xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Interface for the implementations of runtime dynamic linker facilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
14 #define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
20 #include "llvm/ExecutionEngine/RuntimeDyld.h"
21 #include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/Format.h"
26 #include "llvm/Support/Host.h"
27 #include "llvm/Support/Mutex.h"
28 #include "llvm/Support/SwapByteOrder.h"
29 #include <deque>
30 #include <map>
31 #include <system_error>
32 #include <unordered_map>
33 
34 using namespace llvm;
35 using namespace llvm::object;
36 
37 namespace llvm {
38 
39 #define UNIMPLEMENTED_RELOC(RelType) \
40   case RelType: \
41     return make_error<RuntimeDyldError>("Unimplemented relocation: " #RelType)
42 
43 /// SectionEntry - represents a section emitted into memory by the dynamic
44 /// linker.
45 class SectionEntry {
46   /// Name - section name.
47   std::string Name;
48 
49   /// Address - address in the linker's memory where the section resides.
50   uint8_t *Address;
51 
52   /// Size - section size. Doesn't include the stubs.
53   size_t Size;
54 
55   /// LoadAddress - the address of the section in the target process's memory.
56   /// Used for situations in which JIT-ed code is being executed in the address
57   /// space of a separate process.  If the code executes in the same address
58   /// space where it was JIT-ed, this just equals Address.
59   uint64_t LoadAddress;
60 
61   /// StubOffset - used for architectures with stub functions for far
62   /// relocations (like ARM).
63   uintptr_t StubOffset;
64 
65   /// The total amount of space allocated for this section.  This includes the
66   /// section size and the maximum amount of space that the stubs can occupy.
67   size_t AllocationSize;
68 
69   /// ObjAddress - address of the section in the in-memory object file.  Used
70   /// for calculating relocations in some object formats (like MachO).
71   uintptr_t ObjAddress;
72 
73 public:
74   SectionEntry(StringRef name, uint8_t *address, size_t size,
75                size_t allocationSize, uintptr_t objAddress)
76       : Name(std::string(name)), Address(address), Size(size),
77         LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size),
78         AllocationSize(allocationSize), ObjAddress(objAddress) {
79     // AllocationSize is used only in asserts, prevent an "unused private field"
80     // warning:
81     (void)AllocationSize;
82   }
83 
84   StringRef getName() const { return Name; }
85 
86   uint8_t *getAddress() const { return Address; }
87 
88   /// Return the address of this section with an offset.
89   uint8_t *getAddressWithOffset(unsigned OffsetBytes) const {
90     assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
91     return Address + OffsetBytes;
92   }
93 
94   size_t getSize() const { return Size; }
95 
96   uint64_t getLoadAddress() const { return LoadAddress; }
97   void setLoadAddress(uint64_t LA) { LoadAddress = LA; }
98 
99   /// Return the load address of this section with an offset.
100   uint64_t getLoadAddressWithOffset(unsigned OffsetBytes) const {
101     assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
102     return LoadAddress + OffsetBytes;
103   }
104 
105   uintptr_t getStubOffset() const { return StubOffset; }
106 
107   void advanceStubOffset(unsigned StubSize) {
108     StubOffset += StubSize;
109     assert(StubOffset <= AllocationSize && "Not enough space allocated!");
110   }
111 
112   uintptr_t getObjAddress() const { return ObjAddress; }
113 };
114 
115 /// RelocationEntry - used to represent relocations internally in the dynamic
116 /// linker.
117 class RelocationEntry {
118 public:
119   /// SectionID - the section this relocation points to.
120   unsigned SectionID;
121 
122   /// Offset - offset into the section.
123   uint64_t Offset;
124 
125   /// RelType - relocation type.
126   uint32_t RelType;
127 
128   /// Addend - the relocation addend encoded in the instruction itself.  Also
129   /// used to make a relocation section relative instead of symbol relative.
130   int64_t Addend;
131 
132   struct SectionPair {
133       uint32_t SectionA;
134       uint32_t SectionB;
135   };
136 
137   /// SymOffset - Section offset of the relocation entry's symbol (used for GOT
138   /// lookup).
139   union {
140     uint64_t SymOffset;
141     SectionPair Sections;
142   };
143 
144   /// True if this is a PCRel relocation (MachO specific).
145   bool IsPCRel;
146 
147   /// The size of this relocation (MachO specific).
