xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/SectionMemoryManager.cpp (revision 0c47338023d44ff130cf69465bd1b2e75ff0bb39)
1  //===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the section-based memory manager used by the MCJIT
10  // execution engine and RuntimeDyld
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/ExecutionEngine/SectionMemoryManager.h"
15  #include "llvm/Config/config.h"
16  #include "llvm/Support/MathExtras.h"
17  #include "llvm/Support/Process.h"
18  
19  namespace llvm {
20  
21  uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size,
22                                                     unsigned Alignment,
23                                                     unsigned SectionID,
24                                                     StringRef SectionName,
25                                                     bool IsReadOnly) {
26    if (IsReadOnly)
27      return allocateSection(SectionMemoryManager::AllocationPurpose::ROData,
28                             Size, Alignment);
29    return allocateSection(SectionMemoryManager::AllocationPurpose::RWData, Size,
30                           Alignment);
31  }
32  
33  uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size,
34                                                     unsigned Alignment,
35                                                     unsigned SectionID,
36                                                     StringRef SectionName) {
37    return allocateSection(SectionMemoryManager::AllocationPurpose::Code, Size,
38                           Alignment);
39  }
40  
41  uint8_t *SectionMemoryManager::allocateSection(
42      SectionMemoryManager::AllocationPurpose Purpose, uintptr_t Size,
43      unsigned Alignment) {
44    if (!Alignment)
45      Alignment = 16;
46  
47    assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two.");
48  
49    uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1) / Alignment + 1);
50    uintptr_t Addr = 0;
51  
52    MemoryGroup &MemGroup = [&]() -> MemoryGroup & {
53      switch (Purpose) {
54      case AllocationPurpose::Code:
55        return CodeMem;
56      case AllocationPurpose::ROData:
57        return RODataMem;
58      case AllocationPurpose::RWData:
59        return RWDataMem;
60      }
61      llvm_unreachable("Unknown SectionMemoryManager::AllocationPurpose");
62    }();
63  
64    // Look in the list of free memory regions and use a block there if one
65    // is available.
66    for (FreeMemBlock &FreeMB : MemGroup.FreeMem) {
67      if (FreeMB.Free.allocatedSize() >= RequiredSize) {
68        Addr = (uintptr_t)FreeMB.Free.base();
69        uintptr_t EndOfBlock = Addr + FreeMB.Free.allocatedSize();
70        // Align the address.
71        Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
72  
73        if (FreeMB.PendingPrefixIndex == (unsigned)-1) {
74          // The part of the block we're giving out to the user is now pending
75          MemGroup.PendingMem.push_back(sys::MemoryBlock((void *)Addr, Size));
76  
77          // Remember this pending block, such that future allocations can just
78          // modify it rather than creating a new one
79          FreeMB.PendingPrefixIndex = MemGroup.PendingMem.size() - 1;
80        } else {
81          sys::MemoryBlock &PendingMB =
82              MemGroup.PendingMem[FreeMB.PendingPrefixIndex];
83          PendingMB = sys::MemoryBlock(PendingMB.base(),
84                                       Addr + Size - (uintptr_t)PendingMB.base());
85        }
86  
87        // Remember how much free space is now left in this block
88        FreeMB.Free =
89            sys::MemoryBlock((void *)(Addr + Size), EndOfBlock - Addr - Size);
90        return (uint8_t *)Addr;
91      }
92    }
93  
94    // No pre-allocated free block was large enough. Allocate a new memory region.
95    // Note that all sections get allocated as read-write.  The permissions will
96    // be updated later based on memory group.
97    //
98    // FIXME: It would be useful to define a default allocation size (or add
99    // it as a constructor parameter) to minimize the number of allocations.
100    //
101    // FIXME: Initialize the Near member for each memory group to avoid
102    // interleaving.
103    std::error_code ec;
104    sys::MemoryBlock MB = MMapper.allocateMappedMemory(
105        Purpose, RequiredSize, &MemGroup.Near,
106        sys::Memory::MF_READ | sys::Memory::MF_WRITE, ec);
107    if (ec) {
108      // FIXME: Add error propagation to the interface.
109      return nullptr;
110    }
111  
112    // Save this address as the basis for our next request
113    MemGroup.Near = MB;
114  
115    // Copy the address to all the other groups, if they have not
116    // been initialized.
117    if (CodeMem.Near.base() == 0)
118      CodeMem.Near = MB;
119    if (RODataMem.Near.base() == 0)
120      RODataMem.Near = MB;
121    if (RWDataMem.Near.base() == 0)
122      RWDataMem.Near = MB;
123  
124    // Remember that we allocated this memory
125    MemGroup.AllocatedMem.push_back(MB);
126    Addr = (uintptr_t)MB.base();
127    uintptr_t EndOfBlock = Addr + MB.allocatedSize();
128  
129    // Align the address.
130    Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
131  
132    // The part of the block we're giving out to the user is now pending
133    MemGroup.PendingMem.push_back(sys::MemoryBlock((void *)Addr, Size));
134  
135    // The allocateMappedMemory may allocate much more memory than we need. In
136    // this case, we store the unused memory as a free memory block.
