTy AllocaIP, 4163 InsertPointTy CodeGenIP, Value *DeviceID, Value *IfCond, 4164 TargetDataInfo &Info, 4165 function_ref<MapInfosTy &(InsertPointTy CodeGenIP)> GenMapInfoCB, 4166 omp::RuntimeFunction *MapperFunc, 4167 function_ref<InsertPointTy(InsertPointTy CodeGenIP, BodyGenTy BodyGenType)> 4168 BodyGenCB, 4169 function_ref<void(unsigned int, Value *)> DeviceAddrCB, 4170 function_ref<Value *(unsigned int)> CustomMapperCB, Value *SrcLocInfo) { 4171 if (!updateToLocation(Loc)) 4172 return InsertPointTy(); 4173 4174 Builder.restoreIP(CodeGenIP); 4175 bool IsStandAlone = !BodyGenCB; 4176 MapInfosTy *MapInfo; 4177 // Generate the code for the opening of the data environment. Capture all the 4178 // arguments of the runtime call by reference because they are used in the 4179 // closing of the region. 4180 auto BeginThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 4181 MapInfo = &GenMapInfoCB(Builder.saveIP()); 4182 emitOffloadingArrays(AllocaIP, Builder.saveIP(), *MapInfo, Info, 4183 /*IsNonContiguous=*/true, DeviceAddrCB, 4184 CustomMapperCB); 4185 4186 TargetDataRTArgs RTArgs; 4187 emitOffloadingArraysArgument(Builder, RTArgs, Info, 4188 !MapInfo->Names.empty()); 4189 4190 // Emit the number of elements in the offloading arrays. 4191 Value *PointerNum = Builder.getInt32(Info.NumberOfPtrs); 4192 4193 // Source location for the ident struct 4194 if (!SrcLocInfo) { 4195 uint32_t SrcLocStrSize; 4196 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 4197 SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 4198 } 4199 4200 Value *OffloadingArgs[] = {SrcLocInfo, DeviceID, 4201 PointerNum, RTArgs.BasePointersArray, 4202 RTArgs.PointersArray, RTArgs.SizesArray, 4203 RTArgs.MapTypesArray, RTArgs.MapNamesArray, 4204 RTArgs.MappersArray}; 4205 4206 if (IsStandAlone) { 4207 assert(MapperFunc && "MapperFunc missing for standalone target data"); 4208 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(*MapperFunc), 4209 OffloadingArgs); 4210 } else { 4211 Function *BeginMapperFunc = getOrCreateRuntimeFunctionPtr( 4212 omp::OMPRTL___tgt_target_data_begin_mapper); 4213 4214 Builder.CreateCall(BeginMapperFunc, OffloadingArgs); 4215 4216 for (auto DeviceMap : Info.DevicePtrInfoMap) { 4217 if (isa<AllocaInst>(DeviceMap.second.second)) { 4218 auto *LI = 4219 Builder.CreateLoad(Builder.getPtrTy(), DeviceMap.second.first); 4220 Builder.CreateStore(LI, DeviceMap.second.second); 4221 } 4222 } 4223 4224 // If device pointer privatization is required, emit the body of the 4225 // region here. It will have to be duplicated: with and without 4226 // privatization. 4227 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::Priv)); 4228 } 4229 }; 4230 4231 // If we need device pointer privatization, we need to emit the body of the 4232 // region with no privatization in the 'else' branch of the conditional. 4233 // Otherwise, we don't have to do anything. 4234 auto BeginElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 4235 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::DupNoPriv)); 4236 }; 4237 4238 // Generate code for the closing of the data region. 4239 auto EndThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { 4240 TargetDataRTArgs RTArgs; 4241 emitOffloadingArraysArgument(Builder, RTArgs, Info, !MapInfo->Names.empty(), 4242 /*ForEndCall=*/true); 4243 4244 // Emit the number of elements in the offloading arrays. 4245 Value *PointerNum = Builder.getInt32(Info.NumberOfPtrs); 4246 4247 // Source location for the ident struct 4248 if (!SrcLocInfo) { 4249 uint32_t SrcLocStrSize; 4250 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); 4251 SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize); 4252 } 4253 4254 Value *OffloadingArgs[] = {SrcLocInfo, DeviceID, 4255 PointerNum, RTArgs.BasePointersArray, 4256 RTArgs.PointersArray, RTArgs.SizesArray, 4257 RTArgs.MapTypesArray, RTArgs.MapNamesArray, 4258 RTArgs.MappersArray}; 4259 Function *EndMapperFunc = 4260 getOrCreateRuntimeFunctionPtr(omp::OMPRTL___tgt_target_data_end_mapper); 4261 4262 Builder.CreateCall(EndMapperFunc, OffloadingArgs); 4263 }; 4264 4265 // We don't have to do anything to close the region if the if clause evaluates 4266 // to false. 4267 auto EndElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {}; 4268 4269 if (BodyGenCB) { 4270 if (IfCond) { 4271 emitIfClause(IfCond, BeginThenGen, BeginElseGen, AllocaIP); 4272 } else { 4273 BeginThenGen(AllocaIP, Builder.saveIP()); 4274 } 4275 4276 // If we don't require privatization of device pointers, we emit the body in 4277 // between the runtime calls. This avoids duplicating the body code. 4278 Builder.restoreIP(BodyGenCB(Builder.saveIP(), BodyGenTy::NoPriv)); 4279 4280 if (IfCond) { 4281 emitIfClause(IfCond, EndThenGen, EndElseGen, AllocaIP); 4282 } else { 4283 EndThenGen(AllocaIP, Builder.saveIP()); 4284 } 4285 } else { 4286 if (IfCond) { 4287 emitIfClause(IfCond, BeginThenGen, EndElseGen, AllocaIP); 4288 } else { 4289 BeginThenGen(AllocaIP, Builder.saveIP()); 4290 } 4291 } 4292 4293 return Builder.saveIP(); 4294 } 4295 4296 static Function * 4297 createOutlinedFunction(OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, 4298 StringRef FuncName, SmallVectorImpl<Value *> &Inputs, 4299 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc) { 4300 SmallVector<Type *> ParameterTypes; 4301 for (auto &Arg : Inputs) 4302 ParameterTypes.push_back(Arg->getType()); 4303 4304 auto FuncType = FunctionType::get(Builder.getVoidTy(), ParameterTypes, 4305 /*isVarArg*/ false); 4306 auto Func = Function::Create(FuncType, GlobalValue::InternalLinkage, FuncName, 4307 Builder.GetInsertBlock()->getModule()); 4308 4309 // Save insert point. 4310 auto OldInsertPoint = Builder.saveIP(); 4311 4312 // Generate the region into the function. 4313 BasicBlock *EntryBB = BasicBlock::Create(Builder.getContext(), "entry", Func); 4314 Builder.SetInsertPoint(EntryBB); 4315 4316 // Insert target init call in the device compilation pass. 4317 if (OMPBuilder.Config.isTargetDevice()) 4318 Builder.restoreIP(OMPBuilder.createTargetInit(Builder, /*IsSPMD*/ false)); 4319 4320 Builder.restoreIP(CBFunc(Builder.saveIP(), Builder.saveIP())); 4321 4322 // Insert target deinit call in the device compilation pass. 4323 if (OMPBuilder.Config.isTargetDevice()) 4324 OMPBuilder.createTargetDeinit(Builder, /*IsSPMD*/ false); 4325 4326 // Insert return instruction. 4327 Builder.CreateRetVoid(); 4328 4329 // Rewrite uses of input valus to parameters. 4330 for (auto InArg : zip(Inputs, Func->args())) { 4331 Value *Input = std::get<0>(InArg); 4332 Argument &Arg = std::get<1>(InArg); 4333 4334 // Collect all the instructions 4335 for (User *User : make_early_inc_range(Input->users())) 4336 if (auto Instr = dyn_cast<Instruction>(User)) 4337 if (Instr->getFunction() == Func) 4338 Instr->replaceUsesOfWith(Input, &Arg); 4339 } 4340 4341 // Restore insert point. 4342 Builder.restoreIP(OldInsertPoint); 4343 4344 return Func; 4345 } 4346 4347 static void 4348 emitTargetOutlinedFunction(OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, 4349 TargetRegionEntryInfo &EntryInfo, 4350 Function *&OutlinedFn, int32_t NumTeams, 4351 int32_t NumThreads, SmallVectorImpl<Value *> &Inputs, 4352 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc) { 4353 4354 OpenMPIRBuilder::FunctionGenCallback &&GenerateOutlinedFunction = 4355 [&OMPBuilder, &Builder, &Inputs, &CBFunc](StringRef EntryFnName) { 4356 return createOutlinedFunction(OMPBuilder, Builder, EntryFnName, Inputs, 4357 CBFunc); 4358 }; 4359 4360 Constant *OutlinedFnID; 4361 OMPBuilder.emitTargetRegionFunction(EntryInfo, GenerateOutlinedFunction, 4362 NumTeams, NumThreads, true, OutlinedFn, 4363 OutlinedFnID); 4364 } 4365 4366 static void emitTargetCall(IRBuilderBase &Builder, Function *OutlinedFn, 4367 SmallVectorImpl<Value *> &Args) { 4368 // TODO: Add kernel launch call 4369 Builder.CreateCall(OutlinedFn, Args); 4370 } 4371 4372 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTarget( 4373 const LocationDescription &Loc, OpenMPIRBuilder::InsertPointTy CodeGenIP, 4374 TargetRegionEntryInfo &EntryInfo, int32_t NumTeams, int32_t NumThreads, 4375 SmallVectorImpl<Value *> &Args, TargetBodyGenCallbackTy CBFunc) { 4376 if (!updateToLocation(Loc)) 4377 return InsertPointTy(); 4378 4379 Builder.restoreIP(CodeGenIP); 4380 4381 Function *OutlinedFn; 4382 emitTargetOutlinedFunction(*this, Builder, EntryInfo, OutlinedFn, NumTeams, 4383 NumThreads, Args, CBFunc); 4384 if (!Config.isTargetDevice()) 4385 emitTargetCall(Builder, OutlinedFn, Args); 4386 return Builder.saveIP(); 4387 } 4388 4389 std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef<StringRef> Parts, 4390 StringRef FirstSeparator, 4391 StringRef Separator) { 4392 SmallString<128> Buffer; 4393 llvm::raw_svector_ostream OS(Buffer); 4394 StringRef Sep = FirstSeparator; 4395 for (StringRef Part : Parts) { 4396 OS << Sep << Part; 4397 Sep = Separator; 4398 } 4399 return OS.str().str(); 4400 } 4401 4402 std::string 4403 OpenMPIRBuilder::createPlatformSpecificName(ArrayRef<StringRef> Parts) const { 4404 return OpenMPIRBuilder::getNameWithSeparators(Parts, Config.firstSeparator(), 4405 Config.separator()); 4406 } 4407 4408 GlobalVariable * 4409 OpenMPIRBuilder::getOrCreateInternalVariable(Type *Ty, const StringRef &Name, 4410 unsigned AddressSpace) { 4411 auto &Elem = *InternalVars.try_emplace(Name, nullptr).first; 4412 if (Elem.second) { 4413 assert(Elem.second->getValueType() == Ty && 4414 "OMP internal variable has different type than requested"); 4415 } else { 4416 // TODO: investigate the appropriate linkage type used for the global 4417 // variable for possibly changing that to internal or private, or maybe 4418 // create different versions of the function for different OMP internal 4419 // variables. 