xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/BinaryFormat/ELF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/MemoryBuffer.h"
23 #include "llvm/TargetParser/Triple.h"
24 
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
28 
29 #define DEBUG_TYPE "dyld"
30 
31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32 
33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34   or32le(L, (Imm & 0xFFF) << 10);
35 }
36 
37 template <class T> static void write(bool isBE, void *P, T V) {
38   isBE ? write<T, llvm::endianness::big>(P, V)
39        : write<T, llvm::endianness::little>(P, V);
40 }
41 
42 static void write32AArch64Addr(void *L, uint64_t Imm) {
43   uint32_t ImmLo = (Imm & 0x3) << 29;
44   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
45   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
46   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
47 }
48 
49 // Return the bits [Start, End] from Val shifted Start bits.
50 // For instance, getBits(0xF0, 4, 8) returns 0xF.
51 static uint64_t getBits(uint64_t Val, int Start, int End) {
52   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
53   return (Val >> Start) & Mask;
54 }
55 
56 namespace {
57 
58 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60 
61   typedef typename ELFT::uint addr_type;
62 
63   DyldELFObject(ELFObjectFile<ELFT> &&Obj);
64 
65 public:
66   static Expected<std::unique_ptr<DyldELFObject>>
67   create(MemoryBufferRef Wrapper);
68 
69   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
70 
71   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
72 
73   // Methods for type inquiry through isa, cast and dyn_cast
74   static bool classof(const Binary *v) {
75     return (isa<ELFObjectFile<ELFT>>(v) &&
76             classof(cast<ELFObjectFile<ELFT>>(v)));
77   }
78   static bool classof(const ELFObjectFile<ELFT> *v) {
79     return v->isDyldType();
80   }
81 };
82 
83 
84 
85 // The MemoryBuffer passed into this constructor is just a wrapper around the
86 // actual memory.  Ultimately, the Binary parent class will take ownership of
87 // this MemoryBuffer object but not the underlying memory.
88 template <class ELFT>
89 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
90     : ELFObjectFile<ELFT>(std::move(Obj)) {
91   this->isDyldELFObject = true;
92 }
93 
94 template <class ELFT>
95 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
96 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
97   auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
98   if (auto E = Obj.takeError())
99     return std::move(E);
100   std::unique_ptr<DyldELFObject<ELFT>> Ret(
101       new DyldELFObject<ELFT>(std::move(*Obj)));
102   return std::move(Ret);
103 }
104 
105 template <class ELFT>
106 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
107                                                uint64_t Addr) {
108   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
109   Elf_Shdr *shdr =
110       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
111 
112   // This assumes the address passed in matches the target address bitness
113   // The template-based type cast handles everything else.
114   shdr->sh_addr = static_cast<addr_type>(Addr);
115 }
116 
117 template <class ELFT>
118 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
119                                               uint64_t Addr) {
120 
121   Elf_Sym *sym = const_cast<Elf_Sym *>(
122       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
123 
124   // This assumes the address passed in matches the target address bitness
125   // The template-based type cast handles everything else.
126   sym->st_value = static_cast<addr_type>(Addr);
127 }
128 
129 class LoadedELFObjectInfo final
130     : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
131                                     RuntimeDyld::LoadedObjectInfo> {
132 public:
133   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
134       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
135 
136   OwningBinary<ObjectFile>
137   getObjectForDebug(const ObjectFile &Obj) const override;
138 };
139 
140 template <typename ELFT>
141 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
142 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
143                       const LoadedELFObjectInfo &L) {
144   typedef typename ELFT::Shdr Elf_Shdr;
145   typedef typename ELFT::uint addr_type;
146 
147   Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
148       DyldELFObject<ELFT>::create(Buffer);
149   if (Error E = ObjOrErr.takeError())
150     return std::move(E);
151 
152   std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
153 
154   // Iterate over all sections in the object.
155   auto SI = SourceObject.section_begin();
156   for (const auto &Sec : Obj->sections()) {
157     Expected<StringRef> NameOrErr = Sec.getName();
158     if (!NameOrErr) {
159       consumeError(NameOrErr.takeError());
160       continue;
161     }
162 
163     if (*NameOrErr != "") {
164       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
165       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
166           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
167 
168       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
169         // This assumes that the address passed in matches the target address
170         // bitness. The template-based type cast handles everything else.
171         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
172       }
173     }
174     ++SI;
175   }
176 
177   return std::move(Obj);
178 }
179 
180 static OwningBinary<ObjectFile>
181 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
182   assert(Obj.isELF() && "Not an ELF object file.");
183 
184   std::unique_ptr<MemoryBuffer> Buffer =
185     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
186 
187   Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
188   handleAllErrors(DebugObj.takeError());
189   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
190     DebugObj =
191         createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
192   else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
193     DebugObj =
194         createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
195   else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
196     DebugObj =
197         createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
198   else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
199     DebugObj =
200         createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
201   else
202     llvm_unreachable("Unexpected ELF format");
203 
204   handleAllErrors(DebugObj.takeError());
205   return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
206 }
207 
208 OwningBinary<ObjectFile>
209 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
210   return createELFDebugObject(Obj, *this);
211 }
212 
213 } // anonymous namespace
214 
215 namespace llvm {
216 
217 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
218                                JITSymbolResolver &Resolver)
219     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
220 RuntimeDyldELF::~RuntimeDyldELF() = default;
221 
222 void RuntimeDyldELF::registerEHFrames() {
223   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
224     SID EHFrameSID = UnregisteredEHFrameSections[i];
225     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
226     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
227     size_t EHFrameSize = Sections[EHFrameSID].getSize();
228     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
229   }
230   UnregisteredEHFrameSections.clear();
231 }
232 
233 std::unique_ptr<RuntimeDyldELF>
234 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
235                              RuntimeDyld::MemoryManager &MemMgr,
236                              JITSymbolResolver &Resolver) {
237   switch (Arch) {
238   default:
239     return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
240   case Triple::mips:
241   case Triple::mipsel:
242   case Triple::mips64:
243   case Triple::mips64el:
244     return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
245   }
246 }
247 
248 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
249 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
250   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
251     return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
252   else {
253     HasError = true;
254     raw_string_ostream ErrStream(ErrorStr);
255     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
256     return nullptr;
257   }
258 }
259 
260 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
261                                              uint64_t Offset, uint64_t Value,
262                                              uint32_t Type, int64_t Addend,
263                                              uint64_t SymOffset) {
264   switch (Type) {
265   default:
266     report_fatal_error("Relocation type not implemented yet!");
267     break;
268   case ELF::R_X86_64_NONE:
269     break;
270   case ELF::R_X86_64_8: {
271     Value += Addend;
272     assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
273     uint8_t TruncatedAddr = (Value & 0xFF);
274     *Section.getAddressWithOffset(Offset) = TruncatedAddr;
275     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
276                       << format("%p\n", Section.getAddressWithOffset(Offset)));
277     break;
278   }
279   case ELF::R_X86_64_16: {
280     Value += Addend;
281     assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
282     uint16_t TruncatedAddr = (Value & 0xFFFF);
283     support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
284         TruncatedAddr;
285     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
286                       << format("%p\n", Section.getAddressWithOffset(Offset)));
287     break;
288   }
289   case ELF::R_X86_64_64: {
290     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
291         Value + Addend;
292     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
293                       << format("%p\n", Section.getAddressWithOffset(Offset)));
294     break;
295   }
296   case ELF::R_X86_64_32:
297   case ELF::R_X86_64_32S: {
298     Value += Addend;
299     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
300            (Type == ELF::R_X86_64_32S &&
301             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
302     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
303     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
304         TruncatedAddr;
305     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
306                       << format("%p\n", Section.getAddressWithOffset(Offset)));
307     break;
308   }
309   case ELF::R_X86_64_PC8: {
310     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
311     int64_t RealOffset = Value + Addend - FinalAddress;
312     assert(isInt<8>(RealOffset));
313     int8_t TruncOffset = (RealOffset & 0xFF);
314     Section.getAddress()[Offset] = TruncOffset;
315     break;
316   }
317   case ELF::R_X86_64_PC32: {
318     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
319     int64_t RealOffset = Value + Addend - FinalAddress;
320     assert(isInt<32>(RealOffset));
321     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
322     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
323         TruncOffset;
324     break;
325   }
326   case ELF::R_X86_64_PC64: {
327     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
328     int64_t RealOffset = Value + Addend - FinalAddress;
329     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
330         RealOffset;
331     LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
332                       << format("%p\n", FinalAddress));
333     break;
334   }
335   case ELF::R_X86_64_GOTOFF64: {
336     // Compute Value - GOTBase.
337     uint64_t GOTBase = 0;
338     for (const auto &Section : Sections) {
339       if (Section.getName() == ".got") {
340         GOTBase = Section.getLoadAddressWithOffset(0);
341         break;
342       }
343     }
344     assert(GOTBase != 0 && "missing GOT");
345     int64_t GOTOffset = Value - GOTBase + Addend;
346     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
347     break;
348   }
349   case ELF::R_X86_64_DTPMOD64: {
350     // We only have one DSO, so the module id is always 1.
351     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
352     break;
353   }
354   case ELF::R_X86_64_DTPOFF64:
355   case ELF::R_X86_64_TPOFF64: {
356     // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
357     // offset in the *initial* TLS block. Since we are statically linking, all
358     // TLS blocks already exist in the initial block, so resolve both
359     // relocations equally.
360     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
361         Value + Addend;
362     break;
363   }
364   case ELF::R_X86_64_DTPOFF32:
365   case ELF::R_X86_64_TPOFF32: {
366     // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
367     // be resolved equally.
368     int64_t RealValue = Value + Addend;
369     assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
370     int32_t TruncValue = RealValue;
371     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
372         TruncValue;
373     break;
374   }
375   }
376 }
377 
378 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
379                                           uint64_t Offset, uint32_t Value,
380                                           uint32_t Type, int32_t Addend) {
381   switch (Type) {
382   case ELF::R_386_32: {
383     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
384         Value + Addend;
385     break;
386   }
387   // Handle R_386_PLT32 like R_386_PC32 since it should be able to
388   // reach any 32 bit address.
389   case ELF::R_386_PLT32:
390   case ELF::R_386_PC32: {
391     uint32_t FinalAddress =
392         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
393     uint32_t RealOffset = Value + Addend - FinalAddress;
394     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
395         RealOffset;
396     break;
397   }
398   default:
399     // There are other relocation types, but it appears these are the
400     // only ones currently used by the LLVM ELF object writer
401     report_fatal_error("Relocation type not implemented yet!");
402     break;
403   }
404 }
405 
406 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
407                                               uint64_t Offset, uint64_t Value,
408                                               uint32_t Type, int64_t Addend) {
409   uint32_t *TargetPtr =
410       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
411   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
412   // Data should use target endian. Code should always use little endian.
