xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
28 
29 #define DEBUG_TYPE "dyld"
30 
31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32 
33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34   or32le(L, (Imm & 0xFFF) << 10);
35 }
36 
37 template <class T> static void write(bool isBE, void *P, T V) {
38   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
39 }
40 
41 static void write32AArch64Addr(void *L, uint64_t Imm) {
42   uint32_t ImmLo = (Imm & 0x3) << 29;
43   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
46 }
47 
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val, int Start, int End) {
51   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52   return (Val >> Start) & Mask;
53 }
54 
55 namespace {
56 
57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
59 
60   typedef typename ELFT::uint addr_type;
61 
62   DyldELFObject(ELFObjectFile<ELFT> &&Obj);
63 
64 public:
65   static Expected<std::unique_ptr<DyldELFObject>>
66   create(MemoryBufferRef Wrapper);
67 
68   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
69 
70   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
71 
72   // Methods for type inquiry through isa, cast and dyn_cast
73   static bool classof(const Binary *v) {
74     return (isa<ELFObjectFile<ELFT>>(v) &&
75             classof(cast<ELFObjectFile<ELFT>>(v)));
76   }
77   static bool classof(const ELFObjectFile<ELFT> *v) {
78     return v->isDyldType();
79   }
80 };
81 
82 
83 
84 // The MemoryBuffer passed into this constructor is just a wrapper around the
85 // actual memory.  Ultimately, the Binary parent class will take ownership of
86 // this MemoryBuffer object but not the underlying memory.
87 template <class ELFT>
88 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
89     : ELFObjectFile<ELFT>(std::move(Obj)) {
90   this->isDyldELFObject = true;
91 }
92 
93 template <class ELFT>
94 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
95 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
96   auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
97   if (auto E = Obj.takeError())
98     return std::move(E);
99   std::unique_ptr<DyldELFObject<ELFT>> Ret(
100       new DyldELFObject<ELFT>(std::move(*Obj)));
101   return std::move(Ret);
102 }
103 
104 template <class ELFT>
105 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
106                                                uint64_t Addr) {
107   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
108   Elf_Shdr *shdr =
109       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
110 
111   // This assumes the address passed in matches the target address bitness
112   // The template-based type cast handles everything else.
113   shdr->sh_addr = static_cast<addr_type>(Addr);
114 }
115 
116 template <class ELFT>
117 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
118                                               uint64_t Addr) {
119 
120   Elf_Sym *sym = const_cast<Elf_Sym *>(
121       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
122 
123   // This assumes the address passed in matches the target address bitness
124   // The template-based type cast handles everything else.
125   sym->st_value = static_cast<addr_type>(Addr);
126 }
127 
128 class LoadedELFObjectInfo final
129     : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
130                                     RuntimeDyld::LoadedObjectInfo> {
131 public:
132   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
133       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
134 
135   OwningBinary<ObjectFile>
136   getObjectForDebug(const ObjectFile &Obj) const override;
137 };
138 
139 template <typename ELFT>
140 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
141 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
142                       const LoadedELFObjectInfo &L) {
143   typedef typename ELFT::Shdr Elf_Shdr;
144   typedef typename ELFT::uint addr_type;
145 
146   Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
147       DyldELFObject<ELFT>::create(Buffer);
148   if (Error E = ObjOrErr.takeError())
149     return std::move(E);
150 
151   std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
152 
153   // Iterate over all sections in the object.
154   auto SI = SourceObject.section_begin();
155   for (const auto &Sec : Obj->sections()) {
156     Expected<StringRef> NameOrErr = Sec.getName();
157     if (!NameOrErr) {
158       consumeError(NameOrErr.takeError());
159       continue;
160     }
161 
162     if (*NameOrErr != "") {
163       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
164       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
165           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
166 
167       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
168         // This assumes that the address passed in matches the target address
169         // bitness. The template-based type cast handles everything else.
170         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
171       }
172     }
173     ++SI;
174   }
175 
176   return std::move(Obj);
177 }
178 
179 static OwningBinary<ObjectFile>
180 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
181   assert(Obj.isELF() && "Not an ELF object file.");
182 
183   std::unique_ptr<MemoryBuffer> Buffer =
184     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
185 
186   Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
187   handleAllErrors(DebugObj.takeError());
188   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
189     DebugObj =
190         createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
191   else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
192     DebugObj =
193         createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
194   else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
195     DebugObj =
196         createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
197   else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
198     DebugObj =
199         createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
200   else
201     llvm_unreachable("Unexpected ELF format");
202 
203   handleAllErrors(DebugObj.takeError());
204   return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
205 }
206 
207 OwningBinary<ObjectFile>
208 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
209   return createELFDebugObject(Obj, *this);
210 }
211 
212 } // anonymous namespace
213 
214 namespace llvm {
215 
216 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
217                                JITSymbolResolver &Resolver)
218     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
219 RuntimeDyldELF::~RuntimeDyldELF() = default;
220 
221 void RuntimeDyldELF::registerEHFrames() {
222   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
223     SID EHFrameSID = UnregisteredEHFrameSections[i];
224     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
225     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
226     size_t EHFrameSize = Sections[EHFrameSID].getSize();
227     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
228   }
229   UnregisteredEHFrameSections.clear();
230 }
231 
232 std::unique_ptr<RuntimeDyldELF>
233 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
234                              RuntimeDyld::MemoryManager &MemMgr,
235                              JITSymbolResolver &Resolver) {
236   switch (Arch) {
237   default:
238     return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
239   case Triple::mips:
240   case Triple::mipsel:
241   case Triple::mips64:
242   case Triple::mips64el:
243     return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
244   }
245 }
246 
247 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
248 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
249   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
250     return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
251   else {
252     HasError = true;
253     raw_string_ostream ErrStream(ErrorStr);
254     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
255     return nullptr;
256   }
257 }
258 
259 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
260                                              uint64_t Offset, uint64_t Value,
261                                              uint32_t Type, int64_t Addend,
262                                              uint64_t SymOffset) {
263   switch (Type) {
264   default:
265     report_fatal_error("Relocation type not implemented yet!");
266     break;
267   case ELF::R_X86_64_NONE:
268     break;
269   case ELF::R_X86_64_8: {
270     Value += Addend;
271     assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
272     uint8_t TruncatedAddr = (Value & 0xFF);
273     *Section.getAddressWithOffset(Offset) = TruncatedAddr;
274     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
275                       << format("%p\n", Section.getAddressWithOffset(Offset)));
276     break;
277   }
278   case ELF::R_X86_64_16: {
279     Value += Addend;
280     assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
281     uint16_t TruncatedAddr = (Value & 0xFFFF);
282     support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
283         TruncatedAddr;
284     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
285                       << format("%p\n", Section.getAddressWithOffset(Offset)));
286     break;
287   }
288   case ELF::R_X86_64_64: {
289     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
290         Value + Addend;
291     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
292                       << format("%p\n", Section.getAddressWithOffset(Offset)));
293     break;
294   }
295   case ELF::R_X86_64_32:
296   case ELF::R_X86_64_32S: {
297     Value += Addend;
298     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
299            (Type == ELF::R_X86_64_32S &&
300             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
301     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
302     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
303         TruncatedAddr;
304     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
305                       << format("%p\n", Section.getAddressWithOffset(Offset)));
306     break;
307   }
308   case ELF::R_X86_64_PC8: {
309     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
310     int64_t RealOffset = Value + Addend - FinalAddress;
311     assert(isInt<8>(RealOffset));
312     int8_t TruncOffset = (RealOffset & 0xFF);
313     Section.getAddress()[Offset] = TruncOffset;
314     break;
315   }
316   case ELF::R_X86_64_PC32: {
317     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
318     int64_t RealOffset = Value + Addend - FinalAddress;
319     assert(isInt<32>(RealOffset));
320     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
321     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
322         TruncOffset;
323     break;
324   }
325   case ELF::R_X86_64_PC64: {
326     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
327     int64_t RealOffset = Value + Addend - FinalAddress;
328     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
329         RealOffset;
330     LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
331                       << format("%p\n", FinalAddress));
332     break;
333   }
334   case ELF::R_X86_64_GOTOFF64: {
335     // Compute Value - GOTBase.
336     uint64_t GOTBase = 0;
337     for (const auto &Section : Sections) {
338       if (Section.getName() == ".got") {
339         GOTBase = Section.getLoadAddressWithOffset(0);
340         break;
341       }
342     }
343     assert(GOTBase != 0 && "missing GOT");
344     int64_t GOTOffset = Value - GOTBase + Addend;
345     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
346     break;
347   }
348   case ELF::R_X86_64_DTPMOD64: {
349     // We only have one DSO, so the module id is always 1.
350     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
351     break;
352   }
353   case ELF::R_X86_64_DTPOFF64:
354   case ELF::R_X86_64_TPOFF64: {
355     // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
356     // offset in the *initial* TLS block. Since we are statically linking, all
357     // TLS blocks already exist in the initial block, so resolve both
358     // relocations equally.
359     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
360         Value + Addend;
361     break;
362   }
363   case ELF::R_X86_64_DTPOFF32:
364   case ELF::R_X86_64_TPOFF32: {
365     // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
366     // be resolved equally.
367     int64_t RealValue = Value + Addend;
368     assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
369     int32_t TruncValue = RealValue;
370     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
371         TruncValue;
372     break;
373   }
374   }
375 }
376 
377 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
378                                           uint64_t Offset, uint32_t Value,
379                                           uint32_t Type, int32_t Addend) {
380   switch (Type) {
381   case ELF::R_386_32: {
382     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
383         Value + Addend;
384     break;
385   }
386   // Handle R_386_PLT32 like R_386_PC32 since it should be able to
387   // reach any 32 bit address.
388   case ELF::R_386_PLT32:
389   case ELF::R_386_PC32: {
390     uint32_t FinalAddress =
391         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
392     uint32_t RealOffset = Value + Addend - FinalAddress;
393     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
394         RealOffset;
395     break;
396   }
397   default:
398     // There are other relocation types, but it appears these are the
399     // only ones currently used by the LLVM ELF object writer
400     report_fatal_error("Relocation type not implemented yet!");
401     break;
402   }
403 }
404 
405 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
406                                               uint64_t Offset, uint64_t Value,
407                                               uint32_t Type, int64_t Addend) {
408   uint32_t *TargetPtr =
409       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
410   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
411   // Data should use target endian. Code should always use little endian.
