1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the MC-JIT runtime dynamic linker. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ExecutionEngine/RuntimeDyld.h" 14 #include "RuntimeDyldCOFF.h" 15 #include "RuntimeDyldELF.h" 16 #include "RuntimeDyldImpl.h" 17 #include "RuntimeDyldMachO.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/Support/MSVCErrorWorkarounds.h" 21 #include "llvm/Support/ManagedStatic.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/MutexGuard.h" 24 25 #include <future> 26 27 using namespace llvm; 28 using namespace llvm::object; 29 30 #define DEBUG_TYPE "dyld" 31 32 namespace { 33 34 enum RuntimeDyldErrorCode { 35 GenericRTDyldError = 1 36 }; 37 38 // FIXME: This class is only here to support the transition to llvm::Error. It 39 // will be removed once this transition is complete. Clients should prefer to 40 // deal with the Error value directly, rather than converting to error_code. 41 class RuntimeDyldErrorCategory : public std::error_category { 42 public: 43 const char *name() const noexcept override { return "runtimedyld"; } 44 45 std::string message(int Condition) const override { 46 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 47 case GenericRTDyldError: return "Generic RuntimeDyld error"; 48 } 49 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 50 } 51 }; 52 53 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 54 55 } 56 57 char RuntimeDyldError::ID = 0; 58 59 void RuntimeDyldError::log(raw_ostream &OS) const { 60 OS << ErrMsg << "\n"; 61 } 62 63 std::error_code RuntimeDyldError::convertToErrorCode() const { 64 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 65 } 66 67 // Empty out-of-line virtual destructor as the key function. 68 RuntimeDyldImpl::~RuntimeDyldImpl() {} 69 70 // Pin LoadedObjectInfo's vtables to this file. 71 void RuntimeDyld::LoadedObjectInfo::anchor() {} 72 73 namespace llvm { 74 75 void RuntimeDyldImpl::registerEHFrames() {} 76 77 void RuntimeDyldImpl::deregisterEHFrames() { 78 MemMgr.deregisterEHFrames(); 79 } 80 81 #ifndef NDEBUG 82 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 83 dbgs() << "----- Contents of section " << S.getName() << " " << State 84 << " -----"; 85 86 if (S.getAddress() == nullptr) { 87 dbgs() << "\n <section not emitted>\n"; 88 return; 89 } 90 91 const unsigned ColsPerRow = 16; 92 93 uint8_t *DataAddr = S.getAddress(); 94 uint64_t LoadAddr = S.getLoadAddress(); 95 96 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 97 unsigned BytesRemaining = S.getSize(); 98 99 if (StartPadding) { 100 dbgs() << "\n" << format("0x%016" PRIx64, 101 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 102 while (StartPadding--) 103 dbgs() << " "; 104 } 105 106 while (BytesRemaining > 0) { 107 if ((LoadAddr & (ColsPerRow - 1)) == 0) 108 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 109 110 dbgs() << " " << format("%02x", *DataAddr); 111 112 ++DataAddr; 113 ++LoadAddr; 114 --BytesRemaining; 115 } 116 117 dbgs() << "\n"; 118 } 119 #endif 120 121 // Resolve the relocations for all symbols we currently know about. 122 void RuntimeDyldImpl::resolveRelocations() { 123 MutexGuard locked(lock); 124 125 // Print out the sections prior to relocation. 126 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 127 dumpSectionMemory(Sections[i], "before relocations");); 128 129 // First, resolve relocations associated with external symbols. 130 if (auto Err = resolveExternalSymbols()) { 131 HasError = true; 132 ErrorStr = toString(std::move(Err)); 133 } 134 135 resolveLocalRelocations(); 136 137 // Print out sections after relocation. 138 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 139 dumpSectionMemory(Sections[i], "after relocations");); 140 } 141 142 void RuntimeDyldImpl::resolveLocalRelocations() { 143 // Iterate over all outstanding relocations 144 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 145 // The Section here (Sections[i]) refers to the section in which the 146 // symbol for the relocation is located. The SectionID in the relocation 147 // entry provides the section to which the relocation will be applied. 148 int Idx = it->first; 149 uint64_t Addr = Sections[Idx].getLoadAddress(); 150 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 151 << format("%p", (uintptr_t)Addr) << "\n"); 152 resolveRelocationList(it->second, Addr); 153 } 154 Relocations.clear(); 155 } 156 157 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 158 uint64_t TargetAddress) { 159 MutexGuard locked(lock); 160 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 161 if (Sections[i].getAddress() == LocalAddress) { 162 reassignSectionAddress(i, TargetAddress); 163 return; 164 } 165 } 166 llvm_unreachable("Attempting to remap address of unknown section!"); 167 } 168 169 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 170 uint64_t &Result) { 171 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 172 if (!AddressOrErr) 173 return AddressOrErr.takeError(); 174 Result = *AddressOrErr - Sec.getAddress(); 175 return Error::success(); 176 } 177 178 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 179 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 180 MutexGuard locked(lock); 181 182 // Save information about our target 183 Arch = (Triple::ArchType)Obj.getArch(); 184 IsTargetLittleEndian = Obj.isLittleEndian(); 185 setMipsABI(Obj); 186 187 // Compute the memory size required to load all sections to be loaded 188 // and pass this information to the memory manager 189 if (MemMgr.needsToReserveAllocationSpace()) { 190 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 191 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 192 if (auto Err = computeTotalAllocSize(Obj, 193 CodeSize, CodeAlign, 194 RODataSize, RODataAlign, 195 RWDataSize, RWDataAlign)) 196 return std::move(Err); 197 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 198 RWDataSize, RWDataAlign); 199 } 200 201 // Used sections from the object file 202 ObjSectionToIDMap LocalSections; 203 204 // Common symbols requiring allocation, with their sizes and alignments 205 CommonSymbolList CommonSymbolsToAllocate; 206 207 uint64_t CommonSize = 0; 208 uint32_t CommonAlign = 0; 209 210 // First, collect all weak and common symbols. We need to know if stronger 211 // definitions occur elsewhere. 