148   unsigned Size;
149 
150   // ARM (MachO and COFF) specific.
151   bool IsTargetThumbFunc = false;
152 
153   RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
154       : SectionID(id), Offset(offset), RelType(type), Addend(addend),
155         SymOffset(0), IsPCRel(false), Size(0), IsTargetThumbFunc(false) {}
156 
157   RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
158                   uint64_t symoffset)
159       : SectionID(id), Offset(offset), RelType(type), Addend(addend),
160         SymOffset(symoffset), IsPCRel(false), Size(0),
161         IsTargetThumbFunc(false) {}
162 
163   RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
164                   bool IsPCRel, unsigned Size)
165       : SectionID(id), Offset(offset), RelType(type), Addend(addend),
166         SymOffset(0), IsPCRel(IsPCRel), Size(Size), IsTargetThumbFunc(false) {}
167 
168   RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
169                   unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
170                   uint64_t SectionBOffset, bool IsPCRel, unsigned Size)
171       : SectionID(id), Offset(offset), RelType(type),
172         Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
173         Size(Size), IsTargetThumbFunc(false) {
174     Sections.SectionA = SectionA;
175     Sections.SectionB = SectionB;
176   }
177 
178   RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
179                   unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
180                   uint64_t SectionBOffset, bool IsPCRel, unsigned Size,
181                   bool IsTargetThumbFunc)
182       : SectionID(id), Offset(offset), RelType(type),
183         Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
184         Size(Size), IsTargetThumbFunc(IsTargetThumbFunc) {
185     Sections.SectionA = SectionA;
186     Sections.SectionB = SectionB;
187   }
188 };
189 
190 class RelocationValueRef {
191 public:
192   unsigned SectionID = 0;
193   uint64_t Offset = 0;
194   int64_t Addend = 0;
195   const char *SymbolName = nullptr;
196   bool IsStubThumb = false;
197 
198   inline bool operator==(const RelocationValueRef &Other) const {
199     return SectionID == Other.SectionID && Offset == Other.Offset &&
200            Addend == Other.Addend && SymbolName == Other.SymbolName &&
201            IsStubThumb == Other.IsStubThumb;
202   }
203   inline bool operator<(const RelocationValueRef &Other) const {
204     if (SectionID != Other.SectionID)
205       return SectionID < Other.SectionID;
206     if (Offset != Other.Offset)
207       return Offset < Other.Offset;
208     if (Addend != Other.Addend)
209       return Addend < Other.Addend;
210     if (IsStubThumb != Other.IsStubThumb)
211       return IsStubThumb < Other.IsStubThumb;
212     return SymbolName < Other.SymbolName;
213   }
214 };
215 
216 /// Symbol info for RuntimeDyld.
217 class SymbolTableEntry {
218 public:
219   SymbolTableEntry() = default;
220 
221   SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags)
222       : Offset(Offset), SectionID(SectionID), Flags(Flags) {}
223 
224   unsigned getSectionID() const { return SectionID; }
225   uint64_t getOffset() const { return Offset; }
226   void setOffset(uint64_t NewOffset) { Offset = NewOffset; }
227 
228   JITSymbolFlags getFlags() const { return Flags; }
229 
230 private:
231   uint64_t Offset = 0;
232   unsigned SectionID = 0;
233   JITSymbolFlags Flags = JITSymbolFlags::None;
234 };
235 
236 typedef StringMap<SymbolTableEntry> RTDyldSymbolTable;
237 
238 class RuntimeDyldImpl {
239   friend class RuntimeDyld::LoadedObjectInfo;
240 protected:
241   static const unsigned AbsoluteSymbolSection = ~0U;
242 
243   // The MemoryManager to load objects into.
244   RuntimeDyld::MemoryManager &MemMgr;
245 
246   // The symbol resolver to use for external symbols.
247   JITSymbolResolver &Resolver;
248 
249   // A list of all sections emitted by the dynamic linker.  These sections are
250   // referenced in the code by means of their index in this list - SectionID.
251   // Because references may be kept while the list grows, use a container that
252   // guarantees reference stability.
253   typedef std::deque<SectionEntry> SectionList;
254   SectionList Sections;
255 
256   typedef unsigned SID; // Type for SectionIDs
257 #define RTDYLD_INVALID_SECTION_ID ((RuntimeDyldImpl::SID)(-1))
258 
259   // Keep a map of sections from object file to the SectionID which
260   // references it.
