xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp (revision 1e4896b176ff664dc9c2fce5426bf2fdf8017a7d)
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
28 
29 #define DEBUG_TYPE "dyld"
30 
31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32 
33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34   or32le(L, (Imm & 0xFFF) << 10);
35 }
36 
37 template <class T> static void write(bool isBE, void *P, T V) {
38   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
39 }
40 
41 static void write32AArch64Addr(void *L, uint64_t Imm) {
42   uint32_t ImmLo = (Imm & 0x3) << 29;
43   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
46 }
47 
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val, int Start, int End) {
51   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52   return (Val >> Start) & Mask;
53 }
54 
55 namespace {
56 
57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
59 
60   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
61   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
62   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
63   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
64 
65   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
66 
67   typedef typename ELFT::uint addr_type;
68 
69   DyldELFObject(ELFObjectFile<ELFT> &&Obj);
70 
71 public:
72   static Expected<std::unique_ptr<DyldELFObject>>
73   create(MemoryBufferRef Wrapper);
74 
75   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
76 
77   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
78 
79   // Methods for type inquiry through isa, cast and dyn_cast
80   static bool classof(const Binary *v) {
81     return (isa<ELFObjectFile<ELFT>>(v) &&
82             classof(cast<ELFObjectFile<ELFT>>(v)));
83   }
84   static bool classof(const ELFObjectFile<ELFT> *v) {
85     return v->isDyldType();
86   }
87 };
88 
89 
90 
91 // The MemoryBuffer passed into this constructor is just a wrapper around the
92 // actual memory.  Ultimately, the Binary parent class will take ownership of
93 // this MemoryBuffer object but not the underlying memory.
94 template <class ELFT>
95 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
96     : ELFObjectFile<ELFT>(std::move(Obj)) {
97   this->isDyldELFObject = true;
98 }
99 
100 template <class ELFT>
101 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
102 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
103   auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
104   if (auto E = Obj.takeError())
105     return std::move(E);
106   std::unique_ptr<DyldELFObject<ELFT>> Ret(
107       new DyldELFObject<ELFT>(std::move(*Obj)));
108   return std::move(Ret);
109 }
110 
111 template <class ELFT>
112 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
113                                                uint64_t Addr) {
114   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
115   Elf_Shdr *shdr =
116       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
117 
118   // This assumes the address passed in matches the target address bitness
119   // The template-based type cast handles everything else.
120   shdr->sh_addr = static_cast<addr_type>(Addr);
121 }
122 
123 template <class ELFT>
124 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
125                                               uint64_t Addr) {
126 
127   Elf_Sym *sym = const_cast<Elf_Sym *>(
128       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
129 
130   // This assumes the address passed in matches the target address bitness
131   // The template-based type cast handles everything else.
132   sym->st_value = static_cast<addr_type>(Addr);
133 }
134 
135 class LoadedELFObjectInfo final
136     : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
137                                     RuntimeDyld::LoadedObjectInfo> {
138 public:
139   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
140       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
141 
142   OwningBinary<ObjectFile>
143   getObjectForDebug(const ObjectFile &Obj) const override;
144 };
145 
146 template <typename ELFT>
147 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
148 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
149                       const LoadedELFObjectInfo &L) {
150   typedef typename ELFT::Shdr Elf_Shdr;
151   typedef typename ELFT::uint addr_type;
152 
153   Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
154       DyldELFObject<ELFT>::create(Buffer);
155   if (Error E = ObjOrErr.takeError())
156     return std::move(E);
157 
158   std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
159 
160   // Iterate over all sections in the object.
161   auto SI = SourceObject.section_begin();
162   for (const auto &Sec : Obj->sections()) {
163     Expected<StringRef> NameOrErr = Sec.getName();
164     if (!NameOrErr) {
165       consumeError(NameOrErr.takeError());
166       continue;
167     }
168 
169     if (*NameOrErr != "") {
170       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
171       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
172           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
173 
174       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
175         // This assumes that the address passed in matches the target address
176         // bitness. The template-based type cast handles everything else.
177         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
178       }
179     }
180     ++SI;
181   }
182 
183   return std::move(Obj);
184 }
185 
186 static OwningBinary<ObjectFile>
187 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
188   assert(Obj.isELF() && "Not an ELF object file.");
189 
190   std::unique_ptr<MemoryBuffer> Buffer =
191     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
192 
193   Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
194   handleAllErrors(DebugObj.takeError());
195   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
196     DebugObj =
197         createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
198   else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
199     DebugObj =
200         createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
201   else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
202     DebugObj =
203         createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
204   else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
205     DebugObj =
206         createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
207   else
208     llvm_unreachable("Unexpected ELF format");
209 
210   handleAllErrors(DebugObj.takeError());
211   return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
212 }
213 
214 OwningBinary<ObjectFile>
215 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
216   return createELFDebugObject(Obj, *this);
217 }
218 
219 } // anonymous namespace
220 
221 namespace llvm {
222 
223 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
224                                JITSymbolResolver &Resolver)
225     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
226 RuntimeDyldELF::~RuntimeDyldELF() {}
227 
228 void RuntimeDyldELF::registerEHFrames() {
229   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
230     SID EHFrameSID = UnregisteredEHFrameSections[i];
231     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
232     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
233     size_t EHFrameSize = Sections[EHFrameSID].getSize();
234     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
235   }
236   UnregisteredEHFrameSections.clear();
237 }
238 
239 std::unique_ptr<RuntimeDyldELF>
240 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
241                              RuntimeDyld::MemoryManager &MemMgr,
242                              JITSymbolResolver &Resolver) {
243   switch (Arch) {
244   default:
245     return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
246   case Triple::mips:
247   case Triple::mipsel:
248   case Triple::mips64:
249   case Triple::mips64el:
250     return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
251   }
252 }
253 
254 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
255 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
256   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
257     return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
258   else {
259     HasError = true;
260     raw_string_ostream ErrStream(ErrorStr);
261     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
262     return nullptr;
263   }
264 }
265 
266 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
267                                              uint64_t Offset, uint64_t Value,
268                                              uint32_t Type, int64_t Addend,
269                                              uint64_t SymOffset) {
270   switch (Type) {
271   default:
272     report_fatal_error("Relocation type not implemented yet!");
273     break;
274   case ELF::R_X86_64_NONE:
275     break;
276   case ELF::R_X86_64_64: {
277     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
278         Value + Addend;
279     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
280                       << format("%p\n", Section.getAddressWithOffset(Offset)));
281     break;
282   }
283   case ELF::R_X86_64_32:
284   case ELF::R_X86_64_32S: {
285     Value += Addend;
286     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
287            (Type == ELF::R_X86_64_32S &&
288             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
289     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
290     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
291         TruncatedAddr;
292     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
293                       << format("%p\n", Section.getAddressWithOffset(Offset)));
294     break;
295   }
296   case ELF::R_X86_64_PC8: {
297     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
298     int64_t RealOffset = Value + Addend - FinalAddress;
299     assert(isInt<8>(RealOffset));
300     int8_t TruncOffset = (RealOffset & 0xFF);
301     Section.getAddress()[Offset] = TruncOffset;
302     break;
303   }
304   case ELF::R_X86_64_PC32: {
305     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
306     int64_t RealOffset = Value + Addend - FinalAddress;
307     assert(isInt<32>(RealOffset));
308     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
309     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
310         TruncOffset;
311     break;
312   }
313   case ELF::R_X86_64_PC64: {
314     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
315     int64_t RealOffset = Value + Addend - FinalAddress;
316     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
317         RealOffset;
318     LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
319                       << format("%p\n", FinalAddress));
320     break;
321   }
322   case ELF::R_X86_64_GOTOFF64: {
323     // Compute Value - GOTBase.