412   bool isBE = Arch == Triple::aarch64_be;
413 
414   LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
415                     << format("%llx", Section.getAddressWithOffset(Offset))
416                     << " FinalAddress: 0x" << format("%llx", FinalAddress)
417                     << " Value: 0x" << format("%llx", Value) << " Type: 0x"
418                     << format("%x", Type) << " Addend: 0x"
419                     << format("%llx", Addend) << "\n");
420 
421   switch (Type) {
422   default:
423     report_fatal_error("Relocation type not implemented yet!");
424     break;
425   case ELF::R_AARCH64_NONE:
426     break;
427   case ELF::R_AARCH64_ABS16: {
428     uint64_t Result = Value + Addend;
429     assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
430     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
431     break;
432   }
433   case ELF::R_AARCH64_ABS32: {
434     uint64_t Result = Value + Addend;
435     assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
436     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
437     break;
438   }
439   case ELF::R_AARCH64_ABS64:
440     write(isBE, TargetPtr, Value + Addend);
441     break;
442   case ELF::R_AARCH64_PLT32: {
443     uint64_t Result = Value + Addend - FinalAddress;
444     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
445            static_cast<int64_t>(Result) <= INT32_MAX);
446     write(isBE, TargetPtr, static_cast<uint32_t>(Result));
447     break;
448   }
449   case ELF::R_AARCH64_PREL16: {
450     uint64_t Result = Value + Addend - FinalAddress;
451     assert(static_cast<int64_t>(Result) >= INT16_MIN &&
452            static_cast<int64_t>(Result) <= UINT16_MAX);
453     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
454     break;
455   }
456   case ELF::R_AARCH64_PREL32: {
457     uint64_t Result = Value + Addend - FinalAddress;
458     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
459            static_cast<int64_t>(Result) <= UINT32_MAX);
460     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
461     break;
462   }
463   case ELF::R_AARCH64_PREL64:
464     write(isBE, TargetPtr, Value + Addend - FinalAddress);
465     break;
466   case ELF::R_AARCH64_CONDBR19: {
467     uint64_t BranchImm = Value + Addend - FinalAddress;
468 
469     assert(isInt<21>(BranchImm));
470     *TargetPtr &= 0xff00001fU;
471     // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
472     or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
473     break;
474   }
475   case ELF::R_AARCH64_TSTBR14: {
476     uint64_t BranchImm = Value + Addend - FinalAddress;
477 
478     assert(isInt<16>(BranchImm));
479 
480     *TargetPtr &= 0xfff8001fU;
481     // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
482     or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
483     break;
484   }
485   case ELF::R_AARCH64_CALL26: // fallthrough
486   case ELF::R_AARCH64_JUMP26: {
487     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
488     // calculation.
489     uint64_t BranchImm = Value + Addend - FinalAddress;
490 
491     // "Check that -2^27 <= result < 2^27".
492     assert(isInt<28>(BranchImm));
493     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
494     break;
495   }
496   case ELF::R_AARCH64_MOVW_UABS_G3:
497     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
498     break;
499   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
500     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
501     break;
502   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
503     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
504     break;
505   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
506     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
507     break;
508   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
509     // Operation: Page(S+A) - Page(P)
510     uint64_t Result =
511         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
512 
513     // Check that -2^32 <= X < 2^32
514     assert(isInt<33>(Result) && "overflow check failed for relocation");
515 
516     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
517     // from bits 32:12 of X.
518     write32AArch64Addr(TargetPtr, Result >> 12);
519     break;
520   }
521   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
522     // Operation: S + A
523     // Immediate goes in bits 21:10 of LD/ST instruction, taken
524     // from bits 11:0 of X
525     or32AArch64Imm(TargetPtr, Value + Addend);
526     break;
527   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
528     // Operation: S + A
529     // Immediate goes in bits 21:10 of LD/ST instruction, taken
530     // from bits 11:0 of X
531     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
532     break;
533   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
534     // Operation: S + A
535     // Immediate goes in bits 21:10 of LD/ST instruction, taken
536     // from bits 11:1 of X
537     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
538     break;
539   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
540     // Operation: S + A
541     // Immediate goes in bits 21:10 of LD/ST instruction, taken
542     // from bits 11:2 of X
543     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
544     break;
545   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
546     // Operation: S + A
547     // Immediate goes in bits 21:10 of LD/ST instruction, taken
548     // from bits 11:3 of X
549     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
550     break;
551   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
552     // Operation: S + A
553     // Immediate goes in bits 21:10 of LD/ST instruction, taken
554     // from bits 11:4 of X
555     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
556     break;
557   case ELF::R_AARCH64_LD_PREL_LO19: {
558     // Operation: S + A - P
559     uint64_t Result = Value + Addend - FinalAddress;
560 
561     // "Check that -2^20 <= result < 2^20".
562     assert(isInt<21>(Result));
563 
564     *TargetPtr &= 0xff00001fU;
565     // Immediate goes in bits 23:5 of LD imm instruction, taken
566     // from bits 20:2 of X
567     *TargetPtr |= ((Result & 0xffc) << (5 - 2));
568     break;
569   }
570   case ELF::R_AARCH64_ADR_PREL_LO21: {
571     // Operation: S + A - P
572     uint64_t Result = Value + Addend - FinalAddress;
573 
574     // "Check that -2^20 <= result < 2^20".
575     assert(isInt<21>(Result));
576 
577     *TargetPtr &= 0x9f00001fU;
578     // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
579     // from bits 20:0 of X
580     *TargetPtr |= ((Result & 0xffc) << (5 - 2));
581     *TargetPtr |= (Result & 0x3) << 29;
582     break;
583   }
584   }
585 }
586 
587 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
588                                           uint64_t Offset, uint32_t Value,
589                                           uint32_t Type, int32_t Addend) {
590   // TODO: Add Thumb relocations.
591   uint32_t *TargetPtr =
592       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
593   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
594   Value += Addend;
595 
596   LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
597                     << Section.getAddressWithOffset(Offset)
598                     << " FinalAddress: " << format("%p", FinalAddress)
599                     << " Value: " << format("%x", Value)
600                     << " Type: " << format("%x", Type)
601                     << " Addend: " << format("%x", Addend) << "\n");
602 
603   switch (Type) {
604   default:
605     llvm_unreachable("Not implemented relocation type!");
606 
607   case ELF::R_ARM_NONE:
608     break;
609     // Write a 31bit signed offset
610   case ELF::R_ARM_PREL31:
611     support::ulittle32_t::ref{TargetPtr} =
612         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
613         ((Value - FinalAddress) & ~0x80000000);
614     break;
615   case ELF::R_ARM_TARGET1:
616   case ELF::R_ARM_ABS32:
617     support::ulittle32_t::ref{TargetPtr} = Value;
618     break;
619     // Write first 16 bit of 32 bit value to the mov instruction.
620     // Last 4 bit should be shifted.
621   case ELF::R_ARM_MOVW_ABS_NC:
622   case ELF::R_ARM_MOVT_ABS:
623     if (Type == ELF::R_ARM_MOVW_ABS_NC)
624       Value = Value & 0xFFFF;
625     else if (Type == ELF::R_ARM_MOVT_ABS)
626       Value = (Value >> 16) & 0xFFFF;
627     support::ulittle32_t::ref{TargetPtr} =
628         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
629         (((Value >> 12) & 0xF) << 16);
630     break;
631     // Write 24 bit relative value to the branch instruction.
632   case ELF::R_ARM_PC24: // Fall through.
633   case ELF::R_ARM_CALL: // Fall through.
634   case ELF::R_ARM_JUMP24:
635     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
636     RelValue = (RelValue & 0x03FFFFFC) >> 2;
637     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
638     support::ulittle32_t::ref{TargetPtr} =
639         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
640     break;
641   }
642 }
643 
644 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
645   if (Arch == Triple::UnknownArch ||
646       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
647     IsMipsO32ABI = false;
648     IsMipsN32ABI = false;
649     IsMipsN64ABI = false;
650     return;
651   }
652   if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
653     unsigned AbiVariant = E->getPlatformFlags();
654     IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
655     IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
656   }
657   IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
658 }
659 
660 // Return the .TOC. section and offset.
661 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
662                                           ObjSectionToIDMap &LocalSections,
663                                           RelocationValueRef &Rel) {
664   // Set a default SectionID in case we do not find a TOC section below.
665   // This may happen for references to TOC base base (sym@toc, .odp
666   // relocation) without a .toc directive.  In this case just use the
667   // first section (which is usually the .odp) since the code won't
668   // reference the .toc base directly.
669   Rel.SymbolName = nullptr;
670   Rel.SectionID = 0;
671 
672   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
673   // order. The TOC starts where the first of these sections starts.
674   for (auto &Section : Obj.sections()) {
675     Expected<StringRef> NameOrErr = Section.getName();
676     if (!NameOrErr)
677       return NameOrErr.takeError();
678     StringRef SectionName = *NameOrErr;
679 
680     if (SectionName == ".got"
681         || SectionName == ".toc"
682         || SectionName == ".tocbss"
683         || SectionName == ".plt") {
684       if (auto SectionIDOrErr =
685             findOrEmitSection(Obj, Section, false, LocalSections))
686         Rel.SectionID = *SectionIDOrErr;
687       else
688         return SectionIDOrErr.takeError();
689       break;
690     }
691   }
692 
693   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
694   // thus permitting a full 64 Kbytes segment.
695   Rel.Addend = 0x8000;
696 
697   return Error::success();
698 }
699 
700 // Returns the sections and offset associated with the ODP entry referenced
701 // by Symbol.
702 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
703                                           ObjSectionToIDMap &LocalSections,
704                                           RelocationValueRef &Rel) {
705   // Get the ELF symbol value (st_value) to compare with Relocation offset in
706   // .opd entries
707   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
708        si != se; ++si) {
709 
710     Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
711     if (!RelSecOrErr)
712       report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
713 
714     section_iterator RelSecI = *RelSecOrErr;
715     if (RelSecI == Obj.section_end())
716       continue;
717 
718     Expected<StringRef> NameOrErr = RelSecI->getName();
719     if (!NameOrErr)
720       return NameOrErr.takeError();
721     StringRef RelSectionName = *NameOrErr;
722 
723     if (RelSectionName != ".opd")
724       continue;
725 
726     for (elf_relocation_iterator i = si->relocation_begin(),
727                                  e = si->relocation_end();
728          i != e;) {
729       // The R_PPC64_ADDR64 relocation indicates the first field
730       // of a .opd entry
731       uint64_t TypeFunc = i->getType();
732       if (TypeFunc != ELF::R_PPC64_ADDR64) {
733         ++i;
734         continue;
735       }
736 
737       uint64_t TargetSymbolOffset = i->getOffset();
738       symbol_iterator TargetSymbol = i->getSymbol();
739       int64_t Addend;
740       if (auto AddendOrErr = i->getAddend())
741         Addend = *AddendOrErr;
742       else
743         return AddendOrErr.takeError();
744 
745       ++i;
746       if (i == e)
747         break;
748 
749       // Just check if following relocation is a R_PPC64_TOC
750       uint64_t TypeTOC = i->getType();
751       if (TypeTOC != ELF::R_PPC64_TOC)
752         continue;
753 
754       // Finally compares the Symbol value and the target symbol offset
755       // to check if this .opd entry refers to the symbol the relocation
756       // points to.
