xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp (revision f976241773df2260e6170317080761d1c5814fe5)
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/MSVCErrorWorkarounds.h"
21 #include "llvm/Support/ManagedStatic.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/MutexGuard.h"
24 
25 #include <future>
26 
27 using namespace llvm;
28 using namespace llvm::object;
29 
30 #define DEBUG_TYPE "dyld"
31 
32 namespace {
33 
34 enum RuntimeDyldErrorCode {
35   GenericRTDyldError = 1
36 };
37 
38 // FIXME: This class is only here to support the transition to llvm::Error. It
39 // will be removed once this transition is complete. Clients should prefer to
40 // deal with the Error value directly, rather than converting to error_code.
41 class RuntimeDyldErrorCategory : public std::error_category {
42 public:
43   const char *name() const noexcept override { return "runtimedyld"; }
44 
45   std::string message(int Condition) const override {
46     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
47       case GenericRTDyldError: return "Generic RuntimeDyld error";
48     }
49     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
50   }
51 };
52 
53 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
54 
55 }
56 
57 char RuntimeDyldError::ID = 0;
58 
59 void RuntimeDyldError::log(raw_ostream &OS) const {
60   OS << ErrMsg << "\n";
61 }
62 
63 std::error_code RuntimeDyldError::convertToErrorCode() const {
64   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
65 }
66 
67 // Empty out-of-line virtual destructor as the key function.
68 RuntimeDyldImpl::~RuntimeDyldImpl() {}
69 
70 // Pin LoadedObjectInfo's vtables to this file.
71 void RuntimeDyld::LoadedObjectInfo::anchor() {}
72 
73 namespace llvm {
74 
75 void RuntimeDyldImpl::registerEHFrames() {}
76 
77 void RuntimeDyldImpl::deregisterEHFrames() {
78   MemMgr.deregisterEHFrames();
79 }
80 
81 #ifndef NDEBUG
82 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
83   dbgs() << "----- Contents of section " << S.getName() << " " << State
84          << " -----";
85 
86   if (S.getAddress() == nullptr) {
87     dbgs() << "\n          <section not emitted>\n";
88     return;
89   }
90 
91   const unsigned ColsPerRow = 16;
92 
93   uint8_t *DataAddr = S.getAddress();
94   uint64_t LoadAddr = S.getLoadAddress();
95 
96   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
97   unsigned BytesRemaining = S.getSize();
98 
99   if (StartPadding) {
100     dbgs() << "\n" << format("0x%016" PRIx64,
101                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
102     while (StartPadding--)
103       dbgs() << "   ";
104   }
105 
106   while (BytesRemaining > 0) {
107     if ((LoadAddr & (ColsPerRow - 1)) == 0)
108       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
109 
110     dbgs() << " " << format("%02x", *DataAddr);
111 
112     ++DataAddr;
113     ++LoadAddr;
114     --BytesRemaining;
115   }
116 
117   dbgs() << "\n";
118 }
119 #endif
120 
121 // Resolve the relocations for all symbols we currently know about.
122 void RuntimeDyldImpl::resolveRelocations() {
123   MutexGuard locked(lock);
124 
125   // Print out the sections prior to relocation.
126   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
127                  dumpSectionMemory(Sections[i], "before relocations"););
128 
129   // First, resolve relocations associated with external symbols.
130   if (auto Err = resolveExternalSymbols()) {
131     HasError = true;
132     ErrorStr = toString(std::move(Err));
133   }
134 
135   resolveLocalRelocations();
136 
137   // Print out sections after relocation.
138   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
139                  dumpSectionMemory(Sections[i], "after relocations"););
140 }
141 
142 void RuntimeDyldImpl::resolveLocalRelocations() {
143   // Iterate over all outstanding relocations
144   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
145     // The Section here (Sections[i]) refers to the section in which the
146     // symbol for the relocation is located.  The SectionID in the relocation
147     // entry provides the section to which the relocation will be applied.
148     int Idx = it->first;
149     uint64_t Addr = Sections[Idx].getLoadAddress();
150     LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
151                       << format("%p", (uintptr_t)Addr) << "\n");
152     resolveRelocationList(it->second, Addr);
153   }
154   Relocations.clear();
155 }
156 
157 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
158                                         uint64_t TargetAddress) {
159   MutexGuard locked(lock);
160   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
161     if (Sections[i].getAddress() == LocalAddress) {
162       reassignSectionAddress(i, TargetAddress);
163       return;
164     }
165   }
166   llvm_unreachable("Attempting to remap address of unknown section!");
167 }
168 
169 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
170                        uint64_t &Result) {
171   Expected<uint64_t> AddressOrErr = Sym.getAddress();
172   if (!AddressOrErr)
173     return AddressOrErr.takeError();
174   Result = *AddressOrErr - Sec.getAddress();
175   return Error::success();
176 }
177 
178 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
179 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
180   MutexGuard locked(lock);
181 
182   // Save information about our target
183   Arch = (Triple::ArchType)Obj.getArch();
184   IsTargetLittleEndian = Obj.isLittleEndian();
185   setMipsABI(Obj);
186 
187   // Compute the memory size required to load all sections to be loaded
188   // and pass this information to the memory manager
189   if (MemMgr.needsToReserveAllocationSpace()) {
190     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
191     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
192     if (auto Err = computeTotalAllocSize(Obj,
193                                          CodeSize, CodeAlign,
194                                          RODataSize, RODataAlign,
195                                          RWDataSize, RWDataAlign))
196       return std::move(Err);
197     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
198                                   RWDataSize, RWDataAlign);
199   }
200 
201   // Used sections from the object file
202   ObjSectionToIDMap LocalSections;
203 
204   // Common symbols requiring allocation, with their sizes and alignments
205   CommonSymbolList CommonSymbolsToAllocate;
206 
207   uint64_t CommonSize = 0;
208   uint32_t CommonAlign = 0;
209 
210   // First, collect all weak and common symbols. We need to know if stronger
211   // definitions occur elsewhere.