4420 auto *GV = new GlobalVariable( 4421 M, Ty, /*IsConstant=*/false, GlobalValue::CommonLinkage, 4422 Constant::getNullValue(Ty), Elem.first(), 4423 /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal, AddressSpace); 4424 GV->setAlignment(M.getDataLayout().getABITypeAlign(Ty)); 4425 Elem.second = GV; 4426 } 4427 4428 return Elem.second; 4429 } 4430 4431 Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) { 4432 std::string Prefix = Twine("gomp_critical_user_", CriticalName).str(); 4433 std::string Name = getNameWithSeparators({Prefix, "var"}, ".", "."); 4434 return getOrCreateInternalVariable(KmpCriticalNameTy, Name); 4435 } 4436 4437 Value *OpenMPIRBuilder::getSizeInBytes(Value *BasePtr) { 4438 LLVMContext &Ctx = Builder.getContext(); 4439 Value *Null = 4440 Constant::getNullValue(PointerType::getUnqual(BasePtr->getContext())); 4441 Value *SizeGep = 4442 Builder.CreateGEP(BasePtr->getType(), Null, Builder.getInt32(1)); 4443 Value *SizePtrToInt = Builder.CreatePtrToInt(SizeGep, Type::getInt64Ty(Ctx)); 4444 return SizePtrToInt; 4445 } 4446 4447 GlobalVariable * 4448 OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl<uint64_t> &Mappings, 4449 std::string VarName) { 4450 llvm::Constant *MaptypesArrayInit = 4451 llvm::ConstantDataArray::get(M.getContext(), Mappings); 4452 auto *MaptypesArrayGlobal = new llvm::GlobalVariable( 4453 M, MaptypesArrayInit->getType(), 4454 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit, 4455 VarName); 4456 MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4457 return MaptypesArrayGlobal; 4458 } 4459 4460 void OpenMPIRBuilder::createMapperAllocas(const LocationDescription &Loc, 4461 InsertPointTy AllocaIP, 4462 unsigned NumOperands, 4463 struct MapperAllocas &MapperAllocas) { 4464 if (!updateToLocation(Loc)) 4465 return; 4466 4467 auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands); 4468 auto *ArrI64Ty = ArrayType::get(Int64, NumOperands); 4469 Builder.restoreIP(AllocaIP); 4470 AllocaInst *ArgsBase = Builder.CreateAlloca( 4471 ArrI8PtrTy, /* ArraySize = */ nullptr, ".offload_baseptrs"); 4472 AllocaInst *Args = Builder.CreateAlloca(ArrI8PtrTy, /* ArraySize = */ nullptr, 4473 ".offload_ptrs"); 4474 AllocaInst *ArgSizes = Builder.CreateAlloca( 4475 ArrI64Ty, /* ArraySize = */ nullptr, ".offload_sizes"); 4476 Builder.restoreIP(Loc.IP); 4477 MapperAllocas.ArgsBase = ArgsBase; 4478 MapperAllocas.Args = Args; 4479 MapperAllocas.ArgSizes = ArgSizes; 4480 } 4481 4482 void OpenMPIRBuilder::emitMapperCall(const LocationDescription &Loc, 4483 Function *MapperFunc, Value *SrcLocInfo, 4484 Value *MaptypesArg, Value *MapnamesArg, 4485 struct MapperAllocas &MapperAllocas, 4486 int64_t DeviceID, unsigned NumOperands) { 4487 if (!updateToLocation(Loc)) 4488 return; 4489 4490 auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands); 4491 auto *ArrI64Ty = ArrayType::get(Int64, NumOperands); 4492 Value *ArgsBaseGEP = 4493 Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.ArgsBase, 4494 {Builder.getInt32(0), Builder.getInt32(0)}); 4495 Value *ArgsGEP = 4496 Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.Args, 4497 {Builder.getInt32(0), Builder.getInt32(0)}); 4498 Value *ArgSizesGEP = 4499 Builder.CreateInBoundsGEP(ArrI64Ty, MapperAllocas.ArgSizes, 4500 {Builder.getInt32(0), Builder.getInt32(0)}); 4501 Value *NullPtr = 4502 Constant::getNullValue(PointerType::getUnqual(Int8Ptr->getContext())); 4503 Builder.CreateCall(MapperFunc, 4504 {SrcLocInfo, Builder.getInt64(DeviceID), 4505 Builder.getInt32(NumOperands), ArgsBaseGEP, ArgsGEP, 4506 ArgSizesGEP, MaptypesArg, MapnamesArg, NullPtr}); 4507 } 4508 4509 void OpenMPIRBuilder::emitOffloadingArraysArgument(IRBuilderBase &Builder, 4510 TargetDataRTArgs &RTArgs, 4511 TargetDataInfo &Info, 4512 bool EmitDebug, 4513 bool ForEndCall) { 4514 assert((!ForEndCall || Info.separateBeginEndCalls()) && 4515 "expected region end call to runtime only when end call is separate"); 4516 auto VoidPtrTy = Type::getInt8PtrTy(M.getContext()); 4517 auto VoidPtrPtrTy = VoidPtrTy->getPointerTo(0); 4518 auto Int64Ty = Type::getInt64Ty(M.getContext()); 4519 auto Int64PtrTy = Type::getInt64PtrTy(M.getContext()); 4520 4521 if (!Info.NumberOfPtrs) { 4522 RTArgs.BasePointersArray = ConstantPointerNull::get(VoidPtrPtrTy); 4523 RTArgs.PointersArray = ConstantPointerNull::get(VoidPtrPtrTy); 4524 RTArgs.SizesArray = ConstantPointerNull::get(Int64PtrTy); 4525 RTArgs.MapTypesArray = ConstantPointerNull::get(Int64PtrTy); 4526 RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy); 4527 RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy); 4528 return; 4529 } 4530 4531 RTArgs.BasePointersArray = Builder.CreateConstInBoundsGEP2_32( 4532 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), 4533 Info.RTArgs.BasePointersArray, 4534 /*Idx0=*/0, /*Idx1=*/0); 4535 RTArgs.PointersArray = Builder.CreateConstInBoundsGEP2_32( 4536 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray, 4537 /*Idx0=*/0, 4538 /*Idx1=*/0); 4539 RTArgs.SizesArray = Builder.CreateConstInBoundsGEP2_32( 4540 ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray, 4541 /*Idx0=*/0, /*Idx1=*/0); 4542 RTArgs.MapTypesArray = Builder.CreateConstInBoundsGEP2_32( 4543 ArrayType::get(Int64Ty, Info.NumberOfPtrs), 4544 ForEndCall && Info.RTArgs.MapTypesArrayEnd ? Info.RTArgs.MapTypesArrayEnd 4545 : Info.RTArgs.MapTypesArray, 4546 /*Idx0=*/0, 4547 /*Idx1=*/0); 4548 4549 // Only emit the mapper information arrays if debug information is 4550 // requested. 4551 if (!EmitDebug) 4552 RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy); 4553 else 4554 RTArgs.MapNamesArray = Builder.CreateConstInBoundsGEP2_32( 4555 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.MapNamesArray, 4556 /*Idx0=*/0, 4557 /*Idx1=*/0); 4558 // If there is no user-defined mapper, set the mapper array to nullptr to 4559 // avoid an unnecessary data privatization 4560 if (!Info.HasMapper) 4561 RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy); 4562 else 4563 RTArgs.MappersArray = 4564 Builder.CreatePointerCast(Info.RTArgs.MappersArray, VoidPtrPtrTy); 4565 } 4566 4567 void OpenMPIRBuilder::emitNonContiguousDescriptor(InsertPointTy AllocaIP, 4568 InsertPointTy CodeGenIP, 4569 MapInfosTy &CombinedInfo, 4570 TargetDataInfo &Info) { 4571 MapInfosTy::StructNonContiguousInfo &NonContigInfo = 4572 CombinedInfo.NonContigInfo; 4573 4574 // Build an array of struct descriptor_dim and then assign it to 4575 // offload_args. 4576 // 4577 // struct descriptor_dim { 4578 // uint64_t offset; 4579 // uint64_t count; 4580 // uint64_t stride 4581 // }; 4582 Type *Int64Ty = Builder.getInt64Ty(); 4583 StructType *DimTy = StructType::create( 4584 M.getContext(), ArrayRef<Type *>({Int64Ty, Int64Ty, Int64Ty}), 4585 "struct.descriptor_dim"); 4586 4587 enum { OffsetFD = 0, CountFD, StrideFD }; 4588 // We need two index variable here since the size of "Dims" is the same as 4589 // the size of Components, however, the size of offset, count, and stride is 4590 // equal to the size of base declaration that is non-contiguous. 4591 for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) { 4592 // Skip emitting ir if dimension size is 1 since it cannot be 4593 // non-contiguous. 4594 if (NonContigInfo.Dims[I] == 1) 4595 continue; 4596 Builder.restoreIP(AllocaIP); 4597 ArrayType *ArrayTy = ArrayType::get(DimTy, NonContigInfo.Dims[I]); 4598 AllocaInst *DimsAddr = 4599 Builder.CreateAlloca(ArrayTy, /* ArraySize = */ nullptr, "dims"); 4600 Builder.restoreIP(CodeGenIP); 4601 for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) { 4602 unsigned RevIdx = EE - II - 1; 4603 Value *DimsLVal = Builder.CreateInBoundsGEP( 4604 DimsAddr->getAllocatedType(), DimsAddr, 4605 {Builder.getInt64(0), Builder.getInt64(II)}); 4606 // Offset 4607 Value *OffsetLVal = Builder.CreateStructGEP(DimTy, DimsLVal, OffsetFD); 4608 Builder.CreateAlignedStore( 4609 NonContigInfo.Offsets[L][RevIdx], OffsetLVal, 4610 M.getDataLayout().getPrefTypeAlign(OffsetLVal->getType())); 4611 // Count 4612 Value *CountLVal = Builder.CreateStructGEP(DimTy, DimsLVal, CountFD); 4613 Builder.CreateAlignedStore( 4614 NonContigInfo.Counts[L][RevIdx], CountLVal, 4615 M.getDataLayout().getPrefTypeAlign(CountLVal->getType())); 4616 // Stride 4617 Value *StrideLVal = Builder.CreateStructGEP(DimTy, DimsLVal, StrideFD); 4618 Builder.CreateAlignedStore( 4619 NonContigInfo.Strides[L][RevIdx], StrideLVal, 4620 M.getDataLayout().getPrefTypeAlign(CountLVal->getType())); 4621 } 4622 // args[I] = &dims 4623 Builder.restoreIP(CodeGenIP); 4624 Value *DAddr = Builder.CreatePointerBitCastOrAddrSpaceCast( 4625 DimsAddr, Builder.getInt8PtrTy()); 4626 Value *P = Builder.CreateConstInBoundsGEP2_32( 4627 ArrayType::get(Builder.getInt8PtrTy(), Info.NumberOfPtrs), 4628 Info.RTArgs.PointersArray, 0, I); 4629 Builder.CreateAlignedStore( 4630 DAddr, P, M.getDataLayout().getPrefTypeAlign(Builder.getInt8PtrTy())); 4631 ++L; 4632 } 4633 } 4634 4635 void OpenMPIRBuilder::emitOffloadingArrays( 4636 InsertPointTy AllocaIP, InsertPointTy CodeGenIP, MapInfosTy &CombinedInfo, 4637 TargetDataInfo &Info, bool IsNonContiguous, 4638 function_ref<void(unsigned int, Value *)> DeviceAddrCB, 4639 function_ref<Value *(unsigned int)> CustomMapperCB) { 4640 4641 // Reset the array information. 