324     uint64_t GOTBase = 0;
325     for (const auto &Section : Sections) {
326       if (Section.getName() == ".got") {
327         GOTBase = Section.getLoadAddressWithOffset(0);
328         break;
329       }
330     }
331     assert(GOTBase != 0 && "missing GOT");
332     int64_t GOTOffset = Value - GOTBase + Addend;
333     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
334     break;
335   }
336   }
337 }
338 
339 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
340                                           uint64_t Offset, uint32_t Value,
341                                           uint32_t Type, int32_t Addend) {
342   switch (Type) {
343   case ELF::R_386_32: {
344     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
345         Value + Addend;
346     break;
347   }
348   // Handle R_386_PLT32 like R_386_PC32 since it should be able to
349   // reach any 32 bit address.
350   case ELF::R_386_PLT32:
351   case ELF::R_386_PC32: {
352     uint32_t FinalAddress =
353         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
354     uint32_t RealOffset = Value + Addend - FinalAddress;
355     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
356         RealOffset;
357     break;
358   }
359   default:
360     // There are other relocation types, but it appears these are the
361     // only ones currently used by the LLVM ELF object writer
362     report_fatal_error("Relocation type not implemented yet!");
363     break;
364   }
365 }
366 
367 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
368                                               uint64_t Offset, uint64_t Value,
369                                               uint32_t Type, int64_t Addend) {
370   uint32_t *TargetPtr =
371       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
372   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
373   // Data should use target endian. Code should always use little endian.
374   bool isBE = Arch == Triple::aarch64_be;
375 
376   LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
377                     << format("%llx", Section.getAddressWithOffset(Offset))
378                     << " FinalAddress: 0x" << format("%llx", FinalAddress)
379                     << " Value: 0x" << format("%llx", Value) << " Type: 0x"
380                     << format("%x", Type) << " Addend: 0x"
381                     << format("%llx", Addend) << "\n");
382 
383   switch (Type) {
384   default:
385     report_fatal_error("Relocation type not implemented yet!");
386     break;
387   case ELF::R_AARCH64_ABS16: {
388     uint64_t Result = Value + Addend;
389     assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
390     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
391     break;
392   }
393   case ELF::R_AARCH64_ABS32: {
394     uint64_t Result = Value + Addend;
395     assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
396     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
397     break;
398   }
399   case ELF::R_AARCH64_ABS64:
400     write(isBE, TargetPtr, Value + Addend);
401     break;
402   case ELF::R_AARCH64_PLT32: {
403     uint64_t Result = Value + Addend - FinalAddress;
404     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
405            static_cast<int64_t>(Result) <= INT32_MAX);
406     write(isBE, TargetPtr, static_cast<uint32_t>(Result));
407     break;
408   }
409   case ELF::R_AARCH64_PREL32: {
410     uint64_t Result = Value + Addend - FinalAddress;
411     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
412            static_cast<int64_t>(Result) <= UINT32_MAX);
413     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
414     break;
415   }
416   case ELF::R_AARCH64_PREL64:
417     write(isBE, TargetPtr, Value + Addend - FinalAddress);
418     break;
419   case ELF::R_AARCH64_CALL26: // fallthrough
420   case ELF::R_AARCH64_JUMP26: {
421     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
422     // calculation.
423     uint64_t BranchImm = Value + Addend - FinalAddress;
424 
425     // "Check that -2^27 <= result < 2^27".
426     assert(isInt<28>(BranchImm));
427     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
428     break;
429   }
430   case ELF::R_AARCH64_MOVW_UABS_G3:
431     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
432     break;
433   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
434     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
435     break;
436   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
437     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
438     break;
439   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
440     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
441     break;
442   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
443     // Operation: Page(S+A) - Page(P)
444     uint64_t Result =
445         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
446 
447     // Check that -2^32 <= X < 2^32
448     assert(isInt<33>(Result) && "overflow check failed for relocation");
449 
450     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
451     // from bits 32:12 of X.
452     write32AArch64Addr(TargetPtr, Result >> 12);
453     break;
454   }
455   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
456     // Operation: S + A
457     // Immediate goes in bits 21:10 of LD/ST instruction, taken
458     // from bits 11:0 of X
459     or32AArch64Imm(TargetPtr, Value + Addend);
460     break;
461   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
462     // Operation: S + A
463     // Immediate goes in bits 21:10 of LD/ST instruction, taken
464     // from bits 11:0 of X
465     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
466     break;
467   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
468     // Operation: S + A
469     // Immediate goes in bits 21:10 of LD/ST instruction, taken
470     // from bits 11:1 of X
471     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
472     break;
473   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
474     // Operation: S + A
475     // Immediate goes in bits 21:10 of LD/ST instruction, taken
476     // from bits 11:2 of X
477     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
478     break;
479   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
480     // Operation: S + A
481     // Immediate goes in bits 21:10 of LD/ST instruction, taken
482     // from bits 11:3 of X
483     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
484     break;
485   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
486     // Operation: S + A
487     // Immediate goes in bits 21:10 of LD/ST instruction, taken
488     // from bits 11:4 of X
489     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
490     break;
491   }
492 }
493 
494 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
495                                           uint64_t Offset, uint32_t Value,
496                                           uint32_t Type, int32_t Addend) {
497   // TODO: Add Thumb relocations.
498   uint32_t *TargetPtr =
499       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
500   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
501   Value += Addend;
502 
503   LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
504                     << Section.getAddressWithOffset(Offset)
505                     << " FinalAddress: " << format("%p", FinalAddress)
506                     << " Value: " << format("%x", Value)
507                     << " Type: " << format("%x", Type)
508                     << " Addend: " << format("%x", Addend) << "\n");
509 
510   switch (Type) {
511   default:
512     llvm_unreachable("Not implemented relocation type!");
513 
514   case ELF::R_ARM_NONE:
515     break;
516     // Write a 31bit signed offset
517   case ELF::R_ARM_PREL31:
518     support::ulittle32_t::ref{TargetPtr} =
519         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
520         ((Value - FinalAddress) & ~0x80000000);
521     break;
522   case ELF::R_ARM_TARGET1:
523   case ELF::R_ARM_ABS32:
524     support::ulittle32_t::ref{TargetPtr} = Value;
525     break;
526     // Write first 16 bit of 32 bit value to the mov instruction.
527     // Last 4 bit should be shifted.
528   case ELF::R_ARM_MOVW_ABS_NC:
529   case ELF::R_ARM_MOVT_ABS:
530     if (Type == ELF::R_ARM_MOVW_ABS_NC)
531       Value = Value & 0xFFFF;
532     else if (Type == ELF::R_ARM_MOVT_ABS)
533       Value = (Value >> 16) & 0xFFFF;
534     support::ulittle32_t::ref{TargetPtr} =
535         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
536         (((Value >> 12) & 0xF) << 16);
537     break;
538     // Write 24 bit relative value to the branch instruction.
539   case ELF::R_ARM_PC24: // Fall through.
540   case ELF::R_ARM_CALL: // Fall through.
541   case ELF::R_ARM_JUMP24:
542     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
543     RelValue = (RelValue & 0x03FFFFFC) >> 2;
544     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
545     support::ulittle32_t::ref{TargetPtr} =
546         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
547     break;
548   }
549 }
550 
551 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
552   if (Arch == Triple::UnknownArch ||
553       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
554     IsMipsO32ABI = false;
555     IsMipsN32ABI = false;
556     IsMipsN64ABI = false;
557     return;
558   }
559   if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
560     unsigned AbiVariant = E->getPlatformFlags();
561     IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
562     IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
563   }
564   IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
565 }
566 
567 // Return the .TOC. section and offset.
568 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
569                                           ObjSectionToIDMap &LocalSections,
570                                           RelocationValueRef &Rel) {
571   // Set a default SectionID in case we do not find a TOC section below.
572   // This may happen for references to TOC base base (sym@toc, .odp
573   // relocation) without a .toc directive.  In this case just use the
574   // first section (which is usually the .odp) since the code won't
575   // reference the .toc base directly.
576   Rel.SymbolName = nullptr;
577   Rel.SectionID = 0;
578 
579   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
580   // order. The TOC starts where the first of these sections starts.