212   JITSymbolResolver::LookupSet ResponsibilitySet;
213   {
214     JITSymbolResolver::LookupSet Symbols;
215     for (auto &Sym : Obj.symbols()) {
216       uint32_t Flags = Sym.getFlags();
217       if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
218         // Get symbol name.
219         if (auto NameOrErr = Sym.getName())
220           Symbols.insert(*NameOrErr);
221         else
222           return NameOrErr.takeError();
223       }
224     }
225 
226     if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
227       ResponsibilitySet = std::move(*ResultOrErr);
228     else
229       return ResultOrErr.takeError();
230   }
231 
232   // Parse symbols
233   LLVM_DEBUG(dbgs() << "Parse symbols:\n");
234   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
235        ++I) {
236     uint32_t Flags = I->getFlags();
237 
238     // Skip undefined symbols.
239     if (Flags & SymbolRef::SF_Undefined)
240       continue;
241 
242     // Get the symbol type.
243     object::SymbolRef::Type SymType;
244     if (auto SymTypeOrErr = I->getType())
245       SymType = *SymTypeOrErr;
246     else
247       return SymTypeOrErr.takeError();
248 
249     // Get symbol name.
250     StringRef Name;
251     if (auto NameOrErr = I->getName())
252       Name = *NameOrErr;
253     else
254       return NameOrErr.takeError();
255 
256     // Compute JIT symbol flags.
257     auto JITSymFlags = getJITSymbolFlags(*I);
258     if (!JITSymFlags)
259       return JITSymFlags.takeError();
260 
261     // If this is a weak definition, check to see if there's a strong one.
262     // If there is, skip this symbol (we won't be providing it: the strong
263     // definition will). If there's no strong definition, make this definition
264     // strong.
265     if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
266       // First check whether there's already a definition in this instance.
267       if (GlobalSymbolTable.count(Name))
268         continue;
269 
270       // If we're not responsible for this symbol, skip it.
271       if (!ResponsibilitySet.count(Name))
272         continue;
273 
274       // Otherwise update the flags on the symbol to make this definition
275       // strong.
276       if (JITSymFlags->isWeak())
277         *JITSymFlags &= ~JITSymbolFlags::Weak;
278       if (JITSymFlags->isCommon()) {
279         *JITSymFlags &= ~JITSymbolFlags::Common;
280         uint32_t Align = I->getAlignment();
281         uint64_t Size = I->getCommonSize();
282         if (!CommonAlign)
283           CommonAlign = Align;
284         CommonSize = alignTo(CommonSize, Align) + Size;
285         CommonSymbolsToAllocate.push_back(*I);
286       }
287     }
288 
289     if (Flags & SymbolRef::SF_Absolute &&
290         SymType != object::SymbolRef::ST_File) {
291       uint64_t Addr = 0;
292       if (auto AddrOrErr = I->getAddress())
293         Addr = *AddrOrErr;
294       else
295         return AddrOrErr.takeError();
296 
297       unsigned SectionID = AbsoluteSymbolSection;
298 
299       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
300                         << " SID: " << SectionID
301                         << " Offset: " << format("%p", (uintptr_t)Addr)
302                         << " flags: " << Flags << "\n");
303       GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
304     } else if (SymType == object::SymbolRef::ST_Function ||
305                SymType == object::SymbolRef::ST_Data ||
306                SymType == object::SymbolRef::ST_Unknown ||
307                SymType == object::SymbolRef::ST_Other) {
308 
309       section_iterator SI = Obj.section_end();
310       if (auto SIOrErr = I->getSection())
311         SI = *SIOrErr;
312       else
313         return SIOrErr.takeError();
314 
315       if (SI == Obj.section_end())
316         continue;
317 
318       // Get symbol offset.
319       uint64_t SectOffset;
320       if (auto Err = getOffset(*I, *SI, SectOffset))
321         return std::move(Err);
322 
323       bool IsCode = SI->isText();
324       unsigned SectionID;
325       if (auto SectionIDOrErr =
326               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
327         SectionID = *SectionIDOrErr;
328       else
329         return SectionIDOrErr.takeError();
330 
331       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
332                         << " SID: " << SectionID
333                         << " Offset: " << format("%p", (uintptr_t)SectOffset)
334                         << " flags: " << Flags << "\n");
335       GlobalSymbolTable[Name] =
336           SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
337     }
338   }
339 
340   // Allocate common symbols
341   if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
342                                    CommonAlign))
343     return std::move(Err);
344 
345   // Parse and process relocations
346   LLVM_DEBUG(dbgs() << "Parse relocations:\n");
347   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
348        SI != SE; ++SI) {
349     StubMap Stubs;
350     section_iterator RelocatedSection = SI->getRelocatedSection();
351 
352     if (RelocatedSection == SE)
353       continue;
354 
355     relocation_iterator I = SI->relocation_begin();
356     relocation_iterator E = SI->relocation_end();
357 
358     if (I == E && !ProcessAllSections)
359       continue;
360 
361     bool IsCode = RelocatedSection->isText();
362     unsigned SectionID = 0;
363     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
364                                                 LocalSections))
365       SectionID = *SectionIDOrErr;
366     else
367       return SectionIDOrErr.takeError();
368 
369     LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
370 
371     for (; I != E;)
372       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
373         I = *IOrErr;
374       else
375         return IOrErr.takeError();
376 
377     // If there is a NotifyStubEmitted callback set, call it to register any
378     // stubs created for this section.