757       if (Rel.Addend != (int64_t)TargetSymbolOffset)
758         continue;
759 
760       section_iterator TSI = Obj.section_end();
761       if (auto TSIOrErr = TargetSymbol->getSection())
762         TSI = *TSIOrErr;
763       else
764         return TSIOrErr.takeError();
765       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
766 
767       bool IsCode = TSI->isText();
768       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
769                                                   LocalSections))
770         Rel.SectionID = *SectionIDOrErr;
771       else
772         return SectionIDOrErr.takeError();
773       Rel.Addend = (intptr_t)Addend;
774       return Error::success();
775     }
776   }
777   llvm_unreachable("Attempting to get address of ODP entry!");
778 }
779 
780 // Relocation masks following the #lo(value), #hi(value), #ha(value),
781 // #higher(value), #highera(value), #highest(value), and #highesta(value)
782 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
783 // document.
784 
785 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
786 
787 static inline uint16_t applyPPChi(uint64_t value) {
788   return (value >> 16) & 0xffff;
789 }
790 
791 static inline uint16_t applyPPCha (uint64_t value) {
792   return ((value + 0x8000) >> 16) & 0xffff;
793 }
794 
795 static inline uint16_t applyPPChigher(uint64_t value) {
796   return (value >> 32) & 0xffff;
797 }
798 
799 static inline uint16_t applyPPChighera (uint64_t value) {
800   return ((value + 0x8000) >> 32) & 0xffff;
801 }
802 
803 static inline uint16_t applyPPChighest(uint64_t value) {
804   return (value >> 48) & 0xffff;
805 }
806 
807 static inline uint16_t applyPPChighesta (uint64_t value) {
808   return ((value + 0x8000) >> 48) & 0xffff;
809 }
810 
811 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
812                                             uint64_t Offset, uint64_t Value,
813                                             uint32_t Type, int64_t Addend) {
814   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
815   switch (Type) {
816   default:
817     report_fatal_error("Relocation type not implemented yet!");
818     break;
819   case ELF::R_PPC_ADDR16_LO:
820     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
821     break;
822   case ELF::R_PPC_ADDR16_HI:
823     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
824     break;
825   case ELF::R_PPC_ADDR16_HA:
826     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
827     break;
828   }
829 }
830 
831 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
832                                             uint64_t Offset, uint64_t Value,
833                                             uint32_t Type, int64_t Addend) {
834   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
835   switch (Type) {
836   default:
837     report_fatal_error("Relocation type not implemented yet!");
838     break;
839   case ELF::R_PPC64_ADDR16:
840     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
841     break;
842   case ELF::R_PPC64_ADDR16_DS:
843     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
844     break;
845   case ELF::R_PPC64_ADDR16_LO:
846     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
847     break;
848   case ELF::R_PPC64_ADDR16_LO_DS:
849     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
850     break;
851   case ELF::R_PPC64_ADDR16_HI:
852   case ELF::R_PPC64_ADDR16_HIGH:
853     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
854     break;
855   case ELF::R_PPC64_ADDR16_HA:
856   case ELF::R_PPC64_ADDR16_HIGHA:
857     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
858     break;
859   case ELF::R_PPC64_ADDR16_HIGHER:
860     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
861     break;
862   case ELF::R_PPC64_ADDR16_HIGHERA:
863     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
864     break;
865   case ELF::R_PPC64_ADDR16_HIGHEST:
866     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
867     break;
868   case ELF::R_PPC64_ADDR16_HIGHESTA:
869     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
870     break;
871   case ELF::R_PPC64_ADDR14: {
872     assert(((Value + Addend) & 3) == 0);
873     // Preserve the AA/LK bits in the branch instruction
874     uint8_t aalk = *(LocalAddress + 3);
875     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
876   } break;
877   case ELF::R_PPC64_REL16_LO: {
878     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
879     uint64_t Delta = Value - FinalAddress + Addend;
880     writeInt16BE(LocalAddress, applyPPClo(Delta));
881   } break;
882   case ELF::R_PPC64_REL16_HI: {
883     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
884     uint64_t Delta = Value - FinalAddress + Addend;
885     writeInt16BE(LocalAddress, applyPPChi(Delta));
886   } break;
887   case ELF::R_PPC64_REL16_HA: {
888     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
889     uint64_t Delta = Value - FinalAddress + Addend;
890     writeInt16BE(LocalAddress, applyPPCha(Delta));
891   } break;
892   case ELF::R_PPC64_ADDR32: {
893     int64_t Result = static_cast<int64_t>(Value + Addend);
894     if (SignExtend64<32>(Result) != Result)
895       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
896     writeInt32BE(LocalAddress, Result);
897   } break;
898   case ELF::R_PPC64_REL24: {
899     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
900     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
901     if (SignExtend64<26>(delta) != delta)
902       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
903     // We preserve bits other than LI field, i.e. PO and AA/LK fields.
904     uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
905     writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
906   } break;
907   case ELF::R_PPC64_REL32: {
908     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
909     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
910     if (SignExtend64<32>(delta) != delta)
911       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
912     writeInt32BE(LocalAddress, delta);
913   } break;
914   case ELF::R_PPC64_REL64: {
915     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
916     uint64_t Delta = Value - FinalAddress + Addend;
917     writeInt64BE(LocalAddress, Delta);
918   } break;
919   case ELF::R_PPC64_ADDR64:
920     writeInt64BE(LocalAddress, Value + Addend);
921     break;
922   }
923 }
924 
925 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
926                                               uint64_t Offset, uint64_t Value,
927                                               uint32_t Type, int64_t Addend) {
928   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
929   switch (Type) {
930   default:
931     report_fatal_error("Relocation type not implemented yet!");
932     break;
933   case ELF::R_390_PC16DBL:
934   case ELF::R_390_PLT16DBL: {
935     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
936     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
937     writeInt16BE(LocalAddress, Delta / 2);
938     break;
939   }
940   case ELF::R_390_PC32DBL:
941   case ELF::R_390_PLT32DBL: {
942     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
943     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
944     writeInt32BE(LocalAddress, Delta / 2);
945     break;
946   }
947   case ELF::R_390_PC16: {
948     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
949     assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
950     writeInt16BE(LocalAddress, Delta);
951     break;
952   }
953   case ELF::R_390_PC32: {
954     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
955     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
956     writeInt32BE(LocalAddress, Delta);
957     break;
958   }
959   case ELF::R_390_PC64: {
960     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
961     writeInt64BE(LocalAddress, Delta);
962     break;
963   }
964   case ELF::R_390_8:
965     *LocalAddress = (uint8_t)(Value + Addend);
966     break;
967   case ELF::R_390_16:
968     writeInt16BE(LocalAddress, Value + Addend);
969     break;
970   case ELF::R_390_32:
971     writeInt32BE(LocalAddress, Value + Addend);
972     break;
973   case ELF::R_390_64:
974     writeInt64BE(LocalAddress, Value + Addend);
975     break;
976   }
977 }
978 
979 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
980                                           uint64_t Offset, uint64_t Value,
981                                           uint32_t Type, int64_t Addend) {
982   bool isBE = Arch == Triple::bpfeb;
983 
984   switch (Type) {
985   default:
986     report_fatal_error("Relocation type not implemented yet!");
987     break;
988   case ELF::R_BPF_NONE:
989   case ELF::R_BPF_64_64:
990   case ELF::R_BPF_64_32:
991   case ELF::R_BPF_64_NODYLD32:
992     break;
993   case ELF::R_BPF_64_ABS64: {
994     write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
995     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
996                       << format("%p\n", Section.getAddressWithOffset(Offset)));
997     break;
998   }
999   case ELF::R_BPF_64_ABS32: {
1000     Value += Addend;
1001     assert(Value <= UINT32_MAX);
1002     write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1003     LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1004                       << format("%p\n", Section.getAddressWithOffset(Offset)));
1005     break;
1006   }
1007   }
1008 }
1009 
1010 // The target location for the relocation is described by RE.SectionID and
1011 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
1012 // SectionEntry has three members describing its location.
1013 // SectionEntry::Address is the address at which the section has been loaded
1014 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
1015 // address that the section will have in the target process.
1016 // SectionEntry::ObjAddress is the address of the bits for this section in the
1017 // original emitted object image (also in the current address space).
1018 //
1019 // Relocations will be applied as if the section were loaded at
1020 // SectionEntry::LoadAddress, but they will be applied at an address based
1021 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
1022 // Target memory contents if they are required for value calculations.
1023 //
1024 // The Value parameter here is the load address of the symbol for the
1025 // relocation to be applied.  For relocations which refer to symbols in the
1026 // current object Value will be the LoadAddress of the section in which
1027 // the symbol resides (RE.Addend provides additional information about the
1028 // symbol location).  For external symbols, Value will be the address of the
1029 // symbol in the target address space.
1030 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1031                                        uint64_t Value) {
1032   const SectionEntry &Section = Sections[RE.SectionID];
1033   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1034                            RE.SymOffset, RE.SectionID);
1035 }
1036 
1037 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1038                                        uint64_t Offset, uint64_t Value,
1039                                        uint32_t Type, int64_t Addend,
1040                                        uint64_t SymOffset, SID SectionID) {
1041   switch (Arch) {
1042   case Triple::x86_64:
1043     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1044     break;
1045   case Triple::x86:
1046     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1047                          (uint32_t)(Addend & 0xffffffffL));
1048     break;
1049   case Triple::aarch64:
1050   case Triple::aarch64_be:
1051     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1052     break;
1053   case Triple::arm: // Fall through.
1054   case Triple::armeb:
1055   case Triple::thumb:
1056   case Triple::thumbeb:
1057     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1058                          (uint32_t)(Addend & 0xffffffffL));
1059     break;
1060   case Triple::ppc: // Fall through.
1061   case Triple::ppcle:
1062     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1063     break;
1064   case Triple::ppc64: // Fall through.