581   for (auto &Section : Obj.sections()) {
582     Expected<StringRef> NameOrErr = Section.getName();
583     if (!NameOrErr)
584       return NameOrErr.takeError();
585     StringRef SectionName = *NameOrErr;
586 
587     if (SectionName == ".got"
588         || SectionName == ".toc"
589         || SectionName == ".tocbss"
590         || SectionName == ".plt") {
591       if (auto SectionIDOrErr =
592             findOrEmitSection(Obj, Section, false, LocalSections))
593         Rel.SectionID = *SectionIDOrErr;
594       else
595         return SectionIDOrErr.takeError();
596       break;
597     }
598   }
599 
600   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
601   // thus permitting a full 64 Kbytes segment.
602   Rel.Addend = 0x8000;
603 
604   return Error::success();
605 }
606 
607 // Returns the sections and offset associated with the ODP entry referenced
608 // by Symbol.
609 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
610                                           ObjSectionToIDMap &LocalSections,
611                                           RelocationValueRef &Rel) {
612   // Get the ELF symbol value (st_value) to compare with Relocation offset in
613   // .opd entries
614   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
615        si != se; ++si) {
616 
617     Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
618     if (!RelSecOrErr)
619       report_fatal_error(toString(RelSecOrErr.takeError()));
620 
621     section_iterator RelSecI = *RelSecOrErr;
622     if (RelSecI == Obj.section_end())
623       continue;
624 
625     Expected<StringRef> NameOrErr = RelSecI->getName();
626     if (!NameOrErr)
627       return NameOrErr.takeError();
628     StringRef RelSectionName = *NameOrErr;
629 
630     if (RelSectionName != ".opd")
631       continue;
632 
633     for (elf_relocation_iterator i = si->relocation_begin(),
634                                  e = si->relocation_end();
635          i != e;) {
636       // The R_PPC64_ADDR64 relocation indicates the first field
637       // of a .opd entry
638       uint64_t TypeFunc = i->getType();
639       if (TypeFunc != ELF::R_PPC64_ADDR64) {
640         ++i;
641         continue;
642       }
643 
644       uint64_t TargetSymbolOffset = i->getOffset();
645       symbol_iterator TargetSymbol = i->getSymbol();
646       int64_t Addend;
647       if (auto AddendOrErr = i->getAddend())
648         Addend = *AddendOrErr;
649       else
650         return AddendOrErr.takeError();
651 
652       ++i;
653       if (i == e)
654         break;
655 
656       // Just check if following relocation is a R_PPC64_TOC
657       uint64_t TypeTOC = i->getType();
658       if (TypeTOC != ELF::R_PPC64_TOC)
659         continue;
660 
661       // Finally compares the Symbol value and the target symbol offset
662       // to check if this .opd entry refers to the symbol the relocation
663       // points to.
664       if (Rel.Addend != (int64_t)TargetSymbolOffset)
665         continue;
666 
667       section_iterator TSI = Obj.section_end();
668       if (auto TSIOrErr = TargetSymbol->getSection())
669         TSI = *TSIOrErr;
670       else
671         return TSIOrErr.takeError();
672       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
673 
674       bool IsCode = TSI->isText();
675       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
676                                                   LocalSections))
677         Rel.SectionID = *SectionIDOrErr;
678       else
679         return SectionIDOrErr.takeError();
680       Rel.Addend = (intptr_t)Addend;
681       return Error::success();
682     }
683   }
684   llvm_unreachable("Attempting to get address of ODP entry!");
685 }
686 
687 // Relocation masks following the #lo(value), #hi(value), #ha(value),
688 // #higher(value), #highera(value), #highest(value), and #highesta(value)
689 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
690 // document.
691 
692 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
693 
694 static inline uint16_t applyPPChi(uint64_t value) {
695   return (value >> 16) & 0xffff;
696 }
697 
698 static inline uint16_t applyPPCha (uint64_t value) {
699   return ((value + 0x8000) >> 16) & 0xffff;
700 }
701 
702 static inline uint16_t applyPPChigher(uint64_t value) {
703   return (value >> 32) & 0xffff;
704 }
705 
706 static inline uint16_t applyPPChighera (uint64_t value) {
707   return ((value + 0x8000) >> 32) & 0xffff;
708 }
709 
710 static inline uint16_t applyPPChighest(uint64_t value) {
711   return (value >> 48) & 0xffff;
712 }
713 
714 static inline uint16_t applyPPChighesta (uint64_t value) {
715   return ((value + 0x8000) >> 48) & 0xffff;
716 }
717 
718 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
719                                             uint64_t Offset, uint64_t Value,
720                                             uint32_t Type, int64_t Addend) {
721   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
722   switch (Type) {
723   default:
724     report_fatal_error("Relocation type not implemented yet!");
725     break;
726   case ELF::R_PPC_ADDR16_LO:
727     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
728     break;
729   case ELF::R_PPC_ADDR16_HI:
730     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
731     break;
732   case ELF::R_PPC_ADDR16_HA:
733     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
734     break;
735   }
736 }
737 
738 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
739                                             uint64_t Offset, uint64_t Value,
740                                             uint32_t Type, int64_t Addend) {
741   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
742   switch (Type) {
743   default:
744     report_fatal_error("Relocation type not implemented yet!");
745     break;
746   case ELF::R_PPC64_ADDR16:
747     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
748     break;
749   case ELF::R_PPC64_ADDR16_DS:
750     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
751     break;
752   case ELF::R_PPC64_ADDR16_LO:
753     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
754     break;
755   case ELF::R_PPC64_ADDR16_LO_DS:
756     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
757     break;
758   case ELF::R_PPC64_ADDR16_HI:
759   case ELF::R_PPC64_ADDR16_HIGH:
760     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
761     break;
762   case ELF::R_PPC64_ADDR16_HA:
763   case ELF::R_PPC64_ADDR16_HIGHA:
764     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
765     break;
766   case ELF::R_PPC64_ADDR16_HIGHER:
767     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
768     break;
769   case ELF::R_PPC64_ADDR16_HIGHERA:
770     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
771     break;
772   case ELF::R_PPC64_ADDR16_HIGHEST:
773     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
774     break;
775   case ELF::R_PPC64_ADDR16_HIGHESTA:
776     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
777     break;
778   case ELF::R_PPC64_ADDR14: {
779     assert(((Value + Addend) & 3) == 0);
780     // Preserve the AA/LK bits in the branch instruction
781     uint8_t aalk = *(LocalAddress + 3);
782     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
783   } break;
784   case ELF::R_PPC64_REL16_LO: {
785     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
786     uint64_t Delta = Value - FinalAddress + Addend;
787     writeInt16BE(LocalAddress, applyPPClo(Delta));
788   } break;
789   case ELF::R_PPC64_REL16_HI: {
790     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
791     uint64_t Delta = Value - FinalAddress + Addend;
792     writeInt16BE(LocalAddress, applyPPChi(Delta));
793   } break;
794   case ELF::R_PPC64_REL16_HA: {
795     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
796     uint64_t Delta = Value - FinalAddress + Addend;
797     writeInt16BE(LocalAddress, applyPPCha(Delta));
798   } break;
799   case ELF::R_PPC64_ADDR32: {
800     int64_t Result = static_cast<int64_t>(Value + Addend);
801     if (SignExtend64<32>(Result) != Result)
802       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
803     writeInt32BE(LocalAddress, Result);
804   } break;
805   case ELF::R_PPC64_REL24: {
806     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
807     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
808     if (SignExtend64<26>(delta) != delta)
809       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
810     // We preserve bits other than LI field, i.e. PO and AA/LK fields.