4642 Info.clearArrayInfo(); 4643 Info.NumberOfPtrs = CombinedInfo.BasePointers.size(); 4644 4645 if (Info.NumberOfPtrs == 0) 4646 return; 4647 4648 Builder.restoreIP(AllocaIP); 4649 // Detect if we have any capture size requiring runtime evaluation of the 4650 // size so that a constant array could be eventually used. 4651 ArrayType *PointerArrayType = 4652 ArrayType::get(Builder.getInt8PtrTy(), Info.NumberOfPtrs); 4653 4654 Info.RTArgs.BasePointersArray = Builder.CreateAlloca( 4655 PointerArrayType, /* ArraySize = */ nullptr, ".offload_baseptrs"); 4656 4657 Info.RTArgs.PointersArray = Builder.CreateAlloca( 4658 PointerArrayType, /* ArraySize = */ nullptr, ".offload_ptrs"); 4659 AllocaInst *MappersArray = Builder.CreateAlloca( 4660 PointerArrayType, /* ArraySize = */ nullptr, ".offload_mappers"); 4661 Info.RTArgs.MappersArray = MappersArray; 4662 4663 // If we don't have any VLA types or other types that require runtime 4664 // evaluation, we can use a constant array for the map sizes, otherwise we 4665 // need to fill up the arrays as we do for the pointers. 4666 Type *Int64Ty = Builder.getInt64Ty(); 4667 SmallVector<Constant *> ConstSizes(CombinedInfo.Sizes.size(), 4668 ConstantInt::get(Builder.getInt64Ty(), 0)); 4669 SmallBitVector RuntimeSizes(CombinedInfo.Sizes.size()); 4670 for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) { 4671 if (auto *CI = dyn_cast<Constant>(CombinedInfo.Sizes[I])) { 4672 if (!isa<ConstantExpr>(CI) && !isa<GlobalValue>(CI)) { 4673 if (IsNonContiguous && 4674 static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>( 4675 CombinedInfo.Types[I] & 4676 OpenMPOffloadMappingFlags::OMP_MAP_NON_CONTIG)) 4677 ConstSizes[I] = ConstantInt::get(Builder.getInt64Ty(), 4678 CombinedInfo.NonContigInfo.Dims[I]); 4679 else 4680 ConstSizes[I] = CI; 4681 continue; 4682 } 4683 } 4684 RuntimeSizes.set(I); 4685 } 4686 4687 if (RuntimeSizes.all()) { 4688 ArrayType *SizeArrayType = ArrayType::get(Int64Ty, Info.NumberOfPtrs); 4689 Info.RTArgs.SizesArray = Builder.CreateAlloca( 4690 SizeArrayType, /* ArraySize = */ nullptr, ".offload_sizes"); 4691 Builder.restoreIP(CodeGenIP); 4692 } else { 4693 auto *SizesArrayInit = ConstantArray::get( 4694 ArrayType::get(Int64Ty, ConstSizes.size()), ConstSizes); 4695 std::string Name = createPlatformSpecificName({"offload_sizes"}); 4696 auto *SizesArrayGbl = 4697 new GlobalVariable(M, SizesArrayInit->getType(), /*isConstant=*/true, 4698 GlobalValue::PrivateLinkage, SizesArrayInit, Name); 4699 SizesArrayGbl->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4700 4701 if (!RuntimeSizes.any()) { 4702 Info.RTArgs.SizesArray = SizesArrayGbl; 4703 } else { 4704 unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(0); 4705 Align OffloadSizeAlign = M.getDataLayout().getABIIntegerTypeAlignment(64); 4706 ArrayType *SizeArrayType = ArrayType::get(Int64Ty, Info.NumberOfPtrs); 4707 AllocaInst *Buffer = Builder.CreateAlloca( 4708 SizeArrayType, /* ArraySize = */ nullptr, ".offload_sizes"); 4709 Buffer->setAlignment(OffloadSizeAlign); 4710 Builder.restoreIP(CodeGenIP); 4711 Value *GblConstPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( 4712 SizesArrayGbl, Int64Ty->getPointerTo()); 4713 Builder.CreateMemCpy( 4714 Buffer, M.getDataLayout().getPrefTypeAlign(Buffer->getType()), 4715 GblConstPtr, OffloadSizeAlign, 4716 Builder.getIntN( 4717 IndexSize, 4718 Buffer->getAllocationSize(M.getDataLayout())->getFixedValue())); 4719 4720 Info.RTArgs.SizesArray = Buffer; 4721 } 4722 Builder.restoreIP(CodeGenIP); 4723 } 4724 4725 // The map types are always constant so we don't need to generate code to 4726 // fill arrays. Instead, we create an array constant. 4727 SmallVector<uint64_t, 4> Mapping; 4728 for (auto mapFlag : CombinedInfo.Types) 4729 Mapping.push_back( 4730 static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>( 4731 mapFlag)); 4732 std::string MaptypesName = createPlatformSpecificName({"offload_maptypes"}); 4733 auto *MapTypesArrayGbl = createOffloadMaptypes(Mapping, MaptypesName); 4734 Info.RTArgs.MapTypesArray = MapTypesArrayGbl; 4735 4736 // The information types are only built if provided. 4737 if (!CombinedInfo.Names.empty()) { 4738 std::string MapnamesName = createPlatformSpecificName({"offload_mapnames"}); 4739 auto *MapNamesArrayGbl = 4740 createOffloadMapnames(CombinedInfo.Names, MapnamesName); 4741 Info.RTArgs.MapNamesArray = MapNamesArrayGbl; 4742 } else { 4743 Info.RTArgs.MapNamesArray = Constant::getNullValue( 4744 Type::getInt8Ty(Builder.getContext())->getPointerTo()); 4745 } 4746 4747 // If there's a present map type modifier, it must not be applied to the end 4748 // of a region, so generate a separate map type array in that case. 4749 if (Info.separateBeginEndCalls()) { 4750 bool EndMapTypesDiffer = false; 4751 for (uint64_t &Type : Mapping) { 4752 if (Type & static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>( 4753 OpenMPOffloadMappingFlags::OMP_MAP_PRESENT)) { 4754 Type &= ~static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>( 4755 OpenMPOffloadMappingFlags::OMP_MAP_PRESENT); 4756 EndMapTypesDiffer = true; 4757 } 4758 } 4759 if (EndMapTypesDiffer) { 4760 MapTypesArrayGbl = createOffloadMaptypes(Mapping, MaptypesName); 4761 Info.RTArgs.MapTypesArrayEnd = MapTypesArrayGbl; 4762 } 4763 } 4764 4765 for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) { 4766 Value *BPVal = CombinedInfo.BasePointers[I]; 4767 Value *BP = Builder.CreateConstInBoundsGEP2_32( 4768 ArrayType::get(Builder.getInt8PtrTy(), Info.NumberOfPtrs), 4769 Info.RTArgs.BasePointersArray, 0, I); 4770 BP = Builder.CreatePointerBitCastOrAddrSpaceCast( 4771 BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0)); 4772 Builder.CreateAlignedStore( 4773 BPVal, BP, M.getDataLayout().getPrefTypeAlign(Builder.getInt8PtrTy())); 4774 4775 if (Info.requiresDevicePointerInfo()) { 4776 if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Pointer) { 4777 CodeGenIP = Builder.saveIP(); 4778 Builder.restoreIP(AllocaIP); 4779 Info.DevicePtrInfoMap[BPVal] = { 4780 BP, Builder.CreateAlloca(Builder.getPtrTy())}; 4781 Builder.restoreIP(CodeGenIP); 4782 assert(DeviceAddrCB && 4783 "DeviceAddrCB missing for DevicePtr code generation"); 4784 DeviceAddrCB(I, Info.DevicePtrInfoMap[BPVal].second); 4785 } else if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Address) { 4786 Info.DevicePtrInfoMap[BPVal] = {BP, BP}; 4787 assert(DeviceAddrCB && 4788 "DeviceAddrCB missing for DevicePtr code generation"); 4789 DeviceAddrCB(I, BP); 4790 } 4791 } 4792 4793 Value *PVal = CombinedInfo.Pointers[I]; 4794 Value *P = Builder.CreateConstInBoundsGEP2_32( 4795 ArrayType::get(Builder.getInt8PtrTy(), Info.NumberOfPtrs), 4796 Info.RTArgs.PointersArray, 0, I); 4797 P = Builder.CreatePointerBitCastOrAddrSpaceCast( 4798 P, PVal->getType()->getPointerTo(/*AddrSpace=*/0)); 4799 // TODO: Check alignment correct. 4800 Builder.CreateAlignedStore( 4801 PVal, P, M.getDataLayout().getPrefTypeAlign(Builder.getInt8PtrTy())); 4802 4803 if (RuntimeSizes.test(I)) { 4804 Value *S = Builder.CreateConstInBoundsGEP2_32( 4805 ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray, 4806 /*Idx0=*/0, 4807 /*Idx1=*/I); 4808 Builder.CreateAlignedStore( 4809 Builder.CreateIntCast(CombinedInfo.Sizes[I], Int64Ty, 4810 /*isSigned=*/true), 4811 S, M.getDataLayout().getPrefTypeAlign(Builder.getInt8PtrTy())); 4812 } 4813 // Fill up the mapper array. 4814 unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(0); 4815 Value *MFunc = ConstantPointerNull::get(Builder.getInt8PtrTy()); 4816 if (CustomMapperCB) 4817 if (Value *CustomMFunc = CustomMapperCB(I)) 4818 MFunc = Builder.CreatePointerCast(CustomMFunc, Builder.getInt8PtrTy()); 4819 Value *MAddr = Builder.CreateInBoundsGEP( 4820 MappersArray->getAllocatedType(), MappersArray, 4821 {Builder.getIntN(IndexSize, 0), Builder.getIntN(IndexSize, I)}); 4822 Builder.CreateAlignedStore( 4823 MFunc, MAddr, M.getDataLayout().getPrefTypeAlign(MAddr->getType())); 4824 } 4825 4826 if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() || 4827 Info.NumberOfPtrs == 0) 4828 return; 4829 emitNonContiguousDescriptor(AllocaIP, CodeGenIP, CombinedInfo, Info); 4830 } 4831 4832 void OpenMPIRBuilder::emitBranch(BasicBlock *Target) { 4833 BasicBlock *CurBB = Builder.GetInsertBlock(); 4834 4835 if (!CurBB || CurBB->getTerminator()) { 4836 // If there is no insert point or the previous block is already 4837 // terminated, don't touch it. 4838 } else { 4839 // Otherwise, create a fall-through branch. 4840 Builder.CreateBr(Target); 4841 } 4842 4843 Builder.ClearInsertionPoint(); 4844 } 4845 4846 void OpenMPIRBuilder::emitBlock(BasicBlock *BB, Function *CurFn, 4847 bool IsFinished) { 4848 BasicBlock *CurBB = Builder.GetInsertBlock(); 4849 4850 // Fall out of the current block (if necessary). 4851 emitBranch(BB); 4852 4853 if (IsFinished && BB->use_empty()) { 4854 BB->eraseFromParent(); 4855 return; 4856 } 4857 4858 // Place the block after the current block, if possible, or else at 4859 // the end of the function. 4860 if (CurBB && CurBB->getParent()) 4861 CurFn->insert(std::next(CurBB->getIterator()), BB); 4862 else 4863 CurFn->insert(CurFn->end(), BB); 4864 Builder.SetInsertPoint(BB); 4865 } 4866 4867 void OpenMPIRBuilder::emitIfClause(Value *Cond, BodyGenCallbackTy ThenGen, 4868 BodyGenCallbackTy ElseGen, 4869 InsertPointTy AllocaIP) { 4870 // If the condition constant folds and can be elided, try to avoid emitting 4871 // the condition and the dead arm of the if/else. 4872 if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 4873 auto CondConstant = CI->getSExtValue(); 4874 if (CondConstant) 4875 ThenGen(AllocaIP, Builder.saveIP()); 4876 else 4877 ElseGen(AllocaIP, Builder.saveIP()); 4878 return; 4879 } 4880 4881 Function *CurFn = Builder.GetInsertBlock()->getParent(); 4882 4883 // Otherwise, the condition did not fold, or we couldn't elide it. Just 4884 // emit the conditional branch. 