1 //===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Interface for the implementations of runtime dynamic linker facilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H 14 #define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H 15 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 20 #include "llvm/ExecutionEngine/RuntimeDyld.h" 21 #include "llvm/ExecutionEngine/RuntimeDyldChecker.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/Host.h" 27 #include "llvm/Support/Mutex.h" 28 #include "llvm/Support/SwapByteOrder.h" 29 #include <map> 30 #include <system_error> 31 #include <unordered_map> 32 33 using namespace llvm; 34 using namespace llvm::object; 35 36 namespace llvm { 37 38 class Twine; 39 40 #define UNIMPLEMENTED_RELOC(RelType) \ 41 case RelType: \ 42 return make_error<RuntimeDyldError>("Unimplemented relocation: " #RelType) 43 44 /// SectionEntry - represents a section emitted into memory by the dynamic 45 /// linker. 46 class SectionEntry { 47 /// Name - section name. 48 std::string Name; 49 50 /// Address - address in the linker's memory where the section resides. 51 uint8_t *Address; 52 53 /// Size - section size. Doesn't include the stubs. 54 size_t Size; 55 56 /// LoadAddress - the address of the section in the target process's memory. 57 /// Used for situations in which JIT-ed code is being executed in the address 58 /// space of a separate process. If the code executes in the same address 59 /// space where it was JIT-ed, this just equals Address. 60 uint64_t LoadAddress; 61 62 /// StubOffset - used for architectures with stub functions for far 63 /// relocations (like ARM). 64 uintptr_t StubOffset; 65 66 /// The total amount of space allocated for this section. This includes the 67 /// section size and the maximum amount of space that the stubs can occupy. 68 size_t AllocationSize; 69 70 /// ObjAddress - address of the section in the in-memory object file. Used 71 /// for calculating relocations in some object formats (like MachO). 72 uintptr_t ObjAddress; 73 74 public: 75 SectionEntry(StringRef name, uint8_t *address, size_t size, 76 size_t allocationSize, uintptr_t objAddress) 77 : Name(name), Address(address), Size(size), 78 LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size), 79 AllocationSize(allocationSize), ObjAddress(objAddress) { 80 // AllocationSize is used only in asserts, prevent an "unused private field" 81 // warning: 82 (void)AllocationSize; 83 } 84 85 StringRef getName() const { return Name; } 86 87 uint8_t *getAddress() const { return Address; } 88 89 /// Return the address of this section with an offset. 90 uint8_t *getAddressWithOffset(unsigned OffsetBytes) const { 91 assert(OffsetBytes <= AllocationSize && "Offset out of bounds!"); 92 return Address + OffsetBytes; 93 } 94 95 size_t getSize() const { return Size; } 96 97 uint64_t getLoadAddress() const { return LoadAddress; } 98 void setLoadAddress(uint64_t LA) { LoadAddress = LA; } 99 100 /// Return the load address of this section with an offset. 101 uint64_t getLoadAddressWithOffset(unsigned OffsetBytes) const { 102 assert(OffsetBytes <= AllocationSize && "Offset out of bounds!"); 103 return LoadAddress + OffsetBytes; 104 } 105 106 uintptr_t getStubOffset() const { return StubOffset; } 107 108 void advanceStubOffset(unsigned StubSize) { 109 StubOffset += StubSize; 110 assert(StubOffset <= AllocationSize && "Not enough space allocated!"); 111 } 112 113 uintptr_t getObjAddress() const { return ObjAddress; } 114 }; 115 116 /// RelocationEntry - used to represent relocations internally in the dynamic 117 /// linker. 118 class RelocationEntry { 119 public: 120 /// SectionID - the section this relocation points to. 121 unsigned SectionID; 122 123 /// Offset - offset into the section. 124 uint64_t Offset; 125 126 /// RelType - relocation type. 127 uint32_t RelType; 128 129 /// Addend - the relocation addend encoded in the instruction itself. Also 130 /// used to make a relocation section relative instead of symbol relative. 131 int64_t Addend; 132 133 struct SectionPair { 134 uint32_t SectionA; 135 uint32_t SectionB; 136 }; 137 138 /// SymOffset - Section offset of the relocation entry's symbol (used for GOT 139 /// lookup). 