1065   case Triple::ppc64le:
1066     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1067     break;
1068   case Triple::systemz:
1069     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1070     break;
1071   case Triple::bpfel:
1072   case Triple::bpfeb:
1073     resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1074     break;
1075   default:
1076     llvm_unreachable("Unsupported CPU type!");
1077   }
1078 }
1079 
1080 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1081   return (void *)(Sections[SectionID].getObjAddress() + Offset);
1082 }
1083 
1084 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1085   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1086   if (Value.SymbolName)
1087     addRelocationForSymbol(RE, Value.SymbolName);
1088   else
1089     addRelocationForSection(RE, Value.SectionID);
1090 }
1091 
1092 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1093                                                  bool IsLocal) const {
1094   switch (RelType) {
1095   case ELF::R_MICROMIPS_GOT16:
1096     if (IsLocal)
1097       return ELF::R_MICROMIPS_LO16;
1098     break;
1099   case ELF::R_MICROMIPS_HI16:
1100     return ELF::R_MICROMIPS_LO16;
1101   case ELF::R_MIPS_GOT16:
1102     if (IsLocal)
1103       return ELF::R_MIPS_LO16;
1104     break;
1105   case ELF::R_MIPS_HI16:
1106     return ELF::R_MIPS_LO16;
1107   case ELF::R_MIPS_PCHI16:
1108     return ELF::R_MIPS_PCLO16;
1109   default:
1110     break;
1111   }
1112   return ELF::R_MIPS_NONE;
1113 }
1114 
1115 // Sometimes we don't need to create thunk for a branch.
1116 // This typically happens when branch target is located
1117 // in the same object file. In such case target is either
1118 // a weak symbol or symbol in a different executable section.
1119 // This function checks if branch target is located in the
1120 // same object file and if distance between source and target
1121 // fits R_AARCH64_CALL26 relocation. If both conditions are
1122 // met, it emits direct jump to the target and returns true.
1123 // Otherwise false is returned and thunk is created.
1124 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1125     unsigned SectionID, relocation_iterator RelI,
1126     const RelocationValueRef &Value) {
1127   uint64_t Address;
1128   if (Value.SymbolName) {
1129     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1130 
1131     // Don't create direct branch for external symbols.
1132     if (Loc == GlobalSymbolTable.end())
1133       return false;
1134 
1135     const auto &SymInfo = Loc->second;
1136     Address =
1137         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1138             SymInfo.getOffset()));
1139   } else {
1140     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1141   }
1142   uint64_t Offset = RelI->getOffset();
1143   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1144 
1145   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1146   // If distance between source and target is out of range then we should
1147   // create thunk.
1148   if (!isInt<28>(Address + Value.Addend - SourceAddress))
1149     return false;
1150 
1151   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1152                     Value.Addend);
1153 
1154   return true;
1155 }
1156 
1157 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1158                                           const RelocationValueRef &Value,
1159                                           relocation_iterator RelI,
1160                                           StubMap &Stubs) {
1161 
1162   LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1163   SectionEntry &Section = Sections[SectionID];
1164 
1165   uint64_t Offset = RelI->getOffset();
1166   unsigned RelType = RelI->getType();
1167   // Look for an existing stub.
1168   StubMap::const_iterator i = Stubs.find(Value);
1169   if (i != Stubs.end()) {
1170     resolveRelocation(Section, Offset,
1171                       (uint64_t)Section.getAddressWithOffset(i->second),
1172                       RelType, 0);
1173     LLVM_DEBUG(dbgs() << " Stub function found\n");
1174   } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1175     // Create a new stub function.
1176     LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1177     Stubs[Value] = Section.getStubOffset();
1178     uint8_t *StubTargetAddr = createStubFunction(
1179         Section.getAddressWithOffset(Section.getStubOffset()));
1180 
1181     RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1182                               ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1183     RelocationEntry REmovk_g2(SectionID,
1184                               StubTargetAddr - Section.getAddress() + 4,
1185                               ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1186     RelocationEntry REmovk_g1(SectionID,
1187                               StubTargetAddr - Section.getAddress() + 8,
1188                               ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1189     RelocationEntry REmovk_g0(SectionID,
1190                               StubTargetAddr - Section.getAddress() + 12,
1191                               ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1192 
1193     if (Value.SymbolName) {
1194       addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1195       addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1196       addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1197       addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1198     } else {
1199       addRelocationForSection(REmovz_g3, Value.SectionID);
1200       addRelocationForSection(REmovk_g2, Value.SectionID);
1201       addRelocationForSection(REmovk_g1, Value.SectionID);
1202       addRelocationForSection(REmovk_g0, Value.SectionID);
1203     }
1204     resolveRelocation(Section, Offset,
1205                       reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1206                           Section.getStubOffset())),
1207                       RelType, 0);
1208     Section.advanceStubOffset(getMaxStubSize());
1209   }
1210 }
1211 
1212 Expected<relocation_iterator>
1213 RuntimeDyldELF::processRelocationRef(
1214     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1215     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1216   const auto &Obj = cast<ELFObjectFileBase>(O);
1217   uint64_t RelType = RelI->getType();
1218   int64_t Addend = 0;
1219   if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1220     Addend = *AddendOrErr;
1221   else
1222     consumeError(AddendOrErr.takeError());
1223   elf_symbol_iterator Symbol = RelI->getSymbol();
1224 
1225   // Obtain the symbol name which is referenced in the relocation
1226   StringRef TargetName;
1227   if (Symbol != Obj.symbol_end()) {
1228     if (auto TargetNameOrErr = Symbol->getName())
1229       TargetName = *TargetNameOrErr;
1230     else
1231       return TargetNameOrErr.takeError();
1232   }
1233   LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1234                     << " TargetName: " << TargetName << "\n");
1235   RelocationValueRef Value;
1236   // First search for the symbol in the local symbol table
1237   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1238 
1239   // Search for the symbol in the global symbol table
1240   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1241   if (Symbol != Obj.symbol_end()) {
1242     gsi = GlobalSymbolTable.find(TargetName.data());
1243     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1244     if (!SymTypeOrErr) {
1245       std::string Buf;
1246       raw_string_ostream OS(Buf);
1247       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1248       report_fatal_error(Twine(OS.str()));
1249     }
1250     SymType = *SymTypeOrErr;
1251   }
1252   if (gsi != GlobalSymbolTable.end()) {
1253     const auto &SymInfo = gsi->second;
1254     Value.SectionID = SymInfo.getSectionID();
1255     Value.Offset = SymInfo.getOffset();
1256     Value.Addend = SymInfo.getOffset() + Addend;
1257   } else {
1258     switch (SymType) {
1259     case SymbolRef::ST_Debug: {
1260       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1261       // and can be changed by another developers. Maybe best way is add
1262       // a new symbol type ST_Section to SymbolRef and use it.
1263       auto SectionOrErr = Symbol->getSection();
1264       if (!SectionOrErr) {
1265         std::string Buf;
1266         raw_string_ostream OS(Buf);
1267         logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1268         report_fatal_error(Twine(OS.str()));
1269       }
1270       section_iterator si = *SectionOrErr;
1271       if (si == Obj.section_end())
1272         llvm_unreachable("Symbol section not found, bad object file format!");
1273       LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1274       bool isCode = si->isText();
1275       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1276                                                   ObjSectionToID))
1277         Value.SectionID = *SectionIDOrErr;
1278       else
1279         return SectionIDOrErr.takeError();
1280       Value.Addend = Addend;
1281       break;
1282     }
1283     case SymbolRef::ST_Data:
1284     case SymbolRef::ST_Function:
1285     case SymbolRef::ST_Unknown: {
1286       Value.SymbolName = TargetName.data();
1287       Value.Addend = Addend;
1288 
1289       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1290       // will manifest here as a NULL symbol name.
1291       // We can set this as a valid (but empty) symbol name, and rely
1292       // on addRelocationForSymbol to handle this.
1293       if (!Value.SymbolName)
1294         Value.SymbolName = "";
1295       break;
1296     }
1297     default:
1298       llvm_unreachable("Unresolved symbol type!");
1299       break;
1300     }
1301   }
1302 
1303   uint64_t Offset = RelI->getOffset();
1304 
1305   LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1306                     << "\n");
1307   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1308     if ((RelType == ELF::R_AARCH64_CALL26 ||
1309          RelType == ELF::R_AARCH64_JUMP26) &&
1310         MemMgr.allowStubAllocation()) {
1311       resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1312     } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1313       // Create new GOT entry or find existing one. If GOT entry is
1314       // to be created, then we also emit ABS64 relocation for it.
1315       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1316       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1317                                  ELF::R_AARCH64_ADR_PREL_PG_HI21);
1318 
1319     } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1320       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1321       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1322                                  ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1323     } else {
1324       processSimpleRelocation(SectionID, Offset, RelType, Value);
1325     }
1326   } else if (Arch == Triple::arm) {
1327     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1328       RelType == ELF::R_ARM_JUMP24) {
1329       // This is an ARM branch relocation, need to use a stub function.
1330       LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1331       SectionEntry &Section = Sections[SectionID];
1332 
1333       // Look for an existing stub.
1334       StubMap::const_iterator i = Stubs.find(Value);
1335       if (i != Stubs.end()) {
1336         resolveRelocation(
1337             Section, Offset,
1338             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1339             RelType, 0);
1340         LLVM_DEBUG(dbgs() << " Stub function found\n");
1341       } else {
1342         // Create a new stub function.
1343         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1344         Stubs[Value] = Section.getStubOffset();
1345         uint8_t *StubTargetAddr = createStubFunction(
1346             Section.getAddressWithOffset(Section.getStubOffset()));
1347         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1348                            ELF::R_ARM_ABS32, Value.Addend);
1349         if (Value.SymbolName)
1350           addRelocationForSymbol(RE, Value.SymbolName);
1351         else
1352           addRelocationForSection(RE, Value.SectionID);
1353 
1354         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1355                                                Section.getAddressWithOffset(
1356                                                    Section.getStubOffset())),
1357                           RelType, 0);
1358         Section.advanceStubOffset(getMaxStubSize());
1359       }
1360     } else {
1361       uint32_t *Placeholder =
1362         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1363       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1364           RelType == ELF::R_ARM_ABS32) {
1365         Value.Addend += *Placeholder;
1366       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1367         // See ELF for ARM documentation
1368         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1369       }
1370       processSimpleRelocation(SectionID, Offset, RelType, Value);
1371     }
1372   } else if (IsMipsO32ABI) {
1373     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1374         computePlaceholderAddress(SectionID, Offset));
1375     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1376     if (RelType == ELF::R_MIPS_26) {
1377       // This is an Mips branch relocation, need to use a stub function.
1378       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1379       SectionEntry &Section = Sections[SectionID];
1380 
1381       // Extract the addend from the instruction.
1382       // We shift up by two since the Value will be down shifted again
1383       // when applying the relocation.
1384       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1385 
1386       Value.Addend += Addend;
1387 
1388       //  Look up for existing stub.