413   bool isBE = Arch == Triple::aarch64_be;
414 
415   LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
416                     << format("%llx", Section.getAddressWithOffset(Offset))
417                     << " FinalAddress: 0x" << format("%llx", FinalAddress)
418                     << " Value: 0x" << format("%llx", Value) << " Type: 0x"
419                     << format("%x", Type) << " Addend: 0x"
420                     << format("%llx", Addend) << "\n");
421 
422   switch (Type) {
423   default:
424     report_fatal_error("Relocation type not implemented yet!");
425     break;
426   case ELF::R_AARCH64_NONE:
427     break;
428   case ELF::R_AARCH64_ABS16: {
429     uint64_t Result = Value + Addend;
430     assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) ||
431            (Result >> 16) == 0);
432     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
433     break;
434   }
435   case ELF::R_AARCH64_ABS32: {
436     uint64_t Result = Value + Addend;
437     assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) ||
438            (Result >> 32) == 0);
439     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
440     break;
441   }
442   case ELF::R_AARCH64_ABS64:
443     write(isBE, TargetPtr, Value + Addend);
444     break;
445   case ELF::R_AARCH64_PLT32: {
446     uint64_t Result = Value + Addend - FinalAddress;
447     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
448            static_cast<int64_t>(Result) <= INT32_MAX);
449     write(isBE, TargetPtr, static_cast<uint32_t>(Result));
450     break;
451   }
452   case ELF::R_AARCH64_PREL16: {
453     uint64_t Result = Value + Addend - FinalAddress;
454     assert(static_cast<int64_t>(Result) >= INT16_MIN &&
455            static_cast<int64_t>(Result) <= UINT16_MAX);
456     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
457     break;
458   }
459   case ELF::R_AARCH64_PREL32: {
460     uint64_t Result = Value + Addend - FinalAddress;
461     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
462            static_cast<int64_t>(Result) <= UINT32_MAX);
463     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
464     break;
465   }
466   case ELF::R_AARCH64_PREL64:
467     write(isBE, TargetPtr, Value + Addend - FinalAddress);
468     break;
469   case ELF::R_AARCH64_CONDBR19: {
470     uint64_t BranchImm = Value + Addend - FinalAddress;
471 
472     assert(isInt<21>(BranchImm));
473     *TargetPtr &= 0xff00001fU;
474     // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
475     or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
476     break;
477   }
478   case ELF::R_AARCH64_TSTBR14: {
479     uint64_t BranchImm = Value + Addend - FinalAddress;
480 
481     assert(isInt<16>(BranchImm));
482 
483     uint32_t RawInstr = *(support::little32_t *)TargetPtr;
484     *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU;
485 
486     // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
487     or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
488     break;
489   }
490   case ELF::R_AARCH64_CALL26: // fallthrough
491   case ELF::R_AARCH64_JUMP26: {
492     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
493     // calculation.
494     uint64_t BranchImm = Value + Addend - FinalAddress;
495 
496     // "Check that -2^27 <= result < 2^27".
497     assert(isInt<28>(BranchImm));
498     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
499     break;
500   }
501   case ELF::R_AARCH64_MOVW_UABS_G3:
502     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
503     break;
504   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
505     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
506     break;
507   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
508     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
509     break;
510   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
511     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
512     break;
513   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
514     // Operation: Page(S+A) - Page(P)
515     uint64_t Result =
516         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
517 
518     // Check that -2^32 <= X < 2^32
519     assert(isInt<33>(Result) && "overflow check failed for relocation");
520 
521     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
522     // from bits 32:12 of X.
523     write32AArch64Addr(TargetPtr, Result >> 12);
524     break;
525   }
526   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
527     // Operation: S + A
528     // Immediate goes in bits 21:10 of LD/ST instruction, taken
529     // from bits 11:0 of X
530     or32AArch64Imm(TargetPtr, Value + Addend);
531     break;
532   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
533     // Operation: S + A
534     // Immediate goes in bits 21:10 of LD/ST instruction, taken
535     // from bits 11:0 of X
536     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
537     break;
538   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
539     // Operation: S + A
540     // Immediate goes in bits 21:10 of LD/ST instruction, taken
541     // from bits 11:1 of X
542     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
543     break;
544   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
545     // Operation: S + A
546     // Immediate goes in bits 21:10 of LD/ST instruction, taken
547     // from bits 11:2 of X
548     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
549     break;
550   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
551     // Operation: S + A
552     // Immediate goes in bits 21:10 of LD/ST instruction, taken
553     // from bits 11:3 of X
554     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
555     break;
556   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
557     // Operation: S + A
558     // Immediate goes in bits 21:10 of LD/ST instruction, taken
559     // from bits 11:4 of X
560     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
561     break;
562   case ELF::R_AARCH64_LD_PREL_LO19: {
563     // Operation: S + A - P
564     uint64_t Result = Value + Addend - FinalAddress;
565 
566     // "Check that -2^20 <= result < 2^20".
567     assert(isInt<21>(Result));
568 
569     *TargetPtr &= 0xff00001fU;
570     // Immediate goes in bits 23:5 of LD imm instruction, taken
571     // from bits 20:2 of X
572     *TargetPtr |= ((Result & 0xffc) << (5 - 2));
573     break;
574   }
575   case ELF::R_AARCH64_ADR_PREL_LO21: {
576     // Operation: S + A - P
577     uint64_t Result = Value + Addend - FinalAddress;
578 
579     // "Check that -2^20 <= result < 2^20".
580     assert(isInt<21>(Result));
581 
582     *TargetPtr &= 0x9f00001fU;
583     // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
584     // from bits 20:0 of X
585     *TargetPtr |= ((Result & 0xffc) << (5 - 2));
586     *TargetPtr |= (Result & 0x3) << 29;
587     break;
588   }
589   }
590 }
591 
592 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
593                                           uint64_t Offset, uint32_t Value,
594                                           uint32_t Type, int32_t Addend) {
595   // TODO: Add Thumb relocations.
596   uint32_t *TargetPtr =
597       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
598   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
599   Value += Addend;
600 
601   LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
602                     << Section.getAddressWithOffset(Offset)
603                     << " FinalAddress: " << format("%p", FinalAddress)
604                     << " Value: " << format("%x", Value)
605                     << " Type: " << format("%x", Type)
606                     << " Addend: " << format("%x", Addend) << "\n");
607 
608   switch (Type) {
609   default:
610     llvm_unreachable("Not implemented relocation type!");
611 
612   case ELF::R_ARM_NONE:
613     break;
614     // Write a 31bit signed offset
615   case ELF::R_ARM_PREL31:
616     support::ulittle32_t::ref{TargetPtr} =
617         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
618         ((Value - FinalAddress) & ~0x80000000);
619     break;
620   case ELF::R_ARM_TARGET1:
621   case ELF::R_ARM_ABS32:
622     support::ulittle32_t::ref{TargetPtr} = Value;
623     break;
624     // Write first 16 bit of 32 bit value to the mov instruction.
625     // Last 4 bit should be shifted.
626   case ELF::R_ARM_MOVW_ABS_NC:
627   case ELF::R_ARM_MOVT_ABS:
628     if (Type == ELF::R_ARM_MOVW_ABS_NC)
629       Value = Value & 0xFFFF;
630     else if (Type == ELF::R_ARM_MOVT_ABS)
631       Value = (Value >> 16) & 0xFFFF;
632     support::ulittle32_t::ref{TargetPtr} =
633         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
634         (((Value >> 12) & 0xF) << 16);
635     break;
636     // Write 24 bit relative value to the branch instruction.
637   case ELF::R_ARM_PC24: // Fall through.
638   case ELF::R_ARM_CALL: // Fall through.
639   case ELF::R_ARM_JUMP24:
640     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
641     RelValue = (RelValue & 0x03FFFFFC) >> 2;
642     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
643     support::ulittle32_t::ref{TargetPtr} =
644         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
645     break;
646   }
647 }
648 
649 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
650   if (Arch == Triple::UnknownArch ||
651       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
652     IsMipsO32ABI = false;
653     IsMipsN32ABI = false;
654     IsMipsN64ABI = false;
655     return;
656   }
657   if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
658     unsigned AbiVariant = E->getPlatformFlags();
659     IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
660     IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
661   }
662   IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
663 }
664 
665 // Return the .TOC. section and offset.
666 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
667                                           ObjSectionToIDMap &LocalSections,
668                                           RelocationValueRef &Rel) {
669   // Set a default SectionID in case we do not find a TOC section below.
670   // This may happen for references to TOC base base (sym@toc, .odp
671   // relocation) without a .toc directive.  In this case just use the
672   // first section (which is usually the .odp) since the code won't
673   // reference the .toc base directly.
674   Rel.SymbolName = nullptr;
675   Rel.SectionID = 0;
676 
677   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
678   // order. The TOC starts where the first of these sections starts.
679   for (auto &Section : Obj.sections()) {
680     Expected<StringRef> NameOrErr = Section.getName();
681     if (!NameOrErr)
682       return NameOrErr.takeError();
683     StringRef SectionName = *NameOrErr;
684 
685     if (SectionName == ".got"
686         || SectionName == ".toc"
687         || SectionName == ".tocbss"
688         || SectionName == ".plt") {
689       if (auto SectionIDOrErr =
690             findOrEmitSection(Obj, Section, false, LocalSections))
691         Rel.SectionID = *SectionIDOrErr;
692       else
693         return SectionIDOrErr.takeError();
694       break;
695     }
696   }
697 
698   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
699   // thus permitting a full 64 Kbytes segment.
700   Rel.Addend = 0x8000;
701 
702   return Error::success();
703 }
704 
705 // Returns the sections and offset associated with the ODP entry referenced
706 // by Symbol.
707 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
708                                           ObjSectionToIDMap &LocalSections,
709                                           RelocationValueRef &Rel) {
710   // Get the ELF symbol value (st_value) to compare with Relocation offset in
711   // .opd entries
712   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
713        si != se; ++si) {
714 
715     Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
716     if (!RelSecOrErr)
717       report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
718 
719     section_iterator RelSecI = *RelSecOrErr;
720     if (RelSecI == Obj.section_end())
721       continue;
722 
723     Expected<StringRef> NameOrErr = RelSecI->getName();
724     if (!NameOrErr)
725       return NameOrErr.takeError();
726     StringRef RelSectionName = *NameOrErr;
727 
728     if (RelSectionName != ".opd")
729       continue;
730 
731     for (elf_relocation_iterator i = si->relocation_begin(),
732                                  e = si->relocation_end();
733          i != e;) {
734       // The R_PPC64_ADDR64 relocation indicates the first field
735       // of a .opd entry
736       uint64_t TypeFunc = i->getType();
737       if (TypeFunc != ELF::R_PPC64_ADDR64) {
738         ++i;
739         continue;
740       }
741 
742       uint64_t TargetSymbolOffset = i->getOffset();
743       symbol_iterator TargetSymbol = i->getSymbol();
744       int64_t Addend;
745       if (auto AddendOrErr = i->getAddend())
746         Addend = *AddendOrErr;
747       else
748         return AddendOrErr.takeError();
749 
750       ++i;
751       if (i == e)
752         break;
753 
754       // Just check if following relocation is a R_PPC64_TOC
755       uint64_t TypeTOC = i->getType();
756       if (TypeTOC != ELF::R_PPC64_TOC)
757         continue;
758 
759       // Finally compares the Symbol value and the target symbol offset
760       // to check if this .opd entry refers to the symbol the relocation
761       // points to.