140 union { 141 uint64_t SymOffset; 142 SectionPair Sections; 143 }; 144 145 /// True if this is a PCRel relocation (MachO specific). 146 bool IsPCRel; 147 148 /// The size of this relocation (MachO specific). 149 unsigned Size; 150 151 // ARM (MachO and COFF) specific. 152 bool IsTargetThumbFunc = false; 153 154 RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend) 155 : SectionID(id), Offset(offset), RelType(type), Addend(addend), 156 SymOffset(0), IsPCRel(false), Size(0), IsTargetThumbFunc(false) {} 157 158 RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, 159 uint64_t symoffset) 160 : SectionID(id), Offset(offset), RelType(type), Addend(addend), 161 SymOffset(symoffset), IsPCRel(false), Size(0), 162 IsTargetThumbFunc(false) {} 163 164 RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, 165 bool IsPCRel, unsigned Size) 166 : SectionID(id), Offset(offset), RelType(type), Addend(addend), 167 SymOffset(0), IsPCRel(IsPCRel), Size(Size), IsTargetThumbFunc(false) {} 168 169 RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, 170 unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB, 171 uint64_t SectionBOffset, bool IsPCRel, unsigned Size) 172 : SectionID(id), Offset(offset), RelType(type), 173 Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel), 174 Size(Size), IsTargetThumbFunc(false) { 175 Sections.SectionA = SectionA; 176 Sections.SectionB = SectionB; 177 } 178 179 RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend, 180 unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB, 181 uint64_t SectionBOffset, bool IsPCRel, unsigned Size, 182 bool IsTargetThumbFunc) 183 : SectionID(id), Offset(offset), RelType(type), 184 Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel), 185 Size(Size), IsTargetThumbFunc(IsTargetThumbFunc) { 186 Sections.SectionA = SectionA; 187 Sections.SectionB = SectionB; 188 } 189 }; 190 191 class RelocationValueRef { 192 public: 193 unsigned SectionID; 194 uint64_t Offset; 195 int64_t Addend; 196 const char *SymbolName; 197 bool IsStubThumb = false; 198 RelocationValueRef() : SectionID(0), Offset(0), Addend(0), 199 SymbolName(nullptr) {} 200 201 inline bool operator==(const RelocationValueRef &Other) const { 202 return SectionID == Other.SectionID && Offset == Other.Offset && 203 Addend == Other.Addend && SymbolName == Other.SymbolName && 204 IsStubThumb == Other.IsStubThumb; 205 } 206 inline bool operator<(const RelocationValueRef &Other) const { 207 if (SectionID != Other.SectionID) 208 return SectionID < Other.SectionID; 209 if (Offset != Other.Offset) 210 return Offset < Other.Offset; 211 if (Addend != Other.Addend) 212 return Addend < Other.Addend; 213 if (IsStubThumb != Other.IsStubThumb) 214 return IsStubThumb < Other.IsStubThumb; 215 return SymbolName < Other.SymbolName; 216 } 217 }; 218 219 /// Symbol info for RuntimeDyld. 220 class SymbolTableEntry { 221 public: 222 SymbolTableEntry() = default; 223 224 SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags) 225 : Offset(Offset), SectionID(SectionID), Flags(Flags) {} 226 227 unsigned getSectionID() const { return SectionID; } 228 uint64_t getOffset() const { return Offset; } 229 void setOffset(uint64_t NewOffset) { Offset = NewOffset; } 230 231 JITSymbolFlags getFlags() const { return Flags; } 232 233 private: 234 uint64_t Offset = 0; 235 unsigned SectionID = 0; 236 JITSymbolFlags Flags = JITSymbolFlags::None; 237 }; 238 239 typedef StringMap<SymbolTableEntry> RTDyldSymbolTable; 240 241 class RuntimeDyldImpl { 242 friend class RuntimeDyld::LoadedObjectInfo; 243 protected: 244 static const unsigned AbsoluteSymbolSection = ~0U; 245 246 // The MemoryManager to load objects into. 247 RuntimeDyld::MemoryManager &MemMgr; 248 249 // The symbol resolver to use for external symbols. 250 JITSymbolResolver &Resolver; 251 252 // A list of all sections emitted by the dynamic linker. These sections are 253 // referenced in the code by means of their index in this list - SectionID. 254 typedef SmallVector<SectionEntry, 64> SectionList; 255 SectionList Sections; 256 257 typedef unsigned SID; // Type for SectionIDs 258 #define RTDYLD_INVALID_SECTION_ID ((RuntimeDyldImpl::SID)(-1)) 259 260 // Keep a map of sections from object file to the SectionID which 261 // references it. 262 typedef std::map<SectionRef, unsigned> ObjSectionToIDMap; 263 264 // A global symbol table for symbols from all loaded modules. 