212 JITSymbolResolver::LookupSet ResponsibilitySet; 213 { 214 JITSymbolResolver::LookupSet Symbols; 215 for (auto &Sym : Obj.symbols()) { 216 uint32_t Flags = Sym.getFlags(); 217 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) { 218 // Get symbol name. 219 if (auto NameOrErr = Sym.getName()) 220 Symbols.insert(*NameOrErr); 221 else 222 return NameOrErr.takeError(); 223 } 224 } 225 226 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) 227 ResponsibilitySet = std::move(*ResultOrErr); 228 else 229 return ResultOrErr.takeError(); 230 } 231 232 // Parse symbols 233 LLVM_DEBUG(dbgs() << "Parse symbols:\n"); 234 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 235 ++I) { 236 uint32_t Flags = I->getFlags(); 237 238 // Skip undefined symbols. 239 if (Flags & SymbolRef::SF_Undefined) 240 continue; 241 242 // Get the symbol type. 243 object::SymbolRef::Type SymType; 244 if (auto SymTypeOrErr = I->getType()) 245 SymType = *SymTypeOrErr; 246 else 247 return SymTypeOrErr.takeError(); 248 249 // Get symbol name. 250 StringRef Name; 251 if (auto NameOrErr = I->getName()) 252 Name = *NameOrErr; 253 else 254 return NameOrErr.takeError(); 255 256 // Compute JIT symbol flags. 257 auto JITSymFlags = getJITSymbolFlags(*I); 258 if (!JITSymFlags) 259 return JITSymFlags.takeError(); 260 261 // If this is a weak definition, check to see if there's a strong one. 262 // If there is, skip this symbol (we won't be providing it: the strong 263 // definition will). If there's no strong definition, make this definition 264 // strong. 265 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { 266 // First check whether there's already a definition in this instance. 267 if (GlobalSymbolTable.count(Name)) 268 continue; 269 270 // If we're not responsible for this symbol, skip it. 271 if (!ResponsibilitySet.count(Name)) 272 continue; 273 274 // Otherwise update the flags on the symbol to make this definition 275 // strong. 276 if (JITSymFlags->isWeak()) 277 *JITSymFlags &= ~JITSymbolFlags::Weak; 278 if (JITSymFlags->isCommon()) { 279 *JITSymFlags &= ~JITSymbolFlags::Common; 280 uint32_t Align = I->getAlignment(); 281 uint64_t Size = I->getCommonSize(); 282 if (!CommonAlign) 283 CommonAlign = Align; 284 CommonSize = alignTo(CommonSize, Align) + Size; 285 CommonSymbolsToAllocate.push_back(*I); 286 } 287 } 288 289 if (Flags & SymbolRef::SF_Absolute && 290 SymType != object::SymbolRef::ST_File) { 291 uint64_t Addr = 0; 292 if (auto AddrOrErr = I->getAddress()) 293 Addr = *AddrOrErr; 294 else 295 return AddrOrErr.takeError(); 296 297 unsigned SectionID = AbsoluteSymbolSection; 298 299 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 300 << " SID: " << SectionID 301 << " Offset: " << format("%p", (uintptr_t)Addr) 302 << " flags: " << Flags << "\n"); 303 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags); 304 } else if (SymType == object::SymbolRef::ST_Function || 305 SymType == object::SymbolRef::ST_Data || 306 SymType == object::SymbolRef::ST_Unknown || 307 SymType == object::SymbolRef::ST_Other) { 308 309 section_iterator SI = Obj.section_end(); 310 if (auto SIOrErr = I->getSection()) 311 SI = *SIOrErr; 312 else 313 return SIOrErr.takeError(); 314 315 if (SI == Obj.section_end()) 316 continue; 317 318 // Get symbol offset. 319 uint64_t SectOffset; 320 if (auto Err = getOffset(*I, *SI, SectOffset)) 321 return std::move(Err); 322 323 bool IsCode = SI->isText(); 324 unsigned SectionID; 325 if (auto SectionIDOrErr = 326 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 327 SectionID = *SectionIDOrErr; 328 else 329 return SectionIDOrErr.takeError(); 330 331 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 332 << " SID: " << SectionID 333 << " Offset: " << format("%p", (uintptr_t)SectOffset) 334 << " flags: " << Flags << "\n"); 335 GlobalSymbolTable[Name] = 336 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); 337 } 338 } 339 340 // Allocate common symbols 341 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, 342 CommonAlign)) 343 return std::move(Err); 344 345 // Parse and process relocations 346 LLVM_DEBUG(dbgs() << "Parse relocations:\n"); 347 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 348 SI != SE; ++SI) { 349 StubMap Stubs; 350 section_iterator RelocatedSection = SI->getRelocatedSection(); 351 352 if (RelocatedSection == SE) 353 continue; 354 355 relocation_iterator I = SI->relocation_begin(); 356 relocation_iterator E = SI->relocation_end(); 357 358 if (I == E && !ProcessAllSections) 359 continue; 360 361 bool IsCode = RelocatedSection->isText(); 362 unsigned SectionID = 0; 363 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 364 LocalSections)) 365 SectionID = *SectionIDOrErr; 366 else 367 return SectionIDOrErr.takeError(); 368 369 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 370 371 for (; I != E;) 372 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 373 I = *IOrErr; 374 else 375 return IOrErr.takeError(); 376 377 // If there is a NotifyStubEmitted callback set, call it to register any 378 // stubs created for this section. 379 if (NotifyStubEmitted) { 380 StringRef FileName = Obj.getFileName(); 381 StringRef SectionName = Sections[SectionID].getName(); 382 for (auto &KV : Stubs) { 383 384 auto &VR = KV.first; 385 uint64_t StubAddr = KV.second; 386 387 // If this is a named stub, just call NotifyStubEmitted. 388 if (VR.SymbolName) { 389 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, 390 StubAddr); 391 continue; 392 } 393 394 // Otherwise we will have to try a reverse lookup on the globla symbol table. 