xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
28 
29 #define DEBUG_TYPE "dyld"
30 
31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32 
33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34   or32le(L, (Imm & 0xFFF) << 10);
35 }
36 
37 template <class T> static void write(bool isBE, void *P, T V) {
38   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
39 }
40 
41 static void write32AArch64Addr(void *L, uint64_t Imm) {
42   uint32_t ImmLo = (Imm & 0x3) << 29;
43   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
46 }
47 
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val, int Start, int End) {
51   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52   return (Val >> Start) & Mask;
53 }
54 
55 namespace {
56 
57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
59 
60   typedef typename ELFT::uint addr_type;
61 
62   DyldELFObject(ELFObjectFile<ELFT> &&Obj);
63 
64 public:
65   static Expected<std::unique_ptr<DyldELFObject>>
66   create(MemoryBufferRef Wrapper);
67 
68   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
69 
70   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
71 
72   // Methods for type inquiry through isa, cast and dyn_cast
73   static bool classof(const Binary *v) {
74     return (isa<ELFObjectFile<ELFT>>(v) &&
75             classof(cast<ELFObjectFile<ELFT>>(v)));
76   }
77   static bool classof(const ELFObjectFile<ELFT> *v) {
78     return v->isDyldType();
79   }
80 };
81 
82 
83 
84 // The MemoryBuffer passed into this constructor is just a wrapper around the
85 // actual memory.  Ultimately, the Binary parent class will take ownership of
86 // this MemoryBuffer object but not the underlying memory.
87 template <class ELFT>
88 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
89     : ELFObjectFile<ELFT>(std::move(Obj)) {
90   this->isDyldELFObject = true;
91 }
92 
93 template <class ELFT>
94 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
95 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
96   auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
97   if (auto E = Obj.takeError())
98     return std::move(E);
99   std::unique_ptr<DyldELFObject<ELFT>> Ret(
100       new DyldELFObject<ELFT>(std::move(*Obj)));
101   return std::move(Ret);
102 }
103 
104 template <class ELFT>
105 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
106                                                uint64_t Addr) {
107   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
108   Elf_Shdr *shdr =
109       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
110 
111   // This assumes the address passed in matches the target address bitness
112   // The template-based type cast handles everything else.
113   shdr->sh_addr = static_cast<addr_type>(Addr);
114 }
115 
116 template <class ELFT>
117 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
118                                               uint64_t Addr) {
119 
120   Elf_Sym *sym = const_cast<Elf_Sym *>(
121       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
122 
123   // This assumes the address passed in matches the target address bitness
124   // The template-based type cast handles everything else.
125   sym->st_value = static_cast<addr_type>(Addr);
126 }
127 
128 class LoadedELFObjectInfo final
129     : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
130                                     RuntimeDyld::LoadedObjectInfo> {
131 public:
132   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
133       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
134 
135   OwningBinary<ObjectFile>
136   getObjectForDebug(const ObjectFile &Obj) const override;
137 };
138 
139 template <typename ELFT>
140 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
141 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
142                       const LoadedELFObjectInfo &L) {
143   typedef typename ELFT::Shdr Elf_Shdr;
144   typedef typename ELFT::uint addr_type;
145 
146   Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
147       DyldELFObject<ELFT>::create(Buffer);
148   if (Error E = ObjOrErr.takeError())
149     return std::move(E);
150 
151   std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
152 
153   // Iterate over all sections in the object.
154   auto SI = SourceObject.section_begin();
155   for (const auto &Sec : Obj->sections()) {
156     Expected<StringRef> NameOrErr = Sec.getName();
157     if (!NameOrErr) {
158       consumeError(NameOrErr.takeError());
159       continue;
160     }
161 
162     if (*NameOrErr != "") {
163       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
164       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
165           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
166 
167       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
168         // This assumes that the address passed in matches the target address
169         // bitness. The template-based type cast handles everything else.
170         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
171       }
172     }
173     ++SI;
174   }
175 
176   return std::move(Obj);
177 }
178 
179 static OwningBinary<ObjectFile>
180 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
181   assert(Obj.isELF() && "Not an ELF object file.");
182 
183   std::unique_ptr<MemoryBuffer> Buffer =
184     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
185 
186   Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
187   handleAllErrors(DebugObj.takeError());
188   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
189     DebugObj =
190         createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
191   else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
192     DebugObj =
193         createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
194   else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
195     DebugObj =
196         createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
197   else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
198     DebugObj =
199         createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
200   else
201     llvm_unreachable("Unexpected ELF format");
202 
203   handleAllErrors(DebugObj.takeError());
204   return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
205 }
206 
207 OwningBinary<ObjectFile>
208 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
209   return createELFDebugObject(Obj, *this);
210 }
211 
212 } // anonymous namespace
213 
214 namespace llvm {
215 
216 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
217                                JITSymbolResolver &Resolver)
218     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
219 RuntimeDyldELF::~RuntimeDyldELF() = default;
220 
221 void RuntimeDyldELF::registerEHFrames() {
222   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
223     SID EHFrameSID = UnregisteredEHFrameSections[i];
224     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
225     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
226     size_t EHFrameSize = Sections[EHFrameSID].getSize();
227     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
228   }
229   UnregisteredEHFrameSections.clear();
230 }
231 
232 std::unique_ptr<RuntimeDyldELF>
233 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
234                              RuntimeDyld::MemoryManager &MemMgr,
235                              JITSymbolResolver &Resolver) {
236   switch (Arch) {
237   default:
238     return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
239   case Triple::mips:
240   case Triple::mipsel:
241   case Triple::mips64:
242   case Triple::mips64el:
243     return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
244   }
245 }
246 
247 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
248 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
249   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
250     return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
251   else {
252     HasError = true;
253     raw_string_ostream ErrStream(ErrorStr);
254     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
255     return nullptr;
256   }
257 }
258 
259 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
260                                              uint64_t Offset, uint64_t Value,
261                                              uint32_t Type, int64_t Addend,
262                                              uint64_t SymOffset) {
263   switch (Type) {
264   default:
265     report_fatal_error("Relocation type not implemented yet!");
266     break;
267   case ELF::R_X86_64_NONE:
268     break;
269   case ELF::R_X86_64_8: {
270     Value += Addend;
271     assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
272     uint8_t TruncatedAddr = (Value & 0xFF);
273     *Section.getAddressWithOffset(Offset) = TruncatedAddr;
274     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
275                       << format("%p\n", Section.getAddressWithOffset(Offset)));
276     break;
277   }
278   case ELF::R_X86_64_16: {
279     Value += Addend;
280     assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
281     uint16_t TruncatedAddr = (Value & 0xFFFF);
282     support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
283         TruncatedAddr;
284     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
285                       << format("%p\n", Section.getAddressWithOffset(Offset)));
286     break;
287   }
288   case ELF::R_X86_64_64: {
289     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
290         Value + Addend;
291     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
292                       << format("%p\n", Section.getAddressWithOffset(Offset)));
293     break;
294   }
295   case ELF::R_X86_64_32:
296   case ELF::R_X86_64_32S: {
297     Value += Addend;
298     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
299            (Type == ELF::R_X86_64_32S &&
300             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
301     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
302     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
303         TruncatedAddr;
304     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
305                       << format("%p\n", Section.getAddressWithOffset(Offset)));
306     break;
307   }
308   case ELF::R_X86_64_PC8: {
309     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
310     int64_t RealOffset = Value + Addend - FinalAddress;
311     assert(isInt<8>(RealOffset));
312     int8_t TruncOffset = (RealOffset & 0xFF);
313     Section.getAddress()[Offset] = TruncOffset;
314     break;
315   }
316   case ELF::R_X86_64_PC32: {
317     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
318     int64_t RealOffset = Value + Addend - FinalAddress;
319     assert(isInt<32>(RealOffset));
320     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
321     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
322         TruncOffset;
323     break;
324   }
325   case ELF::R_X86_64_PC64: {
326     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
327     int64_t RealOffset = Value + Addend - FinalAddress;
328     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
329         RealOffset;
330     LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
331                       << format("%p\n", FinalAddress));
332     break;
333   }
334   case ELF::R_X86_64_GOTOFF64: {
335     // Compute Value - GOTBase.
336     uint64_t GOTBase = 0;
337     for (const auto &Section : Sections) {
338       if (Section.getName() == ".got") {
339         GOTBase = Section.getLoadAddressWithOffset(0);
340         break;
341       }
342     }
343     assert(GOTBase != 0 && "missing GOT");
344     int64_t GOTOffset = Value - GOTBase + Addend;
345     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
346     break;
347   }
348   case ELF::R_X86_64_DTPMOD64: {
349     // We only have one DSO, so the module id is always 1.
350     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
351     break;
352   }
353   case ELF::R_X86_64_DTPOFF64:
354   case ELF::R_X86_64_TPOFF64: {
355     // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
356     // offset in the *initial* TLS block. Since we are statically linking, all
357     // TLS blocks already exist in the initial block, so resolve both
358     // relocations equally.
359     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
360         Value + Addend;
361     break;
362   }
363   case ELF::R_X86_64_DTPOFF32:
364   case ELF::R_X86_64_TPOFF32: {
365     // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
366     // be resolved equally.
367     int64_t RealValue = Value + Addend;
368     assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
369     int32_t TruncValue = RealValue;
370     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
371         TruncValue;
372     break;
373   }
374   }
375 }
376 
377 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
378                                           uint64_t Offset, uint32_t Value,
379                                           uint32_t Type, int32_t Addend) {
380   switch (Type) {
381   case ELF::R_386_32: {
382     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
383         Value + Addend;
384     break;
385   }
386   // Handle R_386_PLT32 like R_386_PC32 since it should be able to
387   // reach any 32 bit address.
