1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the MC-JIT runtime dynamic linker. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ExecutionEngine/RuntimeDyld.h" 14 #include "RuntimeDyldCOFF.h" 15 #include "RuntimeDyldELF.h" 16 #include "RuntimeDyldImpl.h" 17 #include "RuntimeDyldMachO.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/Support/Alignment.h" 21 #include "llvm/Support/MSVCErrorWorkarounds.h" 22 #include "llvm/Support/MathExtras.h" 23 #include <mutex> 24 25 #include <future> 26 27 using namespace llvm; 28 using namespace llvm::object; 29 30 #define DEBUG_TYPE "dyld" 31 32 namespace { 33 34 enum RuntimeDyldErrorCode { 35 GenericRTDyldError = 1 36 }; 37 38 // FIXME: This class is only here to support the transition to llvm::Error. It 39 // will be removed once this transition is complete. Clients should prefer to 40 // deal with the Error value directly, rather than converting to error_code. 41 class RuntimeDyldErrorCategory : public std::error_category { 42 public: 43 const char *name() const noexcept override { return "runtimedyld"; } 44 45 std::string message(int Condition) const override { 46 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 47 case GenericRTDyldError: return "Generic RuntimeDyld error"; 48 } 49 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 50 } 51 }; 52 53 } 54 55 char RuntimeDyldError::ID = 0; 56 57 void RuntimeDyldError::log(raw_ostream &OS) const { 58 OS << ErrMsg << "\n"; 59 } 60 61 std::error_code RuntimeDyldError::convertToErrorCode() const { 62 static RuntimeDyldErrorCategory RTDyldErrorCategory; 63 return std::error_code(GenericRTDyldError, RTDyldErrorCategory); 64 } 65 66 // Empty out-of-line virtual destructor as the key function. 67 RuntimeDyldImpl::~RuntimeDyldImpl() = default; 68 69 // Pin LoadedObjectInfo's vtables to this file. 70 void RuntimeDyld::LoadedObjectInfo::anchor() {} 71 72 namespace llvm { 73 74 void RuntimeDyldImpl::registerEHFrames() {} 75 76 void RuntimeDyldImpl::deregisterEHFrames() { 77 MemMgr.deregisterEHFrames(); 78 } 79 80 #ifndef NDEBUG 81 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 82 dbgs() << "----- Contents of section " << S.getName() << " " << State 83 << " -----"; 84 85 if (S.getAddress() == nullptr) { 86 dbgs() << "\n <section not emitted>\n"; 87 return; 88 } 89 90 const unsigned ColsPerRow = 16; 91 92 uint8_t *DataAddr = S.getAddress(); 93 uint64_t LoadAddr = S.getLoadAddress(); 94 95 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 96 unsigned BytesRemaining = S.getSize(); 97 98 if (StartPadding) { 99 dbgs() << "\n" << format("0x%016" PRIx64, 100 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 101 while (StartPadding--) 102 dbgs() << " "; 103 } 104 105 while (BytesRemaining > 0) { 106 if ((LoadAddr & (ColsPerRow - 1)) == 0) 107 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 108 109 dbgs() << " " << format("%02x", *DataAddr); 110 111 ++DataAddr; 112 ++LoadAddr; 113 --BytesRemaining; 114 } 115 116 dbgs() << "\n"; 117 } 118 #endif 119 120 // Resolve the relocations for all symbols we currently know about. 121 void RuntimeDyldImpl::resolveRelocations() { 122 std::lock_guard<sys::Mutex> locked(lock); 123 124 // Print out the sections prior to relocation. 125 LLVM_DEBUG({ 126 for (SectionEntry &S : Sections) 127 dumpSectionMemory(S, "before relocations"); 128 }); 129 130 // First, resolve relocations associated with external symbols. 131 if (auto Err = resolveExternalSymbols()) { 132 HasError = true; 133 ErrorStr = toString(std::move(Err)); 134 } 135 136 resolveLocalRelocations(); 137 138 // Print out sections after relocation. 139 LLVM_DEBUG({ 140 for (SectionEntry &S : Sections) 141 dumpSectionMemory(S, "after relocations"); 142 }); 143 } 144 145 void RuntimeDyldImpl::resolveLocalRelocations() { 146 // Iterate over all outstanding relocations 147 for (const auto &Rel : Relocations) { 148 // The Section here (Sections[i]) refers to the section in which the 149 // symbol for the relocation is located. The SectionID in the relocation 150 // entry provides the section to which the relocation will be applied. 