4885 BasicBlock *ThenBlock = BasicBlock::Create(M.getContext(), "omp_if.then"); 4886 BasicBlock *ElseBlock = BasicBlock::Create(M.getContext(), "omp_if.else"); 4887 BasicBlock *ContBlock = BasicBlock::Create(M.getContext(), "omp_if.end"); 4888 Builder.CreateCondBr(Cond, ThenBlock, ElseBlock); 4889 // Emit the 'then' code. 4890 emitBlock(ThenBlock, CurFn); 4891 ThenGen(AllocaIP, Builder.saveIP()); 4892 emitBranch(ContBlock); 4893 // Emit the 'else' code if present. 4894 // There is no need to emit line number for unconditional branch. 4895 emitBlock(ElseBlock, CurFn); 4896 ElseGen(AllocaIP, Builder.saveIP()); 4897 // There is no need to emit line number for unconditional branch. 4898 emitBranch(ContBlock); 4899 // Emit the continuation block for code after the if. 4900 emitBlock(ContBlock, CurFn, /*IsFinished=*/true); 4901 } 4902 4903 bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic( 4904 const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) { 4905 assert(!(AO == AtomicOrdering::NotAtomic || 4906 AO == llvm::AtomicOrdering::Unordered) && 4907 "Unexpected Atomic Ordering."); 4908 4909 bool Flush = false; 4910 llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic; 4911 4912 switch (AK) { 4913 case Read: 4914 if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease || 4915 AO == AtomicOrdering::SequentiallyConsistent) { 4916 FlushAO = AtomicOrdering::Acquire; 4917 Flush = true; 4918 } 4919 break; 4920 case Write: 4921 case Compare: 4922 case Update: 4923 if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease || 4924 AO == AtomicOrdering::SequentiallyConsistent) { 4925 FlushAO = AtomicOrdering::Release; 4926 Flush = true; 4927 } 4928 break; 4929 case Capture: 4930 switch (AO) { 4931 case AtomicOrdering::Acquire: 4932 FlushAO = AtomicOrdering::Acquire; 4933 Flush = true; 4934 break; 4935 case AtomicOrdering::Release: 4936 FlushAO = AtomicOrdering::Release; 4937 Flush = true; 4938 break; 4939 case AtomicOrdering::AcquireRelease: 4940 case AtomicOrdering::SequentiallyConsistent: 4941 FlushAO = AtomicOrdering::AcquireRelease; 4942 Flush = true; 4943 break; 4944 default: 4945 // do nothing - leave silently. 4946 break; 4947 } 4948 } 4949 4950 if (Flush) { 4951 // Currently Flush RT call still doesn't take memory_ordering, so for when 4952 // that happens, this tries to do the resolution of which atomic ordering 4953 // to use with but issue the flush call 4954 // TODO: pass `FlushAO` after memory ordering support is added 4955 (void)FlushAO; 4956 emitFlush(Loc); 4957 } 4958 4959 // for AO == AtomicOrdering::Monotonic and all other case combinations 4960 // do nothing 4961 return Flush; 4962 } 4963 4964 OpenMPIRBuilder::InsertPointTy 4965 OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc, 4966 AtomicOpValue &X, AtomicOpValue &V, 4967 AtomicOrdering AO) { 4968 if (!updateToLocation(Loc)) 4969 return Loc.IP; 4970 4971 assert(X.Var->getType()->isPointerTy() && 4972 "OMP Atomic expects a pointer to target memory"); 4973 Type *XElemTy = X.ElemTy; 4974 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || 4975 XElemTy->isPointerTy()) && 4976 "OMP atomic read expected a scalar type"); 4977 4978 Value *XRead = nullptr; 4979 4980 if (XElemTy->isIntegerTy()) { 4981 LoadInst *XLD = 4982 Builder.CreateLoad(XElemTy, X.Var, X.IsVolatile, "omp.atomic.read"); 4983 XLD->setAtomic(AO); 4984 XRead = cast<Value>(XLD); 4985 } else { 4986 // We need to perform atomic op as integer 4987 IntegerType *IntCastTy = 4988 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); 4989 LoadInst *XLoad = 4990 Builder.CreateLoad(IntCastTy, X.Var, X.IsVolatile, "omp.atomic.load"); 4991 XLoad->setAtomic(AO); 4992 if (XElemTy->isFloatingPointTy()) { 4993 XRead = Builder.CreateBitCast(XLoad, XElemTy, "atomic.flt.cast"); 4994 } else { 4995 XRead = Builder.CreateIntToPtr(XLoad, XElemTy, "atomic.ptr.cast"); 4996 } 4997 } 4998 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Read); 4999 Builder.CreateStore(XRead, V.Var, V.IsVolatile); 5000 return Builder.saveIP(); 5001 } 5002 5003 OpenMPIRBuilder::InsertPointTy 5004 OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc, 5005 AtomicOpValue &X, Value *Expr, 5006 AtomicOrdering AO) { 5007 if (!updateToLocation(Loc)) 5008 return Loc.IP; 5009 5010 Type *XTy = X.Var->getType(); 5011 assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"); 5012 Type *XElemTy = X.ElemTy; 5013 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || 5014 XElemTy->isPointerTy()) && 5015 "OMP atomic write expected a scalar type"); 5016 5017 if (XElemTy->isIntegerTy()) { 5018 StoreInst *XSt = Builder.CreateStore(Expr, X.Var, X.IsVolatile); 5019 XSt->setAtomic(AO); 5020 } else { 5021 // We need to bitcast and perform atomic op as integers 5022 unsigned Addrspace = cast<PointerType>(XTy)->getAddressSpace(); 5023 IntegerType *IntCastTy = 5024 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); 5025 Value *XBCast = Builder.CreateBitCast( 5026 X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.dst.int.cast"); 5027 Value *ExprCast = 5028 Builder.CreateBitCast(Expr, IntCastTy, "atomic.src.int.cast"); 5029 StoreInst *XSt = Builder.CreateStore(ExprCast, XBCast, X.IsVolatile); 5030 XSt->setAtomic(AO); 5031 } 5032 5033 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Write); 5034 return Builder.saveIP(); 5035 } 5036 5037 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicUpdate( 5038 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X, 5039 Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, 5040 AtomicUpdateCallbackTy &UpdateOp, bool IsXBinopExpr) { 5041 assert(!isConflictIP(Loc.IP, AllocaIP) && "IPs must not be ambiguous"); 5042 if (!updateToLocation(Loc)) 5043 return Loc.IP; 5044 5045 LLVM_DEBUG({ 5046 Type *XTy = X.Var->getType(); 5047 assert(XTy->isPointerTy() && 5048 "OMP Atomic expects a pointer to target memory"); 5049 Type *XElemTy = X.ElemTy; 5050 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || 5051 XElemTy->isPointerTy()) && 5052 "OMP atomic update expected a scalar type"); 5053 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && 5054 (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && 5055 "OpenMP atomic does not support LT or GT operations"); 5056 }); 5057 5058 emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, RMWOp, UpdateOp, 5059 X.IsVolatile, IsXBinopExpr); 5060 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Update); 5061 return Builder.saveIP(); 5062 } 5063 5064 // FIXME: Duplicating AtomicExpand 5065 Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2, 5066 AtomicRMWInst::BinOp RMWOp) { 5067 switch (RMWOp) { 5068 case AtomicRMWInst::Add: 5069 return Builder.CreateAdd(Src1, Src2); 5070 case AtomicRMWInst::Sub: 5071 return Builder.CreateSub(Src1, Src2); 5072 case AtomicRMWInst::And: 5073 return Builder.CreateAnd(Src1, Src2); 5074 case AtomicRMWInst::Nand: 5075 return Builder.CreateNeg(Builder.CreateAnd(Src1, Src2)); 5076 case AtomicRMWInst::Or: 5077 return Builder.CreateOr(Src1, Src2); 5078 case AtomicRMWInst::Xor: 5079 return Builder.CreateXor(Src1, Src2); 5080 case AtomicRMWInst::Xchg: 5081 case AtomicRMWInst::FAdd: 5082 case AtomicRMWInst::FSub: 5083 case AtomicRMWInst::BAD_BINOP: 5084 case AtomicRMWInst::Max: 5085 case AtomicRMWInst::Min: 5086 case AtomicRMWInst::UMax: 5087 case AtomicRMWInst::UMin: 5088 case AtomicRMWInst::FMax: 5089 case AtomicRMWInst::FMin: 5090 case AtomicRMWInst::UIncWrap: 5091 case AtomicRMWInst::UDecWrap: 5092 llvm_unreachable("Unsupported atomic update operation"); 5093 } 5094 llvm_unreachable("Unsupported atomic update operation"); 5095 } 5096 5097 std::pair<Value *, Value *> OpenMPIRBuilder::emitAtomicUpdate( 5098 InsertPointTy AllocaIP, Value *X, Type *XElemTy, Value *Expr, 5099 AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, 5100 AtomicUpdateCallbackTy &UpdateOp, bool VolatileX, bool IsXBinopExpr) { 5101 // TODO: handle the case where XElemTy is not byte-sized or not a power of 2 5102 // or a complex datatype. 5103 bool emitRMWOp = false; 5104 switch (RMWOp) { 5105 case AtomicRMWInst::Add: 5106 case AtomicRMWInst::And: 5107 case AtomicRMWInst::Nand: 5108 case AtomicRMWInst::Or: 5109 case AtomicRMWInst::Xor: 5110 case AtomicRMWInst::Xchg: 5111 emitRMWOp = XElemTy; 5112 break; 5113 case AtomicRMWInst::Sub: 5114 emitRMWOp = (IsXBinopExpr && XElemTy); 5115 break; 5116 default: 5117 emitRMWOp = false; 5118 } 5119 emitRMWOp &= XElemTy->isIntegerTy(); 5120 5121 std::pair<Value *, Value *> Res; 5122 if (emitRMWOp) { 5123 Res.first = Builder.CreateAtomicRMW(RMWOp, X, Expr, llvm::MaybeAlign(), AO); 5124 // not needed except in case of postfix captures. Generate anyway for 5125 // consistency with the else part. Will be removed with any DCE pass. 5126 // AtomicRMWInst::Xchg does not have a coressponding instruction. 