1389       StubMap::const_iterator i = Stubs.find(Value);
1390       if (i != Stubs.end()) {
1391         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1392         addRelocationForSection(RE, SectionID);
1393         LLVM_DEBUG(dbgs() << " Stub function found\n");
1394       } else {
1395         // Create a new stub function.
1396         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1397         Stubs[Value] = Section.getStubOffset();
1398 
1399         unsigned AbiVariant = Obj.getPlatformFlags();
1400 
1401         uint8_t *StubTargetAddr = createStubFunction(
1402             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1403 
1404         // Creating Hi and Lo relocations for the filled stub instructions.
1405         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1406                              ELF::R_MIPS_HI16, Value.Addend);
1407         RelocationEntry RELo(SectionID,
1408                              StubTargetAddr - Section.getAddress() + 4,
1409                              ELF::R_MIPS_LO16, Value.Addend);
1410 
1411         if (Value.SymbolName) {
1412           addRelocationForSymbol(REHi, Value.SymbolName);
1413           addRelocationForSymbol(RELo, Value.SymbolName);
1414         } else {
1415           addRelocationForSection(REHi, Value.SectionID);
1416           addRelocationForSection(RELo, Value.SectionID);
1417         }
1418 
1419         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1420         addRelocationForSection(RE, SectionID);
1421         Section.advanceStubOffset(getMaxStubSize());
1422       }
1423     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1424       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1425       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1426       PendingRelocs.push_back(std::make_pair(Value, RE));
1427     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1428       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1429       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1430         const RelocationValueRef &MatchingValue = I->first;
1431         RelocationEntry &Reloc = I->second;
1432         if (MatchingValue == Value &&
1433             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1434             SectionID == Reloc.SectionID) {
1435           Reloc.Addend += Addend;
1436           if (Value.SymbolName)
1437             addRelocationForSymbol(Reloc, Value.SymbolName);
1438           else
1439             addRelocationForSection(Reloc, Value.SectionID);
1440           I = PendingRelocs.erase(I);
1441         } else
1442           ++I;
1443       }
1444       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1445       if (Value.SymbolName)
1446         addRelocationForSymbol(RE, Value.SymbolName);
1447       else
1448         addRelocationForSection(RE, Value.SectionID);
1449     } else {
1450       if (RelType == ELF::R_MIPS_32)
1451         Value.Addend += Opcode;
1452       else if (RelType == ELF::R_MIPS_PC16)
1453         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1454       else if (RelType == ELF::R_MIPS_PC19_S2)
1455         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1456       else if (RelType == ELF::R_MIPS_PC21_S2)
1457         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1458       else if (RelType == ELF::R_MIPS_PC26_S2)
1459         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1460       processSimpleRelocation(SectionID, Offset, RelType, Value);
1461     }
1462   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1463     uint32_t r_type = RelType & 0xff;
1464     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1465     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1466         || r_type == ELF::R_MIPS_GOT_DISP) {
1467       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1468       if (i != GOTSymbolOffsets.end())
1469         RE.SymOffset = i->second;
1470       else {
1471         RE.SymOffset = allocateGOTEntries(1);
1472         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1473       }
1474       if (Value.SymbolName)
1475         addRelocationForSymbol(RE, Value.SymbolName);
1476       else
1477         addRelocationForSection(RE, Value.SectionID);
1478     } else if (RelType == ELF::R_MIPS_26) {
1479       // This is an Mips branch relocation, need to use a stub function.
1480       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1481       SectionEntry &Section = Sections[SectionID];
1482 
1483       //  Look up for existing stub.
1484       StubMap::const_iterator i = Stubs.find(Value);
1485       if (i != Stubs.end()) {
1486         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1487         addRelocationForSection(RE, SectionID);
1488         LLVM_DEBUG(dbgs() << " Stub function found\n");
1489       } else {
1490         // Create a new stub function.
1491         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1492         Stubs[Value] = Section.getStubOffset();
1493 
1494         unsigned AbiVariant = Obj.getPlatformFlags();
1495 
1496         uint8_t *StubTargetAddr = createStubFunction(
1497             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1498 
1499         if (IsMipsN32ABI) {
1500           // Creating Hi and Lo relocations for the filled stub instructions.
1501           RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1502                                ELF::R_MIPS_HI16, Value.Addend);
1503           RelocationEntry RELo(SectionID,
1504                                StubTargetAddr - Section.getAddress() + 4,
1505                                ELF::R_MIPS_LO16, Value.Addend);
1506           if (Value.SymbolName) {
1507             addRelocationForSymbol(REHi, Value.SymbolName);
1508             addRelocationForSymbol(RELo, Value.SymbolName);
1509           } else {
1510             addRelocationForSection(REHi, Value.SectionID);
1511             addRelocationForSection(RELo, Value.SectionID);
1512           }
1513         } else {
1514           // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1515           // instructions.
1516           RelocationEntry REHighest(SectionID,
1517                                     StubTargetAddr - Section.getAddress(),
1518                                     ELF::R_MIPS_HIGHEST, Value.Addend);
1519           RelocationEntry REHigher(SectionID,
1520                                    StubTargetAddr - Section.getAddress() + 4,
1521                                    ELF::R_MIPS_HIGHER, Value.Addend);
1522           RelocationEntry REHi(SectionID,
1523                                StubTargetAddr - Section.getAddress() + 12,
1524                                ELF::R_MIPS_HI16, Value.Addend);
1525           RelocationEntry RELo(SectionID,
1526                                StubTargetAddr - Section.getAddress() + 20,
1527                                ELF::R_MIPS_LO16, Value.Addend);
1528           if (Value.SymbolName) {
1529             addRelocationForSymbol(REHighest, Value.SymbolName);
1530             addRelocationForSymbol(REHigher, Value.SymbolName);
1531             addRelocationForSymbol(REHi, Value.SymbolName);
1532             addRelocationForSymbol(RELo, Value.SymbolName);
1533           } else {
1534             addRelocationForSection(REHighest, Value.SectionID);
1535             addRelocationForSection(REHigher, Value.SectionID);
1536             addRelocationForSection(REHi, Value.SectionID);
1537             addRelocationForSection(RELo, Value.SectionID);
1538           }
1539         }
1540         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1541         addRelocationForSection(RE, SectionID);
1542         Section.advanceStubOffset(getMaxStubSize());
1543       }
1544     } else {
1545       processSimpleRelocation(SectionID, Offset, RelType, Value);
1546     }
1547 
1548   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1549     if (RelType == ELF::R_PPC64_REL24) {
1550       // Determine ABI variant in use for this object.
1551       unsigned AbiVariant = Obj.getPlatformFlags();
1552       AbiVariant &= ELF::EF_PPC64_ABI;
1553       // A PPC branch relocation will need a stub function if the target is
1554       // an external symbol (either Value.SymbolName is set, or SymType is
1555       // Symbol::ST_Unknown) or if the target address is not within the
1556       // signed 24-bits branch address.
1557       SectionEntry &Section = Sections[SectionID];
1558       uint8_t *Target = Section.getAddressWithOffset(Offset);
1559       bool RangeOverflow = false;
1560       bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1561       if (!IsExtern) {
1562         if (AbiVariant != 2) {
1563           // In the ELFv1 ABI, a function call may point to the .opd entry,
1564           // so the final symbol value is calculated based on the relocation
1565           // values in the .opd section.
1566           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1567             return std::move(Err);
1568         } else {
1569           // In the ELFv2 ABI, a function symbol may provide a local entry
1570           // point, which must be used for direct calls.
1571           if (Value.SectionID == SectionID){
1572             uint8_t SymOther = Symbol->getOther();
1573             Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1574           }
1575         }
1576         uint8_t *RelocTarget =
1577             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1578         int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1579         // If it is within 26-bits branch range, just set the branch target
1580         if (SignExtend64<26>(delta) != delta) {
1581           RangeOverflow = true;
1582         } else if ((AbiVariant != 2) ||
1583                    (AbiVariant == 2  && Value.SectionID == SectionID)) {
1584           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1585           addRelocationForSection(RE, Value.SectionID);
1586         }
1587       }
1588       if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1589           RangeOverflow) {
1590         // It is an external symbol (either Value.SymbolName is set, or
1591         // SymType is SymbolRef::ST_Unknown) or out of range.
1592         StubMap::const_iterator i = Stubs.find(Value);
1593         if (i != Stubs.end()) {
1594           // Symbol function stub already created, just relocate to it
1595           resolveRelocation(Section, Offset,
1596                             reinterpret_cast<uint64_t>(
1597                                 Section.getAddressWithOffset(i->second)),
1598                             RelType, 0);
1599           LLVM_DEBUG(dbgs() << " Stub function found\n");
1600         } else {
1601           // Create a new stub function.
1602           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1603           Stubs[Value] = Section.getStubOffset();
1604           uint8_t *StubTargetAddr = createStubFunction(
1605               Section.getAddressWithOffset(Section.getStubOffset()),
1606               AbiVariant);
1607           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1608                              ELF::R_PPC64_ADDR64, Value.Addend);
1609 
1610           // Generates the 64-bits address loads as exemplified in section
1611           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1612           // apply to the low part of the instructions, so we have to update
1613           // the offset according to the target endianness.
1614           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1615           if (!IsTargetLittleEndian)
1616             StubRelocOffset += 2;
1617 
1618           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1619                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1620           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1621                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1622           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1623                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1624           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1625                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1626 
1627           if (Value.SymbolName) {
1628             addRelocationForSymbol(REhst, Value.SymbolName);
1629             addRelocationForSymbol(REhr, Value.SymbolName);
1630             addRelocationForSymbol(REh, Value.SymbolName);
1631             addRelocationForSymbol(REl, Value.SymbolName);
1632           } else {
1633             addRelocationForSection(REhst, Value.SectionID);
1634             addRelocationForSection(REhr, Value.SectionID);
1635             addRelocationForSection(REh, Value.SectionID);
1636             addRelocationForSection(REl, Value.SectionID);
1637           }
1638 
1639           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1640                                                  Section.getAddressWithOffset(
1641                                                      Section.getStubOffset())),
1642                             RelType, 0);
1643           Section.advanceStubOffset(getMaxStubSize());
1644         }
1645         if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1646           // Restore the TOC for external calls
1647           if (AbiVariant == 2)
1648             writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1649           else
1650             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1651         }
1652       }
1653     } else if (RelType == ELF::R_PPC64_TOC16 ||
1654                RelType == ELF::R_PPC64_TOC16_DS ||
1655                RelType == ELF::R_PPC64_TOC16_LO ||
1656                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1657                RelType == ELF::R_PPC64_TOC16_HI ||
1658                RelType == ELF::R_PPC64_TOC16_HA) {
1659       // These relocations are supposed to subtract the TOC address from
1660       // the final value.  This does not fit cleanly into the RuntimeDyld
1661       // scheme, since there may be *two* sections involved in determining
1662       // the relocation value (the section of the symbol referred to by the
1663       // relocation, and the TOC section associated with the current module).