151 unsigned Idx = Rel.first; 152 uint64_t Addr = getSectionLoadAddress(Idx); 153 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 154 << format("%p", (uintptr_t)Addr) << "\n"); 155 resolveRelocationList(Rel.second, Addr); 156 } 157 Relocations.clear(); 158 } 159 160 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 161 uint64_t TargetAddress) { 162 std::lock_guard<sys::Mutex> locked(lock); 163 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 164 if (Sections[i].getAddress() == LocalAddress) { 165 reassignSectionAddress(i, TargetAddress); 166 return; 167 } 168 } 169 llvm_unreachable("Attempting to remap address of unknown section!"); 170 } 171 172 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 173 uint64_t &Result) { 174 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 175 if (!AddressOrErr) 176 return AddressOrErr.takeError(); 177 Result = *AddressOrErr - Sec.getAddress(); 178 return Error::success(); 179 } 180 181 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 182 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 183 std::lock_guard<sys::Mutex> locked(lock); 184 185 // Save information about our target 186 Arch = (Triple::ArchType)Obj.getArch(); 187 IsTargetLittleEndian = Obj.isLittleEndian(); 188 setMipsABI(Obj); 189 190 // Compute the memory size required to load all sections to be loaded 191 // and pass this information to the memory manager 192 if (MemMgr.needsToReserveAllocationSpace()) { 193 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 194 Align CodeAlign, RODataAlign, RWDataAlign; 195 if (auto Err = computeTotalAllocSize(Obj, CodeSize, CodeAlign, RODataSize, 196 RODataAlign, RWDataSize, RWDataAlign)) 197 return std::move(Err); 198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 199 RWDataSize, RWDataAlign); 200 } 201 202 // Used sections from the object file 203 ObjSectionToIDMap LocalSections; 204 205 // Common symbols requiring allocation, with their sizes and alignments 206 CommonSymbolList CommonSymbolsToAllocate; 207 208 uint64_t CommonSize = 0; 209 uint32_t CommonAlign = 0; 210 211 // First, collect all weak and common symbols. We need to know if stronger 212 // definitions occur elsewhere. 213 JITSymbolResolver::LookupSet ResponsibilitySet; 214 { 215 JITSymbolResolver::LookupSet Symbols; 216 for (auto &Sym : Obj.symbols()) { 217 Expected<uint32_t> FlagsOrErr = Sym.getFlags(); 218 if (!FlagsOrErr) 219 // TODO: Test this error. 220 return FlagsOrErr.takeError(); 221 if ((*FlagsOrErr & SymbolRef::SF_Common) || 222 (*FlagsOrErr & SymbolRef::SF_Weak)) { 223 // Get symbol name. 224 if (auto NameOrErr = Sym.getName()) 225 Symbols.insert(*NameOrErr); 226 else 227 return NameOrErr.takeError(); 228 } 229 } 230 231 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) 232 ResponsibilitySet = std::move(*ResultOrErr); 233 else 234 return ResultOrErr.takeError(); 235 } 236 237 // Parse symbols 238 LLVM_DEBUG(dbgs() << "Parse symbols:\n"); 239 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 240 ++I) { 241 Expected<uint32_t> FlagsOrErr = I->getFlags(); 242 if (!FlagsOrErr) 243 // TODO: Test this error. 244 return FlagsOrErr.takeError(); 245 246 // Skip undefined symbols. 247 if (*FlagsOrErr & SymbolRef::SF_Undefined) 248 continue; 249 250 // Get the symbol type. 251 object::SymbolRef::Type SymType; 252 if (auto SymTypeOrErr = I->getType()) 253 SymType = *SymTypeOrErr; 254 else 255 return SymTypeOrErr.takeError(); 256 257 // Get symbol name. 258 StringRef Name; 259 if (auto NameOrErr = I->getName()) 260 Name = *NameOrErr; 261 else 262 return NameOrErr.takeError(); 263 264 // Compute JIT symbol flags. 265 auto JITSymFlags = getJITSymbolFlags(*I); 266 if (!JITSymFlags) 267 return JITSymFlags.takeError(); 268 269 // If this is a weak definition, check to see if there's a strong one. 270 // If there is, skip this symbol (we won't be providing it: the strong 271 // definition will). If there's no strong definition, make this definition 272 // strong. 273 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { 274 // First check whether there's already a definition in this instance. 275 if (GlobalSymbolTable.count(Name)) 276 continue; 277 278 // If we're not responsible for this symbol, skip it. 279 if (!ResponsibilitySet.count(Name)) 280 continue; 281 282 // Otherwise update the flags on the symbol to make this definition 283 // strong. 