811     uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
812     writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
813   } break;
814   case ELF::R_PPC64_REL32: {
815     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
816     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
817     if (SignExtend64<32>(delta) != delta)
818       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
819     writeInt32BE(LocalAddress, delta);
820   } break;
821   case ELF::R_PPC64_REL64: {
822     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
823     uint64_t Delta = Value - FinalAddress + Addend;
824     writeInt64BE(LocalAddress, Delta);
825   } break;
826   case ELF::R_PPC64_ADDR64:
827     writeInt64BE(LocalAddress, Value + Addend);
828     break;
829   }
830 }
831 
832 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
833                                               uint64_t Offset, uint64_t Value,
834                                               uint32_t Type, int64_t Addend) {
835   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
836   switch (Type) {
837   default:
838     report_fatal_error("Relocation type not implemented yet!");
839     break;
840   case ELF::R_390_PC16DBL:
841   case ELF::R_390_PLT16DBL: {
842     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
843     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
844     writeInt16BE(LocalAddress, Delta / 2);
845     break;
846   }
847   case ELF::R_390_PC32DBL:
848   case ELF::R_390_PLT32DBL: {
849     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
850     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
851     writeInt32BE(LocalAddress, Delta / 2);
852     break;
853   }
854   case ELF::R_390_PC16: {
855     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
856     assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
857     writeInt16BE(LocalAddress, Delta);
858     break;
859   }
860   case ELF::R_390_PC32: {
861     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
862     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
863     writeInt32BE(LocalAddress, Delta);
864     break;
865   }
866   case ELF::R_390_PC64: {
867     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
868     writeInt64BE(LocalAddress, Delta);
869     break;
870   }
871   case ELF::R_390_8:
872     *LocalAddress = (uint8_t)(Value + Addend);
873     break;
874   case ELF::R_390_16:
875     writeInt16BE(LocalAddress, Value + Addend);
876     break;
877   case ELF::R_390_32:
878     writeInt32BE(LocalAddress, Value + Addend);
879     break;
880   case ELF::R_390_64:
881     writeInt64BE(LocalAddress, Value + Addend);
882     break;
883   }
884 }
885 
886 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
887                                           uint64_t Offset, uint64_t Value,
888                                           uint32_t Type, int64_t Addend) {
889   bool isBE = Arch == Triple::bpfeb;
890 
891   switch (Type) {
892   default:
893     report_fatal_error("Relocation type not implemented yet!");
894     break;
895   case ELF::R_BPF_NONE:
896     break;
897   case ELF::R_BPF_64_64: {
898     write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
899     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
900                       << format("%p\n", Section.getAddressWithOffset(Offset)));
901     break;
902   }
903   case ELF::R_BPF_64_32: {
904     Value += Addend;
905     assert(Value <= UINT32_MAX);
906     write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
907     LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
908                       << format("%p\n", Section.getAddressWithOffset(Offset)));
909     break;
910   }
911   }
912 }
913 
914 // The target location for the relocation is described by RE.SectionID and
915 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
916 // SectionEntry has three members describing its location.
917 // SectionEntry::Address is the address at which the section has been loaded
918 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
919 // address that the section will have in the target process.
920 // SectionEntry::ObjAddress is the address of the bits for this section in the
921 // original emitted object image (also in the current address space).
922 //
923 // Relocations will be applied as if the section were loaded at
924 // SectionEntry::LoadAddress, but they will be applied at an address based
925 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
926 // Target memory contents if they are required for value calculations.
927 //
928 // The Value parameter here is the load address of the symbol for the
929 // relocation to be applied.  For relocations which refer to symbols in the
930 // current object Value will be the LoadAddress of the section in which
931 // the symbol resides (RE.Addend provides additional information about the
932 // symbol location).  For external symbols, Value will be the address of the
933 // symbol in the target address space.
934 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
935                                        uint64_t Value) {
936   const SectionEntry &Section = Sections[RE.SectionID];
937   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
938                            RE.SymOffset, RE.SectionID);
939 }
940 
941 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
942                                        uint64_t Offset, uint64_t Value,
943                                        uint32_t Type, int64_t Addend,
944                                        uint64_t SymOffset, SID SectionID) {
945   switch (Arch) {
946   case Triple::x86_64:
947     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
948     break;
949   case Triple::x86:
950     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
951                          (uint32_t)(Addend & 0xffffffffL));
952     break;
953   case Triple::aarch64:
954   case Triple::aarch64_be:
955     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
956     break;
957   case Triple::arm: // Fall through.
958   case Triple::armeb:
959   case Triple::thumb:
960   case Triple::thumbeb:
961     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
962                          (uint32_t)(Addend & 0xffffffffL));
963     break;
964   case Triple::ppc:
965     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
966     break;
967   case Triple::ppc64: // Fall through.
968   case Triple::ppc64le:
969     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
970     break;
971   case Triple::systemz:
972     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
973     break;
974   case Triple::bpfel:
975   case Triple::bpfeb:
976     resolveBPFRelocation(Section, Offset, Value, Type, Addend);
977     break;
978   default:
979     llvm_unreachable("Unsupported CPU type!");
980   }
981 }
982 
983 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
984   return (void *)(Sections[SectionID].getObjAddress() + Offset);
985 }
986 
987 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
988   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
989   if (Value.SymbolName)
990     addRelocationForSymbol(RE, Value.SymbolName);
991   else
992     addRelocationForSection(RE, Value.SectionID);
993 }
994 
995 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
996                                                  bool IsLocal) const {
997   switch (RelType) {
998   case ELF::R_MICROMIPS_GOT16:
999     if (IsLocal)
1000       return ELF::R_MICROMIPS_LO16;
1001     break;
1002   case ELF::R_MICROMIPS_HI16:
1003     return ELF::R_MICROMIPS_LO16;
1004   case ELF::R_MIPS_GOT16:
1005     if (IsLocal)
1006       return ELF::R_MIPS_LO16;
1007     break;
1008   case ELF::R_MIPS_HI16:
1009     return ELF::R_MIPS_LO16;
1010   case ELF::R_MIPS_PCHI16:
1011     return ELF::R_MIPS_PCLO16;
1012   default:
1013     break;
1014   }
1015   return ELF::R_MIPS_NONE;
1016 }
1017 
1018 // Sometimes we don't need to create thunk for a branch.
1019 // This typically happens when branch target is located
1020 // in the same object file. In such case target is either
1021 // a weak symbol or symbol in a different executable section.
1022 // This function checks if branch target is located in the
1023 // same object file and if distance between source and target
1024 // fits R_AARCH64_CALL26 relocation. If both conditions are
1025 // met, it emits direct jump to the target and returns true.
1026 // Otherwise false is returned and thunk is created.
1027 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1028     unsigned SectionID, relocation_iterator RelI,
1029     const RelocationValueRef &Value) {
1030   uint64_t Address;
1031   if (Value.SymbolName) {
1032     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1033 
1034     // Don't create direct branch for external symbols.
1035     if (Loc == GlobalSymbolTable.end())
1036       return false;
1037 
1038     const auto &SymInfo = Loc->second;
1039     Address =
1040         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1041             SymInfo.getOffset()));
1042   } else {
1043     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1044   }
1045   uint64_t Offset = RelI->getOffset();
1046   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1047 
1048   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1049   // If distance between source and target is out of range then we should
1050   // create thunk.
1051   if (!isInt<28>(Address + Value.Addend - SourceAddress))
1052     return false;
1053 
1054   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1055                     Value.Addend);
1056 
1057   return true;
1058 }
1059 
1060 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1061                                           const RelocationValueRef &Value,
1062                                           relocation_iterator RelI,
1063                                           StubMap &Stubs) {
1064 
1065   LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1066   SectionEntry &Section = Sections[SectionID];
1067 
1068   uint64_t Offset = RelI->getOffset();
1069   unsigned RelType = RelI->getType();
1070   // Look for an existing stub.
1071   StubMap::const_iterator i = Stubs.find(Value);
1072   if (i != Stubs.end()) {
1073     resolveRelocation(Section, Offset,
1074                       (uint64_t)Section.getAddressWithOffset(i->second),
1075                       RelType, 0);
1076     LLVM_DEBUG(dbgs() << " Stub function found\n");
1077   } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1078     // Create a new stub function.