388   case ELF::R_386_PLT32:
389   case ELF::R_386_PC32: {
390     uint32_t FinalAddress =
391         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
392     uint32_t RealOffset = Value + Addend - FinalAddress;
393     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
394         RealOffset;
395     break;
396   }
397   default:
398     // There are other relocation types, but it appears these are the
399     // only ones currently used by the LLVM ELF object writer
400     report_fatal_error("Relocation type not implemented yet!");
401     break;
402   }
403 }
404 
405 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
406                                               uint64_t Offset, uint64_t Value,
407                                               uint32_t Type, int64_t Addend) {
408   uint32_t *TargetPtr =
409       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
410   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
411   // Data should use target endian. Code should always use little endian.
412   bool isBE = Arch == Triple::aarch64_be;
413 
414   LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
415                     << format("%llx", Section.getAddressWithOffset(Offset))
416                     << " FinalAddress: 0x" << format("%llx", FinalAddress)
417                     << " Value: 0x" << format("%llx", Value) << " Type: 0x"
418                     << format("%x", Type) << " Addend: 0x"
419                     << format("%llx", Addend) << "\n");
420 
421   switch (Type) {
422   default:
423     report_fatal_error("Relocation type not implemented yet!");
424     break;
425   case ELF::R_AARCH64_NONE:
426     break;
427   case ELF::R_AARCH64_ABS16: {
428     uint64_t Result = Value + Addend;
429     assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
430     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
431     break;
432   }
433   case ELF::R_AARCH64_ABS32: {
434     uint64_t Result = Value + Addend;
435     assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
436     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
437     break;
438   }
439   case ELF::R_AARCH64_ABS64:
440     write(isBE, TargetPtr, Value + Addend);
441     break;
442   case ELF::R_AARCH64_PLT32: {
443     uint64_t Result = Value + Addend - FinalAddress;
444     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
445            static_cast<int64_t>(Result) <= INT32_MAX);
446     write(isBE, TargetPtr, static_cast<uint32_t>(Result));
447     break;
448   }
449   case ELF::R_AARCH64_PREL16: {
450     uint64_t Result = Value + Addend - FinalAddress;
451     assert(static_cast<int64_t>(Result) >= INT16_MIN &&
452            static_cast<int64_t>(Result) <= UINT16_MAX);
453     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
454     break;
455   }
456   case ELF::R_AARCH64_PREL32: {
457     uint64_t Result = Value + Addend - FinalAddress;
458     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
459            static_cast<int64_t>(Result) <= UINT32_MAX);
460     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
461     break;
462   }
463   case ELF::R_AARCH64_PREL64:
464     write(isBE, TargetPtr, Value + Addend - FinalAddress);
465     break;
466   case ELF::R_AARCH64_CONDBR19: {
467     uint64_t BranchImm = Value + Addend - FinalAddress;
468 
469     assert(isInt<21>(BranchImm));
470     *TargetPtr &= 0xff00001fU;
471     // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
472     or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
473     break;
474   }
475   case ELF::R_AARCH64_TSTBR14: {
476     uint64_t BranchImm = Value + Addend - FinalAddress;
477 
478     assert(isInt<16>(BranchImm));
479 
480     *TargetPtr &= 0xfff8001fU;
481     // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
482     or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
483     break;
484   }
485   case ELF::R_AARCH64_CALL26: // fallthrough
486   case ELF::R_AARCH64_JUMP26: {
487     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
488     // calculation.
489     uint64_t BranchImm = Value + Addend - FinalAddress;
490 
491     // "Check that -2^27 <= result < 2^27".
492     assert(isInt<28>(BranchImm));
493     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
494     break;
495   }
496   case ELF::R_AARCH64_MOVW_UABS_G3:
497     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
498     break;
499   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
500     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
501     break;
502   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
503     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
504     break;
505   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
506     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
507     break;
508   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
509     // Operation: Page(S+A) - Page(P)
510     uint64_t Result =
511         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
512 
513     // Check that -2^32 <= X < 2^32
514     assert(isInt<33>(Result) && "overflow check failed for relocation");
515 
516     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
517     // from bits 32:12 of X.
518     write32AArch64Addr(TargetPtr, Result >> 12);
519     break;
520   }
521   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
522     // Operation: S + A
523     // Immediate goes in bits 21:10 of LD/ST instruction, taken
524     // from bits 11:0 of X
525     or32AArch64Imm(TargetPtr, Value + Addend);
526     break;
527   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
528     // Operation: S + A
529     // Immediate goes in bits 21:10 of LD/ST instruction, taken
530     // from bits 11:0 of X
531     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
532     break;
533   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
534     // Operation: S + A
535     // Immediate goes in bits 21:10 of LD/ST instruction, taken
536     // from bits 11:1 of X
537     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
538     break;
539   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
540     // Operation: S + A
541     // Immediate goes in bits 21:10 of LD/ST instruction, taken
542     // from bits 11:2 of X
543     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
544     break;
545   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
546     // Operation: S + A
547     // Immediate goes in bits 21:10 of LD/ST instruction, taken
548     // from bits 11:3 of X
549     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
550     break;
551   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
552     // Operation: S + A
553     // Immediate goes in bits 21:10 of LD/ST instruction, taken
554     // from bits 11:4 of X
555     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
556     break;
557   case ELF::R_AARCH64_LD_PREL_LO19: {
558     // Operation: S + A - P
559     uint64_t Result = Value + Addend - FinalAddress;
560 
561     // "Check that -2^20 <= result < 2^20".
562     assert(isInt<21>(Result));
563 
564     *TargetPtr &= 0xff00001fU;
565     // Immediate goes in bits 23:5 of LD imm instruction, taken
566     // from bits 20:2 of X
567     *TargetPtr |= ((Result & 0xffc) << (5 - 2));
568     break;
569   }
570   case ELF::R_AARCH64_ADR_PREL_LO21: {
571     // Operation: S + A - P
572     uint64_t Result = Value + Addend - FinalAddress;
573 
574     // "Check that -2^20 <= result < 2^20".
575     assert(isInt<21>(Result));
576 
577     *TargetPtr &= 0x9f00001fU;
578     // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
579     // from bits 20:0 of X
580     *TargetPtr |= ((Result & 0xffc) << (5 - 2));
581     *TargetPtr |= (Result & 0x3) << 29;
582     break;
583   }
584   }
585 }
586 
587 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
588                                           uint64_t Offset, uint32_t Value,
589                                           uint32_t Type, int32_t Addend) {
590   // TODO: Add Thumb relocations.
591   uint32_t *TargetPtr =
592       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
593   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
594   Value += Addend;
595 
596   LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
597                     << Section.getAddressWithOffset(Offset)
598                     << " FinalAddress: " << format("%p", FinalAddress)
599                     << " Value: " << format("%x", Value)
600                     << " Type: " << format("%x", Type)
601                     << " Addend: " << format("%x", Addend) << "\n");
602 
603   switch (Type) {
604   default:
605     llvm_unreachable("Not implemented relocation type!");
606 
607   case ELF::R_ARM_NONE:
608     break;
609     // Write a 31bit signed offset
610   case ELF::R_ARM_PREL31:
611     support::ulittle32_t::ref{TargetPtr} =
612         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
613         ((Value - FinalAddress) & ~0x80000000);
614     break;
615   case ELF::R_ARM_TARGET1:
616   case ELF::R_ARM_ABS32:
617     support::ulittle32_t::ref{TargetPtr} = Value;
618     break;
619     // Write first 16 bit of 32 bit value to the mov instruction.
620     // Last 4 bit should be shifted.
621   case ELF::R_ARM_MOVW_ABS_NC:
622   case ELF::R_ARM_MOVT_ABS:
623     if (Type == ELF::R_ARM_MOVW_ABS_NC)
624       Value = Value & 0xFFFF;
625     else if (Type == ELF::R_ARM_MOVT_ABS)
626       Value = (Value >> 16) & 0xFFFF;
627     support::ulittle32_t::ref{TargetPtr} =
628         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
629         (((Value >> 12) & 0xF) << 16);
630     break;
631     // Write 24 bit relative value to the branch instruction.
632   case ELF::R_ARM_PC24: // Fall through.
633   case ELF::R_ARM_CALL: // Fall through.
634   case ELF::R_ARM_JUMP24:
635     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
636     RelValue = (RelValue & 0x03FFFFFC) >> 2;
637     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
638     support::ulittle32_t::ref{TargetPtr} =
639         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
640     break;
641   }
642 }
643 
644 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
645   if (Arch == Triple::UnknownArch ||
646       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
647     IsMipsO32ABI = false;
648     IsMipsN32ABI = false;
649     IsMipsN64ABI = false;
650     return;
651   }
652   if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
653     unsigned AbiVariant = E->getPlatformFlags();
654     IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
655     IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
656   }
657   IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
658 }
659 
660 // Return the .TOC. section and offset.
661 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
662                                           ObjSectionToIDMap &LocalSections,
663                                           RelocationValueRef &Rel) {
664   // Set a default SectionID in case we do not find a TOC section below.
665   // This may happen for references to TOC base base (sym@toc, .odp
666   // relocation) without a .toc directive.  In this case just use the
667   // first section (which is usually the .odp) since the code won't
668   // reference the .toc base directly.
669   Rel.SymbolName = nullptr;
670   Rel.SectionID = 0;
671 
672   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
673   // order. The TOC starts where the first of these sections starts.
674   for (auto &Section : Obj.sections()) {
675     Expected<StringRef> NameOrErr = Section.getName();
676     if (!NameOrErr)
677       return NameOrErr.takeError();
678     StringRef SectionName = *NameOrErr;
679 
680     if (SectionName == ".got"
681         || SectionName == ".toc"
682         || SectionName == ".tocbss"
683         || SectionName == ".plt") {
684       if (auto SectionIDOrErr =
685             findOrEmitSection(Obj, Section, false, LocalSections))
686         Rel.SectionID = *SectionIDOrErr;
687       else
688         return SectionIDOrErr.takeError();
689       break;
690     }
691   }
692 
693   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
694   // thus permitting a full 64 Kbytes segment.