379     if (NotifyStubEmitted) {
380       StringRef FileName = Obj.getFileName();
381       StringRef SectionName = Sections[SectionID].getName();
382       for (auto &KV : Stubs) {
383 
384         auto &VR = KV.first;
385         uint64_t StubAddr = KV.second;
386 
387         // If this is a named stub, just call NotifyStubEmitted.
388         if (VR.SymbolName) {
389           NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
390                             StubAddr);
391           continue;
392         }
393 
394         // Otherwise we will have to try a reverse lookup on the globla symbol table.
395         for (auto &GSTMapEntry : GlobalSymbolTable) {
396           StringRef SymbolName = GSTMapEntry.first();
397           auto &GSTEntry = GSTMapEntry.second;
398           if (GSTEntry.getSectionID() == VR.SectionID &&
399               GSTEntry.getOffset() == VR.Offset) {
400             NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
401                               StubAddr);
402             break;
403           }
404         }
405       }
406     }
407   }
408 
409   // Process remaining sections
410   if (ProcessAllSections) {
411     LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
412     for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
413          SI != SE; ++SI) {
414 
415       /* Ignore already loaded sections */
416       if (LocalSections.find(*SI) != LocalSections.end())
417         continue;
418 
419       bool IsCode = SI->isText();
420       if (auto SectionIDOrErr =
421               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
422         LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
423       else
424         return SectionIDOrErr.takeError();
425     }
426   }
427 
428   // Give the subclasses a chance to tie-up any loose ends.
429   if (auto Err = finalizeLoad(Obj, LocalSections))
430     return std::move(Err);
431 
432 //   for (auto E : LocalSections)
433 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
434 
435   return LocalSections;
436 }
437 
438 // A helper method for computeTotalAllocSize.
439 // Computes the memory size required to allocate sections with the given sizes,
440 // assuming that all sections are allocated with the given alignment
441 static uint64_t
442 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
443                                  uint64_t Alignment) {
444   uint64_t TotalSize = 0;
445   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
446     uint64_t AlignedSize =
447         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
448     TotalSize += AlignedSize;
449   }
450   return TotalSize;
451 }
452 
453 static bool isRequiredForExecution(const SectionRef Section) {
454   const ObjectFile *Obj = Section.getObject();
455   if (isa<object::ELFObjectFileBase>(Obj))
456     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
457   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
458     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
459     // Avoid loading zero-sized COFF sections.
460     // In PE files, VirtualSize gives the section size, and SizeOfRawData
461     // may be zero for sections with content. In Obj files, SizeOfRawData
462     // gives the section size, and VirtualSize is always zero. Hence
463     // the need to check for both cases below.
464     bool HasContent =
465         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
466     bool IsDiscardable =
467         CoffSection->Characteristics &
468         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
469     return HasContent && !IsDiscardable;
470   }
471 
472   assert(isa<MachOObjectFile>(Obj));
473   return true;
474 }
475 
476 static bool isReadOnlyData(const SectionRef Section) {
477   const ObjectFile *Obj = Section.getObject();
478   if (isa<object::ELFObjectFileBase>(Obj))
479     return !(ELFSectionRef(Section).getFlags() &
480              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
481   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
482     return ((COFFObj->getCOFFSection(Section)->Characteristics &
483              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
484              | COFF::IMAGE_SCN_MEM_READ
485              | COFF::IMAGE_SCN_MEM_WRITE))
486              ==
487              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
488              | COFF::IMAGE_SCN_MEM_READ));
489 
490   assert(isa<MachOObjectFile>(Obj));
491   return false;
492 }
493 
494 static bool isZeroInit(const SectionRef Section) {
495   const ObjectFile *Obj = Section.getObject();
496   if (isa<object::ELFObjectFileBase>(Obj))
497     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
498   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
499     return COFFObj->getCOFFSection(Section)->Characteristics &
500             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
501 
502   auto *MachO = cast<MachOObjectFile>(Obj);
503   unsigned SectionType = MachO->getSectionType(Section);
504   return SectionType == MachO::S_ZEROFILL ||
505          SectionType == MachO::S_GB_ZEROFILL;
506 }
507 
508 // Compute an upper bound of the memory size that is required to load all
509 // sections
510 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
511                                              uint64_t &CodeSize,
512                                              uint32_t &CodeAlign,
513                                              uint64_t &RODataSize,
514                                              uint32_t &RODataAlign,
515                                              uint64_t &RWDataSize,
516                                              uint32_t &RWDataAlign) {
517   // Compute the size of all sections required for execution
518   std::vector<uint64_t> CodeSectionSizes;
519   std::vector<uint64_t> ROSectionSizes;
520   std::vector<uint64_t> RWSectionSizes;
521 
522   // Collect sizes of all sections to be loaded;
523   // also determine the max alignment of all sections
524   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
525        SI != SE; ++SI) {
526     const SectionRef &Section = *SI;
527 
528     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
529 
530     // Consider only the sections that are required to be loaded for execution
531     if (IsRequired) {
532       uint64_t DataSize = Section.getSize();
533       uint64_t Alignment64 = Section.getAlignment();
534       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
535       bool IsCode = Section.isText();
536       bool IsReadOnly = isReadOnlyData(Section);
537 
538       StringRef Name;
539       if (auto EC = Section.getName(Name))
540         return errorCodeToError(EC);
541 
542       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
543 
544       uint64_t PaddingSize = 0;
545       if (Name == ".eh_frame")
546         PaddingSize += 4;
547       if (StubBufSize != 0)
548         PaddingSize += getStubAlignment() - 1;
549 
550       uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
551 
552       // The .eh_frame section (at least on Linux) needs an extra four bytes
553       // padded
554       // with zeroes added at the end.  For MachO objects, this section has a
555       // slightly different name, so this won't have any effect for MachO
556       // objects.