1079     LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1080     Stubs[Value] = Section.getStubOffset();
1081     uint8_t *StubTargetAddr = createStubFunction(
1082         Section.getAddressWithOffset(Section.getStubOffset()));
1083 
1084     RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1085                               ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1086     RelocationEntry REmovk_g2(SectionID,
1087                               StubTargetAddr - Section.getAddress() + 4,
1088                               ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1089     RelocationEntry REmovk_g1(SectionID,
1090                               StubTargetAddr - Section.getAddress() + 8,
1091                               ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1092     RelocationEntry REmovk_g0(SectionID,
1093                               StubTargetAddr - Section.getAddress() + 12,
1094                               ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1095 
1096     if (Value.SymbolName) {
1097       addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1098       addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1099       addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1100       addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1101     } else {
1102       addRelocationForSection(REmovz_g3, Value.SectionID);
1103       addRelocationForSection(REmovk_g2, Value.SectionID);
1104       addRelocationForSection(REmovk_g1, Value.SectionID);
1105       addRelocationForSection(REmovk_g0, Value.SectionID);
1106     }
1107     resolveRelocation(Section, Offset,
1108                       reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1109                           Section.getStubOffset())),
1110                       RelType, 0);
1111     Section.advanceStubOffset(getMaxStubSize());
1112   }
1113 }
1114 
1115 Expected<relocation_iterator>
1116 RuntimeDyldELF::processRelocationRef(
1117     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1118     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1119   const auto &Obj = cast<ELFObjectFileBase>(O);
1120   uint64_t RelType = RelI->getType();
1121   int64_t Addend = 0;
1122   if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1123     Addend = *AddendOrErr;
1124   else
1125     consumeError(AddendOrErr.takeError());
1126   elf_symbol_iterator Symbol = RelI->getSymbol();
1127 
1128   // Obtain the symbol name which is referenced in the relocation
1129   StringRef TargetName;
1130   if (Symbol != Obj.symbol_end()) {
1131     if (auto TargetNameOrErr = Symbol->getName())
1132       TargetName = *TargetNameOrErr;
1133     else
1134       return TargetNameOrErr.takeError();
1135   }
1136   LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1137                     << " TargetName: " << TargetName << "\n");
1138   RelocationValueRef Value;
1139   // First search for the symbol in the local symbol table
1140   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1141 
1142   // Search for the symbol in the global symbol table
1143   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1144   if (Symbol != Obj.symbol_end()) {
1145     gsi = GlobalSymbolTable.find(TargetName.data());
1146     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1147     if (!SymTypeOrErr) {
1148       std::string Buf;
1149       raw_string_ostream OS(Buf);
1150       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1151       OS.flush();
1152       report_fatal_error(Buf);
1153     }
1154     SymType = *SymTypeOrErr;
1155   }
1156   if (gsi != GlobalSymbolTable.end()) {
1157     const auto &SymInfo = gsi->second;
1158     Value.SectionID = SymInfo.getSectionID();
1159     Value.Offset = SymInfo.getOffset();
1160     Value.Addend = SymInfo.getOffset() + Addend;
1161   } else {
1162     switch (SymType) {
1163     case SymbolRef::ST_Debug: {
1164       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1165       // and can be changed by another developers. Maybe best way is add
1166       // a new symbol type ST_Section to SymbolRef and use it.
1167       auto SectionOrErr = Symbol->getSection();
1168       if (!SectionOrErr) {
1169         std::string Buf;
1170         raw_string_ostream OS(Buf);
1171         logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1172         OS.flush();
1173         report_fatal_error(Buf);
1174       }
1175       section_iterator si = *SectionOrErr;
1176       if (si == Obj.section_end())
1177         llvm_unreachable("Symbol section not found, bad object file format!");
1178       LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1179       bool isCode = si->isText();
1180       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1181                                                   ObjSectionToID))
1182         Value.SectionID = *SectionIDOrErr;
1183       else
1184         return SectionIDOrErr.takeError();
1185       Value.Addend = Addend;
1186       break;
1187     }
1188     case SymbolRef::ST_Data:
1189     case SymbolRef::ST_Function:
1190     case SymbolRef::ST_Unknown: {
1191       Value.SymbolName = TargetName.data();
1192       Value.Addend = Addend;
1193 
1194       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1195       // will manifest here as a NULL symbol name.
1196       // We can set this as a valid (but empty) symbol name, and rely
1197       // on addRelocationForSymbol to handle this.
1198       if (!Value.SymbolName)
1199         Value.SymbolName = "";
1200       break;
1201     }
1202     default:
1203       llvm_unreachable("Unresolved symbol type!");
1204       break;
1205     }
1206   }
1207 
1208   uint64_t Offset = RelI->getOffset();
1209 
1210   LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1211                     << "\n");
1212   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1213     if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1214       resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1215     } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1216       // Craete new GOT entry or find existing one. If GOT entry is
1217       // to be created, then we also emit ABS64 relocation for it.
1218       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1219       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1220                                  ELF::R_AARCH64_ADR_PREL_PG_HI21);
1221 
1222     } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1223       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1224       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1225                                  ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1226     } else {
1227       processSimpleRelocation(SectionID, Offset, RelType, Value);
1228     }
1229   } else if (Arch == Triple::arm) {
1230     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1231       RelType == ELF::R_ARM_JUMP24) {
1232       // This is an ARM branch relocation, need to use a stub function.
1233       LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1234       SectionEntry &Section = Sections[SectionID];
1235 
1236       // Look for an existing stub.
1237       StubMap::const_iterator i = Stubs.find(Value);
1238       if (i != Stubs.end()) {
1239         resolveRelocation(
1240             Section, Offset,
1241             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1242             RelType, 0);
1243         LLVM_DEBUG(dbgs() << " Stub function found\n");
1244       } else {
1245         // Create a new stub function.
1246         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1247         Stubs[Value] = Section.getStubOffset();
1248         uint8_t *StubTargetAddr = createStubFunction(
1249             Section.getAddressWithOffset(Section.getStubOffset()));
1250         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1251                            ELF::R_ARM_ABS32, Value.Addend);
1252         if (Value.SymbolName)
1253           addRelocationForSymbol(RE, Value.SymbolName);
1254         else
1255           addRelocationForSection(RE, Value.SectionID);
1256 
1257         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1258                                                Section.getAddressWithOffset(
1259                                                    Section.getStubOffset())),
1260                           RelType, 0);
1261         Section.advanceStubOffset(getMaxStubSize());
1262       }
1263     } else {
1264       uint32_t *Placeholder =
1265         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1266       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1267           RelType == ELF::R_ARM_ABS32) {
1268         Value.Addend += *Placeholder;
1269       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1270         // See ELF for ARM documentation
1271         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1272       }
1273       processSimpleRelocation(SectionID, Offset, RelType, Value);
1274     }
1275   } else if (IsMipsO32ABI) {
1276     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1277         computePlaceholderAddress(SectionID, Offset));
1278     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1279     if (RelType == ELF::R_MIPS_26) {
1280       // This is an Mips branch relocation, need to use a stub function.
1281       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1282       SectionEntry &Section = Sections[SectionID];
1283 
1284       // Extract the addend from the instruction.
1285       // We shift up by two since the Value will be down shifted again
1286       // when applying the relocation.
1287       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1288 
1289       Value.Addend += Addend;
1290 
1291       //  Look up for existing stub.
1292       StubMap::const_iterator i = Stubs.find(Value);
1293       if (i != Stubs.end()) {
1294         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1295         addRelocationForSection(RE, SectionID);
1296         LLVM_DEBUG(dbgs() << " Stub function found\n");
1297       } else {
1298         // Create a new stub function.
1299         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1300         Stubs[Value] = Section.getStubOffset();
1301 
1302         unsigned AbiVariant = Obj.getPlatformFlags();
1303 
1304         uint8_t *StubTargetAddr = createStubFunction(
1305             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1306 
1307         // Creating Hi and Lo relocations for the filled stub instructions.