695   Rel.Addend = 0x8000;
696 
697   return Error::success();
698 }
699 
700 // Returns the sections and offset associated with the ODP entry referenced
701 // by Symbol.
702 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
703                                           ObjSectionToIDMap &LocalSections,
704                                           RelocationValueRef &Rel) {
705   // Get the ELF symbol value (st_value) to compare with Relocation offset in
706   // .opd entries
707   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
708        si != se; ++si) {
709 
710     Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
711     if (!RelSecOrErr)
712       report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
713 
714     section_iterator RelSecI = *RelSecOrErr;
715     if (RelSecI == Obj.section_end())
716       continue;
717 
718     Expected<StringRef> NameOrErr = RelSecI->getName();
719     if (!NameOrErr)
720       return NameOrErr.takeError();
721     StringRef RelSectionName = *NameOrErr;
722 
723     if (RelSectionName != ".opd")
724       continue;
725 
726     for (elf_relocation_iterator i = si->relocation_begin(),
727                                  e = si->relocation_end();
728          i != e;) {
729       // The R_PPC64_ADDR64 relocation indicates the first field
730       // of a .opd entry
731       uint64_t TypeFunc = i->getType();
732       if (TypeFunc != ELF::R_PPC64_ADDR64) {
733         ++i;
734         continue;
735       }
736 
737       uint64_t TargetSymbolOffset = i->getOffset();
738       symbol_iterator TargetSymbol = i->getSymbol();
739       int64_t Addend;
740       if (auto AddendOrErr = i->getAddend())
741         Addend = *AddendOrErr;
742       else
743         return AddendOrErr.takeError();
744 
745       ++i;
746       if (i == e)
747         break;
748 
749       // Just check if following relocation is a R_PPC64_TOC
750       uint64_t TypeTOC = i->getType();
751       if (TypeTOC != ELF::R_PPC64_TOC)
752         continue;
753 
754       // Finally compares the Symbol value and the target symbol offset
755       // to check if this .opd entry refers to the symbol the relocation
756       // points to.
757       if (Rel.Addend != (int64_t)TargetSymbolOffset)
758         continue;
759 
760       section_iterator TSI = Obj.section_end();
761       if (auto TSIOrErr = TargetSymbol->getSection())
762         TSI = *TSIOrErr;
763       else
764         return TSIOrErr.takeError();
765       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
766 
767       bool IsCode = TSI->isText();
768       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
769                                                   LocalSections))
770         Rel.SectionID = *SectionIDOrErr;
771       else
772         return SectionIDOrErr.takeError();
773       Rel.Addend = (intptr_t)Addend;
774       return Error::success();
775     }
776   }
777   llvm_unreachable("Attempting to get address of ODP entry!");
778 }
779 
780 // Relocation masks following the #lo(value), #hi(value), #ha(value),
781 // #higher(value), #highera(value), #highest(value), and #highesta(value)
782 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
783 // document.
784 
785 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
786 
787 static inline uint16_t applyPPChi(uint64_t value) {
788   return (value >> 16) & 0xffff;
789 }
790 
791 static inline uint16_t applyPPCha (uint64_t value) {
792   return ((value + 0x8000) >> 16) & 0xffff;
793 }
794 
795 static inline uint16_t applyPPChigher(uint64_t value) {
796   return (value >> 32) & 0xffff;
797 }
798 
799 static inline uint16_t applyPPChighera (uint64_t value) {
800   return ((value + 0x8000) >> 32) & 0xffff;
801 }
802 
803 static inline uint16_t applyPPChighest(uint64_t value) {
804   return (value >> 48) & 0xffff;
805 }
806 
807 static inline uint16_t applyPPChighesta (uint64_t value) {
808   return ((value + 0x8000) >> 48) & 0xffff;
809 }
810 
811 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
812                                             uint64_t Offset, uint64_t Value,
813                                             uint32_t Type, int64_t Addend) {
814   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
815   switch (Type) {
816   default:
817     report_fatal_error("Relocation type not implemented yet!");
818     break;
819   case ELF::R_PPC_ADDR16_LO:
820     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
821     break;
822   case ELF::R_PPC_ADDR16_HI:
823     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
824     break;
825   case ELF::R_PPC_ADDR16_HA:
826     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
827     break;
828   }
829 }
830 
831 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
832                                             uint64_t Offset, uint64_t Value,
833                                             uint32_t Type, int64_t Addend) {
834   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
835   switch (Type) {
836   default:
837     report_fatal_error("Relocation type not implemented yet!");
838     break;
839   case ELF::R_PPC64_ADDR16:
840     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
841     break;
842   case ELF::R_PPC64_ADDR16_DS:
843     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
844     break;
845   case ELF::R_PPC64_ADDR16_LO:
846     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
847     break;
848   case ELF::R_PPC64_ADDR16_LO_DS:
849     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
850     break;
851   case ELF::R_PPC64_ADDR16_HI:
852   case ELF::R_PPC64_ADDR16_HIGH:
853     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
854     break;
855   case ELF::R_PPC64_ADDR16_HA:
856   case ELF::R_PPC64_ADDR16_HIGHA:
857     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
858     break;
859   case ELF::R_PPC64_ADDR16_HIGHER:
860     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
861     break;
862   case ELF::R_PPC64_ADDR16_HIGHERA:
863     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
864     break;
865   case ELF::R_PPC64_ADDR16_HIGHEST:
866     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
867     break;
868   case ELF::R_PPC64_ADDR16_HIGHESTA:
869     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
870     break;
871   case ELF::R_PPC64_ADDR14: {
872     assert(((Value + Addend) & 3) == 0);
873     // Preserve the AA/LK bits in the branch instruction
874     uint8_t aalk = *(LocalAddress + 3);
875     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
876   } break;
877   case ELF::R_PPC64_REL16_LO: {
878     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
879     uint64_t Delta = Value - FinalAddress + Addend;
880     writeInt16BE(LocalAddress, applyPPClo(Delta));
881   } break;
882   case ELF::R_PPC64_REL16_HI: {
883     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
884     uint64_t Delta = Value - FinalAddress + Addend;
885     writeInt16BE(LocalAddress, applyPPChi(Delta));
886   } break;
887   case ELF::R_PPC64_REL16_HA: {
888     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
889     uint64_t Delta = Value - FinalAddress + Addend;
890     writeInt16BE(LocalAddress, applyPPCha(Delta));
891   } break;
892   case ELF::R_PPC64_ADDR32: {
893     int64_t Result = static_cast<int64_t>(Value + Addend);
894     if (SignExtend64<32>(Result) != Result)
895       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
896     writeInt32BE(LocalAddress, Result);
897   } break;
898   case ELF::R_PPC64_REL24: {
899     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
900     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
901     if (SignExtend64<26>(delta) != delta)
902       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
903     // We preserve bits other than LI field, i.e. PO and AA/LK fields.
904     uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
905     writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
906   } break;
907   case ELF::R_PPC64_REL32: {
908     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
909     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
910     if (SignExtend64<32>(delta) != delta)
911       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
912     writeInt32BE(LocalAddress, delta);
913   } break;
914   case ELF::R_PPC64_REL64: {
915     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
916     uint64_t Delta = Value - FinalAddress + Addend;
917     writeInt64BE(LocalAddress, Delta);
918   } break;
919   case ELF::R_PPC64_ADDR64:
920     writeInt64BE(LocalAddress, Value + Addend);
921     break;
922   }
923 }
924 
925 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
926                                               uint64_t Offset, uint64_t Value,
927                                               uint32_t Type, int64_t Addend) {
928   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
929   switch (Type) {
930   default:
931     report_fatal_error("Relocation type not implemented yet!");
932     break;
933   case ELF::R_390_PC16DBL:
934   case ELF::R_390_PLT16DBL: {
935     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
936     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
937     writeInt16BE(LocalAddress, Delta / 2);
938     break;
939   }
940   case ELF::R_390_PC32DBL:
941   case ELF::R_390_PLT32DBL: {
942     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
943     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
944     writeInt32BE(LocalAddress, Delta / 2);
945     break;
946   }
947   case ELF::R_390_PC16: {
948     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
949     assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
950     writeInt16BE(LocalAddress, Delta);
951     break;
952   }
953   case ELF::R_390_PC32: {
954     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
955     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
956     writeInt32BE(LocalAddress, Delta);
957     break;
958   }
959   case ELF::R_390_PC64: {
960     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
961     writeInt64BE(LocalAddress, Delta);
962     break;
963   }
964   case ELF::R_390_8:
965     *LocalAddress = (uint8_t)(Value + Addend);
966     break;
967   case ELF::R_390_16:
968     writeInt16BE(LocalAddress, Value + Addend);
969     break;
970   case ELF::R_390_32:
971     writeInt32BE(LocalAddress, Value + Addend);
972     break;
973   case ELF::R_390_64:
974     writeInt64BE(LocalAddress, Value + Addend);
975     break;
976   }
977 }
978 
979 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
980                                           uint64_t Offset, uint64_t Value,
981                                           uint32_t Type, int64_t Addend) {
982   bool isBE = Arch == Triple::bpfeb;
983 
984   switch (Type) {
985   default:
986     report_fatal_error("Relocation type not implemented yet!");
987     break;
988   case ELF::R_BPF_NONE:
989   case ELF::R_BPF_64_64:
990   case ELF::R_BPF_64_32:
991   case ELF::R_BPF_64_NODYLD32:
992     break;
993   case ELF::R_BPF_64_ABS64: {
994     write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
995     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
996                       << format("%p\n", Section.getAddressWithOffset(Offset)));
997     break;
998   }
999   case ELF::R_BPF_64_ABS32: {
1000     Value += Addend;
1001     assert(Value <= UINT32_MAX);
1002     write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1003     LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1004                       << format("%p\n", Section.getAddressWithOffset(Offset)));
1005     break;
1006   }
1007   }
1008 }
1009 
1010 // The target location for the relocation is described by RE.SectionID and
1011 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
1012 // SectionEntry has three members describing its location.