557       if (Name == ".eh_frame")
558         SectionSize += 4;
559 
560       if (!SectionSize)
561         SectionSize = 1;
562 
563       if (IsCode) {
564         CodeAlign = std::max(CodeAlign, Alignment);
565         CodeSectionSizes.push_back(SectionSize);
566       } else if (IsReadOnly) {
567         RODataAlign = std::max(RODataAlign, Alignment);
568         ROSectionSizes.push_back(SectionSize);
569       } else {
570         RWDataAlign = std::max(RWDataAlign, Alignment);
571         RWSectionSizes.push_back(SectionSize);
572       }
573     }
574   }
575 
576   // Compute Global Offset Table size. If it is not zero we
577   // also update alignment, which is equal to a size of a
578   // single GOT entry.
579   if (unsigned GotSize = computeGOTSize(Obj)) {
580     RWSectionSizes.push_back(GotSize);
581     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
582   }
583 
584   // Compute the size of all common symbols
585   uint64_t CommonSize = 0;
586   uint32_t CommonAlign = 1;
587   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
588        ++I) {
589     uint32_t Flags = I->getFlags();
590     if (Flags & SymbolRef::SF_Common) {
591       // Add the common symbols to a list.  We'll allocate them all below.
592       uint64_t Size = I->getCommonSize();
593       uint32_t Align = I->getAlignment();
594       // If this is the first common symbol, use its alignment as the alignment
595       // for the common symbols section.
596       if (CommonSize == 0)
597         CommonAlign = Align;
598       CommonSize = alignTo(CommonSize, Align) + Size;
599     }
600   }
601   if (CommonSize != 0) {
602     RWSectionSizes.push_back(CommonSize);
603     RWDataAlign = std::max(RWDataAlign, CommonAlign);
604   }
605 
606   // Compute the required allocation space for each different type of sections
607   // (code, read-only data, read-write data) assuming that all sections are
608   // allocated with the max alignment. Note that we cannot compute with the
609   // individual alignments of the sections, because then the required size
610   // depends on the order, in which the sections are allocated.
611   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
612   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
613   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
614 
615   return Error::success();
616 }
617 
618 // compute GOT size
619 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
620   size_t GotEntrySize = getGOTEntrySize();
621   if (!GotEntrySize)
622     return 0;
623 
624   size_t GotSize = 0;
625   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
626        SI != SE; ++SI) {
627 
628     for (const RelocationRef &Reloc : SI->relocations())
629       if (relocationNeedsGot(Reloc))
630         GotSize += GotEntrySize;
631   }
632 
633   return GotSize;
634 }
635 
636 // compute stub buffer size for the given section
637 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
638                                                     const SectionRef &Section) {
639   unsigned StubSize = getMaxStubSize();
640   if (StubSize == 0) {
641     return 0;
642   }
643   // FIXME: this is an inefficient way to handle this. We should computed the
644   // necessary section allocation size in loadObject by walking all the sections
645   // once.
646   unsigned StubBufSize = 0;
647   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
648        SI != SE; ++SI) {
649     section_iterator RelSecI = SI->getRelocatedSection();
650     if (!(RelSecI == Section))
651       continue;
652 
653     for (const RelocationRef &Reloc : SI->relocations())
654       if (relocationNeedsStub(Reloc))
655         StubBufSize += StubSize;
656   }
657 
658   // Get section data size and alignment
659   uint64_t DataSize = Section.getSize();
660   uint64_t Alignment64 = Section.getAlignment();
661 
662   // Add stubbuf size alignment
663   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
664   unsigned StubAlignment = getStubAlignment();
665   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
666   if (StubAlignment > EndAlignment)
667     StubBufSize += StubAlignment - EndAlignment;
668   return StubBufSize;
669 }
670 
671 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
672                                              unsigned Size) const {
673   uint64_t Result = 0;
674   if (IsTargetLittleEndian) {
675     Src += Size - 1;
676     while (Size--)
677       Result = (Result << 8) | *Src--;
678   } else
679     while (Size--)
680       Result = (Result << 8) | *Src++;
681 
682   return Result;
683 }
684 
685 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
686                                           unsigned Size) const {
687   if (IsTargetLittleEndian) {
688     while (Size--) {
689       *Dst++ = Value & 0xFF;
690       Value >>= 8;
691     }
692   } else {
693     Dst += Size - 1;
694     while (Size--) {
695       *Dst-- = Value & 0xFF;
696       Value >>= 8;
697     }
698   }
699 }
700 
701 Expected<JITSymbolFlags>
702 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
703   return JITSymbolFlags::fromObjectSymbol(SR);
704 }
705 
706 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
707                                          CommonSymbolList &SymbolsToAllocate,
708                                          uint64_t CommonSize,
709                                          uint32_t CommonAlign) {
710   if (SymbolsToAllocate.empty())
711     return Error::success();
712 
713   // Allocate memory for the section
714   unsigned SectionID = Sections.size();
715   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
716                                              "<common symbols>", false);
717   if (!Addr)
718     report_fatal_error("Unable to allocate memory for common symbols!");
719   uint64_t Offset = 0;
720   Sections.push_back(
721       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
722   memset(Addr, 0, CommonSize);
723 
724   LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
725                     << " new addr: " << format("%p", Addr)
726                     << " DataSize: " << CommonSize << "\n");
727 
728   // Assign the address of each symbol
729   for (auto &Sym : SymbolsToAllocate) {
730     uint32_t Align = Sym.getAlignment();
731     uint64_t Size = Sym.getCommonSize();
732     StringRef Name;
733     if (auto NameOrErr = Sym.getName())
734       Name = *NameOrErr;
735     else
736       return NameOrErr.takeError();
737     if (Align) {
738       // This symbol has an alignment requirement.