1308         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1309                              ELF::R_MIPS_HI16, Value.Addend);
1310         RelocationEntry RELo(SectionID,
1311                              StubTargetAddr - Section.getAddress() + 4,
1312                              ELF::R_MIPS_LO16, Value.Addend);
1313 
1314         if (Value.SymbolName) {
1315           addRelocationForSymbol(REHi, Value.SymbolName);
1316           addRelocationForSymbol(RELo, Value.SymbolName);
1317         } else {
1318           addRelocationForSection(REHi, Value.SectionID);
1319           addRelocationForSection(RELo, Value.SectionID);
1320         }
1321 
1322         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1323         addRelocationForSection(RE, SectionID);
1324         Section.advanceStubOffset(getMaxStubSize());
1325       }
1326     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1327       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1328       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1329       PendingRelocs.push_back(std::make_pair(Value, RE));
1330     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1331       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1332       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1333         const RelocationValueRef &MatchingValue = I->first;
1334         RelocationEntry &Reloc = I->second;
1335         if (MatchingValue == Value &&
1336             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1337             SectionID == Reloc.SectionID) {
1338           Reloc.Addend += Addend;
1339           if (Value.SymbolName)
1340             addRelocationForSymbol(Reloc, Value.SymbolName);
1341           else
1342             addRelocationForSection(Reloc, Value.SectionID);
1343           I = PendingRelocs.erase(I);
1344         } else
1345           ++I;
1346       }
1347       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1348       if (Value.SymbolName)
1349         addRelocationForSymbol(RE, Value.SymbolName);
1350       else
1351         addRelocationForSection(RE, Value.SectionID);
1352     } else {
1353       if (RelType == ELF::R_MIPS_32)
1354         Value.Addend += Opcode;
1355       else if (RelType == ELF::R_MIPS_PC16)
1356         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1357       else if (RelType == ELF::R_MIPS_PC19_S2)
1358         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1359       else if (RelType == ELF::R_MIPS_PC21_S2)
1360         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1361       else if (RelType == ELF::R_MIPS_PC26_S2)
1362         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1363       processSimpleRelocation(SectionID, Offset, RelType, Value);
1364     }
1365   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1366     uint32_t r_type = RelType & 0xff;
1367     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1368     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1369         || r_type == ELF::R_MIPS_GOT_DISP) {
1370       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1371       if (i != GOTSymbolOffsets.end())
1372         RE.SymOffset = i->second;
1373       else {
1374         RE.SymOffset = allocateGOTEntries(1);
1375         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1376       }
1377       if (Value.SymbolName)
1378         addRelocationForSymbol(RE, Value.SymbolName);
1379       else
1380         addRelocationForSection(RE, Value.SectionID);
1381     } else if (RelType == ELF::R_MIPS_26) {
1382       // This is an Mips branch relocation, need to use a stub function.
1383       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1384       SectionEntry &Section = Sections[SectionID];
1385 
1386       //  Look up for existing stub.
1387       StubMap::const_iterator i = Stubs.find(Value);
1388       if (i != Stubs.end()) {
1389         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1390         addRelocationForSection(RE, SectionID);
1391         LLVM_DEBUG(dbgs() << " Stub function found\n");
1392       } else {
1393         // Create a new stub function.
1394         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1395         Stubs[Value] = Section.getStubOffset();
1396 
1397         unsigned AbiVariant = Obj.getPlatformFlags();
1398 
1399         uint8_t *StubTargetAddr = createStubFunction(
1400             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1401 
1402         if (IsMipsN32ABI) {
1403           // Creating Hi and Lo relocations for the filled stub instructions.
1404           RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1405                                ELF::R_MIPS_HI16, Value.Addend);
1406           RelocationEntry RELo(SectionID,
1407                                StubTargetAddr - Section.getAddress() + 4,
1408                                ELF::R_MIPS_LO16, Value.Addend);
1409           if (Value.SymbolName) {
1410             addRelocationForSymbol(REHi, Value.SymbolName);
1411             addRelocationForSymbol(RELo, Value.SymbolName);
1412           } else {
1413             addRelocationForSection(REHi, Value.SectionID);
1414             addRelocationForSection(RELo, Value.SectionID);
1415           }
1416         } else {
1417           // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1418           // instructions.
1419           RelocationEntry REHighest(SectionID,
1420                                     StubTargetAddr - Section.getAddress(),
1421                                     ELF::R_MIPS_HIGHEST, Value.Addend);
1422           RelocationEntry REHigher(SectionID,
1423                                    StubTargetAddr - Section.getAddress() + 4,
1424                                    ELF::R_MIPS_HIGHER, Value.Addend);
1425           RelocationEntry REHi(SectionID,
1426                                StubTargetAddr - Section.getAddress() + 12,
1427                                ELF::R_MIPS_HI16, Value.Addend);
1428           RelocationEntry RELo(SectionID,
1429                                StubTargetAddr - Section.getAddress() + 20,
1430                                ELF::R_MIPS_LO16, Value.Addend);
1431           if (Value.SymbolName) {
1432             addRelocationForSymbol(REHighest, Value.SymbolName);
1433             addRelocationForSymbol(REHigher, Value.SymbolName);
1434             addRelocationForSymbol(REHi, Value.SymbolName);
1435             addRelocationForSymbol(RELo, Value.SymbolName);
1436           } else {
1437             addRelocationForSection(REHighest, Value.SectionID);
1438             addRelocationForSection(REHigher, Value.SectionID);
1439             addRelocationForSection(REHi, Value.SectionID);
1440             addRelocationForSection(RELo, Value.SectionID);
1441           }
1442         }
1443         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1444         addRelocationForSection(RE, SectionID);
1445         Section.advanceStubOffset(getMaxStubSize());
1446       }
1447     } else {
1448       processSimpleRelocation(SectionID, Offset, RelType, Value);
1449     }
1450 
1451   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1452     if (RelType == ELF::R_PPC64_REL24) {
1453       // Determine ABI variant in use for this object.
1454       unsigned AbiVariant = Obj.getPlatformFlags();
1455       AbiVariant &= ELF::EF_PPC64_ABI;
1456       // A PPC branch relocation will need a stub function if the target is
1457       // an external symbol (either Value.SymbolName is set, or SymType is
1458       // Symbol::ST_Unknown) or if the target address is not within the
1459       // signed 24-bits branch address.
1460       SectionEntry &Section = Sections[SectionID];
1461       uint8_t *Target = Section.getAddressWithOffset(Offset);
1462       bool RangeOverflow = false;
1463       bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1464       if (!IsExtern) {
1465         if (AbiVariant != 2) {
1466           // In the ELFv1 ABI, a function call may point to the .opd entry,
1467           // so the final symbol value is calculated based on the relocation
1468           // values in the .opd section.
1469           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1470             return std::move(Err);
1471         } else {
1472           // In the ELFv2 ABI, a function symbol may provide a local entry
1473           // point, which must be used for direct calls.
1474           if (Value.SectionID == SectionID){
1475             uint8_t SymOther = Symbol->getOther();
1476             Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1477           }
1478         }
1479         uint8_t *RelocTarget =
1480             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1481         int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1482         // If it is within 26-bits branch range, just set the branch target
1483         if (SignExtend64<26>(delta) != delta) {
1484           RangeOverflow = true;
1485         } else if ((AbiVariant != 2) ||
1486                    (AbiVariant == 2  && Value.SectionID == SectionID)) {
1487           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1488           addRelocationForSection(RE, Value.SectionID);
1489         }
1490       }
1491       if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1492           RangeOverflow) {
1493         // It is an external symbol (either Value.SymbolName is set, or
1494         // SymType is SymbolRef::ST_Unknown) or out of range.
1495         StubMap::const_iterator i = Stubs.find(Value);
1496         if (i != Stubs.end()) {
1497           // Symbol function stub already created, just relocate to it
1498           resolveRelocation(Section, Offset,
1499                             reinterpret_cast<uint64_t>(
1500                                 Section.getAddressWithOffset(i->second)),
1501                             RelType, 0);
1502           LLVM_DEBUG(dbgs() << " Stub function found\n");
1503         } else {
1504           // Create a new stub function.