395 for (auto &GSTMapEntry : GlobalSymbolTable) { 396 StringRef SymbolName = GSTMapEntry.first(); 397 auto &GSTEntry = GSTMapEntry.second; 398 if (GSTEntry.getSectionID() == VR.SectionID && 399 GSTEntry.getOffset() == VR.Offset) { 400 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, 401 StubAddr); 402 break; 403 } 404 } 405 } 406 } 407 } 408 409 // Process remaining sections 410 if (ProcessAllSections) { 411 LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); 412 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 413 SI != SE; ++SI) { 414 415 /* Ignore already loaded sections */ 416 if (LocalSections.find(*SI) != LocalSections.end()) 417 continue; 418 419 bool IsCode = SI->isText(); 420 if (auto SectionIDOrErr = 421 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 422 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); 423 else 424 return SectionIDOrErr.takeError(); 425 } 426 } 427 428 // Give the subclasses a chance to tie-up any loose ends. 429 if (auto Err = finalizeLoad(Obj, LocalSections)) 430 return std::move(Err); 431 432 // for (auto E : LocalSections) 433 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 434 435 return LocalSections; 436 } 437 438 // A helper method for computeTotalAllocSize. 439 // Computes the memory size required to allocate sections with the given sizes, 440 // assuming that all sections are allocated with the given alignment 441 static uint64_t 442 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 443 uint64_t Alignment) { 444 uint64_t TotalSize = 0; 445 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 446 uint64_t AlignedSize = 447 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 448 TotalSize += AlignedSize; 449 } 450 return TotalSize; 451 } 452 453 static bool isRequiredForExecution(const SectionRef Section) { 454 const ObjectFile *Obj = Section.getObject(); 455 if (isa<object::ELFObjectFileBase>(Obj)) 456 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 457 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 458 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 459 // Avoid loading zero-sized COFF sections. 460 // In PE files, VirtualSize gives the section size, and SizeOfRawData 461 // may be zero for sections with content. In Obj files, SizeOfRawData 462 // gives the section size, and VirtualSize is always zero. Hence 463 // the need to check for both cases below. 464 bool HasContent = 465 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 466 bool IsDiscardable = 467 CoffSection->Characteristics & 468 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 469 return HasContent && !IsDiscardable; 470 } 471 472 assert(isa<MachOObjectFile>(Obj)); 473 return true; 474 } 475 476 static bool isReadOnlyData(const SectionRef Section) { 477 const ObjectFile *Obj = Section.getObject(); 478 if (isa<object::ELFObjectFileBase>(Obj)) 479 return !(ELFSectionRef(Section).getFlags() & 480 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 481 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 482 return ((COFFObj->getCOFFSection(Section)->Characteristics & 483 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 484 | COFF::IMAGE_SCN_MEM_READ 485 | COFF::IMAGE_SCN_MEM_WRITE)) 486 == 487 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 488 | COFF::IMAGE_SCN_MEM_READ)); 489 490 assert(isa<MachOObjectFile>(Obj)); 491 return false; 492 } 493 494 static bool isZeroInit(const SectionRef Section) { 495 const ObjectFile *Obj = Section.getObject(); 496 if (isa<object::ELFObjectFileBase>(Obj)) 497 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 498 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 499 return COFFObj->getCOFFSection(Section)->Characteristics & 500 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 501 502 auto *MachO = cast<MachOObjectFile>(Obj); 503 unsigned SectionType = MachO->getSectionType(Section); 504 return SectionType == MachO::S_ZEROFILL || 505 SectionType == MachO::S_GB_ZEROFILL; 506 } 507 508 // Compute an upper bound of the memory size that is required to load all 509 // sections 510 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 511 uint64_t &CodeSize, 512 uint32_t &CodeAlign, 513 uint64_t &RODataSize, 514 uint32_t &RODataAlign, 515 uint64_t &RWDataSize, 516 uint32_t &RWDataAlign) { 517 // Compute the size of all sections required for execution 518 std::vector<uint64_t> CodeSectionSizes; 519 std::vector<uint64_t> ROSectionSizes; 520 std::vector<uint64_t> RWSectionSizes; 521 522 // Collect sizes of all sections to be loaded; 523 // also determine the max alignment of all sections 524 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 525 SI != SE; ++SI) { 526 const SectionRef &Section = *SI; 527 528 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; 529 530 // Consider only the sections that are required to be loaded for execution 531 if (IsRequired) { 532 uint64_t DataSize = Section.getSize(); 533 uint64_t Alignment64 = Section.getAlignment(); 534 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 535 bool IsCode = Section.isText(); 536 bool IsReadOnly = isReadOnlyData(Section); 537 538 StringRef Name; 539 if (auto EC = Section.getName(Name)) 540 return errorCodeToError(EC); 541 542 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 543 544 uint64_t PaddingSize = 0; 545 if (Name == ".eh_frame") 546 PaddingSize += 4; 547 if (StubBufSize != 0) 548 PaddingSize += getStubAlignment() - 1; 549 550 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; 551 552 // The .eh_frame section (at least on Linux) needs an extra four bytes 553 // padded 554 // with zeroes added at the end. For MachO objects, this section has a 555 // slightly different name, so this won't have any effect for MachO 556 // objects. 557 if (Name == ".eh_frame") 558 SectionSize += 4; 559 560 if (!SectionSize) 561 SectionSize = 1; 562 563 if (IsCode) { 564 CodeAlign = std::max(CodeAlign, Alignment); 565 CodeSectionSizes.push_back(SectionSize); 566 } else if (IsReadOnly) { 567 RODataAlign = std::max(RODataAlign, Alignment); 568 ROSectionSizes.push_back(SectionSize); 569 } else { 570 RWDataAlign = std::max(RWDataAlign, Alignment); 571 RWSectionSizes.push_back(SectionSize); 572 } 573 } 574 } 575 576 // Compute Global Offset Table size. If it is not zero we 577 // also update alignment, which is equal to a size of a 578 // single GOT entry. 