265 RTDyldSymbolTable GlobalSymbolTable; 266 267 // Keep a map of common symbols to their info pairs 268 typedef std::vector<SymbolRef> CommonSymbolList; 269 270 // For each symbol, keep a list of relocations based on it. Anytime 271 // its address is reassigned (the JIT re-compiled the function, e.g.), 272 // the relocations get re-resolved. 273 // The symbol (or section) the relocation is sourced from is the Key 274 // in the relocation list where it's stored. 275 typedef SmallVector<RelocationEntry, 64> RelocationList; 276 // Relocations to sections already loaded. Indexed by SectionID which is the 277 // source of the address. The target where the address will be written is 278 // SectionID/Offset in the relocation itself. 279 std::unordered_map<unsigned, RelocationList> Relocations; 280 281 // Relocations to external symbols that are not yet resolved. Symbols are 282 // external when they aren't found in the global symbol table of all loaded 283 // modules. This map is indexed by symbol name. 284 StringMap<RelocationList> ExternalSymbolRelocations; 285 286 287 typedef std::map<RelocationValueRef, uintptr_t> StubMap; 288 289 Triple::ArchType Arch; 290 bool IsTargetLittleEndian; 291 bool IsMipsO32ABI; 292 bool IsMipsN32ABI; 293 bool IsMipsN64ABI; 294 295 // True if all sections should be passed to the memory manager, false if only 296 // sections containing relocations should be. Defaults to 'false'. 297 bool ProcessAllSections; 298 299 // This mutex prevents simultaneously loading objects from two different 300 // threads. This keeps us from having to protect individual data structures 301 // and guarantees that section allocation requests to the memory manager 302 // won't be interleaved between modules. It is also used in mapSectionAddress 303 // and resolveRelocations to protect write access to internal data structures. 304 // 305 // loadObject may be called on the same thread during the handling of of 306 // processRelocations, and that's OK. The handling of the relocation lists 307 // is written in such a way as to work correctly if new elements are added to 308 // the end of the list while the list is being processed. 309 sys::Mutex lock; 310 311 using NotifyStubEmittedFunction = 312 RuntimeDyld::NotifyStubEmittedFunction; 313 NotifyStubEmittedFunction NotifyStubEmitted; 314 315 virtual unsigned getMaxStubSize() const = 0; 316 virtual unsigned getStubAlignment() = 0; 317 318 bool HasError; 319 std::string ErrorStr; 320 321 void writeInt16BE(uint8_t *Addr, uint16_t Value) { 322 if (IsTargetLittleEndian) 323 sys::swapByteOrder(Value); 324 *Addr = (Value >> 8) & 0xFF; 325 *(Addr + 1) = Value & 0xFF; 326 } 327 328 void writeInt32BE(uint8_t *Addr, uint32_t Value) { 329 if (IsTargetLittleEndian) 330 sys::swapByteOrder(Value); 331 *Addr = (Value >> 24) & 0xFF; 332 *(Addr + 1) = (Value >> 16) & 0xFF; 333 *(Addr + 2) = (Value >> 8) & 0xFF; 334 *(Addr + 3) = Value & 0xFF; 335 } 336 337 void writeInt64BE(uint8_t *Addr, uint64_t Value) { 338 if (IsTargetLittleEndian) 339 sys::swapByteOrder(Value); 340 *Addr = (Value >> 56) & 0xFF; 341 *(Addr + 1) = (Value >> 48) & 0xFF; 342 *(Addr + 2) = (Value >> 40) & 0xFF; 343 *(Addr + 3) = (Value >> 32) & 0xFF; 344 *(Addr + 4) = (Value >> 24) & 0xFF; 345 *(Addr + 5) = (Value >> 16) & 0xFF; 346 *(Addr + 6) = (Value >> 8) & 0xFF; 347 *(Addr + 7) = Value & 0xFF; 348 } 349 350 virtual void setMipsABI(const ObjectFile &Obj) { 351 IsMipsO32ABI = false; 352 IsMipsN32ABI = false; 353 IsMipsN64ABI = false; 354 } 355 356 /// Endian-aware read Read the least significant Size bytes from Src. 357 uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const; 358 359 /// Endian-aware write. Write the least significant Size bytes from Value to 360 /// Dst. 361 void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const; 362 363 /// Generate JITSymbolFlags from a libObject symbol. 364 virtual Expected<JITSymbolFlags> getJITSymbolFlags(const SymbolRef &Sym); 365 366 /// Modify the given target address based on the given symbol flags. 