739       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
740       Addr += AlignOffset;
741       Offset += AlignOffset;
742     }
743     auto JITSymFlags = getJITSymbolFlags(Sym);
744 
745     if (!JITSymFlags)
746       return JITSymFlags.takeError();
747 
748     LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
749                       << format("%p", Addr) << "\n");
750     GlobalSymbolTable[Name] =
751         SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
752     Offset += Size;
753     Addr += Size;
754   }
755 
756   return Error::success();
757 }
758 
759 Expected<unsigned>
760 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
761                              const SectionRef &Section,
762                              bool IsCode) {
763   StringRef data;
764   uint64_t Alignment64 = Section.getAlignment();
765 
766   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
767   unsigned PaddingSize = 0;
768   unsigned StubBufSize = 0;
769   bool IsRequired = isRequiredForExecution(Section);
770   bool IsVirtual = Section.isVirtual();
771   bool IsZeroInit = isZeroInit(Section);
772   bool IsReadOnly = isReadOnlyData(Section);
773   uint64_t DataSize = Section.getSize();
774 
775   // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
776   // while being more "polite".  Other formats do not support 0-aligned sections
777   // anyway, so we should guarantee that the alignment is always at least 1.
778   Alignment = std::max(1u, Alignment);
779 
780   StringRef Name;
781   if (auto EC = Section.getName(Name))
782     return errorCodeToError(EC);
783 
784   StubBufSize = computeSectionStubBufSize(Obj, Section);
785 
786   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
787   // with zeroes added at the end.  For MachO objects, this section has a
788   // slightly different name, so this won't have any effect for MachO objects.
789   if (Name == ".eh_frame")
790     PaddingSize = 4;
791 
792   uintptr_t Allocate;
793   unsigned SectionID = Sections.size();
794   uint8_t *Addr;
795   const char *pData = nullptr;
796 
797   // If this section contains any bits (i.e. isn't a virtual or bss section),
798   // grab a reference to them.
799   if (!IsVirtual && !IsZeroInit) {
800     // In either case, set the location of the unrelocated section in memory,
801     // since we still process relocations for it even if we're not applying them.
802     if (Expected<StringRef> E = Section.getContents())
803       data = *E;
804     else
805       return E.takeError();
806     pData = data.data();
807   }
808 
809   // If there are any stubs then the section alignment needs to be at least as
810   // high as stub alignment or padding calculations may by incorrect when the
811   // section is remapped.
812   if (StubBufSize != 0) {
813     Alignment = std::max(Alignment, getStubAlignment());
814     PaddingSize += getStubAlignment() - 1;
815   }
816 
817   // Some sections, such as debug info, don't need to be loaded for execution.
818   // Process those only if explicitly requested.
819   if (IsRequired || ProcessAllSections) {
820     Allocate = DataSize + PaddingSize + StubBufSize;
821     if (!Allocate)
822       Allocate = 1;
823     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
824                                                Name)
825                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
826                                                Name, IsReadOnly);
827     if (!Addr)
828       report_fatal_error("Unable to allocate section memory!");
829 
830     // Zero-initialize or copy the data from the image
831     if (IsZeroInit || IsVirtual)
832       memset(Addr, 0, DataSize);
833     else
834       memcpy(Addr, pData, DataSize);
835 
836     // Fill in any extra bytes we allocated for padding
837     if (PaddingSize != 0) {
838       memset(Addr + DataSize, 0, PaddingSize);
839       // Update the DataSize variable to include padding.
840       DataSize += PaddingSize;
841 
842       // Align DataSize to stub alignment if we have any stubs (PaddingSize will
843       // have been increased above to account for this).
844       if (StubBufSize > 0)
845         DataSize &= -(uint64_t)getStubAlignment();
846     }
847 
848     LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
849                       << Name << " obj addr: " << format("%p", pData)
850                       << " new addr: " << format("%p", Addr) << " DataSize: "
851                       << DataSize << " StubBufSize: " << StubBufSize
852                       << " Allocate: " << Allocate << "\n");
853   } else {
854     // Even if we didn't load the section, we need to record an entry for it
855     // to handle later processing (and by 'handle' I mean don't do anything
856     // with these sections).
857     Allocate = 0;
858     Addr = nullptr;
859     LLVM_DEBUG(
860         dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
861                << " obj addr: " << format("%p", data.data()) << " new addr: 0"
862                << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
863                << " Allocate: " << Allocate << "\n");
864   }
865 
866   Sections.push_back(
867       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
868 
869   // Debug info sections are linked as if their load address was zero
870   if (!IsRequired)
871     Sections.back().setLoadAddress(0);
872 
873   return SectionID;
874 }
875 
876 Expected<unsigned>
877 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
878                                    const SectionRef &Section,
879                                    bool IsCode,
880                                    ObjSectionToIDMap &LocalSections) {
881 
882   unsigned SectionID = 0;
883   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
884   if (i != LocalSections.end())
885     SectionID = i->second;
886   else {
887     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
888       SectionID = *SectionIDOrErr;
889     else
890       return SectionIDOrErr.takeError();
891     LocalSections[Section] = SectionID;
892   }
893   return SectionID;
894 }
895 
896 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
897                                               unsigned SectionID) {
898   Relocations[SectionID].push_back(RE);
899 }
900 
901 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
902                                              StringRef SymbolName) {
903   // Relocation by symbol.  If the symbol is found in the global symbol table,
904   // create an appropriate section relocation.  Otherwise, add it to
905   // ExternalSymbolRelocations.
906   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
907   if (Loc == GlobalSymbolTable.end()) {
908     ExternalSymbolRelocations[SymbolName].push_back(RE);
909   } else {
910     // Copy the RE since we want to modify its addend.