1013 // SectionEntry::Address is the address at which the section has been loaded
1014 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
1015 // address that the section will have in the target process.
1016 // SectionEntry::ObjAddress is the address of the bits for this section in the
1017 // original emitted object image (also in the current address space).
1018 //
1019 // Relocations will be applied as if the section were loaded at
1020 // SectionEntry::LoadAddress, but they will be applied at an address based
1021 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
1022 // Target memory contents if they are required for value calculations.
1023 //
1024 // The Value parameter here is the load address of the symbol for the
1025 // relocation to be applied.  For relocations which refer to symbols in the
1026 // current object Value will be the LoadAddress of the section in which
1027 // the symbol resides (RE.Addend provides additional information about the
1028 // symbol location).  For external symbols, Value will be the address of the
1029 // symbol in the target address space.
1030 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1031                                        uint64_t Value) {
1032   const SectionEntry &Section = Sections[RE.SectionID];
1033   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1034                            RE.SymOffset, RE.SectionID);
1035 }
1036 
1037 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1038                                        uint64_t Offset, uint64_t Value,
1039                                        uint32_t Type, int64_t Addend,
1040                                        uint64_t SymOffset, SID SectionID) {
1041   switch (Arch) {
1042   case Triple::x86_64:
1043     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1044     break;
1045   case Triple::x86:
1046     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1047                          (uint32_t)(Addend & 0xffffffffL));
1048     break;
1049   case Triple::aarch64:
1050   case Triple::aarch64_be:
1051     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1052     break;
1053   case Triple::arm: // Fall through.
1054   case Triple::armeb:
1055   case Triple::thumb:
1056   case Triple::thumbeb:
1057     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1058                          (uint32_t)(Addend & 0xffffffffL));
1059     break;
1060   case Triple::ppc: // Fall through.
1061   case Triple::ppcle:
1062     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1063     break;
1064   case Triple::ppc64: // Fall through.
1065   case Triple::ppc64le:
1066     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1067     break;
1068   case Triple::systemz:
1069     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1070     break;
1071   case Triple::bpfel:
1072   case Triple::bpfeb:
1073     resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1074     break;
1075   default:
1076     llvm_unreachable("Unsupported CPU type!");
1077   }
1078 }
1079 
1080 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1081   return (void *)(Sections[SectionID].getObjAddress() + Offset);
1082 }
1083 
1084 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1085   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1086   if (Value.SymbolName)
1087     addRelocationForSymbol(RE, Value.SymbolName);
1088   else
1089     addRelocationForSection(RE, Value.SectionID);
1090 }
1091 
1092 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1093                                                  bool IsLocal) const {
1094   switch (RelType) {
1095   case ELF::R_MICROMIPS_GOT16:
1096     if (IsLocal)
1097       return ELF::R_MICROMIPS_LO16;
1098     break;
1099   case ELF::R_MICROMIPS_HI16:
1100     return ELF::R_MICROMIPS_LO16;
1101   case ELF::R_MIPS_GOT16:
1102     if (IsLocal)
1103       return ELF::R_MIPS_LO16;
1104     break;
1105   case ELF::R_MIPS_HI16:
1106     return ELF::R_MIPS_LO16;
1107   case ELF::R_MIPS_PCHI16:
1108     return ELF::R_MIPS_PCLO16;
1109   default:
1110     break;
1111   }
1112   return ELF::R_MIPS_NONE;
1113 }
1114 
1115 // Sometimes we don't need to create thunk for a branch.
1116 // This typically happens when branch target is located
1117 // in the same object file. In such case target is either
1118 // a weak symbol or symbol in a different executable section.
1119 // This function checks if branch target is located in the
1120 // same object file and if distance between source and target
1121 // fits R_AARCH64_CALL26 relocation. If both conditions are
1122 // met, it emits direct jump to the target and returns true.
1123 // Otherwise false is returned and thunk is created.
1124 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1125     unsigned SectionID, relocation_iterator RelI,
1126     const RelocationValueRef &Value) {
1127   uint64_t Address;
1128   if (Value.SymbolName) {
1129     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1130 
1131     // Don't create direct branch for external symbols.
1132     if (Loc == GlobalSymbolTable.end())
1133       return false;
1134 
1135     const auto &SymInfo = Loc->second;
1136     Address =
1137         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1138             SymInfo.getOffset()));
1139   } else {
1140     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1141   }
1142   uint64_t Offset = RelI->getOffset();
1143   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1144 
1145   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1146   // If distance between source and target is out of range then we should
1147   // create thunk.
1148   if (!isInt<28>(Address + Value.Addend - SourceAddress))
1149     return false;
1150 
1151   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1152                     Value.Addend);
1153 
1154   return true;
1155 }
1156 
1157 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1158                                           const RelocationValueRef &Value,
1159                                           relocation_iterator RelI,
1160                                           StubMap &Stubs) {
1161 
1162   LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1163   SectionEntry &Section = Sections[SectionID];
1164 
1165   uint64_t Offset = RelI->getOffset();
1166   unsigned RelType = RelI->getType();
1167   // Look for an existing stub.
1168   StubMap::const_iterator i = Stubs.find(Value);
1169   if (i != Stubs.end()) {
1170     resolveRelocation(Section, Offset,
1171                       (uint64_t)Section.getAddressWithOffset(i->second),
1172                       RelType, 0);
1173     LLVM_DEBUG(dbgs() << " Stub function found\n");
1174   } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1175     // Create a new stub function.
1176     LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1177     Stubs[Value] = Section.getStubOffset();
1178     uint8_t *StubTargetAddr = createStubFunction(
1179         Section.getAddressWithOffset(Section.getStubOffset()));
1180 
1181     RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1182                               ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1183     RelocationEntry REmovk_g2(SectionID,
1184                               StubTargetAddr - Section.getAddress() + 4,
1185                               ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1186     RelocationEntry REmovk_g1(SectionID,
1187                               StubTargetAddr - Section.getAddress() + 8,
1188                               ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1189     RelocationEntry REmovk_g0(SectionID,
1190                               StubTargetAddr - Section.getAddress() + 12,
1191                               ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1192 
1193     if (Value.SymbolName) {
1194       addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1195       addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1196       addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1197       addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1198     } else {
1199       addRelocationForSection(REmovz_g3, Value.SectionID);
1200       addRelocationForSection(REmovk_g2, Value.SectionID);
1201       addRelocationForSection(REmovk_g1, Value.SectionID);
1202       addRelocationForSection(REmovk_g0, Value.SectionID);
1203     }
1204     resolveRelocation(Section, Offset,
1205                       reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1206                           Section.getStubOffset())),
1207                       RelType, 0);
1208     Section.advanceStubOffset(getMaxStubSize());
1209   }
1210 }
1211 
1212 Expected<relocation_iterator>
1213 RuntimeDyldELF::processRelocationRef(
1214     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1215     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1216   const auto &Obj = cast<ELFObjectFileBase>(O);
1217   uint64_t RelType = RelI->getType();
1218   int64_t Addend = 0;
1219   if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1220     Addend = *AddendOrErr;
1221   else
1222     consumeError(AddendOrErr.takeError());
1223   elf_symbol_iterator Symbol = RelI->getSymbol();
1224 
1225   // Obtain the symbol name which is referenced in the relocation
1226   StringRef TargetName;
1227   if (Symbol != Obj.symbol_end()) {
1228     if (auto TargetNameOrErr = Symbol->getName())
1229       TargetName = *TargetNameOrErr;
1230     else
1231       return TargetNameOrErr.takeError();
1232   }
1233   LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1234                     << " TargetName: " << TargetName << "\n");
1235   RelocationValueRef Value;
1236   // First search for the symbol in the local symbol table
1237   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1238 
1239   // Search for the symbol in the global symbol table
1240   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1241   if (Symbol != Obj.symbol_end()) {
1242     gsi = GlobalSymbolTable.find(TargetName.data());
1243     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1244     if (!SymTypeOrErr) {
1245       std::string Buf;
1246       raw_string_ostream OS(Buf);
1247       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1248       report_fatal_error(Twine(OS.str()));
1249     }
1250     SymType = *SymTypeOrErr;
1251   }
1252   if (gsi != GlobalSymbolTable.end()) {
1253     const auto &SymInfo = gsi->second;
1254     Value.SectionID = SymInfo.getSectionID();
1255     Value.Offset = SymInfo.getOffset();
1256     Value.Addend = SymInfo.getOffset() + Addend;
1257   } else {
1258     switch (SymType) {
1259     case SymbolRef::ST_Debug: {
1260       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1261       // and can be changed by another developers. Maybe best way is add
1262       // a new symbol type ST_Section to SymbolRef and use it.
1263       auto SectionOrErr = Symbol->getSection();
1264       if (!SectionOrErr) {
1265         std::string Buf;
1266         raw_string_ostream OS(Buf);
1267         logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1268         report_fatal_error(Twine(OS.str()));
1269       }
1270       section_iterator si = *SectionOrErr;
1271       if (si == Obj.section_end())
1272         llvm_unreachable("Symbol section not found, bad object file format!");
1273       LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1274       bool isCode = si->isText();
1275       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1276                                                   ObjSectionToID))
1277         Value.SectionID = *SectionIDOrErr;
1278       else
1279         return SectionIDOrErr.takeError();
1280       Value.Addend = Addend;
1281       break;
1282     }
1283     case SymbolRef::ST_Data:
1284     case SymbolRef::ST_Function:
1285     case SymbolRef::ST_Unknown: {
1286       Value.SymbolName = TargetName.data();
1287       Value.Addend = Addend;
1288 
1289       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1290       // will manifest here as a NULL symbol name.
1291       // We can set this as a valid (but empty) symbol name, and rely
1292       // on addRelocationForSymbol to handle this.