367 /// This can be used by subclasses to tweak addresses based on symbol flags, 368 /// For example: the MachO/ARM target uses it to set the low bit if the target 369 /// is a thumb symbol. 370 virtual uint64_t modifyAddressBasedOnFlags(uint64_t Addr, 371 JITSymbolFlags Flags) const { 372 return Addr; 373 } 374 375 /// Given the common symbols discovered in the object file, emit a 376 /// new section for them and update the symbol mappings in the object and 377 /// symbol table. 378 Error emitCommonSymbols(const ObjectFile &Obj, 379 CommonSymbolList &CommonSymbols, uint64_t CommonSize, 380 uint32_t CommonAlign); 381 382 /// Emits section data from the object file to the MemoryManager. 383 /// \param IsCode if it's true then allocateCodeSection() will be 384 /// used for emits, else allocateDataSection() will be used. 385 /// \return SectionID. 386 Expected<unsigned> emitSection(const ObjectFile &Obj, 387 const SectionRef &Section, 388 bool IsCode); 389 390 /// Find Section in LocalSections. If the secton is not found - emit 391 /// it and store in LocalSections. 392 /// \param IsCode if it's true then allocateCodeSection() will be 393 /// used for emmits, else allocateDataSection() will be used. 394 /// \return SectionID. 395 Expected<unsigned> findOrEmitSection(const ObjectFile &Obj, 396 const SectionRef &Section, bool IsCode, 397 ObjSectionToIDMap &LocalSections); 398 399 // Add a relocation entry that uses the given section. 400 void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID); 401 402 // Add a relocation entry that uses the given symbol. This symbol may 403 // be found in the global symbol table, or it may be external. 404 void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName); 405 406 /// Emits long jump instruction to Addr. 407 /// \return Pointer to the memory area for emitting target address. 408 uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0); 409 410 /// Resolves relocations from Relocs list with address from Value. 411 void resolveRelocationList(const RelocationList &Relocs, uint64_t Value); 412 413 /// A object file specific relocation resolver 414 /// \param RE The relocation to be resolved 415 /// \param Value Target symbol address to apply the relocation action 416 virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0; 417 418 /// Parses one or more object file relocations (some object files use 419 /// relocation pairs) and stores it to Relocations or SymbolRelocations 420 /// (this depends on the object file type). 421 /// \return Iterator to the next relocation that needs to be parsed. 422 virtual Expected<relocation_iterator> 423 processRelocationRef(unsigned SectionID, relocation_iterator RelI, 424 const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID, 425 StubMap &Stubs) = 0; 426 427 void applyExternalSymbolRelocations( 428 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap); 429 430 /// Resolve relocations to external symbols. 431 Error resolveExternalSymbols(); 432 433 // Compute an upper bound of the memory that is required to load all 434 // sections 435 Error computeTotalAllocSize(const ObjectFile &Obj, 436 uint64_t &CodeSize, uint32_t &CodeAlign, 437 uint64_t &RODataSize, uint32_t &RODataAlign, 438 uint64_t &RWDataSize, uint32_t &RWDataAlign); 439 440 // Compute GOT size 441 unsigned computeGOTSize(const ObjectFile &Obj); 442 443 // Compute the stub buffer size required for a section 444 unsigned computeSectionStubBufSize(const ObjectFile &Obj, 445 const SectionRef &Section); 446 447 // Implementation of the generic part of the loadObject algorithm. 448 Expected<ObjSectionToIDMap> loadObjectImpl(const object::ObjectFile &Obj); 449 450 // Return size of Global Offset Table (GOT) entry 451 virtual size_t getGOTEntrySize() { return 0; } 452 453 // Return true if the relocation R may require allocating a GOT entry. 