1505           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1506           Stubs[Value] = Section.getStubOffset();
1507           uint8_t *StubTargetAddr = createStubFunction(
1508               Section.getAddressWithOffset(Section.getStubOffset()),
1509               AbiVariant);
1510           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1511                              ELF::R_PPC64_ADDR64, Value.Addend);
1512 
1513           // Generates the 64-bits address loads as exemplified in section
1514           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1515           // apply to the low part of the instructions, so we have to update
1516           // the offset according to the target endianness.
1517           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1518           if (!IsTargetLittleEndian)
1519             StubRelocOffset += 2;
1520 
1521           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1522                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1523           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1524                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1525           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1526                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1527           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1528                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1529 
1530           if (Value.SymbolName) {
1531             addRelocationForSymbol(REhst, Value.SymbolName);
1532             addRelocationForSymbol(REhr, Value.SymbolName);
1533             addRelocationForSymbol(REh, Value.SymbolName);
1534             addRelocationForSymbol(REl, Value.SymbolName);
1535           } else {
1536             addRelocationForSection(REhst, Value.SectionID);
1537             addRelocationForSection(REhr, Value.SectionID);
1538             addRelocationForSection(REh, Value.SectionID);
1539             addRelocationForSection(REl, Value.SectionID);
1540           }
1541 
1542           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1543                                                  Section.getAddressWithOffset(
1544                                                      Section.getStubOffset())),
1545                             RelType, 0);
1546           Section.advanceStubOffset(getMaxStubSize());
1547         }
1548         if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1549           // Restore the TOC for external calls
1550           if (AbiVariant == 2)
1551             writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1552           else
1553             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1554         }
1555       }
1556     } else if (RelType == ELF::R_PPC64_TOC16 ||
1557                RelType == ELF::R_PPC64_TOC16_DS ||
1558                RelType == ELF::R_PPC64_TOC16_LO ||
1559                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1560                RelType == ELF::R_PPC64_TOC16_HI ||
1561                RelType == ELF::R_PPC64_TOC16_HA) {
1562       // These relocations are supposed to subtract the TOC address from
1563       // the final value.  This does not fit cleanly into the RuntimeDyld
1564       // scheme, since there may be *two* sections involved in determining
1565       // the relocation value (the section of the symbol referred to by the
1566       // relocation, and the TOC section associated with the current module).
1567       //
1568       // Fortunately, these relocations are currently only ever generated
1569       // referring to symbols that themselves reside in the TOC, which means
1570       // that the two sections are actually the same.  Thus they cancel out
1571       // and we can immediately resolve the relocation right now.
1572       switch (RelType) {
1573       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1574       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1575       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1576       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1577       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1578       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1579       default: llvm_unreachable("Wrong relocation type.");
1580       }
1581 
1582       RelocationValueRef TOCValue;
1583       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1584         return std::move(Err);
1585       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1586         llvm_unreachable("Unsupported TOC relocation.");
1587       Value.Addend -= TOCValue.Addend;
1588       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1589     } else {
1590       // There are two ways to refer to the TOC address directly: either
1591       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1592       // ignored), or via any relocation that refers to the magic ".TOC."
1593       // symbols (in which case the addend is respected).
1594       if (RelType == ELF::R_PPC64_TOC) {
1595         RelType = ELF::R_PPC64_ADDR64;
1596         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1597           return std::move(Err);
1598       } else if (TargetName == ".TOC.") {
1599         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1600           return std::move(Err);
1601         Value.Addend += Addend;
1602       }
1603 
1604       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1605 
1606       if (Value.SymbolName)
1607         addRelocationForSymbol(RE, Value.SymbolName);
1608       else
1609         addRelocationForSection(RE, Value.SectionID);
1610     }
1611   } else if (Arch == Triple::systemz &&
1612              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1613     // Create function stubs for both PLT and GOT references, regardless of
1614     // whether the GOT reference is to data or code.  The stub contains the
1615     // full address of the symbol, as needed by GOT references, and the
1616     // executable part only adds an overhead of 8 bytes.
1617     //
1618     // We could try to conserve space by allocating the code and data
1619     // parts of the stub separately.  However, as things stand, we allocate
1620     // a stub for every relocation, so using a GOT in JIT code should be
1621     // no less space efficient than using an explicit constant pool.
1622     LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1623     SectionEntry &Section = Sections[SectionID];
1624 
1625     // Look for an existing stub.
1626     StubMap::const_iterator i = Stubs.find(Value);
1627     uintptr_t StubAddress;
1628     if (i != Stubs.end()) {
1629       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1630       LLVM_DEBUG(dbgs() << " Stub function found\n");
1631     } else {
1632       // Create a new stub function.
1633       LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1634 
1635       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1636       uintptr_t StubAlignment = getStubAlignment();
1637       StubAddress =
1638           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1639           -StubAlignment;
1640       unsigned StubOffset = StubAddress - BaseAddress;
1641 
1642       Stubs[Value] = StubOffset;
1643       createStubFunction((uint8_t *)StubAddress);
1644       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1645                          Value.Offset);
1646       if (Value.SymbolName)
1647         addRelocationForSymbol(RE, Value.SymbolName);
1648       else
1649         addRelocationForSection(RE, Value.SectionID);
1650       Section.advanceStubOffset(getMaxStubSize());
1651     }
1652 
1653     if (RelType == ELF::R_390_GOTENT)
1654       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1655                         Addend);
1656     else
1657       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1658   } else if (Arch == Triple::x86_64) {
1659     if (RelType == ELF::R_X86_64_PLT32) {
1660       // The way the PLT relocations normally work is that the linker allocates
1661       // the
1662       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1663       // entry will then jump to an address provided by the GOT.  On first call,
1664       // the
1665       // GOT address will point back into PLT code that resolves the symbol. After
1666       // the first call, the GOT entry points to the actual function.
1667       //
1668       // For local functions we're ignoring all of that here and just replacing
1669       // the PLT32 relocation type with PC32, which will translate the relocation
1670       // into a PC-relative call directly to the function. For external symbols we
1671       // can't be sure the function will be within 2^32 bytes of the call site, so
1672       // we need to create a stub, which calls into the GOT.  This case is
1673       // equivalent to the usual PLT implementation except that we use the stub
1674       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1675       // rather than allocating a PLT section.
1676       if (Value.SymbolName) {
1677         // This is a call to an external function.
1678         // Look for an existing stub.
1679         SectionEntry &Section = Sections[SectionID];
1680         StubMap::const_iterator i = Stubs.find(Value);
1681         uintptr_t StubAddress;
1682         if (i != Stubs.end()) {
1683           StubAddress = uintptr_t(Section.getAddress()) + i->second;
1684           LLVM_DEBUG(dbgs() << " Stub function found\n");
1685         } else {
1686           // Create a new stub function (equivalent to a PLT entry).
1687           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1688 
1689           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1690           uintptr_t StubAlignment = getStubAlignment();
1691           StubAddress =
1692               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1693               -StubAlignment;
1694           unsigned StubOffset = StubAddress - BaseAddress;
1695           Stubs[Value] = StubOffset;
1696           createStubFunction((uint8_t *)StubAddress);
1697 
1698           // Bump our stub offset counter
1699           Section.advanceStubOffset(getMaxStubSize());
1700 
1701           // Allocate a GOT Entry
1702           uint64_t GOTOffset = allocateGOTEntries(1);
1703 
1704           // The load of the GOT address has an addend of -4
1705           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1706                                      ELF::R_X86_64_PC32);
1707 
1708           // Fill in the value of the symbol we're targeting into the GOT
1709           addRelocationForSymbol(
1710               computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1711               Value.SymbolName);
1712         }
1713 
1714         // Make the target call a call into the stub table.
1715         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1716                           Addend);
1717       } else {
1718         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1719                   Value.Offset);
1720         addRelocationForSection(RE, Value.SectionID);
1721       }
1722     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1723                RelType == ELF::R_X86_64_GOTPCRELX ||
1724                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1725       uint64_t GOTOffset = allocateGOTEntries(1);
1726       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1727                                  ELF::R_X86_64_PC32);
1728 
1729       // Fill in the value of the symbol we're targeting into the GOT
1730       RelocationEntry RE =
1731           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1732       if (Value.SymbolName)
1733         addRelocationForSymbol(RE, Value.SymbolName);
1734       else
1735         addRelocationForSection(RE, Value.SectionID);
1736     } else if (RelType == ELF::R_X86_64_GOT64) {
1737       // Fill in a 64-bit GOT offset.