1293       if (!Value.SymbolName)
1294         Value.SymbolName = "";
1295       break;
1296     }
1297     default:
1298       llvm_unreachable("Unresolved symbol type!");
1299       break;
1300     }
1301   }
1302 
1303   uint64_t Offset = RelI->getOffset();
1304 
1305   LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1306                     << "\n");
1307   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1308     if ((RelType == ELF::R_AARCH64_CALL26 ||
1309          RelType == ELF::R_AARCH64_JUMP26) &&
1310         MemMgr.allowStubAllocation()) {
1311       resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1312     } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1313       // Create new GOT entry or find existing one. If GOT entry is
1314       // to be created, then we also emit ABS64 relocation for it.
1315       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1316       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1317                                  ELF::R_AARCH64_ADR_PREL_PG_HI21);
1318 
1319     } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1320       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1321       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1322                                  ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1323     } else {
1324       processSimpleRelocation(SectionID, Offset, RelType, Value);
1325     }
1326   } else if (Arch == Triple::arm) {
1327     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1328       RelType == ELF::R_ARM_JUMP24) {
1329       // This is an ARM branch relocation, need to use a stub function.
1330       LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1331       SectionEntry &Section = Sections[SectionID];
1332 
1333       // Look for an existing stub.
1334       StubMap::const_iterator i = Stubs.find(Value);
1335       if (i != Stubs.end()) {
1336         resolveRelocation(
1337             Section, Offset,
1338             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1339             RelType, 0);
1340         LLVM_DEBUG(dbgs() << " Stub function found\n");
1341       } else {
1342         // Create a new stub function.
1343         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1344         Stubs[Value] = Section.getStubOffset();
1345         uint8_t *StubTargetAddr = createStubFunction(
1346             Section.getAddressWithOffset(Section.getStubOffset()));
1347         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1348                            ELF::R_ARM_ABS32, Value.Addend);
1349         if (Value.SymbolName)
1350           addRelocationForSymbol(RE, Value.SymbolName);
1351         else
1352           addRelocationForSection(RE, Value.SectionID);
1353 
1354         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1355                                                Section.getAddressWithOffset(
1356                                                    Section.getStubOffset())),
1357                           RelType, 0);
1358         Section.advanceStubOffset(getMaxStubSize());
1359       }
1360     } else {
1361       uint32_t *Placeholder =
1362         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1363       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1364           RelType == ELF::R_ARM_ABS32) {
1365         Value.Addend += *Placeholder;
1366       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1367         // See ELF for ARM documentation
1368         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1369       }
1370       processSimpleRelocation(SectionID, Offset, RelType, Value);
1371     }
1372   } else if (IsMipsO32ABI) {
1373     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1374         computePlaceholderAddress(SectionID, Offset));
1375     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1376     if (RelType == ELF::R_MIPS_26) {
1377       // This is an Mips branch relocation, need to use a stub function.
1378       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1379       SectionEntry &Section = Sections[SectionID];
1380 
1381       // Extract the addend from the instruction.
1382       // We shift up by two since the Value will be down shifted again
1383       // when applying the relocation.
1384       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1385 
1386       Value.Addend += Addend;
1387 
1388       //  Look up for existing stub.
1389       StubMap::const_iterator i = Stubs.find(Value);
1390       if (i != Stubs.end()) {
1391         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1392         addRelocationForSection(RE, SectionID);
1393         LLVM_DEBUG(dbgs() << " Stub function found\n");
1394       } else {
1395         // Create a new stub function.
1396         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1397         Stubs[Value] = Section.getStubOffset();
1398 
1399         unsigned AbiVariant = Obj.getPlatformFlags();
1400 
1401         uint8_t *StubTargetAddr = createStubFunction(
1402             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1403 
1404         // Creating Hi and Lo relocations for the filled stub instructions.
1405         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1406                              ELF::R_MIPS_HI16, Value.Addend);
1407         RelocationEntry RELo(SectionID,
1408                              StubTargetAddr - Section.getAddress() + 4,
1409                              ELF::R_MIPS_LO16, Value.Addend);
1410 
1411         if (Value.SymbolName) {
1412           addRelocationForSymbol(REHi, Value.SymbolName);
1413           addRelocationForSymbol(RELo, Value.SymbolName);
1414         } else {
1415           addRelocationForSection(REHi, Value.SectionID);
1416           addRelocationForSection(RELo, Value.SectionID);
1417         }
1418 
1419         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1420         addRelocationForSection(RE, SectionID);
1421         Section.advanceStubOffset(getMaxStubSize());
1422       }
1423     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1424       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1425       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1426       PendingRelocs.push_back(std::make_pair(Value, RE));
1427     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1428       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1429       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1430         const RelocationValueRef &MatchingValue = I->first;
1431         RelocationEntry &Reloc = I->second;
1432         if (MatchingValue == Value &&
1433             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1434             SectionID == Reloc.SectionID) {
1435           Reloc.Addend += Addend;
1436           if (Value.SymbolName)
1437             addRelocationForSymbol(Reloc, Value.SymbolName);
1438           else
1439             addRelocationForSection(Reloc, Value.SectionID);
1440           I = PendingRelocs.erase(I);
1441         } else
1442           ++I;
1443       }
1444       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1445       if (Value.SymbolName)
1446         addRelocationForSymbol(RE, Value.SymbolName);
1447       else
1448         addRelocationForSection(RE, Value.SectionID);
1449     } else {
1450       if (RelType == ELF::R_MIPS_32)
1451         Value.Addend += Opcode;
1452       else if (RelType == ELF::R_MIPS_PC16)
1453         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1454       else if (RelType == ELF::R_MIPS_PC19_S2)
1455         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1456       else if (RelType == ELF::R_MIPS_PC21_S2)
1457         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1458       else if (RelType == ELF::R_MIPS_PC26_S2)
1459         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1460       processSimpleRelocation(SectionID, Offset, RelType, Value);
1461     }
1462   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1463     uint32_t r_type = RelType & 0xff;
1464     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1465     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1466         || r_type == ELF::R_MIPS_GOT_DISP) {
1467       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1468       if (i != GOTSymbolOffsets.end())
1469         RE.SymOffset = i->second;
1470       else {
1471         RE.SymOffset = allocateGOTEntries(1);
1472         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1473       }
1474       if (Value.SymbolName)
1475         addRelocationForSymbol(RE, Value.SymbolName);
1476       else
1477         addRelocationForSection(RE, Value.SectionID);
1478     } else if (RelType == ELF::R_MIPS_26) {
1479       // This is an Mips branch relocation, need to use a stub function.
1480       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1481       SectionEntry &Section = Sections[SectionID];
1482 
1483       //  Look up for existing stub.
1484       StubMap::const_iterator i = Stubs.find(Value);
1485       if (i != Stubs.end()) {
1486         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1487         addRelocationForSection(RE, SectionID);
1488         LLVM_DEBUG(dbgs() << " Stub function found\n");
1489       } else {
1490         // Create a new stub function.
1491         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1492         Stubs[Value] = Section.getStubOffset();
1493 
1494         unsigned AbiVariant = Obj.getPlatformFlags();
1495 
1496         uint8_t *StubTargetAddr = createStubFunction(
1497             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1498 
1499         if (IsMipsN32ABI) {
1500           // Creating Hi and Lo relocations for the filled stub instructions.
1501           RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1502                                ELF::R_MIPS_HI16, Value.Addend);
1503           RelocationEntry RELo(SectionID,
1504                                StubTargetAddr - Section.getAddress() + 4,
1505                                ELF::R_MIPS_LO16, Value.Addend);
1506           if (Value.SymbolName) {
1507             addRelocationForSymbol(REHi, Value.SymbolName);
1508             addRelocationForSymbol(RELo, Value.SymbolName);
1509           } else {
1510             addRelocationForSection(REHi, Value.SectionID);
1511             addRelocationForSection(RELo, Value.SectionID);
1512           }
1513         } else {
1514           // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1515           // instructions.
1516           RelocationEntry REHighest(SectionID,
1517                                     StubTargetAddr - Section.getAddress(),
1518                                     ELF::R_MIPS_HIGHEST, Value.Addend);
1519           RelocationEntry REHigher(SectionID,
1520                                    StubTargetAddr - Section.getAddress() + 4,
1521                                    ELF::R_MIPS_HIGHER, Value.Addend);
1522           RelocationEntry REHi(SectionID,
1523                                StubTargetAddr - Section.getAddress() + 12,
1524                                ELF::R_MIPS_HI16, Value.Addend);
1525           RelocationEntry RELo(SectionID,
1526                                StubTargetAddr - Section.getAddress() + 20,
1527                                ELF::R_MIPS_LO16, Value.Addend);
1528           if (Value.SymbolName) {
1529             addRelocationForSymbol(REHighest, Value.SymbolName);
1530             addRelocationForSymbol(REHigher, Value.SymbolName);
1531             addRelocationForSymbol(REHi, Value.SymbolName);
1532             addRelocationForSymbol(RELo, Value.SymbolName);
1533           } else {
1534             addRelocationForSection(REHighest, Value.SectionID);
1535             addRelocationForSection(REHigher, Value.SectionID);
1536             addRelocationForSection(REHi, Value.SectionID);
1537             addRelocationForSection(RELo, Value.SectionID);
1538           }
1539         }
1540         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1541         addRelocationForSection(RE, SectionID);
1542         Section.advanceStubOffset(getMaxStubSize());
1543       }
1544     } else {
1545       processSimpleRelocation(SectionID, Offset, RelType, Value);
1546     }
1547 
1548   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1549     if (RelType == ELF::R_PPC64_REL24) {
1550       // Determine ABI variant in use for this object.
1551       unsigned AbiVariant = Obj.getPlatformFlags();
1552       AbiVariant &= ELF::EF_PPC64_ABI;
1553       // A PPC branch relocation will need a stub function if the target is
1554       // an external symbol (either Value.SymbolName is set, or SymType is
1555       // Symbol::ST_Unknown) or if the target address is not within the
1556       // signed 24-bits branch address.