454 virtual bool relocationNeedsGot(const RelocationRef &R) const { 455 return false; 456 } 457 458 // Return true if the relocation R may require allocating a stub. 459 virtual bool relocationNeedsStub(const RelocationRef &R) const { 460 return true; // Conservative answer 461 } 462 463 public: 464 RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr, 465 JITSymbolResolver &Resolver) 466 : MemMgr(MemMgr), Resolver(Resolver), 467 ProcessAllSections(false), HasError(false) { 468 } 469 470 virtual ~RuntimeDyldImpl(); 471 472 void setProcessAllSections(bool ProcessAllSections) { 473 this->ProcessAllSections = ProcessAllSections; 474 } 475 476 virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 477 loadObject(const object::ObjectFile &Obj) = 0; 478 479 uint64_t getSectionLoadAddress(unsigned SectionID) const { 480 return Sections[SectionID].getLoadAddress(); 481 } 482 483 uint8_t *getSectionAddress(unsigned SectionID) const { 484 return Sections[SectionID].getAddress(); 485 } 486 487 StringRef getSectionContent(unsigned SectionID) const { 488 return StringRef(reinterpret_cast<char *>(Sections[SectionID].getAddress()), 489 Sections[SectionID].getStubOffset() + getMaxStubSize()); 490 } 491 492 uint8_t* getSymbolLocalAddress(StringRef Name) const { 493 // FIXME: Just look up as a function for now. Overly simple of course. 494 // Work in progress. 495 RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name); 496 if (pos == GlobalSymbolTable.end()) 497 return nullptr; 498 const auto &SymInfo = pos->second; 499 // Absolute symbols do not have a local address. 500 if (SymInfo.getSectionID() == AbsoluteSymbolSection) 501 return nullptr; 502 return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset(); 503 } 504 505 unsigned getSymbolSectionID(StringRef Name) const { 506 auto GSTItr = GlobalSymbolTable.find(Name); 507 if (GSTItr == GlobalSymbolTable.end()) 508 return ~0U; 509 return GSTItr->second.getSectionID(); 510 } 511 512 JITEvaluatedSymbol getSymbol(StringRef Name) const { 513 // FIXME: Just look up as a function for now. Overly simple of course. 514 // Work in progress. 515 RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name); 516 if (pos == GlobalSymbolTable.end()) 517 return nullptr; 518 const auto &SymEntry = pos->second; 519 uint64_t SectionAddr = 0; 520 if (SymEntry.getSectionID() != AbsoluteSymbolSection) 521 SectionAddr = getSectionLoadAddress(SymEntry.getSectionID()); 522 uint64_t TargetAddr = SectionAddr + SymEntry.getOffset(); 523 524 // FIXME: Have getSymbol should return the actual address and the client 525 // modify it based on the flags. This will require clients to be 526 // aware of the target architecture, which we should build 527 // infrastructure for. 528 TargetAddr = modifyAddressBasedOnFlags(TargetAddr, SymEntry.getFlags()); 529 return JITEvaluatedSymbol(TargetAddr, SymEntry.getFlags()); 530 } 531 532 std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const { 533 std::map<StringRef, JITEvaluatedSymbol> Result; 534 535 for (auto &KV : GlobalSymbolTable) { 536 auto SectionID = KV.second.getSectionID(); 537 uint64_t SectionAddr = 0; 538 if (SectionID != AbsoluteSymbolSection) 539 SectionAddr = getSectionLoadAddress(SectionID); 540 Result[KV.first()] = 541 JITEvaluatedSymbol(SectionAddr + KV.second.getOffset(), KV.second.getFlags()); 542 } 543 544 return Result; 545 } 546 547 void resolveRelocations(); 548 549 void resolveLocalRelocations(); 550 551 static void finalizeAsync(std::unique_ptr<RuntimeDyldImpl> This, 552 std::function<void(Error)> OnEmitted, 553 std::unique_ptr<MemoryBuffer> UnderlyingBuffer); 554 555 void reassignSectionAddress(unsigned SectionID, uint64_t Addr); 556 557 void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress); 558 559 // Is the linker in an error state? 560 bool hasError() { return HasError; } 561 562 // Mark the error condition as handled and continue. 563 void clearError() { HasError = false; } 564 565 // Get the error message. 566 StringRef getErrorString() { return ErrorStr; } 567 568 virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0; 569 570 void setNotifyStubEmitted(NotifyStubEmittedFunction NotifyStubEmitted) { 571 this->NotifyStubEmitted = std::move(NotifyStubEmitted); 572 } 573 574 virtual void registerEHFrames(); 575 576 void deregisterEHFrames(); 577 578 virtual Error finalizeLoad(const ObjectFile &ObjImg, 579 ObjSectionToIDMap &SectionMap) { 580 return Error::success(); 581 } 582 }; 583 584 } // end namespace llvm 585 586 #endif 587