911     RelocationEntry RECopy = RE;
912     const auto &SymInfo = Loc->second;
913     RECopy.Addend += SymInfo.getOffset();
914     Relocations[SymInfo.getSectionID()].push_back(RECopy);
915   }
916 }
917 
918 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
919                                              unsigned AbiVariant) {
920   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
921     // This stub has to be able to access the full address space,
922     // since symbol lookup won't necessarily find a handy, in-range,
923     // PLT stub for functions which could be anywhere.
924     // Stub can use ip0 (== x16) to calculate address
925     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
926     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
927     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
928     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
929     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
930 
931     return Addr;
932   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
933     // TODO: There is only ARM far stub now. We should add the Thumb stub,
934     // and stubs for branches Thumb - ARM and ARM - Thumb.
935     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
936     return Addr + 4;
937   } else if (IsMipsO32ABI || IsMipsN32ABI) {
938     // 0:   3c190000        lui     t9,%hi(addr).
939     // 4:   27390000        addiu   t9,t9,%lo(addr).
940     // 8:   03200008        jr      t9.
941     // c:   00000000        nop.
942     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
943     const unsigned NopInstr = 0x0;
944     unsigned JrT9Instr = 0x03200008;
945     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
946         (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
947       JrT9Instr = 0x03200009;
948 
949     writeBytesUnaligned(LuiT9Instr, Addr, 4);
950     writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
951     writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
952     writeBytesUnaligned(NopInstr, Addr + 12, 4);
953     return Addr;
954   } else if (IsMipsN64ABI) {
955     // 0:   3c190000        lui     t9,%highest(addr).
956     // 4:   67390000        daddiu  t9,t9,%higher(addr).
957     // 8:   0019CC38        dsll    t9,t9,16.
958     // c:   67390000        daddiu  t9,t9,%hi(addr).
959     // 10:  0019CC38        dsll    t9,t9,16.
960     // 14:  67390000        daddiu  t9,t9,%lo(addr).
961     // 18:  03200008        jr      t9.
962     // 1c:  00000000        nop.
963     const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
964                    DsllT9Instr = 0x19CC38;
965     const unsigned NopInstr = 0x0;
966     unsigned JrT9Instr = 0x03200008;
967     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
968       JrT9Instr = 0x03200009;
969 
970     writeBytesUnaligned(LuiT9Instr, Addr, 4);
971     writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
972     writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
973     writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
974     writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
975     writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
976     writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
977     writeBytesUnaligned(NopInstr, Addr + 28, 4);
978     return Addr;
979   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
980     // Depending on which version of the ELF ABI is in use, we need to
981     // generate one of two variants of the stub.  They both start with
982     // the same sequence to load the target address into r12.
983     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
984     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
985     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
986     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
987     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
988     if (AbiVariant == 2) {
989       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
990       // The address is already in r12 as required by the ABI.  Branch to it.
991       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
992       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
993       writeInt32BE(Addr+28, 0x4E800420); // bctr
994     } else {
995       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
996       // Load the function address on r11 and sets it to control register. Also
997       // loads the function TOC in r2 and environment pointer to r11.
998       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
999       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
1000       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
1001       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1002       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
1003       writeInt32BE(Addr+40, 0x4E800420); // bctr
1004     }
1005     return Addr;
1006   } else if (Arch == Triple::systemz) {
1007     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
1008     writeInt16BE(Addr+2,  0x0000);
1009     writeInt16BE(Addr+4,  0x0004);
1010     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
1011     // 8-byte address stored at Addr + 8
1012     return Addr;
1013   } else if (Arch == Triple::x86_64) {
1014     *Addr      = 0xFF; // jmp
1015     *(Addr+1)  = 0x25; // rip
1016     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1017   } else if (Arch == Triple::x86) {
1018     *Addr      = 0xE9; // 32-bit pc-relative jump.
1019   }
1020   return Addr;
1021 }
1022 
1023 // Assign an address to a symbol name and resolve all the relocations
1024 // associated with it.
1025 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1026                                              uint64_t Addr) {
1027   // The address to use for relocation resolution is not
1028   // the address of the local section buffer. We must be doing
1029   // a remote execution environment of some sort. Relocations can't
1030   // be applied until all the sections have been moved.  The client must
1031   // trigger this with a call to MCJIT::finalize() or
1032   // RuntimeDyld::resolveRelocations().
1033   //
1034   // Addr is a uint64_t because we can't assume the pointer width
1035   // of the target is the same as that of the host. Just use a generic
1036   // "big enough" type.
1037   LLVM_DEBUG(
1038       dbgs() << "Reassigning address for section " << SectionID << " ("
1039              << Sections[SectionID].getName() << "): "
1040              << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1041              << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1042   Sections[SectionID].setLoadAddress(Addr);
1043 }
1044 
1045 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1046                                             uint64_t Value) {
1047   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1048     const RelocationEntry &RE = Relocs[i];
1049     // Ignore relocations for sections that were not loaded
1050     if (Sections[RE.SectionID].getAddress() == nullptr)
1051       continue;
1052     resolveRelocation(RE, Value);
1053   }
1054 }
1055 
1056 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1057     const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1058   while (!ExternalSymbolRelocations.empty()) {
1059 
1060     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1061 
1062     StringRef Name = i->first();
1063     if (Name.size() == 0) {
1064       // This is an absolute symbol, use an address of zero.
1065       LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1066                         << "\n");
1067       RelocationList &Relocs = i->second;
1068       resolveRelocationList(Relocs, 0);
1069     } else {
1070       uint64_t Addr = 0;
1071       JITSymbolFlags Flags;
1072       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1073       if (Loc == GlobalSymbolTable.end()) {
1074         auto RRI = ExternalSymbolMap.find(Name);
1075         assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1076         Addr = RRI->second.getAddress();
1077         Flags = RRI->second.getFlags();
1078         // The call to getSymbolAddress may have caused additional modules to
1079         // be loaded, which may have added new entries to the
1080         // ExternalSymbolRelocations map.  Consquently, we need to update our
1081         // iterator.  This is also why retrieval of the relocation list
1082         // associated with this symbol is deferred until below this point.