1557       SectionEntry &Section = Sections[SectionID];
1558       uint8_t *Target = Section.getAddressWithOffset(Offset);
1559       bool RangeOverflow = false;
1560       bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1561       if (!IsExtern) {
1562         if (AbiVariant != 2) {
1563           // In the ELFv1 ABI, a function call may point to the .opd entry,
1564           // so the final symbol value is calculated based on the relocation
1565           // values in the .opd section.
1566           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1567             return std::move(Err);
1568         } else {
1569           // In the ELFv2 ABI, a function symbol may provide a local entry
1570           // point, which must be used for direct calls.
1571           if (Value.SectionID == SectionID){
1572             uint8_t SymOther = Symbol->getOther();
1573             Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1574           }
1575         }
1576         uint8_t *RelocTarget =
1577             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1578         int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1579         // If it is within 26-bits branch range, just set the branch target
1580         if (SignExtend64<26>(delta) != delta) {
1581           RangeOverflow = true;
1582         } else if ((AbiVariant != 2) ||
1583                    (AbiVariant == 2  && Value.SectionID == SectionID)) {
1584           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1585           addRelocationForSection(RE, Value.SectionID);
1586         }
1587       }
1588       if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1589           RangeOverflow) {
1590         // It is an external symbol (either Value.SymbolName is set, or
1591         // SymType is SymbolRef::ST_Unknown) or out of range.
1592         StubMap::const_iterator i = Stubs.find(Value);
1593         if (i != Stubs.end()) {
1594           // Symbol function stub already created, just relocate to it
1595           resolveRelocation(Section, Offset,
1596                             reinterpret_cast<uint64_t>(
1597                                 Section.getAddressWithOffset(i->second)),
1598                             RelType, 0);
1599           LLVM_DEBUG(dbgs() << " Stub function found\n");
1600         } else {
1601           // Create a new stub function.
1602           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1603           Stubs[Value] = Section.getStubOffset();
1604           uint8_t *StubTargetAddr = createStubFunction(
1605               Section.getAddressWithOffset(Section.getStubOffset()),
1606               AbiVariant);
1607           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1608                              ELF::R_PPC64_ADDR64, Value.Addend);
1609 
1610           // Generates the 64-bits address loads as exemplified in section
1611           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1612           // apply to the low part of the instructions, so we have to update
1613           // the offset according to the target endianness.
1614           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1615           if (!IsTargetLittleEndian)
1616             StubRelocOffset += 2;
1617 
1618           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1619                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1620           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1621                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1622           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1623                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1624           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1625                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1626 
1627           if (Value.SymbolName) {
1628             addRelocationForSymbol(REhst, Value.SymbolName);
1629             addRelocationForSymbol(REhr, Value.SymbolName);
1630             addRelocationForSymbol(REh, Value.SymbolName);
1631             addRelocationForSymbol(REl, Value.SymbolName);
1632           } else {
1633             addRelocationForSection(REhst, Value.SectionID);
1634             addRelocationForSection(REhr, Value.SectionID);
1635             addRelocationForSection(REh, Value.SectionID);
1636             addRelocationForSection(REl, Value.SectionID);
1637           }
1638 
1639           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1640                                                  Section.getAddressWithOffset(
1641                                                      Section.getStubOffset())),
1642                             RelType, 0);
1643           Section.advanceStubOffset(getMaxStubSize());
1644         }
1645         if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1646           // Restore the TOC for external calls
1647           if (AbiVariant == 2)
1648             writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1649           else
1650             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1651         }
1652       }
1653     } else if (RelType == ELF::R_PPC64_TOC16 ||
1654                RelType == ELF::R_PPC64_TOC16_DS ||
1655                RelType == ELF::R_PPC64_TOC16_LO ||
1656                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1657                RelType == ELF::R_PPC64_TOC16_HI ||
1658                RelType == ELF::R_PPC64_TOC16_HA) {
1659       // These relocations are supposed to subtract the TOC address from
1660       // the final value.  This does not fit cleanly into the RuntimeDyld
1661       // scheme, since there may be *two* sections involved in determining
1662       // the relocation value (the section of the symbol referred to by the
1663       // relocation, and the TOC section associated with the current module).
1664       //
1665       // Fortunately, these relocations are currently only ever generated
1666       // referring to symbols that themselves reside in the TOC, which means
1667       // that the two sections are actually the same.  Thus they cancel out
1668       // and we can immediately resolve the relocation right now.
1669       switch (RelType) {
1670       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1671       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1672       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1673       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1674       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1675       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1676       default: llvm_unreachable("Wrong relocation type.");
1677       }
1678 
1679       RelocationValueRef TOCValue;
1680       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1681         return std::move(Err);
1682       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1683         llvm_unreachable("Unsupported TOC relocation.");
1684       Value.Addend -= TOCValue.Addend;
1685       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1686     } else {
1687       // There are two ways to refer to the TOC address directly: either
1688       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1689       // ignored), or via any relocation that refers to the magic ".TOC."
1690       // symbols (in which case the addend is respected).
1691       if (RelType == ELF::R_PPC64_TOC) {
1692         RelType = ELF::R_PPC64_ADDR64;
1693         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1694           return std::move(Err);
1695       } else if (TargetName == ".TOC.") {
1696         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1697           return std::move(Err);
1698         Value.Addend += Addend;
1699       }
1700 
1701       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1702 
1703       if (Value.SymbolName)
1704         addRelocationForSymbol(RE, Value.SymbolName);
1705       else
1706         addRelocationForSection(RE, Value.SectionID);
1707     }
1708   } else if (Arch == Triple::systemz &&
1709              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1710     // Create function stubs for both PLT and GOT references, regardless of
1711     // whether the GOT reference is to data or code.  The stub contains the
1712     // full address of the symbol, as needed by GOT references, and the
1713     // executable part only adds an overhead of 8 bytes.
1714     //
1715     // We could try to conserve space by allocating the code and data
1716     // parts of the stub separately.  However, as things stand, we allocate
1717     // a stub for every relocation, so using a GOT in JIT code should be
1718     // no less space efficient than using an explicit constant pool.
1719     LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1720     SectionEntry &Section = Sections[SectionID];
1721 
1722     // Look for an existing stub.
1723     StubMap::const_iterator i = Stubs.find(Value);
1724     uintptr_t StubAddress;
1725     if (i != Stubs.end()) {
1726       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1727       LLVM_DEBUG(dbgs() << " Stub function found\n");
1728     } else {
1729       // Create a new stub function.
1730       LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1731 
1732       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1733       uintptr_t StubAlignment = getStubAlignment();
1734       StubAddress =
1735           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1736           -StubAlignment;
1737       unsigned StubOffset = StubAddress - BaseAddress;
1738 
1739       Stubs[Value] = StubOffset;
1740       createStubFunction((uint8_t *)StubAddress);
1741       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1742                          Value.Offset);
1743       if (Value.SymbolName)
1744         addRelocationForSymbol(RE, Value.SymbolName);
1745       else
1746         addRelocationForSection(RE, Value.SectionID);
1747       Section.advanceStubOffset(getMaxStubSize());
1748     }
1749 
1750     if (RelType == ELF::R_390_GOTENT)
1751       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1752                         Addend);
1753     else
1754       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1755   } else if (Arch == Triple::x86_64) {
1756     if (RelType == ELF::R_X86_64_PLT32) {
1757       // The way the PLT relocations normally work is that the linker allocates
1758       // the
1759       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1760       // entry will then jump to an address provided by the GOT.  On first call,
1761       // the
1762       // GOT address will point back into PLT code that resolves the symbol. After
1763       // the first call, the GOT entry points to the actual function.
1764       //
1765       // For local functions we're ignoring all of that here and just replacing
1766       // the PLT32 relocation type with PC32, which will translate the relocation
1767       // into a PC-relative call directly to the function. For external symbols we
1768       // can't be sure the function will be within 2^32 bytes of the call site, so
1769       // we need to create a stub, which calls into the GOT.  This case is
1770       // equivalent to the usual PLT implementation except that we use the stub
1771       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1772       // rather than allocating a PLT section.
1773       if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1774         // This is a call to an external function.
1775         // Look for an existing stub.
1776         SectionEntry *Section = &Sections[SectionID];
1777         StubMap::const_iterator i = Stubs.find(Value);
1778         uintptr_t StubAddress;
1779         if (i != Stubs.end()) {
1780           StubAddress = uintptr_t(Section->getAddress()) + i->second;
1781           LLVM_DEBUG(dbgs() << " Stub function found\n");
1782         } else {
1783           // Create a new stub function (equivalent to a PLT entry).
1784           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1785 
1786           uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1787           uintptr_t StubAlignment = getStubAlignment();
1788           StubAddress =
1789               (BaseAddress + Section->getStubOffset() + StubAlignment - 1) &
1790               -StubAlignment;
1791           unsigned StubOffset = StubAddress - BaseAddress;
1792           Stubs[Value] = StubOffset;
1793           createStubFunction((uint8_t *)StubAddress);
1794 
1795           // Bump our stub offset counter
1796           Section->advanceStubOffset(getMaxStubSize());
1797 
1798           // Allocate a GOT Entry
1799           uint64_t GOTOffset = allocateGOTEntries(1);
1800           // This potentially creates a new Section which potentially
1801           // invalidates the Section pointer, so reload it.
1802           Section = &Sections[SectionID];
1803 
1804           // The load of the GOT address has an addend of -4
1805           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1806                                      ELF::R_X86_64_PC32);
1807 
1808           // Fill in the value of the symbol we're targeting into the GOT
1809           addRelocationForSymbol(
1810               computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1811               Value.SymbolName);
1812         }
1813 
1814         // Make the target call a call into the stub table.
1815         resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1816                           Addend);
1817       } else {
1818         Value.Addend += support::ulittle32_t::ref(
1819             computePlaceholderAddress(SectionID, Offset));
1820         processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1821       }
1822     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1823                RelType == ELF::R_X86_64_GOTPCRELX ||
1824                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1825       uint64_t GOTOffset = allocateGOTEntries(1);
1826       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1827                                  ELF::R_X86_64_PC32);
1828 
1829       // Fill in the value of the symbol we're targeting into the GOT
1830       RelocationEntry RE =
1831           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1832       if (Value.SymbolName)
1833         addRelocationForSymbol(RE, Value.SymbolName);
1834       else
1835         addRelocationForSection(RE, Value.SectionID);
1836     } else if (RelType == ELF::R_X86_64_GOT64) {
1837       // Fill in a 64-bit GOT offset.