1738       uint64_t GOTOffset = allocateGOTEntries(1);
1739       resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1740                         ELF::R_X86_64_64, 0);
1741 
1742       // Fill in the value of the symbol we're targeting into the GOT
1743       RelocationEntry RE =
1744           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1745       if (Value.SymbolName)
1746         addRelocationForSymbol(RE, Value.SymbolName);
1747       else
1748         addRelocationForSection(RE, Value.SectionID);
1749     } else if (RelType == ELF::R_X86_64_GOTPC64) {
1750       // Materialize the address of the base of the GOT relative to the PC.
1751       // This doesn't create a GOT entry, but it does mean we need a GOT
1752       // section.
1753       (void)allocateGOTEntries(0);
1754       resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1755     } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1756       // GOTOFF relocations ultimately require a section difference relocation.
1757       (void)allocateGOTEntries(0);
1758       processSimpleRelocation(SectionID, Offset, RelType, Value);
1759     } else if (RelType == ELF::R_X86_64_PC32) {
1760       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1761       processSimpleRelocation(SectionID, Offset, RelType, Value);
1762     } else if (RelType == ELF::R_X86_64_PC64) {
1763       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1764       processSimpleRelocation(SectionID, Offset, RelType, Value);
1765     } else {
1766       processSimpleRelocation(SectionID, Offset, RelType, Value);
1767     }
1768   } else {
1769     if (Arch == Triple::x86) {
1770       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1771     }
1772     processSimpleRelocation(SectionID, Offset, RelType, Value);
1773   }
1774   return ++RelI;
1775 }
1776 
1777 size_t RuntimeDyldELF::getGOTEntrySize() {
1778   // We don't use the GOT in all of these cases, but it's essentially free
1779   // to put them all here.
1780   size_t Result = 0;
1781   switch (Arch) {
1782   case Triple::x86_64:
1783   case Triple::aarch64:
1784   case Triple::aarch64_be:
1785   case Triple::ppc64:
1786   case Triple::ppc64le:
1787   case Triple::systemz:
1788     Result = sizeof(uint64_t);
1789     break;
1790   case Triple::x86:
1791   case Triple::arm:
1792   case Triple::thumb:
1793     Result = sizeof(uint32_t);
1794     break;
1795   case Triple::mips:
1796   case Triple::mipsel:
1797   case Triple::mips64:
1798   case Triple::mips64el:
1799     if (IsMipsO32ABI || IsMipsN32ABI)
1800       Result = sizeof(uint32_t);
1801     else if (IsMipsN64ABI)
1802       Result = sizeof(uint64_t);
1803     else
1804       llvm_unreachable("Mips ABI not handled");
1805     break;
1806   default:
1807     llvm_unreachable("Unsupported CPU type!");
1808   }
1809   return Result;
1810 }
1811 
1812 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1813   if (GOTSectionID == 0) {
1814     GOTSectionID = Sections.size();
1815     // Reserve a section id. We'll allocate the section later
1816     // once we know the total size
1817     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1818   }
1819   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1820   CurrentGOTIndex += no;
1821   return StartOffset;
1822 }
1823 
1824 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1825                                              unsigned GOTRelType) {
1826   auto E = GOTOffsetMap.insert({Value, 0});
1827   if (E.second) {
1828     uint64_t GOTOffset = allocateGOTEntries(1);
1829 
1830     // Create relocation for newly created GOT entry
1831     RelocationEntry RE =
1832         computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1833     if (Value.SymbolName)
1834       addRelocationForSymbol(RE, Value.SymbolName);
1835     else
1836       addRelocationForSection(RE, Value.SectionID);
1837 
1838     E.first->second = GOTOffset;
1839   }
1840 
1841   return E.first->second;
1842 }
1843 
1844 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1845                                                 uint64_t Offset,
1846                                                 uint64_t GOTOffset,
1847                                                 uint32_t Type) {
1848   // Fill in the relative address of the GOT Entry into the stub
1849   RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1850   addRelocationForSection(GOTRE, GOTSectionID);
1851 }
1852 
1853 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1854                                                    uint64_t SymbolOffset,
1855                                                    uint32_t Type) {
1856   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1857 }
1858 
1859 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1860                                   ObjSectionToIDMap &SectionMap) {
1861   if (IsMipsO32ABI)
1862     if (!PendingRelocs.empty())
1863       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1864 
1865   // If necessary, allocate the global offset table
1866   if (GOTSectionID != 0) {
1867     // Allocate memory for the section
1868     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1869     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1870                                                 GOTSectionID, ".got", false);
1871     if (!Addr)
1872       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1873 
1874     Sections[GOTSectionID] =
1875         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1876 
1877     // For now, initialize all GOT entries to zero.  We'll fill them in as
1878     // needed when GOT-based relocations are applied.
1879     memset(Addr, 0, TotalSize);
1880     if (IsMipsN32ABI || IsMipsN64ABI) {
1881       // To correctly resolve Mips GOT relocations, we need a mapping from
1882       // object's sections to GOTs.
1883       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1884            SI != SE; ++SI) {
1885         if (SI->relocation_begin() != SI->relocation_end()) {
1886           Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
1887           if (!RelSecOrErr)
1888             return make_error<RuntimeDyldError>(
1889                 toString(RelSecOrErr.takeError()));
1890 
1891           section_iterator RelocatedSection = *RelSecOrErr;
1892           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1893           assert (i != SectionMap.end());
1894           SectionToGOTMap[i->second] = GOTSectionID;
1895         }
1896       }
1897       GOTSymbolOffsets.clear();
1898     }
1899   }
1900 
1901   // Look for and record the EH frame section.
1902   ObjSectionToIDMap::iterator i, e;
1903   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1904     const SectionRef &Section = i->first;
1905 
1906     StringRef Name;
1907     Expected<StringRef> NameOrErr = Section.getName();
1908     if (NameOrErr)
1909       Name = *NameOrErr;
1910     else
1911       consumeError(NameOrErr.takeError());
1912 
1913     if (Name == ".eh_frame") {
1914       UnregisteredEHFrameSections.push_back(i->second);
1915       break;
1916     }
1917   }
1918 
1919   GOTSectionID = 0;
1920   CurrentGOTIndex = 0;
1921 
1922   return Error::success();
1923 }
1924 
1925 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1926   return Obj.isELF();
1927 }
1928 
1929 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1930   unsigned RelTy = R.getType();
1931   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1932     return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1933            RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1934 
1935   if (Arch == Triple::x86_64)
1936     return RelTy == ELF::R_X86_64_GOTPCREL ||
1937            RelTy == ELF::R_X86_64_GOTPCRELX ||
1938            RelTy == ELF::R_X86_64_GOT64 ||
1939            RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1940   return false;
1941 }
1942 
1943 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1944   if (Arch != Triple::x86_64)
1945     return true;  // Conservative answer
1946 
1947   switch (R.getType()) {
1948   default:
1949     return true;  // Conservative answer
1950 
1951 
1952   case ELF::R_X86_64_GOTPCREL:
1953   case ELF::R_X86_64_GOTPCRELX:
1954   case ELF::R_X86_64_REX_GOTPCRELX:
1955   case ELF::R_X86_64_GOTPC64:
1956   case ELF::R_X86_64_GOT64:
1957   case ELF::R_X86_64_GOTOFF64:
1958   case ELF::R_X86_64_PC32:
1959   case ELF::R_X86_64_PC64:
1960   case ELF::R_X86_64_64:
1961     // We know that these reloation types won't need a stub function.  This list
1962     // can be extended as needed.
1963     return false;
1964   }
1965 }
1966 
1967 } // namespace llvm
1968