1083         // New entries may have been added to the relocation list.
1084         i = ExternalSymbolRelocations.find(Name);
1085       } else {
1086         // We found the symbol in our global table.  It was probably in a
1087         // Module that we loaded previously.
1088         const auto &SymInfo = Loc->second;
1089         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1090                SymInfo.getOffset();
1091         Flags = SymInfo.getFlags();
1092       }
1093 
1094       // FIXME: Implement error handling that doesn't kill the host program!
1095       if (!Addr)
1096         report_fatal_error("Program used external function '" + Name +
1097                            "' which could not be resolved!");
1098 
1099       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1100       // manually and we shouldn't resolve its relocations.
1101       if (Addr != UINT64_MAX) {
1102 
1103         // Tweak the address based on the symbol flags if necessary.
1104         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1105         // if the target symbol is Thumb.
1106         Addr = modifyAddressBasedOnFlags(Addr, Flags);
1107 
1108         LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1109                           << format("0x%lx", Addr) << "\n");
1110         // This list may have been updated when we called getSymbolAddress, so
1111         // don't change this code to get the list earlier.
1112         RelocationList &Relocs = i->second;
1113         resolveRelocationList(Relocs, Addr);
1114       }
1115     }
1116 
1117     ExternalSymbolRelocations.erase(i);
1118   }
1119 }
1120 
1121 Error RuntimeDyldImpl::resolveExternalSymbols() {
1122   StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1123 
1124   // Resolution can trigger emission of more symbols, so iterate until
1125   // we've resolved *everything*.
1126   {
1127     JITSymbolResolver::LookupSet ResolvedSymbols;
1128 
1129     while (true) {
1130       JITSymbolResolver::LookupSet NewSymbols;
1131 
1132       for (auto &RelocKV : ExternalSymbolRelocations) {
1133         StringRef Name = RelocKV.first();
1134         if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1135             !ResolvedSymbols.count(Name))
1136           NewSymbols.insert(Name);
1137       }
1138 
1139       if (NewSymbols.empty())
1140         break;
1141 
1142 #ifdef _MSC_VER
1143       using ExpectedLookupResult =
1144           MSVCPExpected<JITSymbolResolver::LookupResult>;
1145 #else
1146       using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1147 #endif
1148 
1149       auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1150       auto NewSymbolsF = NewSymbolsP->get_future();
1151       Resolver.lookup(NewSymbols,
1152                       [=](Expected<JITSymbolResolver::LookupResult> Result) {
1153                         NewSymbolsP->set_value(std::move(Result));
1154                       });
1155 
1156       auto NewResolverResults = NewSymbolsF.get();
1157 
1158       if (!NewResolverResults)
1159         return NewResolverResults.takeError();
1160 
1161       assert(NewResolverResults->size() == NewSymbols.size() &&
1162              "Should have errored on unresolved symbols");
1163 
1164       for (auto &RRKV : *NewResolverResults) {
1165         assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1166         ExternalSymbolMap.insert(RRKV);
1167         ResolvedSymbols.insert(RRKV.first);
1168       }
1169     }
1170   }
1171 
1172   applyExternalSymbolRelocations(ExternalSymbolMap);
1173 
1174   return Error::success();
1175 }
1176 
1177 void RuntimeDyldImpl::finalizeAsync(
1178     std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted,
1179     std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1180 
1181   // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
1182   // c++14.
1183   auto SharedUnderlyingBuffer =
1184       std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer));
1185   auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1186   auto PostResolveContinuation =
1187       [SharedThis, OnEmitted, SharedUnderlyingBuffer](
1188           Expected<JITSymbolResolver::LookupResult> Result) {
1189         if (!Result) {
1190           OnEmitted(Result.takeError());
1191           return;
1192         }
1193 
1194         /// Copy the result into a StringMap, where the keys are held by value.
1195         StringMap<JITEvaluatedSymbol> Resolved;
1196         for (auto &KV : *Result)
1197           Resolved[KV.first] = KV.second;
1198 
1199         SharedThis->applyExternalSymbolRelocations(Resolved);
1200         SharedThis->resolveLocalRelocations();
1201         SharedThis->registerEHFrames();
1202         std::string ErrMsg;
1203         if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1204           OnEmitted(make_error<StringError>(std::move(ErrMsg),
1205                                             inconvertibleErrorCode()));
1206         else
1207           OnEmitted(Error::success());
1208       };
1209 
1210   JITSymbolResolver::LookupSet Symbols;
1211 
1212   for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1213     StringRef Name = RelocKV.first();
1214     assert(!Name.empty() && "Symbol has no name?");
1215     assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1216            "Name already processed. RuntimeDyld instances can not be re-used "
1217            "when finalizing with finalizeAsync.");
1218     Symbols.insert(Name);
1219   }
1220 
1221   if (!Symbols.empty()) {
1222     SharedThis->Resolver.lookup(Symbols, PostResolveContinuation);
1223   } else
1224     PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1225 }
1226 
1227 //===----------------------------------------------------------------------===//
1228 // RuntimeDyld class implementation
1229 
1230 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1231                                           const object::SectionRef &Sec) const {
1232 
1233   auto I = ObjSecToIDMap.find(Sec);
1234   if (I != ObjSecToIDMap.end())
1235     return RTDyld.Sections[I->second].getLoadAddress();
1236 
1237   return 0;
1238 }
1239 
1240 void RuntimeDyld::MemoryManager::anchor() {}
1241 void JITSymbolResolver::anchor() {}
1242 void LegacyJITSymbolResolver::anchor() {}
1243 
1244 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1245                          JITSymbolResolver &Resolver)
1246     : MemMgr(MemMgr), Resolver(Resolver) {
1247   // FIXME: There's a potential issue lurking here if a single instance of
1248   // RuntimeDyld is used to load multiple objects.  The current implementation
1249   // associates a single memory manager with a RuntimeDyld instance.  Even
1250   // though the public class spawns a new 'impl' instance for each load,
1251   // they share a single memory manager.  This can become a problem when page
1252   // permissions are applied.