261   typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
262 
263   // A global symbol table for symbols from all loaded modules.
264   RTDyldSymbolTable GlobalSymbolTable;
265 
266   // Keep a map of common symbols to their info pairs
267   typedef std::vector<SymbolRef> CommonSymbolList;
268 
269   // For each symbol, keep a list of relocations based on it. Anytime
270   // its address is reassigned (the JIT re-compiled the function, e.g.),
271   // the relocations get re-resolved.
272   // The symbol (or section) the relocation is sourced from is the Key
273   // in the relocation list where it's stored.
274   typedef SmallVector<RelocationEntry, 64> RelocationList;
275   // Relocations to sections already loaded. Indexed by SectionID which is the
276   // source of the address. The target where the address will be written is
277   // SectionID/Offset in the relocation itself.
278   std::unordered_map<unsigned, RelocationList> Relocations;
279 
280   // Relocations to external symbols that are not yet resolved.  Symbols are
281   // external when they aren't found in the global symbol table of all loaded
282   // modules.  This map is indexed by symbol name.
283   StringMap<RelocationList> ExternalSymbolRelocations;
284 
285 
286   typedef std::map<RelocationValueRef, uintptr_t> StubMap;
287 
288   Triple::ArchType Arch;
289   bool IsTargetLittleEndian;
290   bool IsMipsO32ABI;
291   bool IsMipsN32ABI;
292   bool IsMipsN64ABI;
293 
294   // True if all sections should be passed to the memory manager, false if only
295   // sections containing relocations should be. Defaults to 'false'.
296   bool ProcessAllSections;
297 
298   // This mutex prevents simultaneously loading objects from two different
299   // threads.  This keeps us from having to protect individual data structures
300   // and guarantees that section allocation requests to the memory manager
301   // won't be interleaved between modules.  It is also used in mapSectionAddress
302   // and resolveRelocations to protect write access to internal data structures.
303   //
304   // loadObject may be called on the same thread during the handling of of
305   // processRelocations, and that's OK.  The handling of the relocation lists
306   // is written in such a way as to work correctly if new elements are added to
307   // the end of the list while the list is being processed.
308   sys::Mutex lock;
309 
310   using NotifyStubEmittedFunction =
311     RuntimeDyld::NotifyStubEmittedFunction;
312   NotifyStubEmittedFunction NotifyStubEmitted;
313 
314   virtual unsigned getMaxStubSize() const = 0;
315   virtual unsigned getStubAlignment() = 0;
316 
317   bool HasError;
318   std::string ErrorStr;
319 
320   void writeInt16BE(uint8_t *Addr, uint16_t Value) {
321     llvm::support::endian::write<uint16_t, llvm::support::unaligned>(
322         Addr, Value, IsTargetLittleEndian ? support::little : support::big);
323   }
324 
325   void writeInt32BE(uint8_t *Addr, uint32_t Value) {
326     llvm::support::endian::write<uint32_t, llvm::support::unaligned>(
327         Addr, Value, IsTargetLittleEndian ? support::little : support::big);
328   }
329 
330   void writeInt64BE(uint8_t *Addr, uint64_t Value) {
331     llvm::support::endian::write<uint64_t, llvm::support::unaligned>(
332         Addr, Value, IsTargetLittleEndian ? support::little : support::big);
333   }
334 
335   virtual void setMipsABI(const ObjectFile &Obj) {
336     IsMipsO32ABI = false;
337     IsMipsN32ABI = false;
338     IsMipsN64ABI = false;
339   }
340 
341   /// Endian-aware read Read the least significant Size bytes from Src.
342   uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const;
343 
344   /// Endian-aware write. Write the least significant Size bytes from Value to
345   /// Dst.
346   void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const;
347 
348   /// Generate JITSymbolFlags from a libObject symbol.
349   virtual Expected<JITSymbolFlags> getJITSymbolFlags(const SymbolRef &Sym);
350 
351   /// Modify the given target address based on the given symbol flags.
352   /// This can be used by subclasses to tweak addresses based on symbol flags,
353   /// For example: the MachO/ARM target uses it to set the low bit if the target
354   /// is a thumb symbol.