762       if (Rel.Addend != (int64_t)TargetSymbolOffset)
763         continue;
764 
765       section_iterator TSI = Obj.section_end();
766       if (auto TSIOrErr = TargetSymbol->getSection())
767         TSI = *TSIOrErr;
768       else
769         return TSIOrErr.takeError();
770       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
771 
772       bool IsCode = TSI->isText();
773       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
774                                                   LocalSections))
775         Rel.SectionID = *SectionIDOrErr;
776       else
777         return SectionIDOrErr.takeError();
778       Rel.Addend = (intptr_t)Addend;
779       return Error::success();
780     }
781   }
782   llvm_unreachable("Attempting to get address of ODP entry!");
783 }
784 
785 // Relocation masks following the #lo(value), #hi(value), #ha(value),
786 // #higher(value), #highera(value), #highest(value), and #highesta(value)
787 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
788 // document.
789 
790 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
791 
792 static inline uint16_t applyPPChi(uint64_t value) {
793   return (value >> 16) & 0xffff;
794 }
795 
796 static inline uint16_t applyPPCha (uint64_t value) {
797   return ((value + 0x8000) >> 16) & 0xffff;
798 }
799 
800 static inline uint16_t applyPPChigher(uint64_t value) {
801   return (value >> 32) & 0xffff;
802 }
803 
804 static inline uint16_t applyPPChighera (uint64_t value) {
805   return ((value + 0x8000) >> 32) & 0xffff;
806 }
807 
808 static inline uint16_t applyPPChighest(uint64_t value) {
809   return (value >> 48) & 0xffff;
810 }
811 
812 static inline uint16_t applyPPChighesta (uint64_t value) {
813   return ((value + 0x8000) >> 48) & 0xffff;
814 }
815 
816 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
817                                             uint64_t Offset, uint64_t Value,
818                                             uint32_t Type, int64_t Addend) {
819   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
820   switch (Type) {
821   default:
822     report_fatal_error("Relocation type not implemented yet!");
823     break;
824   case ELF::R_PPC_ADDR16_LO:
825     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
826     break;
827   case ELF::R_PPC_ADDR16_HI:
828     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
829     break;
830   case ELF::R_PPC_ADDR16_HA:
831     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
832     break;
833   }
834 }
835 
836 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
837                                             uint64_t Offset, uint64_t Value,
838                                             uint32_t Type, int64_t Addend) {
839   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
840   switch (Type) {
841   default:
842     report_fatal_error("Relocation type not implemented yet!");
843     break;
844   case ELF::R_PPC64_ADDR16:
845     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
846     break;
847   case ELF::R_PPC64_ADDR16_DS:
848     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
849     break;
850   case ELF::R_PPC64_ADDR16_LO:
851     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
852     break;
853   case ELF::R_PPC64_ADDR16_LO_DS:
854     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
855     break;
856   case ELF::R_PPC64_ADDR16_HI:
857   case ELF::R_PPC64_ADDR16_HIGH:
858     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
859     break;
860   case ELF::R_PPC64_ADDR16_HA:
861   case ELF::R_PPC64_ADDR16_HIGHA:
862     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
863     break;
864   case ELF::R_PPC64_ADDR16_HIGHER:
865     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
866     break;
867   case ELF::R_PPC64_ADDR16_HIGHERA:
868     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
869     break;
870   case ELF::R_PPC64_ADDR16_HIGHEST:
871     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
872     break;
873   case ELF::R_PPC64_ADDR16_HIGHESTA:
874     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
875     break;
876   case ELF::R_PPC64_ADDR14: {
877     assert(((Value + Addend) & 3) == 0);
878     // Preserve the AA/LK bits in the branch instruction
879     uint8_t aalk = *(LocalAddress + 3);
880     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
881   } break;
882   case ELF::R_PPC64_REL16_LO: {
883     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
884     uint64_t Delta = Value - FinalAddress + Addend;
885     writeInt16BE(LocalAddress, applyPPClo(Delta));
886   } break;
887   case ELF::R_PPC64_REL16_HI: {
888     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
889     uint64_t Delta = Value - FinalAddress + Addend;
890     writeInt16BE(LocalAddress, applyPPChi(Delta));
891   } break;
892   case ELF::R_PPC64_REL16_HA: {
893     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
894     uint64_t Delta = Value - FinalAddress + Addend;
895     writeInt16BE(LocalAddress, applyPPCha(Delta));
896   } break;
897   case ELF::R_PPC64_ADDR32: {
898     int64_t Result = static_cast<int64_t>(Value + Addend);
899     if (SignExtend64<32>(Result) != Result)
900       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
901     writeInt32BE(LocalAddress, Result);
902   } break;
903   case ELF::R_PPC64_REL24: {
904     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
905     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
906     if (SignExtend64<26>(delta) != delta)
907       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
908     // We preserve bits other than LI field, i.e. PO and AA/LK fields.
909     uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
910     writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
911   } break;
912   case ELF::R_PPC64_REL32: {
913     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
914     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
915     if (SignExtend64<32>(delta) != delta)
916       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
917     writeInt32BE(LocalAddress, delta);
918   } break;
919   case ELF::R_PPC64_REL64: {
920     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
921     uint64_t Delta = Value - FinalAddress + Addend;
922     writeInt64BE(LocalAddress, Delta);
923   } break;
924   case ELF::R_PPC64_ADDR64:
925     writeInt64BE(LocalAddress, Value + Addend);
926     break;
927   }
928 }
929 
930 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
931                                               uint64_t Offset, uint64_t Value,
932                                               uint32_t Type, int64_t Addend) {
933   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
934   switch (Type) {
935   default:
936     report_fatal_error("Relocation type not implemented yet!");
937     break;
938   case ELF::R_390_PC16DBL:
939   case ELF::R_390_PLT16DBL: {
940     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
941     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
942     writeInt16BE(LocalAddress, Delta / 2);
943     break;
944   }
945   case ELF::R_390_PC32DBL:
946   case ELF::R_390_PLT32DBL: {
947     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
948     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
949     writeInt32BE(LocalAddress, Delta / 2);
950     break;
951   }
952   case ELF::R_390_PC16: {
953     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
954     assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
955     writeInt16BE(LocalAddress, Delta);
956     break;
957   }
958   case ELF::R_390_PC32: {
959     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
960     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
961     writeInt32BE(LocalAddress, Delta);
962     break;
963   }
964   case ELF::R_390_PC64: {
965     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
966     writeInt64BE(LocalAddress, Delta);
967     break;
968   }
969   case ELF::R_390_8:
970     *LocalAddress = (uint8_t)(Value + Addend);
971     break;
972   case ELF::R_390_16:
973     writeInt16BE(LocalAddress, Value + Addend);
974     break;
975   case ELF::R_390_32:
976     writeInt32BE(LocalAddress, Value + Addend);
977     break;
978   case ELF::R_390_64:
979     writeInt64BE(LocalAddress, Value + Addend);
980     break;
981   }
982 }
983 
984 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
985                                           uint64_t Offset, uint64_t Value,
986                                           uint32_t Type, int64_t Addend) {
987   bool isBE = Arch == Triple::bpfeb;
988 
989   switch (Type) {
990   default:
991     report_fatal_error("Relocation type not implemented yet!");
992     break;
993   case ELF::R_BPF_NONE:
994   case ELF::R_BPF_64_64:
995   case ELF::R_BPF_64_32:
996   case ELF::R_BPF_64_NODYLD32:
997     break;
998   case ELF::R_BPF_64_ABS64: {
999     write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
1000     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
1001                       << format("%p\n", Section.getAddressWithOffset(Offset)));
1002     break;
1003   }
1004   case ELF::R_BPF_64_ABS32: {
1005     Value += Addend;
1006     assert(Value <= UINT32_MAX);
1007     write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1008     LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1009                       << format("%p\n", Section.getAddressWithOffset(Offset)));
1010     break;
1011   }
1012   }
1013 }
1014 
1015 // The target location for the relocation is described by RE.SectionID and
1016 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
1017 // SectionEntry has three members describing its location.
1018 // SectionEntry::Address is the address at which the section has been loaded
1019 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
1020 // address that the section will have in the target process.
1021 // SectionEntry::ObjAddress is the address of the bits for this section in the
1022 // original emitted object image (also in the current address space).
1023 //
1024 // Relocations will be applied as if the section were loaded at
1025 // SectionEntry::LoadAddress, but they will be applied at an address based
1026 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
1027 // Target memory contents if they are required for value calculations.
1028 //
1029 // The Value parameter here is the load address of the symbol for the
1030 // relocation to be applied.  For relocations which refer to symbols in the
1031 // current object Value will be the LoadAddress of the section in which
1032 // the symbol resides (RE.Addend provides additional information about the
1033 // symbol location).  For external symbols, Value will be the address of the
1034 // symbol in the target address space.
1035 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1036                                        uint64_t Value) {
1037   const SectionEntry &Section = Sections[RE.SectionID];
1038   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1039                            RE.SymOffset, RE.SectionID);
1040 }
1041 
1042 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1043                                        uint64_t Offset, uint64_t Value,
1044                                        uint32_t Type, int64_t Addend,
1045                                        uint64_t SymOffset, SID SectionID) {
1046   switch (Arch) {
1047   case Triple::x86_64:
1048     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1049     break;
1050   case Triple::x86:
1051     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1052                          (uint32_t)(Addend & 0xffffffffL));
1053     break;
1054   case Triple::aarch64:
1055   case Triple::aarch64_be:
1056     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1057     break;
1058   case Triple::arm: // Fall through.
1059   case Triple::armeb:
1060   case Triple::thumb:
1061   case Triple::thumbeb:
1062     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1063                          (uint32_t)(Addend & 0xffffffffL));
1064     break;
1065   case Triple::ppc: // Fall through.
1066   case Triple::ppcle:
1067     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1068     break;
1069   case Triple::ppc64: // Fall through.