1838       uint64_t GOTOffset = allocateGOTEntries(1);
1839       resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1840                         ELF::R_X86_64_64, 0);
1841 
1842       // Fill in the value of the symbol we're targeting into the GOT
1843       RelocationEntry RE =
1844           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1845       if (Value.SymbolName)
1846         addRelocationForSymbol(RE, Value.SymbolName);
1847       else
1848         addRelocationForSection(RE, Value.SectionID);
1849     } else if (RelType == ELF::R_X86_64_GOTPC32) {
1850       // Materialize the address of the base of the GOT relative to the PC.
1851       // This doesn't create a GOT entry, but it does mean we need a GOT
1852       // section.
1853       (void)allocateGOTEntries(0);
1854       resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1855     } else if (RelType == ELF::R_X86_64_GOTPC64) {
1856       (void)allocateGOTEntries(0);
1857       resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1858     } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1859       // GOTOFF relocations ultimately require a section difference relocation.
1860       (void)allocateGOTEntries(0);
1861       processSimpleRelocation(SectionID, Offset, RelType, Value);
1862     } else if (RelType == ELF::R_X86_64_PC32) {
1863       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1864       processSimpleRelocation(SectionID, Offset, RelType, Value);
1865     } else if (RelType == ELF::R_X86_64_PC64) {
1866       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1867       processSimpleRelocation(SectionID, Offset, RelType, Value);
1868     } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1869       processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1870     } else if (RelType == ELF::R_X86_64_TLSGD ||
1871                RelType == ELF::R_X86_64_TLSLD) {
1872       // The next relocation must be the relocation for __tls_get_addr.
1873       ++RelI;
1874       auto &GetAddrRelocation = *RelI;
1875       processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1876                                  GetAddrRelocation);
1877     } else {
1878       processSimpleRelocation(SectionID, Offset, RelType, Value);
1879     }
1880   } else {
1881     if (Arch == Triple::x86) {
1882       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1883     }
1884     processSimpleRelocation(SectionID, Offset, RelType, Value);
1885   }
1886   return ++RelI;
1887 }
1888 
1889 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1890                                                      uint64_t Offset,
1891                                                      RelocationValueRef Value,
1892                                                      int64_t Addend) {
1893   // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1894   // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1895   // only mentions one optimization even though there are two different
1896   // code sequences for the Initial Exec TLS Model. We match the code to
1897   // find out which one was used.
1898 
1899   // A possible TLS code sequence and its replacement
1900   struct CodeSequence {
1901     // The expected code sequence
1902     ArrayRef<uint8_t> ExpectedCodeSequence;
1903     // The negative offset of the GOTTPOFF relocation to the beginning of
1904     // the sequence
1905     uint64_t TLSSequenceOffset;
1906     // The new code sequence
1907     ArrayRef<uint8_t> NewCodeSequence;
1908     // The offset of the new TPOFF relocation
1909     uint64_t TpoffRelocationOffset;
1910   };
1911 
1912   std::array<CodeSequence, 2> CodeSequences;
1913 
1914   // Initial Exec Code Model Sequence
1915   {
1916     static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1917         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1918         0x00,                                    // mov %fs:0, %rax
1919         0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1920                                                  // %rax
1921     };
1922     CodeSequences[0].ExpectedCodeSequence =
1923         ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1924     CodeSequences[0].TLSSequenceOffset = 12;
1925 
1926     static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1927         0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1928         0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1929     };
1930     CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1931     CodeSequences[0].TpoffRelocationOffset = 12;
1932   }
1933 
1934   // Initial Exec Code Model Sequence, II
1935   {
1936     static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1937         0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1938         0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00  // mov %fs:(%rax), %rax
1939     };
1940     CodeSequences[1].ExpectedCodeSequence =
1941         ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1942     CodeSequences[1].TLSSequenceOffset = 3;
1943 
1944     static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1945         0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00,             // 6 byte nop
1946         0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1947     };
1948     CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1949     CodeSequences[1].TpoffRelocationOffset = 10;
1950   }
1951 
1952   bool Resolved = false;
1953   auto &Section = Sections[SectionID];
1954   for (const auto &C : CodeSequences) {
1955     assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1956            "Old and new code sequences must have the same size");
1957 
1958     if (Offset < C.TLSSequenceOffset ||
1959         (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1960             Section.getSize()) {
1961       // This can't be a matching sequence as it doesn't fit in the current
1962       // section
1963       continue;
1964     }
1965 
1966     auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1967     auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1968     if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1969         C.ExpectedCodeSequence) {
1970       continue;
1971     }
1972 
1973     memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1974 
1975     // The original GOTTPOFF relocation has an addend as it is PC relative,
1976     // so it needs to be corrected. The TPOFF32 relocation is used as an
1977     // absolute value (which is an offset from %fs:0), so remove the addend
1978     // again.
1979     RelocationEntry RE(SectionID,
1980                        TLSSequenceStartOffset + C.TpoffRelocationOffset,
1981                        ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1982 
1983     if (Value.SymbolName)
1984       addRelocationForSymbol(RE, Value.SymbolName);
1985     else
1986       addRelocationForSection(RE, Value.SectionID);
1987 
1988     Resolved = true;
1989     break;
1990   }
1991 
1992   if (!Resolved) {
1993     // The GOTTPOFF relocation was not used in one of the sequences
1994     // described in the spec, so we can't optimize it to a TPOFF
1995     // relocation.
1996     uint64_t GOTOffset = allocateGOTEntries(1);
1997     resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1998                                ELF::R_X86_64_PC32);
1999     RelocationEntry RE =
2000         computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
2001     if (Value.SymbolName)
2002       addRelocationForSymbol(RE, Value.SymbolName);
2003     else
2004       addRelocationForSection(RE, Value.SectionID);
2005   }
2006 }
2007 
2008 void RuntimeDyldELF::processX86_64TLSRelocation(
2009     unsigned SectionID, uint64_t Offset, uint64_t RelType,
2010     RelocationValueRef Value, int64_t Addend,
2011     const RelocationRef &GetAddrRelocation) {
2012   // Since we are statically linking and have no additional DSOs, we can resolve
2013   // the relocation directly without using __tls_get_addr.
2014   // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2015   // to replace it with the Local Exec relocation variant.
2016 
2017   // Find out whether the code was compiled with the large or small memory
2018   // model. For this we look at the next relocation which is the relocation
2019   // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2020   // small code model, with a 64 bit relocation it's the large code model.
2021   bool IsSmallCodeModel;
2022   // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2023   bool IsGOTPCRel = false;
2024 
2025   switch (GetAddrRelocation.getType()) {
2026   case ELF::R_X86_64_GOTPCREL:
2027   case ELF::R_X86_64_REX_GOTPCRELX:
2028   case ELF::R_X86_64_GOTPCRELX:
2029     IsGOTPCRel = true;
2030     LLVM_FALLTHROUGH;
2031   case ELF::R_X86_64_PLT32:
2032     IsSmallCodeModel = true;
2033     break;
2034   case ELF::R_X86_64_PLTOFF64:
2035     IsSmallCodeModel = false;
2036     break;
2037   default:
2038     report_fatal_error(
2039         "invalid TLS relocations for General/Local Dynamic TLS Model: "
2040         "expected PLT or GOT relocation for __tls_get_addr function");
2041   }
2042 
2043   // The negative offset to the start of the TLS code sequence relative to
2044   // the offset of the TLSGD/TLSLD relocation
2045   uint64_t TLSSequenceOffset;
2046   // The expected start of the code sequence
2047   ArrayRef<uint8_t> ExpectedCodeSequence;
2048   // The new TLS code sequence that will replace the existing code
2049   ArrayRef<uint8_t> NewCodeSequence;
2050 
2051   if (RelType == ELF::R_X86_64_TLSGD) {
2052     // The offset of the new TPOFF32 relocation (offset starting from the
2053     // beginning of the whole TLS sequence)
2054     uint64_t TpoffRelocOffset;
2055 
2056     if (IsSmallCodeModel) {
2057       if (!IsGOTPCRel) {
2058         static const std::initializer_list<uint8_t> CodeSequence = {
2059             0x66, // data16 (no-op prefix)
2060             0x48, 0x8d, 0x3d, 0x00, 0x00,
2061             0x00, 0x00,                  // lea <disp32>(%rip), %rdi
2062             0x66, 0x66,                  // two data16 prefixes
2063             0x48,                        // rex64 (no-op prefix)
2064             0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2065         };
2066         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2067         TLSSequenceOffset = 4;
2068       } else {
2069         // This code sequence is not described in the TLS spec but gcc
2070         // generates it sometimes.
2071         static const std::initializer_list<uint8_t> CodeSequence = {
2072             0x66, // data16 (no-op prefix)
2073             0x48, 0x8d, 0x3d, 0x00, 0x00,
2074             0x00, 0x00, // lea <disp32>(%rip), %rdi
2075             0x66,       // data16 prefix (no-op prefix)
2076             0x48,       // rex64 (no-op prefix)
2077             0xff, 0x15, 0x00, 0x00, 0x00,
2078             0x00 // call *__tls_get_addr@gotpcrel(%rip)
2079         };
2080         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2081         TLSSequenceOffset = 4;
2082       }
2083 
2084       // The replacement code for the small code model. It's the same for
2085       // both sequences.