5127 if (RMWOp == AtomicRMWInst::Xchg) 5128 Res.second = Res.first; 5129 else 5130 Res.second = emitRMWOpAsInstruction(Res.first, Expr, RMWOp); 5131 } else { 5132 IntegerType *IntCastTy = 5133 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); 5134 LoadInst *OldVal = 5135 Builder.CreateLoad(IntCastTy, X, X->getName() + ".atomic.load"); 5136 OldVal->setAtomic(AO); 5137 // CurBB 5138 // | /---\ 5139 // ContBB | 5140 // | \---/ 5141 // ExitBB 5142 BasicBlock *CurBB = Builder.GetInsertBlock(); 5143 Instruction *CurBBTI = CurBB->getTerminator(); 5144 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable(); 5145 BasicBlock *ExitBB = 5146 CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit"); 5147 BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(), 5148 X->getName() + ".atomic.cont"); 5149 ContBB->getTerminator()->eraseFromParent(); 5150 Builder.restoreIP(AllocaIP); 5151 AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy); 5152 NewAtomicAddr->setName(X->getName() + "x.new.val"); 5153 Builder.SetInsertPoint(ContBB); 5154 llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2); 5155 PHI->addIncoming(OldVal, CurBB); 5156 bool IsIntTy = XElemTy->isIntegerTy(); 5157 Value *OldExprVal = PHI; 5158 if (!IsIntTy) { 5159 if (XElemTy->isFloatingPointTy()) { 5160 OldExprVal = Builder.CreateBitCast(PHI, XElemTy, 5161 X->getName() + ".atomic.fltCast"); 5162 } else { 5163 OldExprVal = Builder.CreateIntToPtr(PHI, XElemTy, 5164 X->getName() + ".atomic.ptrCast"); 5165 } 5166 } 5167 5168 Value *Upd = UpdateOp(OldExprVal, Builder); 5169 Builder.CreateStore(Upd, NewAtomicAddr); 5170 LoadInst *DesiredVal = Builder.CreateLoad(IntCastTy, NewAtomicAddr); 5171 AtomicOrdering Failure = 5172 llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 5173 AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg( 5174 X, PHI, DesiredVal, llvm::MaybeAlign(), AO, Failure); 5175 Result->setVolatile(VolatileX); 5176 Value *PreviousVal = Builder.CreateExtractValue(Result, /*Idxs=*/0); 5177 Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1); 5178 PHI->addIncoming(PreviousVal, Builder.GetInsertBlock()); 5179 Builder.CreateCondBr(SuccessFailureVal, ExitBB, ContBB); 5180 5181 Res.first = OldExprVal; 5182 Res.second = Upd; 5183 5184 // set Insertion point in exit block 5185 if (UnreachableInst *ExitTI = 5186 dyn_cast<UnreachableInst>(ExitBB->getTerminator())) { 5187 CurBBTI->eraseFromParent(); 5188 Builder.SetInsertPoint(ExitBB); 5189 } else { 5190 Builder.SetInsertPoint(ExitTI); 5191 } 5192 } 5193 5194 return Res; 5195 } 5196 5197 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCapture( 5198 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X, 5199 AtomicOpValue &V, Value *Expr, AtomicOrdering AO, 5200 AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp, 5201 bool UpdateExpr, bool IsPostfixUpdate, bool IsXBinopExpr) { 5202 if (!updateToLocation(Loc)) 5203 return Loc.IP; 5204 5205 LLVM_DEBUG({ 5206 Type *XTy = X.Var->getType(); 5207 assert(XTy->isPointerTy() && 5208 "OMP Atomic expects a pointer to target memory"); 5209 Type *XElemTy = X.ElemTy; 5210 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || 5211 XElemTy->isPointerTy()) && 5212 "OMP atomic capture expected a scalar type"); 5213 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && 5214 "OpenMP atomic does not support LT or GT operations"); 5215 }); 5216 5217 // If UpdateExpr is 'x' updated with some `expr` not based on 'x', 5218 // 'x' is simply atomically rewritten with 'expr'. 5219 AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg); 5220 std::pair<Value *, Value *> Result = 5221 emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, AtomicOp, UpdateOp, 5222 X.IsVolatile, IsXBinopExpr); 5223 5224 Value *CapturedVal = (IsPostfixUpdate ? Result.first : Result.second); 5225 Builder.CreateStore(CapturedVal, V.Var, V.IsVolatile); 5226 5227 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Capture); 5228 return Builder.saveIP(); 5229 } 5230 5231 OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare( 5232 const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V, 5233 AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO, 5234 omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate, 5235 bool IsFailOnly) { 5236 5237 if (!updateToLocation(Loc)) 5238 return Loc.IP; 5239 5240 assert(X.Var->getType()->isPointerTy() && 5241 "OMP atomic expects a pointer to target memory"); 5242 // compare capture 5243 if (V.Var) { 5244 assert(V.Var->getType()->isPointerTy() && "v.var must be of pointer type"); 5245 assert(V.ElemTy == X.ElemTy && "x and v must be of same type"); 5246 } 5247 5248 bool IsInteger = E->getType()->isIntegerTy(); 5249 5250 if (Op == OMPAtomicCompareOp::EQ) { 5251 AtomicOrdering Failure = AtomicCmpXchgInst::getStrongestFailureOrdering(AO); 5252 AtomicCmpXchgInst *Result = nullptr; 5253 if (!IsInteger) { 5254 IntegerType *IntCastTy = 5255 IntegerType::get(M.getContext(), X.ElemTy->getScalarSizeInBits()); 5256 Value *EBCast = Builder.CreateBitCast(E, IntCastTy); 5257 Value *DBCast = Builder.CreateBitCast(D, IntCastTy); 5258 Result = Builder.CreateAtomicCmpXchg(X.Var, EBCast, DBCast, MaybeAlign(), 5259 AO, Failure); 5260 } else { 5261 Result = 5262 Builder.CreateAtomicCmpXchg(X.Var, E, D, MaybeAlign(), AO, Failure); 5263 } 5264 5265 if (V.Var) { 5266 Value *OldValue = Builder.CreateExtractValue(Result, /*Idxs=*/0); 5267 if (!IsInteger) 5268 OldValue = Builder.CreateBitCast(OldValue, X.ElemTy); 5269 assert(OldValue->getType() == V.ElemTy && 5270 "OldValue and V must be of same type"); 5271 if (IsPostfixUpdate) { 5272 Builder.CreateStore(OldValue, V.Var, V.IsVolatile); 5273 } else { 5274 Value *SuccessOrFail = Builder.CreateExtractValue(Result, /*Idxs=*/1); 5275 if (IsFailOnly) { 5276 // CurBB---- 5277 // | | 5278 // v | 5279 // ContBB | 5280 // | | 5281 // v | 5282 // ExitBB <- 5283 // 5284 // where ContBB only contains the store of old value to 'v'. 5285 BasicBlock *CurBB = Builder.GetInsertBlock(); 5286 Instruction *CurBBTI = CurBB->getTerminator(); 5287 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable(); 5288 BasicBlock *ExitBB = CurBB->splitBasicBlock( 5289 CurBBTI, X.Var->getName() + ".atomic.exit"); 5290 BasicBlock *ContBB = CurBB->splitBasicBlock( 5291 CurBB->getTerminator(), X.Var->getName() + ".atomic.cont"); 5292 ContBB->getTerminator()->eraseFromParent(); 5293 CurBB->getTerminator()->eraseFromParent(); 5294 5295 Builder.CreateCondBr(SuccessOrFail, ExitBB, ContBB); 5296 5297 Builder.SetInsertPoint(ContBB); 5298 Builder.CreateStore(OldValue, V.Var); 5299 Builder.CreateBr(ExitBB); 5300 5301 if (UnreachableInst *ExitTI = 5302 dyn_cast<UnreachableInst>(ExitBB->getTerminator())) { 5303 CurBBTI->eraseFromParent(); 5304 Builder.SetInsertPoint(ExitBB); 5305 } else { 5306 Builder.SetInsertPoint(ExitTI); 5307 } 5308 } else { 5309 Value *CapturedValue = 5310 Builder.CreateSelect(SuccessOrFail, E, OldValue); 5311 Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile); 5312 } 5313 } 5314 } 5315 // The comparison result has to be stored. 5316 if (R.Var) { 5317 assert(R.Var->getType()->isPointerTy() && 5318 "r.var must be of pointer type"); 5319 assert(R.ElemTy->isIntegerTy() && "r must be of integral type"); 5320 5321 Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1); 5322 Value *ResultCast = R.IsSigned 5323 ? Builder.CreateSExt(SuccessFailureVal, R.ElemTy) 5324 : Builder.CreateZExt(SuccessFailureVal, R.ElemTy); 5325 Builder.CreateStore(ResultCast, R.Var, R.IsVolatile); 5326 } 5327 } else { 5328 assert((Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) && 5329 "Op should be either max or min at this point"); 5330 assert(!IsFailOnly && "IsFailOnly is only valid when the comparison is =="); 5331 5332 // Reverse the ordop as the OpenMP forms are different from LLVM forms. 5333 // Let's take max as example. 5334 // OpenMP form: 5335 // x = x > expr ? expr : x; 5336 // LLVM form: 5337 // *ptr = *ptr > val ? *ptr : val; 5338 // We need to transform to LLVM form. 5339 // x = x <= expr ? x : expr; 5340 AtomicRMWInst::BinOp NewOp; 5341 if (IsXBinopExpr) { 5342 if (IsInteger) { 5343 if (X.IsSigned) 5344 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Min 5345 : AtomicRMWInst::Max; 5346 else 5347 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMin 5348 : AtomicRMWInst::UMax; 5349 } else { 5350 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMin 5351 : AtomicRMWInst::FMax; 5352 } 5353 } else { 5354 if (IsInteger) { 5355 if (X.IsSigned) 5356 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Max 5357 : AtomicRMWInst::Min; 5358 else 5359 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMax 5360 : AtomicRMWInst::UMin; 5361 } else { 5362 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMax 5363 : AtomicRMWInst::FMin; 5364 } 5365 } 5366 5367 AtomicRMWInst *OldValue = 5368 Builder.CreateAtomicRMW(NewOp, X.Var, E, MaybeAlign(), AO); 5369 if (V.Var) { 5370 Value *CapturedValue = nullptr; 5371 if (IsPostfixUpdate) { 5372 CapturedValue = OldValue; 5373 } else { 5374 CmpInst::Predicate Pred; 5375 switch (NewOp) { 5376 case AtomicRMWInst::Max: 5377 Pred = CmpInst::ICMP_SGT; 5378 break; 5379 case AtomicRMWInst::UMax: 5380 Pred = CmpInst::ICMP_UGT; 5381 break; 5382 case AtomicRMWInst::FMax: 5383 Pred = CmpInst::FCMP_OGT; 5384 break; 5385 case AtomicRMWInst::Min: 5386 Pred = CmpInst::ICMP_SLT; 5387 break; 5388 case AtomicRMWInst::UMin: 5389 Pred = CmpInst::ICMP_ULT; 5390 break; 5391 case AtomicRMWInst::FMin: 5392 Pred = CmpInst::FCMP_OLT; 5393 break; 5394 default: 5395 llvm_unreachable("unexpected comparison op"); 5396 } 5397 Value *NonAtomicCmp = Builder.CreateCmp(Pred, OldValue, E); 5398 CapturedValue = Builder.CreateSelect(NonAtomicCmp, E, OldValue); 5399 } 5400 Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile); 5401 } 5402 } 5403 5404 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Compare); 5405 5406 return Builder.saveIP(); 5407 } 5408 5409 GlobalVariable * 5410 OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl<llvm::Constant *> &Names, 5411 std::string VarName) { 5412 llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get( 5413 llvm::ArrayType::get( 5414 llvm::Type::getInt8Ty(M.getContext())->getPointerTo(), Names.size()), 5415 Names); 5416 auto *MapNamesArrayGlobal = new llvm::GlobalVariable( 5417 M, MapNamesArrayInit->getType(), 5418 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit, 5419 VarName); 5420 return MapNamesArrayGlobal; 5421 } 5422 5423 // Create all simple and struct types exposed by the runtime and remember 5424 // the llvm::PointerTypes of them for easy access later. 