1070   case Triple::ppc64le:
1071     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1072     break;
1073   case Triple::systemz:
1074     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1075     break;
1076   case Triple::bpfel:
1077   case Triple::bpfeb:
1078     resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1079     break;
1080   default:
1081     llvm_unreachable("Unsupported CPU type!");
1082   }
1083 }
1084 
1085 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1086   return (void *)(Sections[SectionID].getObjAddress() + Offset);
1087 }
1088 
1089 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1090   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1091   if (Value.SymbolName)
1092     addRelocationForSymbol(RE, Value.SymbolName);
1093   else
1094     addRelocationForSection(RE, Value.SectionID);
1095 }
1096 
1097 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1098                                                  bool IsLocal) const {
1099   switch (RelType) {
1100   case ELF::R_MICROMIPS_GOT16:
1101     if (IsLocal)
1102       return ELF::R_MICROMIPS_LO16;
1103     break;
1104   case ELF::R_MICROMIPS_HI16:
1105     return ELF::R_MICROMIPS_LO16;
1106   case ELF::R_MIPS_GOT16:
1107     if (IsLocal)
1108       return ELF::R_MIPS_LO16;
1109     break;
1110   case ELF::R_MIPS_HI16:
1111     return ELF::R_MIPS_LO16;
1112   case ELF::R_MIPS_PCHI16:
1113     return ELF::R_MIPS_PCLO16;
1114   default:
1115     break;
1116   }
1117   return ELF::R_MIPS_NONE;
1118 }
1119 
1120 // Sometimes we don't need to create thunk for a branch.
1121 // This typically happens when branch target is located
1122 // in the same object file. In such case target is either
1123 // a weak symbol or symbol in a different executable section.
1124 // This function checks if branch target is located in the
1125 // same object file and if distance between source and target
1126 // fits R_AARCH64_CALL26 relocation. If both conditions are
1127 // met, it emits direct jump to the target and returns true.
1128 // Otherwise false is returned and thunk is created.
1129 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1130     unsigned SectionID, relocation_iterator RelI,
1131     const RelocationValueRef &Value) {
1132   uint64_t Address;
1133   if (Value.SymbolName) {
1134     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1135 
1136     // Don't create direct branch for external symbols.
1137     if (Loc == GlobalSymbolTable.end())
1138       return false;
1139 
1140     const auto &SymInfo = Loc->second;
1141     Address =
1142         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1143             SymInfo.getOffset()));
1144   } else {
1145     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1146   }
1147   uint64_t Offset = RelI->getOffset();
1148   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1149 
1150   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1151   // If distance between source and target is out of range then we should
1152   // create thunk.
1153   if (!isInt<28>(Address + Value.Addend - SourceAddress))
1154     return false;
1155 
1156   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1157                     Value.Addend);
1158 
1159   return true;
1160 }
1161 
1162 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1163                                           const RelocationValueRef &Value,
1164                                           relocation_iterator RelI,
1165                                           StubMap &Stubs) {
1166 
1167   LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1168   SectionEntry &Section = Sections[SectionID];
1169 
1170   uint64_t Offset = RelI->getOffset();
1171   unsigned RelType = RelI->getType();
1172   // Look for an existing stub.
1173   StubMap::const_iterator i = Stubs.find(Value);
1174   if (i != Stubs.end()) {
1175     resolveRelocation(Section, Offset,
1176                       (uint64_t)Section.getAddressWithOffset(i->second),
1177                       RelType, 0);
1178     LLVM_DEBUG(dbgs() << " Stub function found\n");
1179   } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1180     // Create a new stub function.
1181     LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1182     Stubs[Value] = Section.getStubOffset();
1183     uint8_t *StubTargetAddr = createStubFunction(
1184         Section.getAddressWithOffset(Section.getStubOffset()));
1185 
1186     RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1187                               ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1188     RelocationEntry REmovk_g2(SectionID,
1189                               StubTargetAddr - Section.getAddress() + 4,
1190                               ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1191     RelocationEntry REmovk_g1(SectionID,
1192                               StubTargetAddr - Section.getAddress() + 8,
1193                               ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1194     RelocationEntry REmovk_g0(SectionID,
1195                               StubTargetAddr - Section.getAddress() + 12,
1196                               ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1197 
1198     if (Value.SymbolName) {
1199       addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1200       addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1201       addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1202       addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1203     } else {
1204       addRelocationForSection(REmovz_g3, Value.SectionID);
1205       addRelocationForSection(REmovk_g2, Value.SectionID);
1206       addRelocationForSection(REmovk_g1, Value.SectionID);
1207       addRelocationForSection(REmovk_g0, Value.SectionID);
1208     }
1209     resolveRelocation(Section, Offset,
1210                       reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1211                           Section.getStubOffset())),
1212                       RelType, 0);
1213     Section.advanceStubOffset(getMaxStubSize());
1214   }
1215 }
1216 
1217 Expected<relocation_iterator>
1218 RuntimeDyldELF::processRelocationRef(
1219     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1220     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1221   const auto &Obj = cast<ELFObjectFileBase>(O);
1222   uint64_t RelType = RelI->getType();
1223   int64_t Addend = 0;
1224   if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1225     Addend = *AddendOrErr;
1226   else
1227     consumeError(AddendOrErr.takeError());
1228   elf_symbol_iterator Symbol = RelI->getSymbol();
1229 
1230   // Obtain the symbol name which is referenced in the relocation
1231   StringRef TargetName;
1232   if (Symbol != Obj.symbol_end()) {
1233     if (auto TargetNameOrErr = Symbol->getName())
1234       TargetName = *TargetNameOrErr;
1235     else
1236       return TargetNameOrErr.takeError();
1237   }
1238   LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1239                     << " TargetName: " << TargetName << "\n");
1240   RelocationValueRef Value;
1241   // First search for the symbol in the local symbol table
1242   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1243 
1244   // Search for the symbol in the global symbol table
1245   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1246   if (Symbol != Obj.symbol_end()) {
1247     gsi = GlobalSymbolTable.find(TargetName.data());
1248     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1249     if (!SymTypeOrErr) {
1250       std::string Buf;
1251       raw_string_ostream OS(Buf);
1252       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1253       report_fatal_error(Twine(OS.str()));
1254     }
1255     SymType = *SymTypeOrErr;
1256   }
1257   if (gsi != GlobalSymbolTable.end()) {
1258     const auto &SymInfo = gsi->second;
1259     Value.SectionID = SymInfo.getSectionID();
1260     Value.Offset = SymInfo.getOffset();
1261     Value.Addend = SymInfo.getOffset() + Addend;
1262   } else {
1263     switch (SymType) {
1264     case SymbolRef::ST_Debug: {
1265       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1266       // and can be changed by another developers. Maybe best way is add
1267       // a new symbol type ST_Section to SymbolRef and use it.
1268       auto SectionOrErr = Symbol->getSection();
1269       if (!SectionOrErr) {
1270         std::string Buf;
1271         raw_string_ostream OS(Buf);
1272         logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1273         report_fatal_error(Twine(OS.str()));
1274       }
1275       section_iterator si = *SectionOrErr;
1276       if (si == Obj.section_end())
1277         llvm_unreachable("Symbol section not found, bad object file format!");
1278       LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1279       bool isCode = si->isText();
1280       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1281                                                   ObjSectionToID))
1282         Value.SectionID = *SectionIDOrErr;
1283       else
1284         return SectionIDOrErr.takeError();
1285       Value.Addend = Addend;
1286       break;
1287     }
1288     case SymbolRef::ST_Data:
1289     case SymbolRef::ST_Function:
1290     case SymbolRef::ST_Other:
1291     case SymbolRef::ST_Unknown: {
1292       Value.SymbolName = TargetName.data();
1293       Value.Addend = Addend;
1294 
1295       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1296       // will manifest here as a NULL symbol name.
1297       // We can set this as a valid (but empty) symbol name, and rely
1298       // on addRelocationForSymbol to handle this.
1299       if (!Value.SymbolName)
1300         Value.SymbolName = "";
1301       break;
1302     }
1303     default:
1304       llvm_unreachable("Unresolved symbol type!");
1305       break;
1306     }
1307   }
1308 
1309   uint64_t Offset = RelI->getOffset();
1310 
1311   LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1312                     << "\n");
1313   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1314     if ((RelType == ELF::R_AARCH64_CALL26 ||
1315          RelType == ELF::R_AARCH64_JUMP26) &&
1316         MemMgr.allowStubAllocation()) {
1317       resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1318     } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1319       // Create new GOT entry or find existing one. If GOT entry is
1320       // to be created, then we also emit ABS64 relocation for it.
1321       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1322       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1323                                  ELF::R_AARCH64_ADR_PREL_PG_HI21);
1324 
1325     } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1326       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1327       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1328                                  ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1329     } else {
1330       processSimpleRelocation(SectionID, Offset, RelType, Value);
1331     }
1332   } else if (Arch == Triple::arm) {
1333     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1334       RelType == ELF::R_ARM_JUMP24) {
1335       // This is an ARM branch relocation, need to use a stub function.
1336       LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1337       SectionEntry &Section = Sections[SectionID];
1338 
1339       // Look for an existing stub.
1340       StubMap::const_iterator i = Stubs.find(Value);
1341       if (i != Stubs.end()) {
1342         resolveRelocation(
1343             Section, Offset,
1344             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1345             RelType, 0);
1346         LLVM_DEBUG(dbgs() << " Stub function found\n");
1347       } else {
1348         // Create a new stub function.
1349         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1350         Stubs[Value] = Section.getStubOffset();
1351         uint8_t *StubTargetAddr = createStubFunction(
1352             Section.getAddressWithOffset(Section.getStubOffset()));
1353         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1354                            ELF::R_ARM_ABS32, Value.Addend);
1355         if (Value.SymbolName)
1356           addRelocationForSymbol(RE, Value.SymbolName);
1357         else
1358           addRelocationForSection(RE, Value.SectionID);
1359 
1360         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1361                                                Section.getAddressWithOffset(
1362                                                    Section.getStubOffset())),
1363                           RelType, 0);
1364         Section.advanceStubOffset(getMaxStubSize());
1365       }
1366     } else {
1367       uint32_t *Placeholder =
1368         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1369       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1370           RelType == ELF::R_ARM_ABS32) {
1371         Value.Addend += *Placeholder;
1372       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1373         // See ELF for ARM documentation
1374         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1375       }
1376       processSimpleRelocation(SectionID, Offset, RelType, Value);
1377     }
1378   } else if (IsMipsO32ABI) {
1379     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1380         computePlaceholderAddress(SectionID, Offset));
1381     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1382     if (RelType == ELF::R_MIPS_26) {
1383       // This is an Mips branch relocation, need to use a stub function.
1384       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1385       SectionEntry &Section = Sections[SectionID];
1386 
1387       // Extract the addend from the instruction.