579 if (unsigned GotSize = computeGOTSize(Obj)) { 580 RWSectionSizes.push_back(GotSize); 581 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); 582 } 583 584 // Compute the size of all common symbols 585 uint64_t CommonSize = 0; 586 uint32_t CommonAlign = 1; 587 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 588 ++I) { 589 uint32_t Flags = I->getFlags(); 590 if (Flags & SymbolRef::SF_Common) { 591 // Add the common symbols to a list. We'll allocate them all below. 592 uint64_t Size = I->getCommonSize(); 593 uint32_t Align = I->getAlignment(); 594 // If this is the first common symbol, use its alignment as the alignment 595 // for the common symbols section. 596 if (CommonSize == 0) 597 CommonAlign = Align; 598 CommonSize = alignTo(CommonSize, Align) + Size; 599 } 600 } 601 if (CommonSize != 0) { 602 RWSectionSizes.push_back(CommonSize); 603 RWDataAlign = std::max(RWDataAlign, CommonAlign); 604 } 605 606 // Compute the required allocation space for each different type of sections 607 // (code, read-only data, read-write data) assuming that all sections are 608 // allocated with the max alignment. Note that we cannot compute with the 609 // individual alignments of the sections, because then the required size 610 // depends on the order, in which the sections are allocated. 611 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 612 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 613 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 614 615 return Error::success(); 616 } 617 618 // compute GOT size 619 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { 620 size_t GotEntrySize = getGOTEntrySize(); 621 if (!GotEntrySize) 622 return 0; 623 624 size_t GotSize = 0; 625 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 626 SI != SE; ++SI) { 627 628 for (const RelocationRef &Reloc : SI->relocations()) 629 if (relocationNeedsGot(Reloc)) 630 GotSize += GotEntrySize; 631 } 632 633 return GotSize; 634 } 635 636 // compute stub buffer size for the given section 637 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 638 const SectionRef &Section) { 639 unsigned StubSize = getMaxStubSize(); 640 if (StubSize == 0) { 641 return 0; 642 } 643 // FIXME: this is an inefficient way to handle this. We should computed the 644 // necessary section allocation size in loadObject by walking all the sections 645 // once. 646 unsigned StubBufSize = 0; 647 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 648 SI != SE; ++SI) { 649 section_iterator RelSecI = SI->getRelocatedSection(); 650 if (!(RelSecI == Section)) 651 continue; 652 653 for (const RelocationRef &Reloc : SI->relocations()) 654 if (relocationNeedsStub(Reloc)) 655 StubBufSize += StubSize; 656 } 657 658 // Get section data size and alignment 659 uint64_t DataSize = Section.getSize(); 660 uint64_t Alignment64 = Section.getAlignment(); 661 662 // Add stubbuf size alignment 663 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 664 unsigned StubAlignment = getStubAlignment(); 665 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 666 if (StubAlignment > EndAlignment) 667 StubBufSize += StubAlignment - EndAlignment; 668 return StubBufSize; 669 } 670 671 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 672 unsigned Size) const { 673 uint64_t Result = 0; 674 if (IsTargetLittleEndian) { 675 Src += Size - 1; 676 while (Size--) 677 Result = (Result << 8) | *Src--; 678 } else 679 while (Size--) 680 Result = (Result << 8) | *Src++; 681 682 return Result; 683 } 684 685 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 686 unsigned Size) const { 687 if (IsTargetLittleEndian) { 688 while (Size--) { 689 *Dst++ = Value & 0xFF; 690 Value >>= 8; 691 } 692 } else { 693 Dst += Size - 1; 694 while (Size--) { 695 *Dst-- = Value & 0xFF; 696 Value >>= 8; 697 } 698 } 699 } 700 701 Expected<JITSymbolFlags> 702 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { 703 return JITSymbolFlags::fromObjectSymbol(SR); 704 } 705 706 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 707 CommonSymbolList &SymbolsToAllocate, 708 uint64_t CommonSize, 709 uint32_t CommonAlign) { 710 if (SymbolsToAllocate.empty()) 711 return Error::success(); 712 713 // Allocate memory for the section 714 unsigned SectionID = Sections.size(); 715 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 716 "<common symbols>", false); 717 if (!Addr) 718 report_fatal_error("Unable to allocate memory for common symbols!"); 719 uint64_t Offset = 0; 720 Sections.push_back( 721 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 722 memset(Addr, 0, CommonSize); 723 724 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID 725 << " new addr: " << format("%p", Addr) 726 << " DataSize: " << CommonSize << "\n"); 727 728 // Assign the address of each symbol 729 for (auto &Sym : SymbolsToAllocate) { 730 uint32_t Align = Sym.getAlignment(); 731 uint64_t Size = Sym.getCommonSize(); 732 StringRef Name; 733 if (auto NameOrErr = Sym.getName()) 734 Name = *NameOrErr; 735 else 736 return NameOrErr.takeError(); 737 if (Align) { 738 // This symbol has an alignment requirement. 739 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 740 Addr += AlignOffset; 741 Offset += AlignOffset; 742 } 743 auto JITSymFlags = getJITSymbolFlags(Sym); 744 745 if (!JITSymFlags) 746 return JITSymFlags.takeError(); 747 748 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 749 << format("%p", Addr) << "\n"); 750 GlobalSymbolTable[Name] = 751 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); 752 Offset += Size; 753 Addr += Size; 754 } 755 756 return Error::success(); 757 } 758 759 Expected<unsigned> 760 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 761 const SectionRef &Section, 762 bool IsCode) { 763 StringRef data; 764 uint64_t Alignment64 = Section.getAlignment(); 765 766 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 767 unsigned PaddingSize = 0; 768 unsigned StubBufSize = 0; 769 bool IsRequired = isRequiredForExecution(Section); 770 bool IsVirtual = Section.isVirtual(); 771 bool IsZeroInit = isZeroInit(Section); 772 bool IsReadOnly = isReadOnlyData(Section); 773 uint64_t DataSize = Section.getSize(); 774 775 // An alignment of 0 (at least with ELF) is identical to an alignment of 1, 776 // while being more "polite". Other formats do not support 0-aligned sections 777 // anyway, so we should guarantee that the alignment is always at least 1. 