5425 void OpenMPIRBuilder::initializeTypes(Module &M) { 5426 LLVMContext &Ctx = M.getContext(); 5427 StructType *T; 5428 #define OMP_TYPE(VarName, InitValue) VarName = InitValue; 5429 #define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize) \ 5430 VarName##Ty = ArrayType::get(ElemTy, ArraySize); \ 5431 VarName##PtrTy = PointerType::getUnqual(VarName##Ty); 5432 #define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...) \ 5433 VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg); \ 5434 VarName##Ptr = PointerType::getUnqual(VarName); 5435 #define OMP_STRUCT_TYPE(VarName, StructName, Packed, ...) \ 5436 T = StructType::getTypeByName(Ctx, StructName); \ 5437 if (!T) \ 5438 T = StructType::create(Ctx, {__VA_ARGS__}, StructName, Packed); \ 5439 VarName = T; \ 5440 VarName##Ptr = PointerType::getUnqual(T); 5441 #include "llvm/Frontend/OpenMP/OMPKinds.def" 5442 } 5443 5444 void OpenMPIRBuilder::OutlineInfo::collectBlocks( 5445 SmallPtrSetImpl<BasicBlock *> &BlockSet, 5446 SmallVectorImpl<BasicBlock *> &BlockVector) { 5447 SmallVector<BasicBlock *, 32> Worklist; 5448 BlockSet.insert(EntryBB); 5449 BlockSet.insert(ExitBB); 5450 5451 Worklist.push_back(EntryBB); 5452 while (!Worklist.empty()) { 5453 BasicBlock *BB = Worklist.pop_back_val(); 5454 BlockVector.push_back(BB); 5455 for (BasicBlock *SuccBB : successors(BB)) 5456 if (BlockSet.insert(SuccBB).second) 5457 Worklist.push_back(SuccBB); 5458 } 5459 } 5460 5461 void OpenMPIRBuilder::createOffloadEntry(Constant *ID, Constant *Addr, 5462 uint64_t Size, int32_t Flags, 5463 GlobalValue::LinkageTypes) { 5464 if (!Config.isGPU()) { 5465 emitOffloadingEntry(ID, Addr->getName(), Size, Flags); 5466 return; 5467 } 5468 // TODO: Add support for global variables on the device after declare target 5469 // support. 5470 Function *Fn = dyn_cast<Function>(Addr); 5471 if (!Fn) 5472 return; 5473 5474 Module &M = *(Fn->getParent()); 5475 LLVMContext &Ctx = M.getContext(); 5476 5477 // Get "nvvm.annotations" metadata node. 5478 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 5479 5480 Metadata *MDVals[] = { 5481 ConstantAsMetadata::get(Fn), MDString::get(Ctx, "kernel"), 5482 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Ctx), 1))}; 5483 // Append metadata to nvvm.annotations. 5484 MD->addOperand(MDNode::get(Ctx, MDVals)); 5485 5486 // Add a function attribute for the kernel. 5487 Fn->addFnAttr(Attribute::get(Ctx, "kernel")); 5488 if (Triple(M.getTargetTriple()).isAMDGCN()) 5489 Fn->addFnAttr("uniform-work-group-size", "true"); 5490 Fn->addFnAttr(Attribute::MustProgress); 5491 } 5492 5493 // We only generate metadata for function that contain target regions. 5494 void OpenMPIRBuilder::createOffloadEntriesAndInfoMetadata( 5495 EmitMetadataErrorReportFunctionTy &ErrorFn) { 5496 5497 // If there are no entries, we don't need to do anything. 5498 if (OffloadInfoManager.empty()) 5499 return; 5500 5501 LLVMContext &C = M.getContext(); 5502 SmallVector<std::pair<const OffloadEntriesInfoManager::OffloadEntryInfo *, 5503 TargetRegionEntryInfo>, 5504 16> 5505 OrderedEntries(OffloadInfoManager.size()); 5506 5507 // Auxiliary methods to create metadata values and strings. 5508 auto &&GetMDInt = [this](unsigned V) { 5509 return ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), V)); 5510 }; 5511 5512 auto &&GetMDString = [&C](StringRef V) { return MDString::get(C, V); }; 5513 5514 // Create the offloading info metadata node. 5515 NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); 5516 auto &&TargetRegionMetadataEmitter = 5517 [&C, MD, &OrderedEntries, &GetMDInt, &GetMDString]( 5518 const TargetRegionEntryInfo &EntryInfo, 5519 const OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion &E) { 5520 // Generate metadata for target regions. Each entry of this metadata 5521 // contains: 5522 // - Entry 0 -> Kind of this type of metadata (0). 5523 // - Entry 1 -> Device ID of the file where the entry was identified. 5524 // - Entry 2 -> File ID of the file where the entry was identified. 5525 // - Entry 3 -> Mangled name of the function where the entry was 5526 // identified. 5527 // - Entry 4 -> Line in the file where the entry was identified. 5528 // - Entry 5 -> Count of regions at this DeviceID/FilesID/Line. 5529 // - Entry 6 -> Order the entry was created. 5530 // The first element of the metadata node is the kind. 5531 Metadata *Ops[] = { 5532 GetMDInt(E.getKind()), GetMDInt(EntryInfo.DeviceID), 5533 GetMDInt(EntryInfo.FileID), GetMDString(EntryInfo.ParentName), 5534 GetMDInt(EntryInfo.Line), GetMDInt(EntryInfo.Count), 5535 GetMDInt(E.getOrder())}; 5536 5537 // Save this entry in the right position of the ordered entries array. 5538 OrderedEntries[E.getOrder()] = std::make_pair(&E, EntryInfo); 5539 5540 // Add metadata to the named metadata node. 5541 MD->addOperand(MDNode::get(C, Ops)); 5542 }; 5543 5544 OffloadInfoManager.actOnTargetRegionEntriesInfo(TargetRegionMetadataEmitter); 5545 5546 // Create function that emits metadata for each device global variable entry; 5547 auto &&DeviceGlobalVarMetadataEmitter = 5548 [&C, &OrderedEntries, &GetMDInt, &GetMDString, MD]( 5549 StringRef MangledName, 5550 const OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar &E) { 5551 // Generate metadata for global variables. Each entry of this metadata 5552 // contains: 5553 // - Entry 0 -> Kind of this type of metadata (1). 5554 // - Entry 1 -> Mangled name of the variable. 5555 // - Entry 2 -> Declare target kind. 5556 // - Entry 3 -> Order the entry was created. 5557 // The first element of the metadata node is the kind. 5558 Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDString(MangledName), 5559 GetMDInt(E.getFlags()), GetMDInt(E.getOrder())}; 5560 5561 // Save this entry in the right position of the ordered entries array. 5562 TargetRegionEntryInfo varInfo(MangledName, 0, 0, 0); 5563 OrderedEntries[E.getOrder()] = std::make_pair(&E, varInfo); 5564 5565 // Add metadata to the named metadata node. 5566 MD->addOperand(MDNode::get(C, Ops)); 5567 }; 5568 5569 OffloadInfoManager.actOnDeviceGlobalVarEntriesInfo( 5570 DeviceGlobalVarMetadataEmitter); 5571 5572 for (const auto &E : OrderedEntries) { 5573 assert(E.first && "All ordered entries must exist!"); 5574 if (const auto *CE = 5575 dyn_cast<OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion>( 5576 E.first)) { 5577 if (!CE->getID() || !CE->getAddress()) { 5578 // Do not blame the entry if the parent funtion is not emitted. 5579 TargetRegionEntryInfo EntryInfo = E.second; 5580 StringRef FnName = EntryInfo.ParentName; 5581 if (!M.getNamedValue(FnName)) 5582 continue; 5583 ErrorFn(EMIT_MD_TARGET_REGION_ERROR, EntryInfo); 5584 continue; 5585 } 5586 createOffloadEntry(CE->getID(), CE->getAddress(), 5587 /*Size=*/0, CE->getFlags(), 5588 GlobalValue::WeakAnyLinkage); 5589 } else if (const auto *CE = dyn_cast< 5590 OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar>( 5591 E.first)) { 5592 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags = 5593 static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>( 5594 CE->getFlags()); 5595 switch (Flags) { 5596 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter: 5597 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo: 5598 if (Config.isTargetDevice() && Config.hasRequiresUnifiedSharedMemory()) 5599 continue; 5600 if (!CE->getAddress()) { 5601 ErrorFn(EMIT_MD_DECLARE_TARGET_ERROR, E.second); 5602 continue; 5603 } 5604 // The vaiable has no definition - no need to add the entry. 5605 if (CE->getVarSize() == 0) 5606 continue; 5607 break; 5608 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink: 5609 assert(((Config.isTargetDevice() && !CE->getAddress()) || 5610 (!Config.isTargetDevice() && CE->getAddress())) && 5611 "Declaret target link address is set."); 5612 if (Config.isTargetDevice()) 5613 continue; 5614 if (!CE->getAddress()) { 5615 ErrorFn(EMIT_MD_GLOBAL_VAR_LINK_ERROR, TargetRegionEntryInfo()); 5616 continue; 5617 } 5618 break; 5619 default: 5620 break; 5621 } 5622 5623 // Hidden or internal symbols on the device are not externally visible. 5624 // We should not attempt to register them by creating an offloading 5625 // entry. 