137    unsigned FreeSize = EndOfBlock - Addr - Size;
138    if (FreeSize > 16) {
139      FreeMemBlock FreeMB;
140      FreeMB.Free = sys::MemoryBlock((void *)(Addr + Size), FreeSize);
141      FreeMB.PendingPrefixIndex = (unsigned)-1;
142      MemGroup.FreeMem.push_back(FreeMB);
143    }
144  
145    // Return aligned address
146    return (uint8_t *)Addr;
147  }
148  
149  bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg) {
150    // FIXME: Should in-progress permissions be reverted if an error occurs?
151    std::error_code ec;
152  
153    // Make code memory executable.
154    ec = applyMemoryGroupPermissions(CodeMem,
155                                     sys::Memory::MF_READ | sys::Memory::MF_EXEC);
156    if (ec) {
157      if (ErrMsg) {
158        *ErrMsg = ec.message();
159      }
160      return true;
161    }
162  
163    // Make read-only data memory read-only.
164    ec = applyMemoryGroupPermissions(RODataMem, sys::Memory::MF_READ);
165    if (ec) {
166      if (ErrMsg) {
167        *ErrMsg = ec.message();
168      }
169      return true;
170    }
171  
172    // Read-write data memory already has the correct permissions
173  
174    // Some platforms with separate data cache and instruction cache require
175    // explicit cache flush, otherwise JIT code manipulations (like resolved
176    // relocations) will get to the data cache but not to the instruction cache.
177    invalidateInstructionCache();
178  
179    return false;
180  }
181  
182  static sys::MemoryBlock trimBlockToPageSize(sys::MemoryBlock M) {
183    static const size_t PageSize = sys::Process::getPageSizeEstimate();
184  
185    size_t StartOverlap =
186        (PageSize - ((uintptr_t)M.base() % PageSize)) % PageSize;
187  
188    size_t TrimmedSize = M.allocatedSize();
189    TrimmedSize -= StartOverlap;
190    TrimmedSize -= TrimmedSize % PageSize;
191  
192    sys::MemoryBlock Trimmed((void *)((uintptr_t)M.base() + StartOverlap),
193                             TrimmedSize);
194  
195    assert(((uintptr_t)Trimmed.base() % PageSize) == 0);
196    assert((Trimmed.allocatedSize() % PageSize) == 0);
197    assert(M.base() <= Trimmed.base() &&
198           Trimmed.allocatedSize() <= M.allocatedSize());
199  
200    return Trimmed;
201  }
202  
203  std::error_code
204  SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup,
205                                                    unsigned Permissions) {
206    for (sys::MemoryBlock &MB : MemGroup.PendingMem)
207      if (std::error_code EC = MMapper.protectMappedMemory(MB, Permissions))
208        return EC;
209  
210    MemGroup.PendingMem.clear();
211  
212    // Now go through free blocks and trim any of them that don't span the entire
213    // page because one of the pending blocks may have overlapped it.
214    for (FreeMemBlock &FreeMB : MemGroup.FreeMem) {
215      FreeMB.Free = trimBlockToPageSize(FreeMB.Free);
216      // We cleared the PendingMem list, so all these pointers are now invalid
217      FreeMB.PendingPrefixIndex = (unsigned)-1;
218    }
219  
220    // Remove all blocks which are now empty
221    erase_if(MemGroup.FreeMem, [](FreeMemBlock &FreeMB) {
222      return FreeMB.Free.allocatedSize() == 0;
223    });
224  
225    return std::error_code();
226  }
227  
228  void SectionMemoryManager::invalidateInstructionCache() {
229    for (sys::MemoryBlock &Block : CodeMem.PendingMem)
230      sys::Memory::InvalidateInstructionCache(Block.base(),
231                                              Block.allocatedSize());
232  }
233  
234  SectionMemoryManager::~SectionMemoryManager() {
235    for (MemoryGroup *Group : {&CodeMem, &RWDataMem, &RODataMem}) {
236      for (sys::MemoryBlock &Block : Group->AllocatedMem)
237        MMapper.releaseMappedMemory(Block);
238    }
239  }
240  
241  SectionMemoryManager::MemoryMapper::~MemoryMapper() {}
242  
243  void SectionMemoryManager::anchor() {}
244  
245  namespace {
246  // Trivial implementation of SectionMemoryManager::MemoryMapper that just calls
247  // into sys::Memory.
248  class DefaultMMapper final : public SectionMemoryManager::MemoryMapper {
249  public:
250    sys::MemoryBlock
251    allocateMappedMemory(SectionMemoryManager::AllocationPurpose Purpose,
252                         size_t NumBytes, const sys::MemoryBlock *const NearBlock,
253                         unsigned Flags, std::error_code &EC) override {
254      return sys::Memory::allocateMappedMemory(NumBytes, NearBlock, Flags, EC);
255    }
256  
257    std::error_code protectMappedMemory(const sys::MemoryBlock &Block,
258                                        unsigned Flags) override {
259      return sys::Memory::protectMappedMemory(Block, Flags);
260    }
261  
262    std::error_code releaseMappedMemory(sys::MemoryBlock &M) override {
263      return sys::Memory::releaseMappedMemory(M);
264    }
265  };
266  
267  DefaultMMapper DefaultMMapperInstance;
268  } // namespace
269  
270  SectionMemoryManager::SectionMemoryManager(MemoryMapper *MM)
271      : MMapper(MM ? *MM : DefaultMMapperInstance) {}
272  
273  } // namespace llvm
274