778 Alignment = std::max(1u, Alignment); 779 780 StringRef Name; 781 if (auto EC = Section.getName(Name)) 782 return errorCodeToError(EC); 783 784 StubBufSize = computeSectionStubBufSize(Obj, Section); 785 786 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 787 // with zeroes added at the end. For MachO objects, this section has a 788 // slightly different name, so this won't have any effect for MachO objects. 789 if (Name == ".eh_frame") 790 PaddingSize = 4; 791 792 uintptr_t Allocate; 793 unsigned SectionID = Sections.size(); 794 uint8_t *Addr; 795 const char *pData = nullptr; 796 797 // If this section contains any bits (i.e. isn't a virtual or bss section), 798 // grab a reference to them. 799 if (!IsVirtual && !IsZeroInit) { 800 // In either case, set the location of the unrelocated section in memory, 801 // since we still process relocations for it even if we're not applying them. 802 if (Expected<StringRef> E = Section.getContents()) 803 data = *E; 804 else 805 return E.takeError(); 806 pData = data.data(); 807 } 808 809 // If there are any stubs then the section alignment needs to be at least as 810 // high as stub alignment or padding calculations may by incorrect when the 811 // section is remapped. 812 if (StubBufSize != 0) { 813 Alignment = std::max(Alignment, getStubAlignment()); 814 PaddingSize += getStubAlignment() - 1; 815 } 816 817 // Some sections, such as debug info, don't need to be loaded for execution. 818 // Process those only if explicitly requested. 819 if (IsRequired || ProcessAllSections) { 820 Allocate = DataSize + PaddingSize + StubBufSize; 821 if (!Allocate) 822 Allocate = 1; 823 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 824 Name) 825 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 826 Name, IsReadOnly); 827 if (!Addr) 828 report_fatal_error("Unable to allocate section memory!"); 829 830 // Zero-initialize or copy the data from the image 831 if (IsZeroInit || IsVirtual) 832 memset(Addr, 0, DataSize); 833 else 834 memcpy(Addr, pData, DataSize); 835 836 // Fill in any extra bytes we allocated for padding 837 if (PaddingSize != 0) { 838 memset(Addr + DataSize, 0, PaddingSize); 839 // Update the DataSize variable to include padding. 840 DataSize += PaddingSize; 841 842 // Align DataSize to stub alignment if we have any stubs (PaddingSize will 843 // have been increased above to account for this). 844 if (StubBufSize > 0) 845 DataSize &= -(uint64_t)getStubAlignment(); 846 } 847 848 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " 849 << Name << " obj addr: " << format("%p", pData) 850 << " new addr: " << format("%p", Addr) << " DataSize: " 851 << DataSize << " StubBufSize: " << StubBufSize 852 << " Allocate: " << Allocate << "\n"); 853 } else { 854 // Even if we didn't load the section, we need to record an entry for it 855 // to handle later processing (and by 'handle' I mean don't do anything 856 // with these sections). 857 Allocate = 0; 858 Addr = nullptr; 859 LLVM_DEBUG( 860 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 861 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 862 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 863 << " Allocate: " << Allocate << "\n"); 864 } 865 866 Sections.push_back( 867 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 868 869 // Debug info sections are linked as if their load address was zero 870 if (!IsRequired) 871 Sections.back().setLoadAddress(0); 872 873 return SectionID; 874 } 875 876 Expected<unsigned> 877 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 878 const SectionRef &Section, 879 bool IsCode, 880 ObjSectionToIDMap &LocalSections) { 881 882 unsigned SectionID = 0; 883 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 884 if (i != LocalSections.end()) 885 SectionID = i->second; 886 else { 887 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 888 SectionID = *SectionIDOrErr; 889 else 890 return SectionIDOrErr.takeError(); 891 LocalSections[Section] = SectionID; 892 } 893 return SectionID; 894 } 895 896 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 897 unsigned SectionID) { 898 Relocations[SectionID].push_back(RE); 899 } 900 901 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 902 StringRef SymbolName) { 903 // Relocation by symbol. If the symbol is found in the global symbol table, 904 // create an appropriate section relocation. Otherwise, add it to 905 // ExternalSymbolRelocations. 906 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 907 if (Loc == GlobalSymbolTable.end()) { 908 ExternalSymbolRelocations[SymbolName].push_back(RE); 909 } else { 910 // Copy the RE since we want to modify its addend. 911 RelocationEntry RECopy = RE; 912 const auto &SymInfo = Loc->second; 913 RECopy.Addend += SymInfo.getOffset(); 914 Relocations[SymInfo.getSectionID()].push_back(RECopy); 915 } 916 } 917 918 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 919 unsigned AbiVariant) { 920 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { 921 // This stub has to be able to access the full address space, 922 // since symbol lookup won't necessarily find a handy, in-range, 923 // PLT stub for functions which could be anywhere. 924 // Stub can use ip0 (== x16) to calculate address 925 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 926 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 927 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 928 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 929 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 930 931 return Addr; 932 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 933 // TODO: There is only ARM far stub now. We should add the Thumb stub, 934 // and stubs for branches Thumb - ARM and ARM - Thumb. 