5626 if (auto *GV = dyn_cast<GlobalValue>(CE->getAddress())) 5627 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) 5628 continue; 5629 5630 createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(), 5631 Flags, CE->getLinkage()); 5632 5633 } else { 5634 llvm_unreachable("Unsupported entry kind."); 5635 } 5636 } 5637 } 5638 5639 void TargetRegionEntryInfo::getTargetRegionEntryFnName( 5640 SmallVectorImpl<char> &Name, StringRef ParentName, unsigned DeviceID, 5641 unsigned FileID, unsigned Line, unsigned Count) { 5642 raw_svector_ostream OS(Name); 5643 OS << "__omp_offloading" << llvm::format("_%x", DeviceID) 5644 << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; 5645 if (Count) 5646 OS << "_" << Count; 5647 } 5648 5649 void OffloadEntriesInfoManager::getTargetRegionEntryFnName( 5650 SmallVectorImpl<char> &Name, const TargetRegionEntryInfo &EntryInfo) { 5651 unsigned NewCount = getTargetRegionEntryInfoCount(EntryInfo); 5652 TargetRegionEntryInfo::getTargetRegionEntryFnName( 5653 Name, EntryInfo.ParentName, EntryInfo.DeviceID, EntryInfo.FileID, 5654 EntryInfo.Line, NewCount); 5655 } 5656 5657 TargetRegionEntryInfo 5658 OpenMPIRBuilder::getTargetEntryUniqueInfo(FileIdentifierInfoCallbackTy CallBack, 5659 StringRef ParentName) { 5660 sys::fs::UniqueID ID; 5661 auto FileIDInfo = CallBack(); 5662 if (auto EC = sys::fs::getUniqueID(std::get<0>(FileIDInfo), ID)) { 5663 report_fatal_error(("Unable to get unique ID for file, during " 5664 "getTargetEntryUniqueInfo, error message: " + 5665 EC.message()) 5666 .c_str()); 5667 } 5668 5669 return TargetRegionEntryInfo(ParentName, ID.getDevice(), ID.getFile(), 5670 std::get<1>(FileIDInfo)); 5671 } 5672 5673 Constant *OpenMPIRBuilder::getAddrOfDeclareTargetVar( 5674 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause, 5675 OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause, 5676 bool IsDeclaration, bool IsExternallyVisible, 5677 TargetRegionEntryInfo EntryInfo, StringRef MangledName, 5678 std::vector<GlobalVariable *> &GeneratedRefs, bool OpenMPSIMD, 5679 std::vector<Triple> TargetTriple, Type *LlvmPtrTy, 5680 std::function<Constant *()> GlobalInitializer, 5681 std::function<GlobalValue::LinkageTypes()> VariableLinkage) { 5682 // TODO: convert this to utilise the IRBuilder Config rather than 5683 // a passed down argument. 5684 if (OpenMPSIMD) 5685 return nullptr; 5686 5687 if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink || 5688 ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo || 5689 CaptureClause == 5690 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) && 5691 Config.hasRequiresUnifiedSharedMemory())) { 5692 SmallString<64> PtrName; 5693 { 5694 raw_svector_ostream OS(PtrName); 5695 OS << MangledName; 5696 if (!IsExternallyVisible) 5697 OS << format("_%x", EntryInfo.FileID); 5698 OS << "_decl_tgt_ref_ptr"; 5699 } 5700 5701 Value *Ptr = M.getNamedValue(PtrName); 5702 5703 if (!Ptr) { 5704 GlobalValue *GlobalValue = M.getNamedValue(MangledName); 5705 Ptr = getOrCreateInternalVariable(LlvmPtrTy, PtrName); 5706 5707 auto *GV = cast<GlobalVariable>(Ptr); 5708 GV->setLinkage(GlobalValue::WeakAnyLinkage); 5709 5710 if (!Config.isTargetDevice()) { 5711 if (GlobalInitializer) 5712 GV->setInitializer(GlobalInitializer()); 5713 else 5714 GV->setInitializer(GlobalValue); 5715 } 5716 5717 registerTargetGlobalVariable( 5718 CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible, 5719 EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple, 5720 GlobalInitializer, VariableLinkage, LlvmPtrTy, cast<Constant>(Ptr)); 5721 } 5722 5723 return cast<Constant>(Ptr); 5724 } 5725 5726 return nullptr; 5727 } 5728 5729 void OpenMPIRBuilder::registerTargetGlobalVariable( 5730 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause, 5731 OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause, 5732 bool IsDeclaration, bool IsExternallyVisible, 5733 TargetRegionEntryInfo EntryInfo, StringRef MangledName, 5734 std::vector<GlobalVariable *> &GeneratedRefs, bool OpenMPSIMD, 5735 std::vector<Triple> TargetTriple, 5736 std::function<Constant *()> GlobalInitializer, 5737 std::function<GlobalValue::LinkageTypes()> VariableLinkage, Type *LlvmPtrTy, 5738 Constant *Addr) { 5739 if (DeviceClause != OffloadEntriesInfoManager::OMPTargetDeviceClauseAny || 5740 (TargetTriple.empty() && !Config.isTargetDevice())) 5741 return; 5742 5743 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags; 5744 StringRef VarName; 5745 int64_t VarSize; 5746 GlobalValue::LinkageTypes Linkage; 5747 5748 if ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo || 5749 CaptureClause == 5750 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) && 5751 !Config.hasRequiresUnifiedSharedMemory()) { 5752 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo; 5753 VarName = MangledName; 5754 GlobalValue *LlvmVal = M.getNamedValue(VarName); 5755 5756 if (!IsDeclaration) 5757 VarSize = divideCeil( 5758 M.getDataLayout().getTypeSizeInBits(LlvmVal->getValueType()), 8); 5759 else 5760 VarSize = 0; 5761 Linkage = (VariableLinkage) ? VariableLinkage() : LlvmVal->getLinkage(); 5762 5763 // This is a workaround carried over from Clang which prevents undesired 5764 // optimisation of internal variables. 5765 if (Config.isTargetDevice() && 5766 (!IsExternallyVisible || Linkage == GlobalValue::LinkOnceODRLinkage)) { 5767 // Do not create a "ref-variable" if the original is not also available 5768 // on the host. 5769 if (!OffloadInfoManager.hasDeviceGlobalVarEntryInfo(VarName)) 5770 return; 5771 5772 std::string RefName = createPlatformSpecificName({VarName, "ref"}); 5773 5774 if (!M.getNamedValue(RefName)) { 5775 Constant *AddrRef = 5776 getOrCreateInternalVariable(Addr->getType(), RefName); 5777 auto *GvAddrRef = cast<GlobalVariable>(AddrRef); 5778 GvAddrRef->setConstant(true); 5779 GvAddrRef->setLinkage(GlobalValue::InternalLinkage); 5780 GvAddrRef->setInitializer(Addr); 5781 GeneratedRefs.push_back(GvAddrRef); 5782 } 5783 } 5784 } else { 5785 if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink) 5786 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink; 5787 else 5788 Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo; 5789 5790 if (Config.isTargetDevice()) { 5791 VarName = (Addr) ? Addr->getName() : ""; 5792 Addr = nullptr; 5793 } else { 5794 Addr = getAddrOfDeclareTargetVar( 5795 CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible, 5796 EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple, 5797 LlvmPtrTy, GlobalInitializer, VariableLinkage); 5798 VarName = (Addr) ? Addr->getName() : ""; 5799 } 5800 VarSize = M.getDataLayout().getPointerSize(); 5801 Linkage = GlobalValue::WeakAnyLinkage; 5802 } 5803 5804 OffloadInfoManager.registerDeviceGlobalVarEntryInfo(VarName, Addr, VarSize, 5805 Flags, Linkage); 5806 } 5807 5808 /// Loads all the offload entries information from the host IR 5809 /// metadata. 5810 void OpenMPIRBuilder::loadOffloadInfoMetadata(Module &M) { 5811 // If we are in target mode, load the metadata from the host IR. This code has 5812 // to match the metadata creation in createOffloadEntriesAndInfoMetadata(). 5813 5814 NamedMDNode *MD = M.getNamedMetadata(ompOffloadInfoName); 5815 if (!MD) 5816 return; 5817 5818 for (MDNode *MN : MD->operands()) { 5819 auto &&GetMDInt = [MN](unsigned Idx) { 5820 auto *V = cast<ConstantAsMetadata>(MN->getOperand(Idx)); 5821 return cast<ConstantInt>(V->getValue())->getZExtValue(); 5822 }; 5823 5824 auto &&GetMDString = [MN](unsigned Idx) { 5825 auto *V = cast<MDString>(MN->getOperand(Idx)); 5826 return V->getString(); 5827 }; 5828 5829 switch (GetMDInt(0)) { 5830 default: 5831 llvm_unreachable("Unexpected metadata!"); 5832 break; 5833 case OffloadEntriesInfoManager::OffloadEntryInfo:: 5834 OffloadingEntryInfoTargetRegion: { 5835 TargetRegionEntryInfo EntryInfo(/*ParentName=*/GetMDString(3), 5836 /*DeviceID=*/GetMDInt(1), 5837 /*FileID=*/GetMDInt(2), 5838 /*Line=*/GetMDInt(4), 5839 /*Count=*/GetMDInt(5)); 5840 OffloadInfoManager.initializeTargetRegionEntryInfo(EntryInfo, 5841 /*Order=*/GetMDInt(6)); 5842 break; 5843 } 5844 case OffloadEntriesInfoManager::OffloadEntryInfo:: 5845 OffloadingEntryInfoDeviceGlobalVar: 5846 OffloadInfoManager.initializeDeviceGlobalVarEntryInfo( 5847 /*MangledName=*/GetMDString(1), 5848 static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>( 5849 /*Flags=*/GetMDInt(2)), 5850 /*Order=*/GetMDInt(3)); 5851 break; 5852 } 5853 } 5854 } 5855 5856 bool OffloadEntriesInfoManager::empty() const { 5857 return OffloadEntriesTargetRegion.empty() && 5858 OffloadEntriesDeviceGlobalVar.empty(); 5859 } 5860 5861 unsigned OffloadEntriesInfoManager::getTargetRegionEntryInfoCount( 5862 const TargetRegionEntryInfo &EntryInfo) const { 5863 auto It = OffloadEntriesTargetRegionCount.find( 5864 getTargetRegionEntryCountKey(EntryInfo)); 5865 if (It == OffloadEntriesTargetRegionCount.end()) 5866 return 0; 5867 return It->second; 5868 } 5869 5870 void OffloadEntriesInfoManager::incrementTargetRegionEntryInfoCount( 5871 const TargetRegionEntryInfo &EntryInfo) { 5872 OffloadEntriesTargetRegionCount[getTargetRegionEntryCountKey(EntryInfo)] = 5873 EntryInfo.Count + 1; 5874 } 5875 5876 /// Initialize target region entry. 5877 void OffloadEntriesInfoManager::initializeTargetRegionEntryInfo( 5878 const TargetRegionEntryInfo &EntryInfo, unsigned Order) { 5879 OffloadEntriesTargetRegion[EntryInfo] = 5880 OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr, 5881 OMPTargetRegionEntryTargetRegion); 5882 ++OffloadingEntriesNum; 5883 } 5884 5885 void OffloadEntriesInfoManager::registerTargetRegionEntryInfo( 5886 TargetRegionEntryInfo EntryInfo, Constant *Addr, Constant *ID, 5887 OMPTargetRegionEntryKind Flags) { 5888 assert(EntryInfo.Count == 0 && "expected default EntryInfo"); 5889 5890 // Update the EntryInfo with the next available count for this location. 5891 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo); 5892 5893 // If we are emitting code for a target, the entry is already initialized, 5894 // only has to be registered. 5895 if (OMPBuilder->Config.isTargetDevice()) { 5896 // This could happen if the device compilation is invoked standalone. 