1388       // We shift up by two since the Value will be down shifted again
1389       // when applying the relocation.
1390       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1391 
1392       Value.Addend += Addend;
1393 
1394       //  Look up for existing stub.
1395       StubMap::const_iterator i = Stubs.find(Value);
1396       if (i != Stubs.end()) {
1397         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1398         addRelocationForSection(RE, SectionID);
1399         LLVM_DEBUG(dbgs() << " Stub function found\n");
1400       } else {
1401         // Create a new stub function.
1402         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1403         Stubs[Value] = Section.getStubOffset();
1404 
1405         unsigned AbiVariant = Obj.getPlatformFlags();
1406 
1407         uint8_t *StubTargetAddr = createStubFunction(
1408             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1409 
1410         // Creating Hi and Lo relocations for the filled stub instructions.
1411         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1412                              ELF::R_MIPS_HI16, Value.Addend);
1413         RelocationEntry RELo(SectionID,
1414                              StubTargetAddr - Section.getAddress() + 4,
1415                              ELF::R_MIPS_LO16, Value.Addend);
1416 
1417         if (Value.SymbolName) {
1418           addRelocationForSymbol(REHi, Value.SymbolName);
1419           addRelocationForSymbol(RELo, Value.SymbolName);
1420         } else {
1421           addRelocationForSection(REHi, Value.SectionID);
1422           addRelocationForSection(RELo, Value.SectionID);
1423         }
1424 
1425         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1426         addRelocationForSection(RE, SectionID);
1427         Section.advanceStubOffset(getMaxStubSize());
1428       }
1429     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1430       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1431       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1432       PendingRelocs.push_back(std::make_pair(Value, RE));
1433     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1434       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1435       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1436         const RelocationValueRef &MatchingValue = I->first;
1437         RelocationEntry &Reloc = I->second;
1438         if (MatchingValue == Value &&
1439             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1440             SectionID == Reloc.SectionID) {
1441           Reloc.Addend += Addend;
1442           if (Value.SymbolName)
1443             addRelocationForSymbol(Reloc, Value.SymbolName);
1444           else
1445             addRelocationForSection(Reloc, Value.SectionID);
1446           I = PendingRelocs.erase(I);
1447         } else
1448           ++I;
1449       }
1450       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1451       if (Value.SymbolName)
1452         addRelocationForSymbol(RE, Value.SymbolName);
1453       else
1454         addRelocationForSection(RE, Value.SectionID);
1455     } else {
1456       if (RelType == ELF::R_MIPS_32)
1457         Value.Addend += Opcode;
1458       else if (RelType == ELF::R_MIPS_PC16)
1459         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1460       else if (RelType == ELF::R_MIPS_PC19_S2)
1461         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1462       else if (RelType == ELF::R_MIPS_PC21_S2)
1463         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1464       else if (RelType == ELF::R_MIPS_PC26_S2)
1465         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1466       processSimpleRelocation(SectionID, Offset, RelType, Value);
1467     }
1468   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1469     uint32_t r_type = RelType & 0xff;
1470     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1471     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1472         || r_type == ELF::R_MIPS_GOT_DISP) {
1473       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1474       if (i != GOTSymbolOffsets.end())
1475         RE.SymOffset = i->second;
1476       else {
1477         RE.SymOffset = allocateGOTEntries(1);
1478         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1479       }
1480       if (Value.SymbolName)
1481         addRelocationForSymbol(RE, Value.SymbolName);
1482       else
1483         addRelocationForSection(RE, Value.SectionID);
1484     } else if (RelType == ELF::R_MIPS_26) {
1485       // This is an Mips branch relocation, need to use a stub function.
1486       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1487       SectionEntry &Section = Sections[SectionID];
1488 
1489       //  Look up for existing stub.
1490       StubMap::const_iterator i = Stubs.find(Value);
1491       if (i != Stubs.end()) {
1492         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1493         addRelocationForSection(RE, SectionID);
1494         LLVM_DEBUG(dbgs() << " Stub function found\n");
1495       } else {
1496         // Create a new stub function.
1497         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1498         Stubs[Value] = Section.getStubOffset();
1499 
1500         unsigned AbiVariant = Obj.getPlatformFlags();
1501 
1502         uint8_t *StubTargetAddr = createStubFunction(
1503             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1504 
1505         if (IsMipsN32ABI) {
1506           // Creating Hi and Lo relocations for the filled stub instructions.
1507           RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1508                                ELF::R_MIPS_HI16, Value.Addend);
1509           RelocationEntry RELo(SectionID,
1510                                StubTargetAddr - Section.getAddress() + 4,
1511                                ELF::R_MIPS_LO16, Value.Addend);
1512           if (Value.SymbolName) {
1513             addRelocationForSymbol(REHi, Value.SymbolName);
1514             addRelocationForSymbol(RELo, Value.SymbolName);
1515           } else {
1516             addRelocationForSection(REHi, Value.SectionID);
1517             addRelocationForSection(RELo, Value.SectionID);
1518           }
1519         } else {
1520           // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1521           // instructions.
1522           RelocationEntry REHighest(SectionID,
1523                                     StubTargetAddr - Section.getAddress(),
1524                                     ELF::R_MIPS_HIGHEST, Value.Addend);
1525           RelocationEntry REHigher(SectionID,
1526                                    StubTargetAddr - Section.getAddress() + 4,
1527                                    ELF::R_MIPS_HIGHER, Value.Addend);
1528           RelocationEntry REHi(SectionID,
1529                                StubTargetAddr - Section.getAddress() + 12,
1530                                ELF::R_MIPS_HI16, Value.Addend);
1531           RelocationEntry RELo(SectionID,
1532                                StubTargetAddr - Section.getAddress() + 20,
1533                                ELF::R_MIPS_LO16, Value.Addend);
1534           if (Value.SymbolName) {
1535             addRelocationForSymbol(REHighest, Value.SymbolName);
1536             addRelocationForSymbol(REHigher, Value.SymbolName);
1537             addRelocationForSymbol(REHi, Value.SymbolName);
1538             addRelocationForSymbol(RELo, Value.SymbolName);
1539           } else {
1540             addRelocationForSection(REHighest, Value.SectionID);
1541             addRelocationForSection(REHigher, Value.SectionID);
1542             addRelocationForSection(REHi, Value.SectionID);
1543             addRelocationForSection(RELo, Value.SectionID);
1544           }
1545         }
1546         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1547         addRelocationForSection(RE, SectionID);
1548         Section.advanceStubOffset(getMaxStubSize());
1549       }
1550     } else {
1551       processSimpleRelocation(SectionID, Offset, RelType, Value);
1552     }
1553 
1554   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1555     if (RelType == ELF::R_PPC64_REL24) {
1556       // Determine ABI variant in use for this object.
1557       unsigned AbiVariant = Obj.getPlatformFlags();
1558       AbiVariant &= ELF::EF_PPC64_ABI;
1559       // A PPC branch relocation will need a stub function if the target is
1560       // an external symbol (either Value.SymbolName is set, or SymType is
1561       // Symbol::ST_Unknown) or if the target address is not within the
1562       // signed 24-bits branch address.
1563       SectionEntry &Section = Sections[SectionID];
1564       uint8_t *Target = Section.getAddressWithOffset(Offset);
1565       bool RangeOverflow = false;
1566       bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1567       if (!IsExtern) {
1568         if (AbiVariant != 2) {
1569           // In the ELFv1 ABI, a function call may point to the .opd entry,
1570           // so the final symbol value is calculated based on the relocation
1571           // values in the .opd section.
1572           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1573             return std::move(Err);
1574         } else {
1575           // In the ELFv2 ABI, a function symbol may provide a local entry
1576           // point, which must be used for direct calls.
1577           if (Value.SectionID == SectionID){
1578             uint8_t SymOther = Symbol->getOther();
1579             Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1580           }
1581         }
1582         uint8_t *RelocTarget =
1583             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1584         int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1585         // If it is within 26-bits branch range, just set the branch target
1586         if (SignExtend64<26>(delta) != delta) {
1587           RangeOverflow = true;
1588         } else if ((AbiVariant != 2) ||
1589                    (AbiVariant == 2  && Value.SectionID == SectionID)) {
1590           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1591           addRelocationForSection(RE, Value.SectionID);
1592         }
1593       }
1594       if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1595           RangeOverflow) {
1596         // It is an external symbol (either Value.SymbolName is set, or
1597         // SymType is SymbolRef::ST_Unknown) or out of range.
1598         StubMap::const_iterator i = Stubs.find(Value);
1599         if (i != Stubs.end()) {
1600           // Symbol function stub already created, just relocate to it
1601           resolveRelocation(Section, Offset,
1602                             reinterpret_cast<uint64_t>(
1603                                 Section.getAddressWithOffset(i->second)),
1604                             RelType, 0);
1605           LLVM_DEBUG(dbgs() << " Stub function found\n");
1606         } else {
1607           // Create a new stub function.
1608           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1609           Stubs[Value] = Section.getStubOffset();
1610           uint8_t *StubTargetAddr = createStubFunction(
1611               Section.getAddressWithOffset(Section.getStubOffset()),
1612               AbiVariant);
1613           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1614                              ELF::R_PPC64_ADDR64, Value.Addend);
1615 
1616           // Generates the 64-bits address loads as exemplified in section
1617           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1618           // apply to the low part of the instructions, so we have to update
1619           // the offset according to the target endianness.
1620           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1621           if (!IsTargetLittleEndian)
1622             StubRelocOffset += 2;
1623 
1624           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1625                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1626           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1627                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1628           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1629                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1630           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1631                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1632 
1633           if (Value.SymbolName) {
1634             addRelocationForSymbol(REhst, Value.SymbolName);
1635             addRelocationForSymbol(REhr, Value.SymbolName);
1636             addRelocationForSymbol(REh, Value.SymbolName);
1637             addRelocationForSymbol(REl, Value.SymbolName);
1638           } else {
1639             addRelocationForSection(REhst, Value.SectionID);
1640             addRelocationForSection(REhr, Value.SectionID);
1641             addRelocationForSection(REh, Value.SectionID);
1642             addRelocationForSection(REl, Value.SectionID);
1643           }
1644 
1645           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1646                                                  Section.getAddressWithOffset(
1647                                                      Section.getStubOffset())),
1648                             RelType, 0);
1649           Section.advanceStubOffset(getMaxStubSize());
1650         }
1651         if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1652           // Restore the TOC for external calls
1653           if (AbiVariant == 2)
1654             writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1655           else
1656             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1657         }
1658       }
1659     } else if (RelType == ELF::R_PPC64_TOC16 ||
1660                RelType == ELF::R_PPC64_TOC16_DS ||
1661                RelType == ELF::R_PPC64_TOC16_LO ||
1662                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1663                RelType == ELF::R_PPC64_TOC16_HI ||
1664                RelType == ELF::R_PPC64_TOC16_HA) {
1665       // These relocations are supposed to subtract the TOC address from
1666       // the final value.  This does not fit cleanly into the RuntimeDyld
1667       // scheme, since there may be *two* sections involved in determining
1668       // the relocation value (the section of the symbol referred to by the
1669       // relocation, and the TOC section associated with the current module).