935 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] 936 return Addr + 4; 937 } else if (IsMipsO32ABI || IsMipsN32ABI) { 938 // 0: 3c190000 lui t9,%hi(addr). 939 // 4: 27390000 addiu t9,t9,%lo(addr). 940 // 8: 03200008 jr t9. 941 // c: 00000000 nop. 942 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 943 const unsigned NopInstr = 0x0; 944 unsigned JrT9Instr = 0x03200008; 945 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || 946 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 947 JrT9Instr = 0x03200009; 948 949 writeBytesUnaligned(LuiT9Instr, Addr, 4); 950 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); 951 writeBytesUnaligned(JrT9Instr, Addr + 8, 4); 952 writeBytesUnaligned(NopInstr, Addr + 12, 4); 953 return Addr; 954 } else if (IsMipsN64ABI) { 955 // 0: 3c190000 lui t9,%highest(addr). 956 // 4: 67390000 daddiu t9,t9,%higher(addr). 957 // 8: 0019CC38 dsll t9,t9,16. 958 // c: 67390000 daddiu t9,t9,%hi(addr). 959 // 10: 0019CC38 dsll t9,t9,16. 960 // 14: 67390000 daddiu t9,t9,%lo(addr). 961 // 18: 03200008 jr t9. 962 // 1c: 00000000 nop. 963 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, 964 DsllT9Instr = 0x19CC38; 965 const unsigned NopInstr = 0x0; 966 unsigned JrT9Instr = 0x03200008; 967 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 968 JrT9Instr = 0x03200009; 969 970 writeBytesUnaligned(LuiT9Instr, Addr, 4); 971 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); 972 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); 973 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); 974 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); 975 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); 976 writeBytesUnaligned(JrT9Instr, Addr + 24, 4); 977 writeBytesUnaligned(NopInstr, Addr + 28, 4); 978 return Addr; 979 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 980 // Depending on which version of the ELF ABI is in use, we need to 981 // generate one of two variants of the stub. They both start with 982 // the same sequence to load the target address into r12. 983 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 984 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 985 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 986 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 987 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 988 if (AbiVariant == 2) { 989 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 990 // The address is already in r12 as required by the ABI. Branch to it. 991 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 992 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 993 writeInt32BE(Addr+28, 0x4E800420); // bctr 994 } else { 995 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 996 // Load the function address on r11 and sets it to control register. Also 997 // loads the function TOC in r2 and environment pointer to r11. 998 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 999 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 1000 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 1001 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 1002 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 1003 writeInt32BE(Addr+40, 0x4E800420); // bctr 1004 } 1005 return Addr; 1006 } else if (Arch == Triple::systemz) { 1007 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 1008 writeInt16BE(Addr+2, 0x0000); 1009 writeInt16BE(Addr+4, 0x0004); 1010 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 1011 // 8-byte address stored at Addr + 8 1012 return Addr; 1013 } else if (Arch == Triple::x86_64) { 1014 *Addr = 0xFF; // jmp 1015 *(Addr+1) = 0x25; // rip 1016 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 1017 } else if (Arch == Triple::x86) { 1018 *Addr = 0xE9; // 32-bit pc-relative jump. 1019 } 1020 return Addr; 1021 } 1022 1023 // Assign an address to a symbol name and resolve all the relocations 1024 // associated with it. 1025 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 1026 uint64_t Addr) { 1027 // The address to use for relocation resolution is not 1028 // the address of the local section buffer. We must be doing 1029 // a remote execution environment of some sort. Relocations can't 1030 // be applied until all the sections have been moved. The client must 1031 // trigger this with a call to MCJIT::finalize() or 1032 // RuntimeDyld::resolveRelocations(). 1033 // 1034 // Addr is a uint64_t because we can't assume the pointer width 1035 // of the target is the same as that of the host. Just use a generic 1036 // "big enough" type. 1037 LLVM_DEBUG( 1038 dbgs() << "Reassigning address for section " << SectionID << " (" 1039 << Sections[SectionID].getName() << "): " 1040 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 1041 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 1042 Sections[SectionID].setLoadAddress(Addr); 1043 } 1044 1045 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 1046 uint64_t Value) { 1047 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1048 const RelocationEntry &RE = Relocs[i]; 1049 // Ignore relocations for sections that were not loaded 1050 if (Sections[RE.SectionID].getAddress() == nullptr) 1051 continue; 1052 resolveRelocation(RE, Value); 1053 } 1054 } 1055 1056 void RuntimeDyldImpl::applyExternalSymbolRelocations( 1057 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { 1058 while (!ExternalSymbolRelocations.empty()) { 1059 1060 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 1061 1062 StringRef Name = i->first(); 1063 if (Name.size() == 0) { 1064 // This is an absolute symbol, use an address of zero. 1065 LLVM_DEBUG(dbgs() << "Resolving absolute relocations." 