5897 if (!hasTargetRegionEntryInfo(EntryInfo)) { 5898 return; 5899 } 5900 auto &Entry = OffloadEntriesTargetRegion[EntryInfo]; 5901 Entry.setAddress(Addr); 5902 Entry.setID(ID); 5903 Entry.setFlags(Flags); 5904 } else { 5905 if (Flags == OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion && 5906 hasTargetRegionEntryInfo(EntryInfo, /*IgnoreAddressId*/ true)) 5907 return; 5908 assert(!hasTargetRegionEntryInfo(EntryInfo) && 5909 "Target region entry already registered!"); 5910 OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags); 5911 OffloadEntriesTargetRegion[EntryInfo] = Entry; 5912 ++OffloadingEntriesNum; 5913 } 5914 incrementTargetRegionEntryInfoCount(EntryInfo); 5915 } 5916 5917 bool OffloadEntriesInfoManager::hasTargetRegionEntryInfo( 5918 TargetRegionEntryInfo EntryInfo, bool IgnoreAddressId) const { 5919 5920 // Update the EntryInfo with the next available count for this location. 5921 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo); 5922 5923 auto It = OffloadEntriesTargetRegion.find(EntryInfo); 5924 if (It == OffloadEntriesTargetRegion.end()) { 5925 return false; 5926 } 5927 // Fail if this entry is already registered. 5928 if (!IgnoreAddressId && (It->second.getAddress() || It->second.getID())) 5929 return false; 5930 return true; 5931 } 5932 5933 void OffloadEntriesInfoManager::actOnTargetRegionEntriesInfo( 5934 const OffloadTargetRegionEntryInfoActTy &Action) { 5935 // Scan all target region entries and perform the provided action. 5936 for (const auto &It : OffloadEntriesTargetRegion) { 5937 Action(It.first, It.second); 5938 } 5939 } 5940 5941 void OffloadEntriesInfoManager::initializeDeviceGlobalVarEntryInfo( 5942 StringRef Name, OMPTargetGlobalVarEntryKind Flags, unsigned Order) { 5943 OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags); 5944 ++OffloadingEntriesNum; 5945 } 5946 5947 void OffloadEntriesInfoManager::registerDeviceGlobalVarEntryInfo( 5948 StringRef VarName, Constant *Addr, int64_t VarSize, 5949 OMPTargetGlobalVarEntryKind Flags, GlobalValue::LinkageTypes Linkage) { 5950 if (OMPBuilder->Config.isTargetDevice()) { 5951 // This could happen if the device compilation is invoked standalone. 5952 if (!hasDeviceGlobalVarEntryInfo(VarName)) 5953 return; 5954 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; 5955 if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) { 5956 if (Entry.getVarSize() == 0) { 5957 Entry.setVarSize(VarSize); 5958 Entry.setLinkage(Linkage); 5959 } 5960 return; 5961 } 5962 Entry.setVarSize(VarSize); 5963 Entry.setLinkage(Linkage); 5964 Entry.setAddress(Addr); 5965 } else { 5966 if (hasDeviceGlobalVarEntryInfo(VarName)) { 5967 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; 5968 assert(Entry.isValid() && Entry.getFlags() == Flags && 5969 "Entry not initialized!"); 5970 if (Entry.getVarSize() == 0) { 5971 Entry.setVarSize(VarSize); 5972 Entry.setLinkage(Linkage); 5973 } 5974 return; 5975 } 5976 OffloadEntriesDeviceGlobalVar.try_emplace(VarName, OffloadingEntriesNum, 5977 Addr, VarSize, Flags, Linkage); 5978 ++OffloadingEntriesNum; 5979 } 5980 } 5981 5982 void OffloadEntriesInfoManager::actOnDeviceGlobalVarEntriesInfo( 5983 const OffloadDeviceGlobalVarEntryInfoActTy &Action) { 5984 // Scan all target region entries and perform the provided action. 5985 for (const auto &E : OffloadEntriesDeviceGlobalVar) 5986 Action(E.getKey(), E.getValue()); 5987 } 5988 5989 void CanonicalLoopInfo::collectControlBlocks( 5990 SmallVectorImpl<BasicBlock *> &BBs) { 5991 // We only count those BBs as control block for which we do not need to 5992 // reverse the CFG, i.e. not the loop body which can contain arbitrary control 5993 // flow. For consistency, this also means we do not add the Body block, which 5994 // is just the entry to the body code. 5995 BBs.reserve(BBs.size() + 6); 5996 BBs.append({getPreheader(), Header, Cond, Latch, Exit, getAfter()}); 5997 } 5998 5999 BasicBlock *CanonicalLoopInfo::getPreheader() const { 6000 assert(isValid() && "Requires a valid canonical loop"); 6001 for (BasicBlock *Pred : predecessors(Header)) { 6002 if (Pred != Latch) 6003 return Pred; 6004 } 6005 llvm_unreachable("Missing preheader"); 6006 } 6007 6008 void CanonicalLoopInfo::setTripCount(Value *TripCount) { 6009 assert(isValid() && "Requires a valid canonical loop"); 6010 6011 Instruction *CmpI = &getCond()->front(); 6012 assert(isa<CmpInst>(CmpI) && "First inst must compare IV with TripCount"); 6013 CmpI->setOperand(1, TripCount); 6014 6015 #ifndef NDEBUG 6016 assertOK(); 6017 #endif 6018 } 6019 6020 void CanonicalLoopInfo::mapIndVar( 6021 llvm::function_ref<Value *(Instruction *)> Updater) { 6022 assert(isValid() && "Requires a valid canonical loop"); 6023 6024 Instruction *OldIV = getIndVar(); 6025 6026 // Record all uses excluding those introduced by the updater. Uses by the 6027 // CanonicalLoopInfo itself to keep track of the number of iterations are 6028 // excluded. 6029 SmallVector<Use *> ReplacableUses; 6030 for (Use &U : OldIV->uses()) { 6031 auto *User = dyn_cast<Instruction>(U.getUser()); 6032 if (!User) 6033 continue; 6034 if (User->getParent() == getCond()) 6035 continue; 6036 if (User->getParent() == getLatch()) 6037 continue; 6038 ReplacableUses.push_back(&U); 6039 } 6040 6041 // Run the updater that may introduce new uses 6042 Value *NewIV = Updater(OldIV); 6043 6044 // Replace the old uses with the value returned by the updater. 6045 for (Use *U : ReplacableUses) 6046 U->set(NewIV); 6047 6048 #ifndef NDEBUG 6049 assertOK(); 6050 #endif 6051 } 6052 6053 void CanonicalLoopInfo::assertOK() const { 6054 #ifndef NDEBUG 6055 // No constraints if this object currently does not describe a loop. 6056 if (!isValid()) 6057 return; 6058 6059 BasicBlock *Preheader = getPreheader(); 6060 BasicBlock *Body = getBody(); 6061 BasicBlock *After = getAfter(); 6062 6063 // Verify standard control-flow we use for OpenMP loops. 6064 assert(Preheader); 6065 assert(isa<BranchInst>(Preheader->getTerminator()) && 6066 "Preheader must terminate with unconditional branch"); 6067 assert(Preheader->getSingleSuccessor() == Header && 6068 "Preheader must jump to header"); 6069 6070 assert(Header); 6071 assert(isa<BranchInst>(Header->getTerminator()) && 6072 "Header must terminate with unconditional branch"); 6073 assert(Header->getSingleSuccessor() == Cond && 6074 "Header must jump to exiting block"); 6075 6076 assert(Cond); 6077 assert(Cond->getSinglePredecessor() == Header && 6078 "Exiting block only reachable from header"); 6079 6080 assert(isa<BranchInst>(Cond->getTerminator()) && 6081 "Exiting block must terminate with conditional branch"); 6082 assert(size(successors(Cond)) == 2 && 6083 "Exiting block must have two successors"); 6084 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body && 6085 "Exiting block's first successor jump to the body"); 6086 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit && 6087 "Exiting block's second successor must exit the loop"); 6088 6089 assert(Body); 6090 assert(Body->getSinglePredecessor() == Cond && 6091 "Body only reachable from exiting block"); 6092 assert(!isa<PHINode>(Body->front())); 6093 6094 assert(Latch); 6095 assert(isa<BranchInst>(Latch->getTerminator()) && 6096 "Latch must terminate with unconditional branch"); 6097 assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header"); 6098 // TODO: To support simple redirecting of the end of the body code that has 6099 // multiple; introduce another auxiliary basic block like preheader and after. 6100 assert(Latch->getSinglePredecessor() != nullptr); 6101 assert(!isa<PHINode>(Latch->front())); 6102 6103 assert(Exit); 6104 assert(isa<BranchInst>(Exit->getTerminator()) && 6105 "Exit block must terminate with unconditional branch"); 6106 assert(Exit->getSingleSuccessor() == After && 6107 "Exit block must jump to after block"); 6108 6109 assert(After); 6110 assert(After->getSinglePredecessor() == Exit && 6111 "After block only reachable from exit block"); 6112 assert(After->empty() || !isa<PHINode>(After->front())); 6113 6114 Instruction *IndVar = getIndVar(); 6115 assert(IndVar && "Canonical induction variable not found?"); 6116 assert(isa<IntegerType>(IndVar->getType()) && 6117 "Induction variable must be an integer"); 6118 assert(cast<PHINode>(IndVar)->getParent() == Header && 6119 "Induction variable must be a PHI in the loop header"); 6120 assert(cast<PHINode>(IndVar)->getIncomingBlock(0) == Preheader); 6121 assert( 6122 cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero()); 6123 assert(cast<PHINode>(IndVar)->getIncomingBlock(1) == Latch); 6124 6125 auto *NextIndVar = cast<PHINode>(IndVar)->getIncomingValue(1); 6126 assert(cast<Instruction>(NextIndVar)->getParent() == Latch); 6127 assert(cast<BinaryOperator>(NextIndVar)->getOpcode() == BinaryOperator::Add); 6128 assert(cast<BinaryOperator>(NextIndVar)->getOperand(0) == IndVar); 6129 assert(cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1)) 6130 ->isOne()); 6131 6132 Value *TripCount = getTripCount(); 6133 assert(TripCount && "Loop trip count not found?"); 6134 assert(IndVar->getType() == TripCount->getType() && 6135 "Trip count and induction variable must have the same type"); 6136 6137 auto *CmpI = cast<CmpInst>(&Cond->front()); 6138 assert(CmpI->getPredicate() == CmpInst::ICMP_ULT && 6139 "Exit condition must be a signed less-than comparison"); 6140 assert(CmpI->getOperand(0) == IndVar && 6141 "Exit condition must compare the induction variable"); 6142 assert(CmpI->getOperand(1) == TripCount && 6143 "Exit condition must compare with the trip count"); 6144 #endif 6145 } 6146 6147 void CanonicalLoopInfo::invalidate() { 6148 Header = nullptr; 6149 Cond = nullptr; 6150 Latch = nullptr; 6151 Exit = nullptr; 6152 } 6153