1664       //
1665       // Fortunately, these relocations are currently only ever generated
1666       // referring to symbols that themselves reside in the TOC, which means
1667       // that the two sections are actually the same.  Thus they cancel out
1668       // and we can immediately resolve the relocation right now.
1669       switch (RelType) {
1670       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1671       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1672       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1673       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1674       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1675       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1676       default: llvm_unreachable("Wrong relocation type.");
1677       }
1678 
1679       RelocationValueRef TOCValue;
1680       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1681         return std::move(Err);
1682       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1683         llvm_unreachable("Unsupported TOC relocation.");
1684       Value.Addend -= TOCValue.Addend;
1685       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1686     } else {
1687       // There are two ways to refer to the TOC address directly: either
1688       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1689       // ignored), or via any relocation that refers to the magic ".TOC."
1690       // symbols (in which case the addend is respected).
1691       if (RelType == ELF::R_PPC64_TOC) {
1692         RelType = ELF::R_PPC64_ADDR64;
1693         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1694           return std::move(Err);
1695       } else if (TargetName == ".TOC.") {
1696         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1697           return std::move(Err);
1698         Value.Addend += Addend;
1699       }
1700 
1701       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1702 
1703       if (Value.SymbolName)
1704         addRelocationForSymbol(RE, Value.SymbolName);
1705       else
1706         addRelocationForSection(RE, Value.SectionID);
1707     }
1708   } else if (Arch == Triple::systemz &&
1709              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1710     // Create function stubs for both PLT and GOT references, regardless of
1711     // whether the GOT reference is to data or code.  The stub contains the
1712     // full address of the symbol, as needed by GOT references, and the
1713     // executable part only adds an overhead of 8 bytes.
1714     //
1715     // We could try to conserve space by allocating the code and data
1716     // parts of the stub separately.  However, as things stand, we allocate
1717     // a stub for every relocation, so using a GOT in JIT code should be
1718     // no less space efficient than using an explicit constant pool.
1719     LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1720     SectionEntry &Section = Sections[SectionID];
1721 
1722     // Look for an existing stub.
1723     StubMap::const_iterator i = Stubs.find(Value);
1724     uintptr_t StubAddress;
1725     if (i != Stubs.end()) {
1726       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1727       LLVM_DEBUG(dbgs() << " Stub function found\n");
1728     } else {
1729       // Create a new stub function.
1730       LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1731 
1732       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1733       StubAddress =
1734           alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
1735       unsigned StubOffset = StubAddress - BaseAddress;
1736 
1737       Stubs[Value] = StubOffset;
1738       createStubFunction((uint8_t *)StubAddress);
1739       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1740                          Value.Offset);
1741       if (Value.SymbolName)
1742         addRelocationForSymbol(RE, Value.SymbolName);
1743       else
1744         addRelocationForSection(RE, Value.SectionID);
1745       Section.advanceStubOffset(getMaxStubSize());
1746     }
1747 
1748     if (RelType == ELF::R_390_GOTENT)
1749       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1750                         Addend);
1751     else
1752       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1753   } else if (Arch == Triple::x86_64) {
1754     if (RelType == ELF::R_X86_64_PLT32) {
1755       // The way the PLT relocations normally work is that the linker allocates
1756       // the
1757       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1758       // entry will then jump to an address provided by the GOT.  On first call,
1759       // the
1760       // GOT address will point back into PLT code that resolves the symbol. After
1761       // the first call, the GOT entry points to the actual function.
1762       //
1763       // For local functions we're ignoring all of that here and just replacing
1764       // the PLT32 relocation type with PC32, which will translate the relocation
1765       // into a PC-relative call directly to the function. For external symbols we
1766       // can't be sure the function will be within 2^32 bytes of the call site, so
1767       // we need to create a stub, which calls into the GOT.  This case is
1768       // equivalent to the usual PLT implementation except that we use the stub
1769       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1770       // rather than allocating a PLT section.
1771       if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1772         // This is a call to an external function.
1773         // Look for an existing stub.
1774         SectionEntry *Section = &Sections[SectionID];
1775         StubMap::const_iterator i = Stubs.find(Value);
1776         uintptr_t StubAddress;
1777         if (i != Stubs.end()) {
1778           StubAddress = uintptr_t(Section->getAddress()) + i->second;
1779           LLVM_DEBUG(dbgs() << " Stub function found\n");
1780         } else {
1781           // Create a new stub function (equivalent to a PLT entry).
1782           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1783 
1784           uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1785           StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
1786                                 getStubAlignment());
1787           unsigned StubOffset = StubAddress - BaseAddress;
1788           Stubs[Value] = StubOffset;
1789           createStubFunction((uint8_t *)StubAddress);
1790 
1791           // Bump our stub offset counter
1792           Section->advanceStubOffset(getMaxStubSize());
1793 
1794           // Allocate a GOT Entry
1795           uint64_t GOTOffset = allocateGOTEntries(1);
1796           // This potentially creates a new Section which potentially
1797           // invalidates the Section pointer, so reload it.
1798           Section = &Sections[SectionID];
1799 
1800           // The load of the GOT address has an addend of -4
1801           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1802                                      ELF::R_X86_64_PC32);
1803 
1804           // Fill in the value of the symbol we're targeting into the GOT
1805           addRelocationForSymbol(
1806               computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1807               Value.SymbolName);
1808         }
1809 
1810         // Make the target call a call into the stub table.
1811         resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1812                           Addend);
1813       } else {
1814         Value.Addend += support::ulittle32_t::ref(
1815             computePlaceholderAddress(SectionID, Offset));
1816         processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1817       }
1818     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1819                RelType == ELF::R_X86_64_GOTPCRELX ||
1820                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1821       uint64_t GOTOffset = allocateGOTEntries(1);
1822       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1823                                  ELF::R_X86_64_PC32);
1824 
1825       // Fill in the value of the symbol we're targeting into the GOT
1826       RelocationEntry RE =
1827           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1828       if (Value.SymbolName)
1829         addRelocationForSymbol(RE, Value.SymbolName);
1830       else
1831         addRelocationForSection(RE, Value.SectionID);
1832     } else if (RelType == ELF::R_X86_64_GOT64) {
1833       // Fill in a 64-bit GOT offset.
1834       uint64_t GOTOffset = allocateGOTEntries(1);
1835       resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1836                         ELF::R_X86_64_64, 0);
1837 
1838       // Fill in the value of the symbol we're targeting into the GOT
1839       RelocationEntry RE =
1840           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1841       if (Value.SymbolName)
1842         addRelocationForSymbol(RE, Value.SymbolName);
1843       else
1844         addRelocationForSection(RE, Value.SectionID);
1845     } else if (RelType == ELF::R_X86_64_GOTPC32) {
1846       // Materialize the address of the base of the GOT relative to the PC.
1847       // This doesn't create a GOT entry, but it does mean we need a GOT
1848       // section.
1849       (void)allocateGOTEntries(0);
1850       resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1851     } else if (RelType == ELF::R_X86_64_GOTPC64) {
1852       (void)allocateGOTEntries(0);
1853       resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1854     } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1855       // GOTOFF relocations ultimately require a section difference relocation.
1856       (void)allocateGOTEntries(0);
1857       processSimpleRelocation(SectionID, Offset, RelType, Value);
1858     } else if (RelType == ELF::R_X86_64_PC32) {
1859       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1860       processSimpleRelocation(SectionID, Offset, RelType, Value);
1861     } else if (RelType == ELF::R_X86_64_PC64) {
1862       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1863       processSimpleRelocation(SectionID, Offset, RelType, Value);
1864     } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1865       processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1866     } else if (RelType == ELF::R_X86_64_TLSGD ||
1867                RelType == ELF::R_X86_64_TLSLD) {
1868       // The next relocation must be the relocation for __tls_get_addr.
1869       ++RelI;
1870       auto &GetAddrRelocation = *RelI;
1871       processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1872                                  GetAddrRelocation);
1873     } else {
1874       processSimpleRelocation(SectionID, Offset, RelType, Value);
1875     }
1876   } else {
1877     if (Arch == Triple::x86) {
1878       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1879     }
1880     processSimpleRelocation(SectionID, Offset, RelType, Value);
1881   }
1882   return ++RelI;
1883 }
1884 
1885 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1886                                                      uint64_t Offset,
1887                                                      RelocationValueRef Value,
1888                                                      int64_t Addend) {
1889   // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1890   // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1891   // only mentions one optimization even though there are two different
1892   // code sequences for the Initial Exec TLS Model. We match the code to
1893   // find out which one was used.
1894 
1895   // A possible TLS code sequence and its replacement
1896   struct CodeSequence {
1897     // The expected code sequence
1898     ArrayRef<uint8_t> ExpectedCodeSequence;
1899     // The negative offset of the GOTTPOFF relocation to the beginning of
1900     // the sequence
1901     uint64_t TLSSequenceOffset;
1902     // The new code sequence
1903     ArrayRef<uint8_t> NewCodeSequence;
1904     // The offset of the new TPOFF relocation
1905     uint64_t TpoffRelocationOffset;
1906   };
1907 
1908   std::array<CodeSequence, 2> CodeSequences;
1909 
1910   // Initial Exec Code Model Sequence
1911   {
1912     static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1913         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1914         0x00,                                    // mov %fs:0, %rax
1915         0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1916                                                  // %rax
1917     };
1918     CodeSequences[0].ExpectedCodeSequence =
1919         ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1920     CodeSequences[0].TLSSequenceOffset = 12;
1921 
1922     static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1923         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1924         0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1925     };
1926     CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1927     CodeSequences[0].TpoffRelocationOffset = 12;
1928   }
1929 
1930   // Initial Exec Code Model Sequence, II
1931   {
1932     static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1933         0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1934         0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00  // mov %fs:(%rax), %rax
1935     };
1936     CodeSequences[1].ExpectedCodeSequence =
1937         ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1938     CodeSequences[1].TLSSequenceOffset = 3;
1939 
1940     static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1941         0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00,             // 6 byte nop
1942         0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1943     };
1944     CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1945     CodeSequences[1].TpoffRelocationOffset = 10;
1946   }
1947 
1948   bool Resolved = false;
1949   auto &Section = Sections[SectionID];
1950   for (const auto &C : CodeSequences) {
1951     assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1952            "Old and new code sequences must have the same size");
1953 
1954     if (Offset < C.TLSSequenceOffset ||
1955         (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1956             Section.getSize()) {
1957       // This can't be a matching sequence as it doesn't fit in the current
1958       // section
1959       continue;
1960     }
1961 
1962     auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1963     auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1964     if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1965         C.ExpectedCodeSequence) {
1966       continue;
1967     }
1968 
1969     memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1970 
1971     // The original GOTTPOFF relocation has an addend as it is PC relative,
1972     // so it needs to be corrected. The TPOFF32 relocation is used as an
1973     // absolute value (which is an offset from %fs:0), so remove the addend
1974     // again.