1066 << "\n"); 1067 RelocationList &Relocs = i->second; 1068 resolveRelocationList(Relocs, 0); 1069 } else { 1070 uint64_t Addr = 0; 1071 JITSymbolFlags Flags; 1072 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 1073 if (Loc == GlobalSymbolTable.end()) { 1074 auto RRI = ExternalSymbolMap.find(Name); 1075 assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); 1076 Addr = RRI->second.getAddress(); 1077 Flags = RRI->second.getFlags(); 1078 // The call to getSymbolAddress may have caused additional modules to 1079 // be loaded, which may have added new entries to the 1080 // ExternalSymbolRelocations map. Consquently, we need to update our 1081 // iterator. This is also why retrieval of the relocation list 1082 // associated with this symbol is deferred until below this point. 1083 // New entries may have been added to the relocation list. 1084 i = ExternalSymbolRelocations.find(Name); 1085 } else { 1086 // We found the symbol in our global table. It was probably in a 1087 // Module that we loaded previously. 1088 const auto &SymInfo = Loc->second; 1089 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 1090 SymInfo.getOffset(); 1091 Flags = SymInfo.getFlags(); 1092 } 1093 1094 // FIXME: Implement error handling that doesn't kill the host program! 1095 if (!Addr) 1096 report_fatal_error("Program used external function '" + Name + 1097 "' which could not be resolved!"); 1098 1099 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 1100 // manually and we shouldn't resolve its relocations. 1101 if (Addr != UINT64_MAX) { 1102 1103 // Tweak the address based on the symbol flags if necessary. 1104 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit 1105 // if the target symbol is Thumb. 1106 Addr = modifyAddressBasedOnFlags(Addr, Flags); 1107 1108 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 1109 << format("0x%lx", Addr) << "\n"); 1110 // This list may have been updated when we called getSymbolAddress, so 1111 // don't change this code to get the list earlier. 1112 RelocationList &Relocs = i->second; 1113 resolveRelocationList(Relocs, Addr); 1114 } 1115 } 1116 1117 ExternalSymbolRelocations.erase(i); 1118 } 1119 } 1120 1121 Error RuntimeDyldImpl::resolveExternalSymbols() { 1122 StringMap<JITEvaluatedSymbol> ExternalSymbolMap; 1123 1124 // Resolution can trigger emission of more symbols, so iterate until 1125 // we've resolved *everything*. 1126 { 1127 JITSymbolResolver::LookupSet ResolvedSymbols; 1128 1129 while (true) { 1130 JITSymbolResolver::LookupSet NewSymbols; 1131 1132 for (auto &RelocKV : ExternalSymbolRelocations) { 1133 StringRef Name = RelocKV.first(); 1134 if (!Name.empty() && !GlobalSymbolTable.count(Name) && 1135 !ResolvedSymbols.count(Name)) 1136 NewSymbols.insert(Name); 1137 } 1138 1139 if (NewSymbols.empty()) 1140 break; 1141 1142 #ifdef _MSC_VER 1143 using ExpectedLookupResult = 1144 MSVCPExpected<JITSymbolResolver::LookupResult>; 1145 #else 1146 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; 1147 #endif 1148 1149 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); 1150 auto NewSymbolsF = NewSymbolsP->get_future(); 1151 Resolver.lookup(NewSymbols, 1152 [=](Expected<JITSymbolResolver::LookupResult> Result) { 1153 NewSymbolsP->set_value(std::move(Result)); 1154 }); 1155 1156 auto NewResolverResults = NewSymbolsF.get(); 1157 1158 if (!NewResolverResults) 1159 return NewResolverResults.takeError(); 1160 1161 assert(NewResolverResults->size() == NewSymbols.size() && 1162 "Should have errored on unresolved symbols"); 1163 1164 for (auto &RRKV : *NewResolverResults) { 1165 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); 1166 ExternalSymbolMap.insert(RRKV); 1167 ResolvedSymbols.insert(RRKV.first); 1168 } 1169 } 1170 } 1171 1172 applyExternalSymbolRelocations(ExternalSymbolMap); 1173 1174 return Error::success(); 1175 } 1176 1177 void RuntimeDyldImpl::finalizeAsync( 1178 std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted, 1179 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) { 1180 1181 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have 1182 // c++14. 1183 auto SharedUnderlyingBuffer = 1184 std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer)); 1185 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); 1186 auto PostResolveContinuation = 1187 [SharedThis, OnEmitted, SharedUnderlyingBuffer]( 1188 Expected<JITSymbolResolver::LookupResult> Result) { 1189 if (!Result) { 1190 OnEmitted(Result.takeError()); 1191 return; 1192 } 1193 1194 /// Copy the result into a StringMap, where the keys are held by value. 1195 StringMap<JITEvaluatedSymbol> Resolved; 1196 for (auto &KV : *Result) 1197 Resolved[KV.first] = KV.second; 1198 1199 SharedThis->applyExternalSymbolRelocations(Resolved); 1200 SharedThis->resolveLocalRelocations(); 1201 SharedThis->registerEHFrames(); 1202 std::string ErrMsg; 1203 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) 1204 OnEmitted(make_error<StringError>(std::move(ErrMsg), 1205 inconvertibleErrorCode())); 1206 else 1207 OnEmitted(Error::success()); 1208 }; 1209 1210 JITSymbolResolver::LookupSet Symbols; 1211 1212 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { 1213 StringRef Name = RelocKV.first(); 1214 assert(!Name.empty() && "Symbol has no name?"); 1215 assert(!SharedThis->GlobalSymbolTable.count(Name) && 1216 "Name already processed. RuntimeDyld instances can not be re-used " 1217 "when finalizing with finalizeAsync."); 1218 Symbols.insert(Name); 1219 } 1220 1221 if (!Symbols.empty()) { 1222 SharedThis->Resolver.lookup(Symbols, PostResolveContinuation); 1223 } else 1224 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); 1225 } 1226 1227 //===----------------------------------------------------------------------===// 1228 // RuntimeDyld class implementation 1229 1230 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 1231 const object::SectionRef &Sec) const { 1232 1233 auto I = ObjSecToIDMap.find(Sec); 1234 if (I != ObjSecToIDMap.end()) 1235 return RTDyld.Sections[I->second].getLoadAddress(); 1236 1237 return 0; 1238 } 1239 1240 void RuntimeDyld::MemoryManager::anchor() {} 1241 void JITSymbolResolver::anchor() {} 1242 void LegacyJITSymbolResolver::anchor() {} 1243 1244 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 1245 JITSymbolResolver &Resolver) 1246 : MemMgr(MemMgr), Resolver(Resolver) { 1247 // FIXME: There's a potential issue lurking here if a single instance of 1248 // RuntimeDyld is used to load multiple objects. The current implementation 1249 // associates a single memory manager with a RuntimeDyld instance. Even 1250 // though the public class spawns a new 'impl' instance for each load, 1251 // they share a single memory manager. This can become a problem when page 1252 // permissions are applied. 