355   virtual uint64_t modifyAddressBasedOnFlags(uint64_t Addr,
356                                              JITSymbolFlags Flags) const {
357     return Addr;
358   }
359 
360   /// Given the common symbols discovered in the object file, emit a
361   /// new section for them and update the symbol mappings in the object and
362   /// symbol table.
363   Error emitCommonSymbols(const ObjectFile &Obj,
364                           CommonSymbolList &CommonSymbols, uint64_t CommonSize,
365                           uint32_t CommonAlign);
366 
367   /// Emits section data from the object file to the MemoryManager.
368   /// \param IsCode if it's true then allocateCodeSection() will be
369   ///        used for emits, else allocateDataSection() will be used.
370   /// \return SectionID.
371   Expected<unsigned> emitSection(const ObjectFile &Obj,
372                                  const SectionRef &Section,
373                                  bool IsCode);
374 
375   /// Find Section in LocalSections. If the secton is not found - emit
376   ///        it and store in LocalSections.
377   /// \param IsCode if it's true then allocateCodeSection() will be
378   ///        used for emmits, else allocateDataSection() will be used.
379   /// \return SectionID.
380   Expected<unsigned> findOrEmitSection(const ObjectFile &Obj,
381                                        const SectionRef &Section, bool IsCode,
382                                        ObjSectionToIDMap &LocalSections);
383 
384   // Add a relocation entry that uses the given section.
385   void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID);
386 
387   // Add a relocation entry that uses the given symbol.  This symbol may
388   // be found in the global symbol table, or it may be external.
389   void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName);
390 
391   /// Emits long jump instruction to Addr.
392   /// \return Pointer to the memory area for emitting target address.
393   uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0);
394 
395   /// Resolves relocations from Relocs list with address from Value.
396   void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
397 
398   /// A object file specific relocation resolver
399   /// \param RE The relocation to be resolved
400   /// \param Value Target symbol address to apply the relocation action
401   virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0;
402 
403   /// Parses one or more object file relocations (some object files use
404   ///        relocation pairs) and stores it to Relocations or SymbolRelocations
405   ///        (this depends on the object file type).
406   /// \return Iterator to the next relocation that needs to be parsed.
407   virtual Expected<relocation_iterator>
408   processRelocationRef(unsigned SectionID, relocation_iterator RelI,
409                        const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
410                        StubMap &Stubs) = 0;
411 
412   void applyExternalSymbolRelocations(
413       const StringMap<JITEvaluatedSymbol> ExternalSymbolMap);
414 
415   /// Resolve relocations to external symbols.
416   Error resolveExternalSymbols();
417 
418   // Compute an upper bound of the memory that is required to load all
419   // sections
420   Error computeTotalAllocSize(const ObjectFile &Obj,
421                               uint64_t &CodeSize, uint32_t &CodeAlign,
422                               uint64_t &RODataSize, uint32_t &RODataAlign,
423                               uint64_t &RWDataSize, uint32_t &RWDataAlign);
424 
425   // Compute GOT size
426   unsigned computeGOTSize(const ObjectFile &Obj);
427 
428   // Compute the stub buffer size required for a section
429   unsigned computeSectionStubBufSize(const ObjectFile &Obj,
430                                      const SectionRef &Section);
431 
432   // Implementation of the generic part of the loadObject algorithm.
433   Expected<ObjSectionToIDMap> loadObjectImpl(const object::ObjectFile &Obj);
434 
435   // Return size of Global Offset Table (GOT) entry
436   virtual size_t getGOTEntrySize() { return 0; }
437 
438   // Return true if the relocation R may require allocating a GOT entry.
439   virtual bool relocationNeedsGot(const RelocationRef &R) const {
440     return false;
441   }
442 
443   // Return true if the relocation R may require allocating a stub.