1670       //
1671       // Fortunately, these relocations are currently only ever generated
1672       // referring to symbols that themselves reside in the TOC, which means
1673       // that the two sections are actually the same.  Thus they cancel out
1674       // and we can immediately resolve the relocation right now.
1675       switch (RelType) {
1676       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1677       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1678       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1679       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1680       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1681       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1682       default: llvm_unreachable("Wrong relocation type.");
1683       }
1684 
1685       RelocationValueRef TOCValue;
1686       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1687         return std::move(Err);
1688       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1689         llvm_unreachable("Unsupported TOC relocation.");
1690       Value.Addend -= TOCValue.Addend;
1691       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1692     } else {
1693       // There are two ways to refer to the TOC address directly: either
1694       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1695       // ignored), or via any relocation that refers to the magic ".TOC."
1696       // symbols (in which case the addend is respected).
1697       if (RelType == ELF::R_PPC64_TOC) {
1698         RelType = ELF::R_PPC64_ADDR64;
1699         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1700           return std::move(Err);
1701       } else if (TargetName == ".TOC.") {
1702         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1703           return std::move(Err);
1704         Value.Addend += Addend;
1705       }
1706 
1707       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1708 
1709       if (Value.SymbolName)
1710         addRelocationForSymbol(RE, Value.SymbolName);
1711       else
1712         addRelocationForSection(RE, Value.SectionID);
1713     }
1714   } else if (Arch == Triple::systemz &&
1715              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1716     // Create function stubs for both PLT and GOT references, regardless of
1717     // whether the GOT reference is to data or code.  The stub contains the
1718     // full address of the symbol, as needed by GOT references, and the
1719     // executable part only adds an overhead of 8 bytes.
1720     //
1721     // We could try to conserve space by allocating the code and data
1722     // parts of the stub separately.  However, as things stand, we allocate
1723     // a stub for every relocation, so using a GOT in JIT code should be
1724     // no less space efficient than using an explicit constant pool.
1725     LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1726     SectionEntry &Section = Sections[SectionID];
1727 
1728     // Look for an existing stub.
1729     StubMap::const_iterator i = Stubs.find(Value);
1730     uintptr_t StubAddress;
1731     if (i != Stubs.end()) {
1732       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1733       LLVM_DEBUG(dbgs() << " Stub function found\n");
1734     } else {
1735       // Create a new stub function.
1736       LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1737 
1738       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1739       StubAddress =
1740           alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
1741       unsigned StubOffset = StubAddress - BaseAddress;
1742 
1743       Stubs[Value] = StubOffset;
1744       createStubFunction((uint8_t *)StubAddress);
1745       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1746                          Value.Offset);
1747       if (Value.SymbolName)
1748         addRelocationForSymbol(RE, Value.SymbolName);
1749       else
1750         addRelocationForSection(RE, Value.SectionID);
1751       Section.advanceStubOffset(getMaxStubSize());
1752     }
1753 
1754     if (RelType == ELF::R_390_GOTENT)
1755       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1756                         Addend);
1757     else
1758       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1759   } else if (Arch == Triple::x86_64) {
1760     if (RelType == ELF::R_X86_64_PLT32) {
1761       // The way the PLT relocations normally work is that the linker allocates
1762       // the
1763       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1764       // entry will then jump to an address provided by the GOT.  On first call,
1765       // the
1766       // GOT address will point back into PLT code that resolves the symbol. After
1767       // the first call, the GOT entry points to the actual function.
1768       //
1769       // For local functions we're ignoring all of that here and just replacing
1770       // the PLT32 relocation type with PC32, which will translate the relocation
1771       // into a PC-relative call directly to the function. For external symbols we
1772       // can't be sure the function will be within 2^32 bytes of the call site, so
1773       // we need to create a stub, which calls into the GOT.  This case is
1774       // equivalent to the usual PLT implementation except that we use the stub
1775       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1776       // rather than allocating a PLT section.
1777       if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1778         // This is a call to an external function.
1779         // Look for an existing stub.
1780         SectionEntry *Section = &Sections[SectionID];
1781         StubMap::const_iterator i = Stubs.find(Value);
1782         uintptr_t StubAddress;
1783         if (i != Stubs.end()) {
1784           StubAddress = uintptr_t(Section->getAddress()) + i->second;
1785           LLVM_DEBUG(dbgs() << " Stub function found\n");
1786         } else {
1787           // Create a new stub function (equivalent to a PLT entry).
1788           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1789 
1790           uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1791           StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
1792                                 getStubAlignment());
1793           unsigned StubOffset = StubAddress - BaseAddress;
1794           Stubs[Value] = StubOffset;
1795           createStubFunction((uint8_t *)StubAddress);
1796 
1797           // Bump our stub offset counter
1798           Section->advanceStubOffset(getMaxStubSize());
1799 
1800           // Allocate a GOT Entry
1801           uint64_t GOTOffset = allocateGOTEntries(1);
1802           // This potentially creates a new Section which potentially
1803           // invalidates the Section pointer, so reload it.
1804           Section = &Sections[SectionID];
1805 
1806           // The load of the GOT address has an addend of -4
1807           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1808                                      ELF::R_X86_64_PC32);
1809 
1810           // Fill in the value of the symbol we're targeting into the GOT
1811           addRelocationForSymbol(
1812               computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1813               Value.SymbolName);
1814         }
1815 
1816         // Make the target call a call into the stub table.
1817         resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1818                           Addend);
1819       } else {
1820         Value.Addend += support::ulittle32_t::ref(
1821             computePlaceholderAddress(SectionID, Offset));
1822         processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1823       }
1824     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1825                RelType == ELF::R_X86_64_GOTPCRELX ||
1826                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1827       uint64_t GOTOffset = allocateGOTEntries(1);
1828       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1829                                  ELF::R_X86_64_PC32);
1830 
1831       // Fill in the value of the symbol we're targeting into the GOT
1832       RelocationEntry RE =
1833           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1834       if (Value.SymbolName)
1835         addRelocationForSymbol(RE, Value.SymbolName);
1836       else
1837         addRelocationForSection(RE, Value.SectionID);
1838     } else if (RelType == ELF::R_X86_64_GOT64) {
1839       // Fill in a 64-bit GOT offset.
1840       uint64_t GOTOffset = allocateGOTEntries(1);
1841       resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1842                         ELF::R_X86_64_64, 0);
1843 
1844       // Fill in the value of the symbol we're targeting into the GOT
1845       RelocationEntry RE =
1846           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1847       if (Value.SymbolName)
1848         addRelocationForSymbol(RE, Value.SymbolName);
1849       else
1850         addRelocationForSection(RE, Value.SectionID);
1851     } else if (RelType == ELF::R_X86_64_GOTPC32) {
1852       // Materialize the address of the base of the GOT relative to the PC.
1853       // This doesn't create a GOT entry, but it does mean we need a GOT
1854       // section.
1855       (void)allocateGOTEntries(0);
1856       resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1857     } else if (RelType == ELF::R_X86_64_GOTPC64) {
1858       (void)allocateGOTEntries(0);
1859       resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1860     } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1861       // GOTOFF relocations ultimately require a section difference relocation.
1862       (void)allocateGOTEntries(0);
1863       processSimpleRelocation(SectionID, Offset, RelType, Value);
1864     } else if (RelType == ELF::R_X86_64_PC32) {
1865       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1866       processSimpleRelocation(SectionID, Offset, RelType, Value);
1867     } else if (RelType == ELF::R_X86_64_PC64) {
1868       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1869       processSimpleRelocation(SectionID, Offset, RelType, Value);
1870     } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1871       processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1872     } else if (RelType == ELF::R_X86_64_TLSGD ||
1873                RelType == ELF::R_X86_64_TLSLD) {
1874       // The next relocation must be the relocation for __tls_get_addr.
1875       ++RelI;
1876       auto &GetAddrRelocation = *RelI;
1877       processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1878                                  GetAddrRelocation);
1879     } else {
1880       processSimpleRelocation(SectionID, Offset, RelType, Value);
1881     }
1882   } else {
1883     if (Arch == Triple::x86) {
1884       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1885     }
1886     processSimpleRelocation(SectionID, Offset, RelType, Value);
1887   }
1888   return ++RelI;
1889 }
1890 
1891 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1892                                                      uint64_t Offset,
1893                                                      RelocationValueRef Value,
1894                                                      int64_t Addend) {
1895   // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1896   // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1897   // only mentions one optimization even though there are two different
1898   // code sequences for the Initial Exec TLS Model. We match the code to
1899   // find out which one was used.
1900 
1901   // A possible TLS code sequence and its replacement
1902   struct CodeSequence {
1903     // The expected code sequence
1904     ArrayRef<uint8_t> ExpectedCodeSequence;
1905     // The negative offset of the GOTTPOFF relocation to the beginning of
1906     // the sequence
1907     uint64_t TLSSequenceOffset;
1908     // The new code sequence
1909     ArrayRef<uint8_t> NewCodeSequence;
1910     // The offset of the new TPOFF relocation
1911     uint64_t TpoffRelocationOffset;
1912   };
1913 
1914   std::array<CodeSequence, 2> CodeSequences;
1915 
1916   // Initial Exec Code Model Sequence
1917   {
1918     static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1919         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1920         0x00,                                    // mov %fs:0, %rax
1921         0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1922                                                  // %rax
1923     };
1924     CodeSequences[0].ExpectedCodeSequence =
1925         ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1926     CodeSequences[0].TLSSequenceOffset = 12;
1927 
1928     static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1929         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1930         0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1931     };
1932     CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1933     CodeSequences[0].TpoffRelocationOffset = 12;
1934   }
1935 
1936   // Initial Exec Code Model Sequence, II
1937   {
1938     static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1939         0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1940         0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00  // mov %fs:(%rax), %rax
1941     };
1942     CodeSequences[1].ExpectedCodeSequence =
1943         ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1944     CodeSequences[1].TLSSequenceOffset = 3;
1945 
1946     static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1947         0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00,             // 6 byte nop
1948         0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1949     };
1950     CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1951     CodeSequences[1].TpoffRelocationOffset = 10;
1952   }
1953 
1954   bool Resolved = false;
1955   auto &Section = Sections[SectionID];
1956   for (const auto &C : CodeSequences) {
1957     assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1958            "Old and new code sequences must have the same size");
1959 
1960     if (Offset < C.TLSSequenceOffset ||
1961         (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1962             Section.getSize()) {
1963       // This can't be a matching sequence as it doesn't fit in the current
1964       // section
1965       continue;
1966     }
1967 
1968     auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1969     auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1970     if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1971         C.ExpectedCodeSequence) {
1972       continue;
1973     }
1974 
1975     memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1976 
1977     // The original GOTTPOFF relocation has an addend as it is PC relative,
1978     // so it needs to be corrected. The TPOFF32 relocation is used as an
1979     // absolute value (which is an offset from %fs:0), so remove the addend
1980     // again.