1253 Dyld = nullptr; 1254 ProcessAllSections = false; 1255 } 1256 1257 RuntimeDyld::~RuntimeDyld() {} 1258 1259 static std::unique_ptr<RuntimeDyldCOFF> 1260 createRuntimeDyldCOFF( 1261 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1262 JITSymbolResolver &Resolver, bool ProcessAllSections, 1263 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1264 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1265 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1266 Dyld->setProcessAllSections(ProcessAllSections); 1267 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1268 return Dyld; 1269 } 1270 1271 static std::unique_ptr<RuntimeDyldELF> 1272 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1273 JITSymbolResolver &Resolver, bool ProcessAllSections, 1274 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1275 std::unique_ptr<RuntimeDyldELF> Dyld = 1276 RuntimeDyldELF::create(Arch, MM, Resolver); 1277 Dyld->setProcessAllSections(ProcessAllSections); 1278 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1279 return Dyld; 1280 } 1281 1282 static std::unique_ptr<RuntimeDyldMachO> 1283 createRuntimeDyldMachO( 1284 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1285 JITSymbolResolver &Resolver, 1286 bool ProcessAllSections, 1287 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1288 std::unique_ptr<RuntimeDyldMachO> Dyld = 1289 RuntimeDyldMachO::create(Arch, MM, Resolver); 1290 Dyld->setProcessAllSections(ProcessAllSections); 1291 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1292 return Dyld; 1293 } 1294 1295 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1296 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1297 if (!Dyld) { 1298 if (Obj.isELF()) 1299 Dyld = 1300 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1301 MemMgr, Resolver, ProcessAllSections, 1302 std::move(NotifyStubEmitted)); 1303 else if (Obj.isMachO()) 1304 Dyld = createRuntimeDyldMachO( 1305 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1306 ProcessAllSections, std::move(NotifyStubEmitted)); 1307 else if (Obj.isCOFF()) 1308 Dyld = createRuntimeDyldCOFF( 1309 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1310 ProcessAllSections, std::move(NotifyStubEmitted)); 1311 else 1312 report_fatal_error("Incompatible object format!"); 1313 } 1314 1315 if (!Dyld->isCompatibleFile(Obj)) 1316 report_fatal_error("Incompatible object format!"); 1317 1318 auto LoadedObjInfo = Dyld->loadObject(Obj); 1319 MemMgr.notifyObjectLoaded(*this, Obj); 1320 return LoadedObjInfo; 1321 } 1322 1323 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1324 if (!Dyld) 1325 return nullptr; 1326 return Dyld->getSymbolLocalAddress(Name); 1327 } 1328 1329 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { 1330 assert(Dyld && "No RuntimeDyld instance attached"); 1331 return Dyld->getSymbolSectionID(Name); 1332 } 1333 1334 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1335 if (!Dyld) 1336 return nullptr; 1337 return Dyld->getSymbol(Name); 1338 } 1339 1340 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { 1341 if (!Dyld) 1342 return std::map<StringRef, JITEvaluatedSymbol>(); 1343 return Dyld->getSymbolTable(); 1344 } 1345 1346 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1347 1348 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1349 Dyld->reassignSectionAddress(SectionID, Addr); 1350 } 1351 1352 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1353 uint64_t TargetAddress) { 1354 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1355 } 1356 1357 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1358 1359 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1360 1361 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1362 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1363 MemMgr.FinalizationLocked = true; 1364 resolveRelocations(); 1365 registerEHFrames(); 1366 if (!MemoryFinalizationLocked) { 1367 MemMgr.finalizeMemory(); 1368 MemMgr.FinalizationLocked = false; 1369 } 1370 } 1371 1372 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { 1373 assert(Dyld && "No Dyld instance attached"); 1374 return Dyld->getSectionContent(SectionID); 1375 } 1376 1377 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { 1378 assert(Dyld && "No Dyld instance attached"); 1379 return Dyld->getSectionLoadAddress(SectionID); 1380 } 1381 1382 void RuntimeDyld::registerEHFrames() { 1383 if (Dyld) 1384 Dyld->registerEHFrames(); 1385 } 1386 1387 void RuntimeDyld::deregisterEHFrames() { 1388 if (Dyld) 1389 Dyld->deregisterEHFrames(); 1390 } 1391 // FIXME: Kill this with fire once we have a new JIT linker: this is only here 1392 // so that we can re-use RuntimeDyld's implementation without twisting the 1393 // interface any further for ORC's purposes. 1394 void jitLinkForORC(object::ObjectFile &Obj, 1395 std::unique_ptr<MemoryBuffer> UnderlyingBuffer, 1396 RuntimeDyld::MemoryManager &MemMgr, 1397 JITSymbolResolver &Resolver, bool ProcessAllSections, 1398 std::function<Error( 1399 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj, 1400 std::map<StringRef, JITEvaluatedSymbol>)> 1401 OnLoaded, 1402 std::function<void(Error)> OnEmitted) { 1403 1404 RuntimeDyld RTDyld(MemMgr, Resolver); 1405 RTDyld.setProcessAllSections(ProcessAllSections); 1406 1407 auto Info = RTDyld.loadObject(Obj); 1408 1409 if (RTDyld.hasError()) { 1410 OnEmitted(make_error<StringError>(RTDyld.getErrorString(), 1411 inconvertibleErrorCode())); 1412 return; 1413 } 1414 1415 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable())) 1416 OnEmitted(std::move(Err)); 1417 1418 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), 1419 std::move(UnderlyingBuffer)); 1420 } 1421 1422 } // end namespace llvm 1423