1253   Dyld = nullptr;
1254   ProcessAllSections = false;
1255 }
1256 
1257 RuntimeDyld::~RuntimeDyld() {}
1258 
1259 static std::unique_ptr<RuntimeDyldCOFF>
1260 createRuntimeDyldCOFF(
1261                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1262                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1263                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1264   std::unique_ptr<RuntimeDyldCOFF> Dyld =
1265     RuntimeDyldCOFF::create(Arch, MM, Resolver);
1266   Dyld->setProcessAllSections(ProcessAllSections);
1267   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1268   return Dyld;
1269 }
1270 
1271 static std::unique_ptr<RuntimeDyldELF>
1272 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1273                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1274                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1275   std::unique_ptr<RuntimeDyldELF> Dyld =
1276       RuntimeDyldELF::create(Arch, MM, Resolver);
1277   Dyld->setProcessAllSections(ProcessAllSections);
1278   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1279   return Dyld;
1280 }
1281 
1282 static std::unique_ptr<RuntimeDyldMachO>
1283 createRuntimeDyldMachO(
1284                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1285                      JITSymbolResolver &Resolver,
1286                      bool ProcessAllSections,
1287                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1288   std::unique_ptr<RuntimeDyldMachO> Dyld =
1289     RuntimeDyldMachO::create(Arch, MM, Resolver);
1290   Dyld->setProcessAllSections(ProcessAllSections);
1291   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1292   return Dyld;
1293 }
1294 
1295 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1296 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1297   if (!Dyld) {
1298     if (Obj.isELF())
1299       Dyld =
1300           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1301                                MemMgr, Resolver, ProcessAllSections,
1302                                std::move(NotifyStubEmitted));
1303     else if (Obj.isMachO())
1304       Dyld = createRuntimeDyldMachO(
1305                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1306                ProcessAllSections, std::move(NotifyStubEmitted));
1307     else if (Obj.isCOFF())
1308       Dyld = createRuntimeDyldCOFF(
1309                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1310                ProcessAllSections, std::move(NotifyStubEmitted));
1311     else
1312       report_fatal_error("Incompatible object format!");
1313   }
1314 
1315   if (!Dyld->isCompatibleFile(Obj))
1316     report_fatal_error("Incompatible object format!");
1317 
1318   auto LoadedObjInfo = Dyld->loadObject(Obj);
1319   MemMgr.notifyObjectLoaded(*this, Obj);
1320   return LoadedObjInfo;
1321 }
1322 
1323 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1324   if (!Dyld)
1325     return nullptr;
1326   return Dyld->getSymbolLocalAddress(Name);
1327 }
1328 
1329 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1330   assert(Dyld && "No RuntimeDyld instance attached");
1331   return Dyld->getSymbolSectionID(Name);
1332 }
1333 
1334 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1335   if (!Dyld)
1336     return nullptr;
1337   return Dyld->getSymbol(Name);
1338 }
1339 
1340 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1341   if (!Dyld)
1342     return std::map<StringRef, JITEvaluatedSymbol>();
1343   return Dyld->getSymbolTable();
1344 }
1345 
1346 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1347 
1348 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1349   Dyld->reassignSectionAddress(SectionID, Addr);
1350 }
1351 
1352 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1353                                     uint64_t TargetAddress) {
1354   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1355 }
1356 
1357 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1358 
1359 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1360 
1361 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1362   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1363   MemMgr.FinalizationLocked = true;
1364   resolveRelocations();
1365   registerEHFrames();
1366   if (!MemoryFinalizationLocked) {
1367     MemMgr.finalizeMemory();
1368     MemMgr.FinalizationLocked = false;
1369   }
1370 }
1371 
1372 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1373   assert(Dyld && "No Dyld instance attached");
1374   return Dyld->getSectionContent(SectionID);
1375 }
1376 
1377 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1378   assert(Dyld && "No Dyld instance attached");
1379   return Dyld->getSectionLoadAddress(SectionID);
1380 }
1381 
1382 void RuntimeDyld::registerEHFrames() {
1383   if (Dyld)
1384     Dyld->registerEHFrames();
1385 }
1386 
1387 void RuntimeDyld::deregisterEHFrames() {
1388   if (Dyld)
1389     Dyld->deregisterEHFrames();
1390 }
1391 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1392 // so that we can re-use RuntimeDyld's implementation without twisting the
1393 // interface any further for ORC's purposes.
1394 void jitLinkForORC(object::ObjectFile &Obj,
1395                    std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1396                    RuntimeDyld::MemoryManager &MemMgr,
1397                    JITSymbolResolver &Resolver, bool ProcessAllSections,
1398                    std::function<Error(
1399                        std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1400                        std::map<StringRef, JITEvaluatedSymbol>)>
1401                        OnLoaded,
1402                    std::function<void(Error)> OnEmitted) {
1403 
1404   RuntimeDyld RTDyld(MemMgr, Resolver);
1405   RTDyld.setProcessAllSections(ProcessAllSections);
1406 
1407   auto Info = RTDyld.loadObject(Obj);
1408 
1409   if (RTDyld.hasError()) {
1410     OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1411                                       inconvertibleErrorCode()));
1412     return;
1413   }
1414 
1415   if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1416     OnEmitted(std::move(Err));
1417 
1418   RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1419                                  std::move(UnderlyingBuffer));
1420 }
1421 
1422 } // end namespace llvm
1423