1975     RelocationEntry RE(SectionID,
1976                        TLSSequenceStartOffset + C.TpoffRelocationOffset,
1977                        ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1978 
1979     if (Value.SymbolName)
1980       addRelocationForSymbol(RE, Value.SymbolName);
1981     else
1982       addRelocationForSection(RE, Value.SectionID);
1983 
1984     Resolved = true;
1985     break;
1986   }
1987 
1988   if (!Resolved) {
1989     // The GOTTPOFF relocation was not used in one of the sequences
1990     // described in the spec, so we can't optimize it to a TPOFF
1991     // relocation.
1992     uint64_t GOTOffset = allocateGOTEntries(1);
1993     resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1994                                ELF::R_X86_64_PC32);
1995     RelocationEntry RE =
1996         computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
1997     if (Value.SymbolName)
1998       addRelocationForSymbol(RE, Value.SymbolName);
1999     else
2000       addRelocationForSection(RE, Value.SectionID);
2001   }
2002 }
2003 
2004 void RuntimeDyldELF::processX86_64TLSRelocation(
2005     unsigned SectionID, uint64_t Offset, uint64_t RelType,
2006     RelocationValueRef Value, int64_t Addend,
2007     const RelocationRef &GetAddrRelocation) {
2008   // Since we are statically linking and have no additional DSOs, we can resolve
2009   // the relocation directly without using __tls_get_addr.
2010   // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2011   // to replace it with the Local Exec relocation variant.
2012 
2013   // Find out whether the code was compiled with the large or small memory
2014   // model. For this we look at the next relocation which is the relocation
2015   // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2016   // small code model, with a 64 bit relocation it's the large code model.
2017   bool IsSmallCodeModel;
2018   // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2019   bool IsGOTPCRel = false;
2020 
2021   switch (GetAddrRelocation.getType()) {
2022   case ELF::R_X86_64_GOTPCREL:
2023   case ELF::R_X86_64_REX_GOTPCRELX:
2024   case ELF::R_X86_64_GOTPCRELX:
2025     IsGOTPCRel = true;
2026     [[fallthrough]];
2027   case ELF::R_X86_64_PLT32:
2028     IsSmallCodeModel = true;
2029     break;
2030   case ELF::R_X86_64_PLTOFF64:
2031     IsSmallCodeModel = false;
2032     break;
2033   default:
2034     report_fatal_error(
2035         "invalid TLS relocations for General/Local Dynamic TLS Model: "
2036         "expected PLT or GOT relocation for __tls_get_addr function");
2037   }
2038 
2039   // The negative offset to the start of the TLS code sequence relative to
2040   // the offset of the TLSGD/TLSLD relocation
2041   uint64_t TLSSequenceOffset;
2042   // The expected start of the code sequence
2043   ArrayRef<uint8_t> ExpectedCodeSequence;
2044   // The new TLS code sequence that will replace the existing code
2045   ArrayRef<uint8_t> NewCodeSequence;
2046 
2047   if (RelType == ELF::R_X86_64_TLSGD) {
2048     // The offset of the new TPOFF32 relocation (offset starting from the
2049     // beginning of the whole TLS sequence)
2050     uint64_t TpoffRelocOffset;
2051 
2052     if (IsSmallCodeModel) {
2053       if (!IsGOTPCRel) {
2054         static const std::initializer_list<uint8_t> CodeSequence = {
2055             0x66, // data16 (no-op prefix)
2056             0x48, 0x8d, 0x3d, 0x00, 0x00,
2057             0x00, 0x00,                  // lea <disp32>(%rip), %rdi
2058             0x66, 0x66,                  // two data16 prefixes
2059             0x48,                        // rex64 (no-op prefix)
2060             0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2061         };
2062         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2063         TLSSequenceOffset = 4;
2064       } else {
2065         // This code sequence is not described in the TLS spec but gcc
2066         // generates it sometimes.
2067         static const std::initializer_list<uint8_t> CodeSequence = {
2068             0x66, // data16 (no-op prefix)
2069             0x48, 0x8d, 0x3d, 0x00, 0x00,
2070             0x00, 0x00, // lea <disp32>(%rip), %rdi
2071             0x66,       // data16 prefix (no-op prefix)
2072             0x48,       // rex64 (no-op prefix)
2073             0xff, 0x15, 0x00, 0x00, 0x00,
2074             0x00 // call *__tls_get_addr@gotpcrel(%rip)
2075         };
2076         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2077         TLSSequenceOffset = 4;
2078       }
2079 
2080       // The replacement code for the small code model. It's the same for
2081       // both sequences.
2082       static const std::initializer_list<uint8_t> SmallSequence = {
2083           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2084           0x00,                                    // mov %fs:0, %rax
2085           0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2086                                                    // %rax
2087       };
2088       NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2089       TpoffRelocOffset = 12;
2090     } else {
2091       static const std::initializer_list<uint8_t> CodeSequence = {
2092           0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2093                                                     // %rdi
2094           0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2095           0x00,             // movabs $__tls_get_addr@pltoff, %rax
2096           0x48, 0x01, 0xd8, // add %rbx, %rax
2097           0xff, 0xd0        // call *%rax
2098       };
2099       ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2100       TLSSequenceOffset = 3;
2101 
2102       // The replacement code for the large code model
2103       static const std::initializer_list<uint8_t> LargeSequence = {
2104           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2105           0x00,                                     // mov %fs:0, %rax
2106           0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2107                                                     // %rax
2108           0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00        // nopw 0x0(%rax,%rax,1)
2109       };
2110       NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2111       TpoffRelocOffset = 12;
2112     }
2113 
2114     // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2115     // The new TPOFF32 relocations is used as an absolute offset from
2116     // %fs:0, so remove the TLSGD/TLSLD addend again.
2117     RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2118                        ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2119     if (Value.SymbolName)
2120       addRelocationForSymbol(RE, Value.SymbolName);
2121     else
2122       addRelocationForSection(RE, Value.SectionID);
2123   } else if (RelType == ELF::R_X86_64_TLSLD) {
2124     if (IsSmallCodeModel) {
2125       if (!IsGOTPCRel) {
2126         static const std::initializer_list<uint8_t> CodeSequence = {
2127             0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2128             0x00, 0xe8, 0x00, 0x00, 0x00, 0x00  // call __tls_get_addr@plt
2129         };
2130         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2131         TLSSequenceOffset = 3;
2132 
2133         // The replacement code for the small code model
2134         static const std::initializer_list<uint8_t> SmallSequence = {
2135             0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2136             0x64, 0x48, 0x8b, 0x04, 0x25,
2137             0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2138         };
2139         NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2140       } else {
2141         // This code sequence is not described in the TLS spec but gcc
2142         // generates it sometimes.
2143         static const std::initializer_list<uint8_t> CodeSequence = {
2144             0x48, 0x8d, 0x3d, 0x00,
2145             0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2146             0xff, 0x15, 0x00, 0x00,
2147             0x00, 0x00 // call
2148                        // *__tls_get_addr@gotpcrel(%rip)
2149         };
2150         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2151         TLSSequenceOffset = 3;
2152 
2153         // The replacement is code is just like above but it needs to be
2154         // one byte longer.
2155         static const std::initializer_list<uint8_t> SmallSequence = {
2156             0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2157             0x64, 0x48, 0x8b, 0x04, 0x25,
2158             0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2159         };
2160         NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2161       }
2162     } else {
2163       // This is the same sequence as for the TLSGD sequence with the large
2164       // memory model above
2165       static const std::initializer_list<uint8_t> CodeSequence = {
2166           0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2167                                                     // %rdi
2168           0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2169           0x48,       // movabs $__tls_get_addr@pltoff, %rax
2170           0x01, 0xd8, // add %rbx, %rax
2171           0xff, 0xd0  // call *%rax
2172       };
2173       ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2174       TLSSequenceOffset = 3;
2175 
2176       // The replacement code for the large code model
2177       static const std::initializer_list<uint8_t> LargeSequence = {
2178           0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2179           0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2180           0x00,                                                // 10 byte nop
2181           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2182       };
2183       NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2184     }
2185   } else {
2186     llvm_unreachable("both TLS relocations handled above");
2187   }
2188 
2189   assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2190          "Old and new code sequences must have the same size");
2191 
2192   auto &Section = Sections[SectionID];
2193   if (Offset < TLSSequenceOffset ||
2194       (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2195           Section.getSize()) {
2196     report_fatal_error("unexpected end of section in TLS sequence");
2197   }
2198 
2199   auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2200   if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2201       ExpectedCodeSequence) {
2202     report_fatal_error(
2203         "invalid TLS sequence for Global/Local Dynamic TLS Model");
2204   }
2205 
2206   memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2207 }
2208 
2209 size_t RuntimeDyldELF::getGOTEntrySize() {
2210   // We don't use the GOT in all of these cases, but it's essentially free
2211   // to put them all here.
2212   size_t Result = 0;
2213   switch (Arch) {
2214   case Triple::x86_64:
2215   case Triple::aarch64:
2216   case Triple::aarch64_be:
2217   case Triple::ppc64:
2218   case Triple::ppc64le:
2219   case Triple::systemz:
2220     Result = sizeof(uint64_t);
2221     break;
2222   case Triple::x86:
2223   case Triple::arm:
2224   case Triple::thumb:
2225     Result = sizeof(uint32_t);
2226     break;
2227   case Triple::mips:
2228   case Triple::mipsel:
2229   case Triple::mips64:
2230   case Triple::mips64el:
2231     if (IsMipsO32ABI || IsMipsN32ABI)
2232       Result = sizeof(uint32_t);
2233     else if (IsMipsN64ABI)
2234       Result = sizeof(uint64_t);
2235     else
2236       llvm_unreachable("Mips ABI not handled");
2237     break;
2238   default:
2239     llvm_unreachable("Unsupported CPU type!");
2240   }
2241   return Result;
2242 }
2243 
2244 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2245   if (GOTSectionID == 0) {
2246     GOTSectionID = Sections.size();
2247     // Reserve a section id. We'll allocate the section later
2248     // once we know the total size
2249     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2250   }
2251   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2252   CurrentGOTIndex += no;
2253   return StartOffset;
2254 }
2255 
2256 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2257                                              unsigned GOTRelType) {
2258   auto E = GOTOffsetMap.insert({Value, 0});
2259   if (E.second) {
2260     uint64_t GOTOffset = allocateGOTEntries(1);
2261 
2262     // Create relocation for newly created GOT entry
2263     RelocationEntry RE =
2264         computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2265     if (Value.SymbolName)
2266       addRelocationForSymbol(RE, Value.SymbolName);
2267     else
2268       addRelocationForSection(RE, Value.SectionID);
2269 
2270     E.first->second = GOTOffset;
2271   }
2272 
2273   return E.first->second;
2274 }
2275 
2276 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2277                                                 uint64_t Offset,
2278                                                 uint64_t GOTOffset,
2279                                                 uint32_t Type) {
2280   // Fill in the relative address of the GOT Entry into the stub
2281   RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2282   addRelocationForSection(GOTRE, GOTSectionID);
2283 }
2284 
2285 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2286                                                    uint64_t SymbolOffset,
2287                                                    uint32_t Type) {
2288   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2289 }
2290 
2291 void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
2292   // This should never return an error as `processNewSymbol` wouldn't have been
2293   // called if getFlags() returned an error before.