1981     RelocationEntry RE(SectionID,
1982                        TLSSequenceStartOffset + C.TpoffRelocationOffset,
1983                        ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1984 
1985     if (Value.SymbolName)
1986       addRelocationForSymbol(RE, Value.SymbolName);
1987     else
1988       addRelocationForSection(RE, Value.SectionID);
1989 
1990     Resolved = true;
1991     break;
1992   }
1993 
1994   if (!Resolved) {
1995     // The GOTTPOFF relocation was not used in one of the sequences
1996     // described in the spec, so we can't optimize it to a TPOFF
1997     // relocation.
1998     uint64_t GOTOffset = allocateGOTEntries(1);
1999     resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
2000                                ELF::R_X86_64_PC32);
2001     RelocationEntry RE =
2002         computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
2003     if (Value.SymbolName)
2004       addRelocationForSymbol(RE, Value.SymbolName);
2005     else
2006       addRelocationForSection(RE, Value.SectionID);
2007   }
2008 }
2009 
2010 void RuntimeDyldELF::processX86_64TLSRelocation(
2011     unsigned SectionID, uint64_t Offset, uint64_t RelType,
2012     RelocationValueRef Value, int64_t Addend,
2013     const RelocationRef &GetAddrRelocation) {
2014   // Since we are statically linking and have no additional DSOs, we can resolve
2015   // the relocation directly without using __tls_get_addr.
2016   // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2017   // to replace it with the Local Exec relocation variant.
2018 
2019   // Find out whether the code was compiled with the large or small memory
2020   // model. For this we look at the next relocation which is the relocation
2021   // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2022   // small code model, with a 64 bit relocation it's the large code model.
2023   bool IsSmallCodeModel;
2024   // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2025   bool IsGOTPCRel = false;
2026 
2027   switch (GetAddrRelocation.getType()) {
2028   case ELF::R_X86_64_GOTPCREL:
2029   case ELF::R_X86_64_REX_GOTPCRELX:
2030   case ELF::R_X86_64_GOTPCRELX:
2031     IsGOTPCRel = true;
2032     [[fallthrough]];
2033   case ELF::R_X86_64_PLT32:
2034     IsSmallCodeModel = true;
2035     break;
2036   case ELF::R_X86_64_PLTOFF64:
2037     IsSmallCodeModel = false;
2038     break;
2039   default:
2040     report_fatal_error(
2041         "invalid TLS relocations for General/Local Dynamic TLS Model: "
2042         "expected PLT or GOT relocation for __tls_get_addr function");
2043   }
2044 
2045   // The negative offset to the start of the TLS code sequence relative to
2046   // the offset of the TLSGD/TLSLD relocation
2047   uint64_t TLSSequenceOffset;
2048   // The expected start of the code sequence
2049   ArrayRef<uint8_t> ExpectedCodeSequence;
2050   // The new TLS code sequence that will replace the existing code
2051   ArrayRef<uint8_t> NewCodeSequence;
2052 
2053   if (RelType == ELF::R_X86_64_TLSGD) {
2054     // The offset of the new TPOFF32 relocation (offset starting from the
2055     // beginning of the whole TLS sequence)
2056     uint64_t TpoffRelocOffset;
2057 
2058     if (IsSmallCodeModel) {
2059       if (!IsGOTPCRel) {
2060         static const std::initializer_list<uint8_t> CodeSequence = {
2061             0x66, // data16 (no-op prefix)
2062             0x48, 0x8d, 0x3d, 0x00, 0x00,
2063             0x00, 0x00,                  // lea <disp32>(%rip), %rdi
2064             0x66, 0x66,                  // two data16 prefixes
2065             0x48,                        // rex64 (no-op prefix)
2066             0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2067         };
2068         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2069         TLSSequenceOffset = 4;
2070       } else {
2071         // This code sequence is not described in the TLS spec but gcc
2072         // generates it sometimes.
2073         static const std::initializer_list<uint8_t> CodeSequence = {
2074             0x66, // data16 (no-op prefix)
2075             0x48, 0x8d, 0x3d, 0x00, 0x00,
2076             0x00, 0x00, // lea <disp32>(%rip), %rdi
2077             0x66,       // data16 prefix (no-op prefix)
2078             0x48,       // rex64 (no-op prefix)
2079             0xff, 0x15, 0x00, 0x00, 0x00,
2080             0x00 // call *__tls_get_addr@gotpcrel(%rip)
2081         };
2082         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2083         TLSSequenceOffset = 4;
2084       }
2085 
2086       // The replacement code for the small code model. It's the same for
2087       // both sequences.
2088       static const std::initializer_list<uint8_t> SmallSequence = {
2089           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2090           0x00,                                    // mov %fs:0, %rax
2091           0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2092                                                    // %rax
2093       };
2094       NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2095       TpoffRelocOffset = 12;
2096     } else {
2097       static const std::initializer_list<uint8_t> CodeSequence = {
2098           0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2099                                                     // %rdi
2100           0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2101           0x00,             // movabs $__tls_get_addr@pltoff, %rax
2102           0x48, 0x01, 0xd8, // add %rbx, %rax
2103           0xff, 0xd0        // call *%rax
2104       };
2105       ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2106       TLSSequenceOffset = 3;
2107 
2108       // The replacement code for the large code model
2109       static const std::initializer_list<uint8_t> LargeSequence = {
2110           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2111           0x00,                                     // mov %fs:0, %rax
2112           0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2113                                                     // %rax
2114           0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00        // nopw 0x0(%rax,%rax,1)
2115       };
2116       NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2117       TpoffRelocOffset = 12;
2118     }
2119 
2120     // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2121     // The new TPOFF32 relocations is used as an absolute offset from
2122     // %fs:0, so remove the TLSGD/TLSLD addend again.
2123     RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2124                        ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2125     if (Value.SymbolName)
2126       addRelocationForSymbol(RE, Value.SymbolName);
2127     else
2128       addRelocationForSection(RE, Value.SectionID);
2129   } else if (RelType == ELF::R_X86_64_TLSLD) {
2130     if (IsSmallCodeModel) {
2131       if (!IsGOTPCRel) {
2132         static const std::initializer_list<uint8_t> CodeSequence = {
2133             0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2134             0x00, 0xe8, 0x00, 0x00, 0x00, 0x00  // call __tls_get_addr@plt
2135         };
2136         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2137         TLSSequenceOffset = 3;
2138 
2139         // The replacement code for the small code model
2140         static const std::initializer_list<uint8_t> SmallSequence = {
2141             0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2142             0x64, 0x48, 0x8b, 0x04, 0x25,
2143             0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2144         };
2145         NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2146       } else {
2147         // This code sequence is not described in the TLS spec but gcc
2148         // generates it sometimes.
2149         static const std::initializer_list<uint8_t> CodeSequence = {
2150             0x48, 0x8d, 0x3d, 0x00,
2151             0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2152             0xff, 0x15, 0x00, 0x00,
2153             0x00, 0x00 // call
2154                        // *__tls_get_addr@gotpcrel(%rip)
2155         };
2156         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2157         TLSSequenceOffset = 3;
2158 
2159         // The replacement is code is just like above but it needs to be
2160         // one byte longer.
2161         static const std::initializer_list<uint8_t> SmallSequence = {
2162             0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2163             0x64, 0x48, 0x8b, 0x04, 0x25,
2164             0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2165         };
2166         NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2167       }
2168     } else {
2169       // This is the same sequence as for the TLSGD sequence with the large
2170       // memory model above
2171       static const std::initializer_list<uint8_t> CodeSequence = {
2172           0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2173                                                     // %rdi
2174           0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2175           0x48,       // movabs $__tls_get_addr@pltoff, %rax
2176           0x01, 0xd8, // add %rbx, %rax
2177           0xff, 0xd0  // call *%rax
2178       };
2179       ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2180       TLSSequenceOffset = 3;
2181 
2182       // The replacement code for the large code model
2183       static const std::initializer_list<uint8_t> LargeSequence = {
2184           0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2185           0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2186           0x00,                                                // 10 byte nop
2187           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2188       };
2189       NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2190     }
2191   } else {
2192     llvm_unreachable("both TLS relocations handled above");
2193   }
2194 
2195   assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2196          "Old and new code sequences must have the same size");
2197 
2198   auto &Section = Sections[SectionID];
2199   if (Offset < TLSSequenceOffset ||
2200       (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2201           Section.getSize()) {
2202     report_fatal_error("unexpected end of section in TLS sequence");
2203   }
2204 
2205   auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2206   if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2207       ExpectedCodeSequence) {
2208     report_fatal_error(
2209         "invalid TLS sequence for Global/Local Dynamic TLS Model");
2210   }
2211 
2212   memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2213 }
2214 
2215 size_t RuntimeDyldELF::getGOTEntrySize() {
2216   // We don't use the GOT in all of these cases, but it's essentially free
2217   // to put them all here.
2218   size_t Result = 0;
2219   switch (Arch) {
2220   case Triple::x86_64:
2221   case Triple::aarch64:
2222   case Triple::aarch64_be:
2223   case Triple::ppc64:
2224   case Triple::ppc64le:
2225   case Triple::systemz:
2226     Result = sizeof(uint64_t);
2227     break;
2228   case Triple::x86:
2229   case Triple::arm:
2230   case Triple::thumb:
2231     Result = sizeof(uint32_t);
2232     break;
2233   case Triple::mips:
2234   case Triple::mipsel:
2235   case Triple::mips64:
2236   case Triple::mips64el:
2237     if (IsMipsO32ABI || IsMipsN32ABI)
2238       Result = sizeof(uint32_t);
2239     else if (IsMipsN64ABI)
2240       Result = sizeof(uint64_t);
2241     else
2242       llvm_unreachable("Mips ABI not handled");
2243     break;
2244   default:
2245     llvm_unreachable("Unsupported CPU type!");
2246   }
2247   return Result;
2248 }
2249 
2250 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2251   if (GOTSectionID == 0) {
2252     GOTSectionID = Sections.size();
2253     // Reserve a section id. We'll allocate the section later
2254     // once we know the total size
2255     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2256   }
2257   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2258   CurrentGOTIndex += no;
2259   return StartOffset;
2260 }
2261 
2262 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2263                                              unsigned GOTRelType) {
2264   auto E = GOTOffsetMap.insert({Value, 0});
2265   if (E.second) {
2266     uint64_t GOTOffset = allocateGOTEntries(1);
2267 
2268     // Create relocation for newly created GOT entry
2269     RelocationEntry RE =
2270         computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2271     if (Value.SymbolName)
2272       addRelocationForSymbol(RE, Value.SymbolName);
2273     else
2274       addRelocationForSection(RE, Value.SectionID);
2275 
2276     E.first->second = GOTOffset;
2277   }
2278 
2279   return E.first->second;
2280 }
2281 
2282 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2283                                                 uint64_t Offset,
2284                                                 uint64_t GOTOffset,
2285                                                 uint32_t Type) {
2286   // Fill in the relative address of the GOT Entry into the stub
2287   RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2288   addRelocationForSection(GOTRE, GOTSectionID);
2289 }
2290 
2291 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2292                                                    uint64_t SymbolOffset,
2293                                                    uint32_t Type) {
2294   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2295 }
2296 
2297 void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
2298   // This should never return an error as `processNewSymbol` wouldn't have been
2299   // called if getFlags() returned an error before.