2086       static const std::initializer_list<uint8_t> SmallSequence = {
2087           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2088           0x00,                                    // mov %fs:0, %rax
2089           0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2090                                                    // %rax
2091       };
2092       NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2093       TpoffRelocOffset = 12;
2094     } else {
2095       static const std::initializer_list<uint8_t> CodeSequence = {
2096           0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2097                                                     // %rdi
2098           0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2099           0x00,             // movabs $__tls_get_addr@pltoff, %rax
2100           0x48, 0x01, 0xd8, // add %rbx, %rax
2101           0xff, 0xd0        // call *%rax
2102       };
2103       ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2104       TLSSequenceOffset = 3;
2105 
2106       // The replacement code for the large code model
2107       static const std::initializer_list<uint8_t> LargeSequence = {
2108           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2109           0x00,                                     // mov %fs:0, %rax
2110           0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2111                                                     // %rax
2112           0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00        // nopw 0x0(%rax,%rax,1)
2113       };
2114       NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2115       TpoffRelocOffset = 12;
2116     }
2117 
2118     // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2119     // The new TPOFF32 relocations is used as an absolute offset from
2120     // %fs:0, so remove the TLSGD/TLSLD addend again.
2121     RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2122                        ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2123     if (Value.SymbolName)
2124       addRelocationForSymbol(RE, Value.SymbolName);
2125     else
2126       addRelocationForSection(RE, Value.SectionID);
2127   } else if (RelType == ELF::R_X86_64_TLSLD) {
2128     if (IsSmallCodeModel) {
2129       if (!IsGOTPCRel) {
2130         static const std::initializer_list<uint8_t> CodeSequence = {
2131             0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2132             0x00, 0xe8, 0x00, 0x00, 0x00, 0x00  // call __tls_get_addr@plt
2133         };
2134         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2135         TLSSequenceOffset = 3;
2136 
2137         // The replacement code for the small code model
2138         static const std::initializer_list<uint8_t> SmallSequence = {
2139             0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2140             0x64, 0x48, 0x8b, 0x04, 0x25,
2141             0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2142         };
2143         NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2144       } else {
2145         // This code sequence is not described in the TLS spec but gcc
2146         // generates it sometimes.
2147         static const std::initializer_list<uint8_t> CodeSequence = {
2148             0x48, 0x8d, 0x3d, 0x00,
2149             0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2150             0xff, 0x15, 0x00, 0x00,
2151             0x00, 0x00 // call
2152                        // *__tls_get_addr@gotpcrel(%rip)
2153         };
2154         ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2155         TLSSequenceOffset = 3;
2156 
2157         // The replacement is code is just like above but it needs to be
2158         // one byte longer.
2159         static const std::initializer_list<uint8_t> SmallSequence = {
2160             0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2161             0x64, 0x48, 0x8b, 0x04, 0x25,
2162             0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2163         };
2164         NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2165       }
2166     } else {
2167       // This is the same sequence as for the TLSGD sequence with the large
2168       // memory model above
2169       static const std::initializer_list<uint8_t> CodeSequence = {
2170           0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2171                                                     // %rdi
2172           0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2173           0x48,       // movabs $__tls_get_addr@pltoff, %rax
2174           0x01, 0xd8, // add %rbx, %rax
2175           0xff, 0xd0  // call *%rax
2176       };
2177       ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2178       TLSSequenceOffset = 3;
2179 
2180       // The replacement code for the large code model
2181       static const std::initializer_list<uint8_t> LargeSequence = {
2182           0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2183           0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2184           0x00,                                                // 10 byte nop
2185           0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2186       };
2187       NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2188     }
2189   } else {
2190     llvm_unreachable("both TLS relocations handled above");
2191   }
2192 
2193   assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2194          "Old and new code sequences must have the same size");
2195 
2196   auto &Section = Sections[SectionID];
2197   if (Offset < TLSSequenceOffset ||
2198       (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2199           Section.getSize()) {
2200     report_fatal_error("unexpected end of section in TLS sequence");
2201   }
2202 
2203   auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2204   if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2205       ExpectedCodeSequence) {
2206     report_fatal_error(
2207         "invalid TLS sequence for Global/Local Dynamic TLS Model");
2208   }
2209 
2210   memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2211 }
2212 
2213 size_t RuntimeDyldELF::getGOTEntrySize() {
2214   // We don't use the GOT in all of these cases, but it's essentially free
2215   // to put them all here.
2216   size_t Result = 0;
2217   switch (Arch) {
2218   case Triple::x86_64:
2219   case Triple::aarch64:
2220   case Triple::aarch64_be:
2221   case Triple::ppc64:
2222   case Triple::ppc64le:
2223   case Triple::systemz:
2224     Result = sizeof(uint64_t);
2225     break;
2226   case Triple::x86:
2227   case Triple::arm:
2228   case Triple::thumb:
2229     Result = sizeof(uint32_t);
2230     break;
2231   case Triple::mips:
2232   case Triple::mipsel:
2233   case Triple::mips64:
2234   case Triple::mips64el:
2235     if (IsMipsO32ABI || IsMipsN32ABI)
2236       Result = sizeof(uint32_t);
2237     else if (IsMipsN64ABI)
2238       Result = sizeof(uint64_t);
2239     else
2240       llvm_unreachable("Mips ABI not handled");
2241     break;
2242   default:
2243     llvm_unreachable("Unsupported CPU type!");
2244   }
2245   return Result;
2246 }
2247 
2248 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2249   if (GOTSectionID == 0) {
2250     GOTSectionID = Sections.size();
2251     // Reserve a section id. We'll allocate the section later
2252     // once we know the total size
2253     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2254   }
2255   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2256   CurrentGOTIndex += no;
2257   return StartOffset;
2258 }
2259 
2260 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2261                                              unsigned GOTRelType) {
2262   auto E = GOTOffsetMap.insert({Value, 0});
2263   if (E.second) {
2264     uint64_t GOTOffset = allocateGOTEntries(1);
2265 
2266     // Create relocation for newly created GOT entry
2267     RelocationEntry RE =
2268         computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2269     if (Value.SymbolName)
2270       addRelocationForSymbol(RE, Value.SymbolName);
2271     else
2272       addRelocationForSection(RE, Value.SectionID);
2273 
2274     E.first->second = GOTOffset;
2275   }
2276 
2277   return E.first->second;
2278 }
2279 
2280 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2281                                                 uint64_t Offset,
2282                                                 uint64_t GOTOffset,
2283                                                 uint32_t Type) {
2284   // Fill in the relative address of the GOT Entry into the stub
2285   RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2286   addRelocationForSection(GOTRE, GOTSectionID);
2287 }
2288 
2289 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2290                                                    uint64_t SymbolOffset,
2291                                                    uint32_t Type) {
2292   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2293 }
2294 
2295 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
2296                                   ObjSectionToIDMap &SectionMap) {
2297   if (IsMipsO32ABI)
2298     if (!PendingRelocs.empty())
2299       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2300 
2301   // If necessary, allocate the global offset table
2302   if (GOTSectionID != 0) {
2303     // Allocate memory for the section
2304     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2305     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2306                                                 GOTSectionID, ".got", false);
2307     if (!Addr)
2308       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2309 
2310     Sections[GOTSectionID] =
2311         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2312 
2313     // For now, initialize all GOT entries to zero.  We'll fill them in as
2314     // needed when GOT-based relocations are applied.
2315     memset(Addr, 0, TotalSize);
2316     if (IsMipsN32ABI || IsMipsN64ABI) {
2317       // To correctly resolve Mips GOT relocations, we need a mapping from
2318       // object's sections to GOTs.
2319       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2320            SI != SE; ++SI) {
2321         if (SI->relocation_begin() != SI->relocation_end()) {
2322           Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2323           if (!RelSecOrErr)
2324             return make_error<RuntimeDyldError>(
2325                 toString(RelSecOrErr.takeError()));
2326 
2327           section_iterator RelocatedSection = *RelSecOrErr;
2328           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2329           assert (i != SectionMap.end());
2330           SectionToGOTMap[i->second] = GOTSectionID;
2331         }
2332       }
2333       GOTSymbolOffsets.clear();
2334     }
2335   }
2336 
2337   // Look for and record the EH frame section.
2338   ObjSectionToIDMap::iterator i, e;
2339   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2340     const SectionRef &Section = i->first;
2341 
2342     StringRef Name;
2343     Expected<StringRef> NameOrErr = Section.getName();
2344     if (NameOrErr)
2345       Name = *NameOrErr;
2346     else
2347       consumeError(NameOrErr.takeError());
2348 
2349     if (Name == ".eh_frame") {
2350       UnregisteredEHFrameSections.push_back(i->second);
2351       break;
2352     }
2353   }
2354 
2355   GOTSectionID = 0;
2356   CurrentGOTIndex = 0;
2357 
2358   return Error::success();
2359 }
2360 
2361 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
2362   return Obj.isELF();
2363 }
2364 
2365 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2366   unsigned RelTy = R.getType();
2367   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
2368     return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2369            RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2370 
2371   if (Arch == Triple::x86_64)
2372     return RelTy == ELF::R_X86_64_GOTPCREL ||
2373            RelTy == ELF::R_X86_64_GOTPCRELX ||
2374            RelTy == ELF::R_X86_64_GOT64 ||
2375            RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2376   return false;
2377 }
2378 
2379 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2380   if (Arch != Triple::x86_64)
2381     return true;  // Conservative answer
2382 
2383   switch (R.getType()) {
2384   default:
2385     return true;  // Conservative answer
2386 
2387 
2388   case ELF::R_X86_64_GOTPCREL:
2389   case ELF::R_X86_64_GOTPCRELX:
2390   case ELF::R_X86_64_REX_GOTPCRELX:
2391   case ELF::R_X86_64_GOTPC64:
2392   case ELF::R_X86_64_GOT64:
2393   case ELF::R_X86_64_GOTOFF64:
2394   case ELF::R_X86_64_PC32:
2395   case ELF::R_X86_64_PC64:
2396   case ELF::R_X86_64_64:
2397     // We know that these reloation types won't need a stub function.  This list
2398     // can be extended as needed.
2399     return false;
2400   }
2401 }
2402 
2403 } // namespace llvm
2404