2294   auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());
2295 
2296   if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2297     if (IFuncStubSectionID == 0) {
2298       // Create a dummy section for the ifunc stubs. It will be actually
2299       // allocated in finalizeLoad() below.
2300       IFuncStubSectionID = Sections.size();
2301       Sections.push_back(
2302           SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2303       // First 64B are reserverd for the IFunc resolver
2304       IFuncStubOffset = 64;
2305     }
2306 
2307     IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
2308     // Modify the symbol so that it points to the ifunc stub instead of to the
2309     // resolver function.
2310     Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2311                               Symbol.getFlags());
2312     IFuncStubOffset += getMaxIFuncStubSize();
2313   }
2314 }
2315 
2316 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
2317                                   ObjSectionToIDMap &SectionMap) {
2318   if (IsMipsO32ABI)
2319     if (!PendingRelocs.empty())
2320       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2321 
2322   // Create the IFunc stubs if necessary. This must be done before processing
2323   // the GOT entries, as the IFunc stubs may create some.
2324   if (IFuncStubSectionID != 0) {
2325     uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
2326         IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
2327     if (!IFuncStubsAddr)
2328       return make_error<RuntimeDyldError>(
2329           "Unable to allocate memory for IFunc stubs!");
2330     Sections[IFuncStubSectionID] =
2331         SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2332                      IFuncStubOffset, 0);
2333 
2334     createIFuncResolver(IFuncStubsAddr);
2335 
2336     LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2337                       << IFuncStubSectionID << " Addr: "
2338                       << Sections[IFuncStubSectionID].getAddress() << '\n');
2339     for (auto &IFuncStub : IFuncStubs) {
2340       auto &Symbol = IFuncStub.OriginalSymbol;
2341       LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
2342                         << " Offset: " << format("%p", Symbol.getOffset())
2343                         << " IFuncStubOffset: "
2344                         << format("%p\n", IFuncStub.StubOffset));
2345       createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2346                       Symbol.getSectionID(), Symbol.getOffset());
2347     }
2348 
2349     IFuncStubSectionID = 0;
2350     IFuncStubOffset = 0;
2351     IFuncStubs.clear();
2352   }
2353 
2354   // If necessary, allocate the global offset table
2355   if (GOTSectionID != 0) {
2356     // Allocate memory for the section
2357     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2358     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2359                                                GOTSectionID, ".got", false);
2360     if (!Addr)
2361       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2362 
2363     Sections[GOTSectionID] =
2364         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2365 
2366     // For now, initialize all GOT entries to zero.  We'll fill them in as
2367     // needed when GOT-based relocations are applied.
2368     memset(Addr, 0, TotalSize);
2369     if (IsMipsN32ABI || IsMipsN64ABI) {
2370       // To correctly resolve Mips GOT relocations, we need a mapping from
2371       // object's sections to GOTs.
2372       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2373            SI != SE; ++SI) {
2374         if (SI->relocation_begin() != SI->relocation_end()) {
2375           Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2376           if (!RelSecOrErr)
2377             return make_error<RuntimeDyldError>(
2378                 toString(RelSecOrErr.takeError()));
2379 
2380           section_iterator RelocatedSection = *RelSecOrErr;
2381           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2382           assert(i != SectionMap.end());
2383           SectionToGOTMap[i->second] = GOTSectionID;
2384         }
2385       }
2386       GOTSymbolOffsets.clear();
2387     }
2388   }
2389 
2390   // Look for and record the EH frame section.
2391   ObjSectionToIDMap::iterator i, e;
2392   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2393     const SectionRef &Section = i->first;
2394 
2395     StringRef Name;
2396     Expected<StringRef> NameOrErr = Section.getName();
2397     if (NameOrErr)
2398       Name = *NameOrErr;
2399     else
2400       consumeError(NameOrErr.takeError());
2401 
2402     if (Name == ".eh_frame") {
2403       UnregisteredEHFrameSections.push_back(i->second);
2404       break;
2405     }
2406   }
2407 
2408   GOTSectionID = 0;
2409   CurrentGOTIndex = 0;
2410 
2411   return Error::success();
2412 }
2413 
2414 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
2415   return Obj.isELF();
2416 }
2417 
2418 void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
2419   if (Arch == Triple::x86_64) {
2420     // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2421     // (see createIFuncStub() for details)
2422     // The following code first saves all registers that contain the original
2423     // function arguments as those registers are not saved by the resolver
2424     // function. %r11 is saved as well so that the GOT2 entry can be updated
2425     // afterwards. Then it calls the actual IFunc resolver function whose
2426     // address is stored in GOT2. After the resolver function returns, all
2427     // saved registers are restored and the return value is written to GOT1.
2428     // Finally, jump to the now resolved function.
2429     // clang-format off
2430     const uint8_t StubCode[] = {
2431         0x57,                   // push %rdi
2432         0x56,                   // push %rsi
2433         0x52,                   // push %rdx
2434         0x51,                   // push %rcx
2435         0x41, 0x50,             // push %r8
2436         0x41, 0x51,             // push %r9
2437         0x41, 0x53,             // push %r11
2438         0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2439         0x41, 0x5b,             // pop %r11
2440         0x41, 0x59,             // pop %r9
2441         0x41, 0x58,             // pop %r8
2442         0x59,                   // pop %rcx
2443         0x5a,                   // pop %rdx
2444         0x5e,                   // pop %rsi
2445         0x5f,                   // pop %rdi
2446         0x49, 0x89, 0x03,       // mov %rax,(%r11)
2447         0xff, 0xe0              // jmp *%rax
2448     };
2449     // clang-format on
2450     static_assert(sizeof(StubCode) <= 64,
2451                   "maximum size of the IFunc resolver is 64B");
2452     memcpy(Addr, StubCode, sizeof(StubCode));
2453   } else {
2454     report_fatal_error(
2455         "IFunc resolver is not supported for target architecture");
2456   }
2457 }
2458 
2459 void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
2460                                      uint64_t IFuncResolverOffset,
2461                                      uint64_t IFuncStubOffset,
2462                                      unsigned IFuncSectionID,
2463                                      uint64_t IFuncOffset) {
2464   auto &IFuncStubSection = Sections[IFuncStubSectionID];
2465   auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2466 
2467   if (Arch == Triple::x86_64) {
2468     // The first instruction loads a PC-relative address into %r11 which is a
2469     // GOT entry for this stub. This initially contains the address to the
2470     // IFunc resolver. We can use %r11 here as it's caller saved but not used
2471     // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2472     // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2473     // entry.
2474     //
2475     // The next instruction just jumps to the address contained in the GOT
2476     // entry. As mentioned above, we do this two-step jump by first setting
2477     // %r11 so that the IFunc resolver has access to it.
2478     //
2479     // The IFunc resolver of course also needs to know the actual address of
2480     // the actual IFunc resolver function. This will be stored in a GOT entry
2481     // right next to the first one for this stub. So, the IFunc resolver will
2482     // be able to call it with %r11+8.
2483     //
2484     // In total, two adjacent GOT entries (+relocation) and one additional
2485     // relocation are required:
2486     // GOT1: Address of the IFunc resolver.
2487     // GOT2: Address of the IFunc resolver function.
2488     // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2489     uint64_t GOT1 = allocateGOTEntries(2);
2490     uint64_t GOT2 = GOT1 + getGOTEntrySize();
2491 
2492     RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2493                         IFuncResolverOffset, {});
2494     addRelocationForSection(RE1, IFuncStubSectionID);
2495     RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2496     addRelocationForSection(RE2, IFuncSectionID);
2497 
2498     const uint8_t StubCode[] = {
2499         0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2500         0x41, 0xff, 0x23                          // jmpq *(%r11)
2501     };
2502     assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
2503            "IFunc stub size must not exceed getMaxIFuncStubSize()");
2504     memcpy(Addr, StubCode, sizeof(StubCode));
2505 
2506     // The PC-relative value starts 4 bytes from the end of the leaq
2507     // instruction, so the addend is -4.
2508     resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2509                                GOT1 - 4, ELF::R_X86_64_PC32);
2510   } else {
2511     report_fatal_error("IFunc stub is not supported for target architecture");
2512   }
2513 }
2514 
2515 unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2516   if (Arch == Triple::x86_64) {
2517     return 10;
2518   }
2519   return 0;
2520 }
2521 
2522 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2523   unsigned RelTy = R.getType();
2524   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
2525     return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2526            RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2527 
2528   if (Arch == Triple::x86_64)
2529     return RelTy == ELF::R_X86_64_GOTPCREL ||
2530            RelTy == ELF::R_X86_64_GOTPCRELX ||
2531            RelTy == ELF::R_X86_64_GOT64 ||
2532            RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2533   return false;
2534 }
2535 
2536 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2537   if (Arch != Triple::x86_64)
2538     return true;  // Conservative answer
2539 
2540   switch (R.getType()) {
2541   default:
2542     return true;  // Conservative answer
2543 
2544 
2545   case ELF::R_X86_64_GOTPCREL:
2546   case ELF::R_X86_64_GOTPCRELX:
2547   case ELF::R_X86_64_REX_GOTPCRELX:
2548   case ELF::R_X86_64_GOTPC64:
2549   case ELF::R_X86_64_GOT64:
2550   case ELF::R_X86_64_GOTOFF64:
2551   case ELF::R_X86_64_PC32:
2552   case ELF::R_X86_64_PC64:
2553   case ELF::R_X86_64_64:
2554     // We know that these reloation types won't need a stub function.  This list
2555     // can be extended as needed.
2556     return false;
2557   }
2558 }
2559 
2560 } // namespace llvm
2561