2300   auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());
2301 
2302   if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2303     if (IFuncStubSectionID == 0) {
2304       // Create a dummy section for the ifunc stubs. It will be actually
2305       // allocated in finalizeLoad() below.
2306       IFuncStubSectionID = Sections.size();
2307       Sections.push_back(
2308           SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2309       // First 64B are reserverd for the IFunc resolver
2310       IFuncStubOffset = 64;
2311     }
2312 
2313     IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
2314     // Modify the symbol so that it points to the ifunc stub instead of to the
2315     // resolver function.
2316     Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2317                               Symbol.getFlags());
2318     IFuncStubOffset += getMaxIFuncStubSize();
2319   }
2320 }
2321 
2322 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
2323                                   ObjSectionToIDMap &SectionMap) {
2324   if (IsMipsO32ABI)
2325     if (!PendingRelocs.empty())
2326       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2327 
2328   // Create the IFunc stubs if necessary. This must be done before processing
2329   // the GOT entries, as the IFunc stubs may create some.
2330   if (IFuncStubSectionID != 0) {
2331     uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
2332         IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
2333     if (!IFuncStubsAddr)
2334       return make_error<RuntimeDyldError>(
2335           "Unable to allocate memory for IFunc stubs!");
2336     Sections[IFuncStubSectionID] =
2337         SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2338                      IFuncStubOffset, 0);
2339 
2340     createIFuncResolver(IFuncStubsAddr);
2341 
2342     LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2343                       << IFuncStubSectionID << " Addr: "
2344                       << Sections[IFuncStubSectionID].getAddress() << '\n');
2345     for (auto &IFuncStub : IFuncStubs) {
2346       auto &Symbol = IFuncStub.OriginalSymbol;
2347       LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
2348                         << " Offset: " << format("%p", Symbol.getOffset())
2349                         << " IFuncStubOffset: "
2350                         << format("%p\n", IFuncStub.StubOffset));
2351       createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2352                       Symbol.getSectionID(), Symbol.getOffset());
2353     }
2354 
2355     IFuncStubSectionID = 0;
2356     IFuncStubOffset = 0;
2357     IFuncStubs.clear();
2358   }
2359 
2360   // If necessary, allocate the global offset table
2361   if (GOTSectionID != 0) {
2362     // Allocate memory for the section
2363     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2364     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2365                                                GOTSectionID, ".got", false);
2366     if (!Addr)
2367       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2368 
2369     Sections[GOTSectionID] =
2370         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2371 
2372     // For now, initialize all GOT entries to zero.  We'll fill them in as
2373     // needed when GOT-based relocations are applied.
2374     memset(Addr, 0, TotalSize);
2375     if (IsMipsN32ABI || IsMipsN64ABI) {
2376       // To correctly resolve Mips GOT relocations, we need a mapping from
2377       // object's sections to GOTs.
2378       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2379            SI != SE; ++SI) {
2380         if (SI->relocation_begin() != SI->relocation_end()) {
2381           Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2382           if (!RelSecOrErr)
2383             return make_error<RuntimeDyldError>(
2384                 toString(RelSecOrErr.takeError()));
2385 
2386           section_iterator RelocatedSection = *RelSecOrErr;
2387           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2388           assert(i != SectionMap.end());
2389           SectionToGOTMap[i->second] = GOTSectionID;
2390         }
2391       }
2392       GOTSymbolOffsets.clear();
2393     }
2394   }
2395 
2396   // Look for and record the EH frame section.
2397   ObjSectionToIDMap::iterator i, e;
2398   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2399     const SectionRef &Section = i->first;
2400 
2401     StringRef Name;
2402     Expected<StringRef> NameOrErr = Section.getName();
2403     if (NameOrErr)
2404       Name = *NameOrErr;
2405     else
2406       consumeError(NameOrErr.takeError());
2407 
2408     if (Name == ".eh_frame") {
2409       UnregisteredEHFrameSections.push_back(i->second);
2410       break;
2411     }
2412   }
2413 
2414   GOTOffsetMap.clear();
2415   GOTSectionID = 0;
2416   CurrentGOTIndex = 0;
2417 
2418   return Error::success();
2419 }
2420 
2421 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
2422   return Obj.isELF();
2423 }
2424 
2425 void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
2426   if (Arch == Triple::x86_64) {
2427     // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2428     // (see createIFuncStub() for details)
2429     // The following code first saves all registers that contain the original
2430     // function arguments as those registers are not saved by the resolver
2431     // function. %r11 is saved as well so that the GOT2 entry can be updated
2432     // afterwards. Then it calls the actual IFunc resolver function whose
2433     // address is stored in GOT2. After the resolver function returns, all
2434     // saved registers are restored and the return value is written to GOT1.
2435     // Finally, jump to the now resolved function.
2436     // clang-format off
2437     const uint8_t StubCode[] = {
2438         0x57,                   // push %rdi
2439         0x56,                   // push %rsi
2440         0x52,                   // push %rdx
2441         0x51,                   // push %rcx
2442         0x41, 0x50,             // push %r8
2443         0x41, 0x51,             // push %r9
2444         0x41, 0x53,             // push %r11
2445         0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2446         0x41, 0x5b,             // pop %r11
2447         0x41, 0x59,             // pop %r9
2448         0x41, 0x58,             // pop %r8
2449         0x59,                   // pop %rcx
2450         0x5a,                   // pop %rdx
2451         0x5e,                   // pop %rsi
2452         0x5f,                   // pop %rdi
2453         0x49, 0x89, 0x03,       // mov %rax,(%r11)
2454         0xff, 0xe0              // jmp *%rax
2455     };
2456     // clang-format on
2457     static_assert(sizeof(StubCode) <= 64,
2458                   "maximum size of the IFunc resolver is 64B");
2459     memcpy(Addr, StubCode, sizeof(StubCode));
2460   } else {
2461     report_fatal_error(
2462         "IFunc resolver is not supported for target architecture");
2463   }
2464 }
2465 
2466 void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
2467                                      uint64_t IFuncResolverOffset,
2468                                      uint64_t IFuncStubOffset,
2469                                      unsigned IFuncSectionID,
2470                                      uint64_t IFuncOffset) {
2471   auto &IFuncStubSection = Sections[IFuncStubSectionID];
2472   auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2473 
2474   if (Arch == Triple::x86_64) {
2475     // The first instruction loads a PC-relative address into %r11 which is a
2476     // GOT entry for this stub. This initially contains the address to the
2477     // IFunc resolver. We can use %r11 here as it's caller saved but not used
2478     // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2479     // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2480     // entry.
2481     //
2482     // The next instruction just jumps to the address contained in the GOT
2483     // entry. As mentioned above, we do this two-step jump by first setting
2484     // %r11 so that the IFunc resolver has access to it.
2485     //
2486     // The IFunc resolver of course also needs to know the actual address of
2487     // the actual IFunc resolver function. This will be stored in a GOT entry
2488     // right next to the first one for this stub. So, the IFunc resolver will
2489     // be able to call it with %r11+8.
2490     //
2491     // In total, two adjacent GOT entries (+relocation) and one additional
2492     // relocation are required:
2493     // GOT1: Address of the IFunc resolver.
2494     // GOT2: Address of the IFunc resolver function.
2495     // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2496     uint64_t GOT1 = allocateGOTEntries(2);
2497     uint64_t GOT2 = GOT1 + getGOTEntrySize();
2498 
2499     RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2500                         IFuncResolverOffset, {});
2501     addRelocationForSection(RE1, IFuncStubSectionID);
2502     RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2503     addRelocationForSection(RE2, IFuncSectionID);
2504 
2505     const uint8_t StubCode[] = {
2506         0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2507         0x41, 0xff, 0x23                          // jmpq *(%r11)
2508     };
2509     assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
2510            "IFunc stub size must not exceed getMaxIFuncStubSize()");
2511     memcpy(Addr, StubCode, sizeof(StubCode));
2512 
2513     // The PC-relative value starts 4 bytes from the end of the leaq
2514     // instruction, so the addend is -4.
2515     resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2516                                GOT1 - 4, ELF::R_X86_64_PC32);
2517   } else {
2518     report_fatal_error("IFunc stub is not supported for target architecture");
2519   }
2520 }
2521 
2522 unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2523   if (Arch == Triple::x86_64) {
2524     return 10;
2525   }
2526   return 0;
2527 }
2528 
2529 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2530   unsigned RelTy = R.getType();
2531   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
2532     return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2533            RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2534 
2535   if (Arch == Triple::x86_64)
2536     return RelTy == ELF::R_X86_64_GOTPCREL ||
2537            RelTy == ELF::R_X86_64_GOTPCRELX ||
2538            RelTy == ELF::R_X86_64_GOT64 ||
2539            RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2540   return false;
2541 }
2542 
2543 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2544   if (Arch != Triple::x86_64)
2545     return true;  // Conservative answer
2546 
2547   switch (R.getType()) {
2548   default:
2549     return true;  // Conservative answer
2550 
2551 
2552   case ELF::R_X86_64_GOTPCREL:
2553   case ELF::R_X86_64_GOTPCRELX:
2554   case ELF::R_X86_64_REX_GOTPCRELX:
2555   case ELF::R_X86_64_GOTPC64:
2556   case ELF::R_X86_64_GOT64:
2557   case ELF::R_X86_64_GOTOFF64:
2558   case ELF::R_X86_64_PC32:
2559   case ELF::R_X86_64_PC64:
2560   case ELF::R_X86_64_64:
2561     // We know that these reloation types won't need a stub function.  This list
2562     // can be extended as needed.
2563     return false;
2564   }
2565 }
2566 
2567 } // namespace llvm
2568