444   virtual bool relocationNeedsStub(const RelocationRef &R) const {
445     return true;    // Conservative answer
446   }
447 
448 public:
449   RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr,
450                   JITSymbolResolver &Resolver)
451     : MemMgr(MemMgr), Resolver(Resolver),
452       ProcessAllSections(false), HasError(false) {
453   }
454 
455   virtual ~RuntimeDyldImpl();
456 
457   void setProcessAllSections(bool ProcessAllSections) {
458     this->ProcessAllSections = ProcessAllSections;
459   }
460 
461   virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
462   loadObject(const object::ObjectFile &Obj) = 0;
463 
464   uint64_t getSectionLoadAddress(unsigned SectionID) const {
465     if (SectionID == AbsoluteSymbolSection)
466       return 0;
467     else
468       return Sections[SectionID].getLoadAddress();
469   }
470 
471   uint8_t *getSectionAddress(unsigned SectionID) const {
472     if (SectionID == AbsoluteSymbolSection)
473       return nullptr;
474     else
475       return Sections[SectionID].getAddress();
476   }
477 
478   StringRef getSectionContent(unsigned SectionID) const {
479     if (SectionID == AbsoluteSymbolSection)
480       return {};
481     else
482       return StringRef(
483           reinterpret_cast<char *>(Sections[SectionID].getAddress()),
484           Sections[SectionID].getStubOffset() + getMaxStubSize());
485   }
486 
487   uint8_t* getSymbolLocalAddress(StringRef Name) const {
488     // FIXME: Just look up as a function for now. Overly simple of course.
489     // Work in progress.
490     RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
491     if (pos == GlobalSymbolTable.end())
492       return nullptr;
493     const auto &SymInfo = pos->second;
494     // Absolute symbols do not have a local address.
495     if (SymInfo.getSectionID() == AbsoluteSymbolSection)
496       return nullptr;
497     return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset();
498   }
499 
500   unsigned getSymbolSectionID(StringRef Name) const {
501     auto GSTItr = GlobalSymbolTable.find(Name);
502     if (GSTItr == GlobalSymbolTable.end())
503       return ~0U;
504     return GSTItr->second.getSectionID();
505   }
506 
507   JITEvaluatedSymbol getSymbol(StringRef Name) const {
508     // FIXME: Just look up as a function for now. Overly simple of course.
509     // Work in progress.
510     RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
511     if (pos == GlobalSymbolTable.end())
512       return nullptr;
513     const auto &SymEntry = pos->second;
514     uint64_t SectionAddr = 0;
515     if (SymEntry.getSectionID() != AbsoluteSymbolSection)
516       SectionAddr = getSectionLoadAddress(SymEntry.getSectionID());
517     uint64_t TargetAddr = SectionAddr + SymEntry.getOffset();
518 
519     // FIXME: Have getSymbol should return the actual address and the client
520     //        modify it based on the flags. This will require clients to be
521     //        aware of the target architecture, which we should build
522     //        infrastructure for.
523     TargetAddr = modifyAddressBasedOnFlags(TargetAddr, SymEntry.getFlags());
524     return JITEvaluatedSymbol(TargetAddr, SymEntry.getFlags());
525   }
526 
527   std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const {
528     std::map<StringRef, JITEvaluatedSymbol> Result;
529 
530     for (auto &KV : GlobalSymbolTable) {
531       auto SectionID = KV.second.getSectionID();
532       uint64_t SectionAddr = getSectionLoadAddress(SectionID);
533       Result[KV.first()] =
534         JITEvaluatedSymbol(SectionAddr + KV.second.getOffset(), KV.second.getFlags());
535     }
536 
537     return Result;
538   }
539 
540   void resolveRelocations();
541 
542   void resolveLocalRelocations();
543 
544   static void finalizeAsync(
545       std::unique_ptr<RuntimeDyldImpl> This,
546       unique_function<void(object::OwningBinary<object::ObjectFile>,
547                            std::unique_ptr<RuntimeDyld::LoadedObjectInfo>,
548                            Error)>
549           OnEmitted,
550       object::OwningBinary<object::ObjectFile> O,
551       std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info);
552 
553   void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
554 
555   void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
556 
557   // Is the linker in an error state?
558   bool hasError() { return HasError; }
559 
560   // Mark the error condition as handled and continue.
561   void clearError() { HasError = false; }
562 
563   // Get the error message.
564   StringRef getErrorString() { return ErrorStr; }
565 
566   virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;
567 
568   void setNotifyStubEmitted(NotifyStubEmittedFunction NotifyStubEmitted) {
569     this->NotifyStubEmitted = std::move(NotifyStubEmitted);
570   }
571 
572   virtual void registerEHFrames();
573 
574   void deregisterEHFrames();
575 
576   virtual Error finalizeLoad(const ObjectFile &ObjImg,
577                              ObjSectionToIDMap &SectionMap) {
578     return Error::success();
579   }
580 };
581 
582 } // end namespace llvm
583 
584 #endif
585