284 if (JITSymFlags->isWeak()) 285 *JITSymFlags &= ~JITSymbolFlags::Weak; 286 if (JITSymFlags->isCommon()) { 287 *JITSymFlags &= ~JITSymbolFlags::Common; 288 uint32_t Align = I->getAlignment(); 289 uint64_t Size = I->getCommonSize(); 290 if (!CommonAlign) 291 CommonAlign = Align; 292 CommonSize = alignTo(CommonSize, Align) + Size; 293 CommonSymbolsToAllocate.push_back(*I); 294 } 295 } 296 297 if (*FlagsOrErr & SymbolRef::SF_Absolute && 298 SymType != object::SymbolRef::ST_File) { 299 uint64_t Addr = 0; 300 if (auto AddrOrErr = I->getAddress()) 301 Addr = *AddrOrErr; 302 else 303 return AddrOrErr.takeError(); 304 305 unsigned SectionID = AbsoluteSymbolSection; 306 307 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 308 << " SID: " << SectionID 309 << " Offset: " << format("%p", (uintptr_t)Addr) 310 << " flags: " << *FlagsOrErr << "\n"); 311 // Skip absolute symbol relocations. 312 if (!Name.empty()) { 313 auto Result = GlobalSymbolTable.insert_or_assign( 314 Name, SymbolTableEntry(SectionID, Addr, *JITSymFlags)); 315 processNewSymbol(*I, Result.first->getValue()); 316 } 317 } else if (SymType == object::SymbolRef::ST_Function || 318 SymType == object::SymbolRef::ST_Data || 319 SymType == object::SymbolRef::ST_Unknown || 320 SymType == object::SymbolRef::ST_Other) { 321 322 section_iterator SI = Obj.section_end(); 323 if (auto SIOrErr = I->getSection()) 324 SI = *SIOrErr; 325 else 326 return SIOrErr.takeError(); 327 328 if (SI == Obj.section_end()) 329 continue; 330 331 // Get symbol offset. 332 uint64_t SectOffset; 333 if (auto Err = getOffset(*I, *SI, SectOffset)) 334 return std::move(Err); 335 336 bool IsCode = SI->isText(); 337 unsigned SectionID; 338 if (auto SectionIDOrErr = 339 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 340 SectionID = *SectionIDOrErr; 341 else 342 return SectionIDOrErr.takeError(); 343 344 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 345 << " SID: " << SectionID 346 << " Offset: " << format("%p", (uintptr_t)SectOffset) 347 << " flags: " << *FlagsOrErr << "\n"); 348 // Skip absolute symbol relocations. 349 if (!Name.empty()) { 350 auto Result = GlobalSymbolTable.insert_or_assign( 351 Name, SymbolTableEntry(SectionID, SectOffset, *JITSymFlags)); 352 processNewSymbol(*I, Result.first->getValue()); 353 } 354 } 355 } 356 357 // Allocate common symbols 358 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, 359 CommonAlign)) 360 return std::move(Err); 361 362 // Parse and process relocations 363 LLVM_DEBUG(dbgs() << "Parse relocations:\n"); 364 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 365 SI != SE; ++SI) { 366 StubMap Stubs; 367 368 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 369 if (!RelSecOrErr) 370 return RelSecOrErr.takeError(); 371 372 section_iterator RelocatedSection = *RelSecOrErr; 373 if (RelocatedSection == SE) 374 continue; 375 376 relocation_iterator I = SI->relocation_begin(); 377 relocation_iterator E = SI->relocation_end(); 378 379 if (I == E && !ProcessAllSections) 380 continue; 381 382 bool IsCode = RelocatedSection->isText(); 383 unsigned SectionID = 0; 384 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 385 LocalSections)) 386 SectionID = *SectionIDOrErr; 387 else 388 return SectionIDOrErr.takeError(); 389 390 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 391 392 for (; I != E;) 393 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 394 I = *IOrErr; 395 else 396 return IOrErr.takeError(); 397 398 // If there is a NotifyStubEmitted callback set, call it to register any 399 // stubs created for this section. 400 if (NotifyStubEmitted) { 401 StringRef FileName = Obj.getFileName(); 402 StringRef SectionName = Sections[SectionID].getName(); 403 for (auto &KV : Stubs) { 404 405 auto &VR = KV.first; 406 uint64_t StubAddr = KV.second; 407 408 // If this is a named stub, just call NotifyStubEmitted. 409 if (VR.SymbolName) { 410 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, 411 StubAddr); 412 continue; 413 } 414 415 // Otherwise we will have to try a reverse lookup on the globla symbol table. 416 for (auto &GSTMapEntry : GlobalSymbolTable) { 417 StringRef SymbolName = GSTMapEntry.first(); 418 auto &GSTEntry = GSTMapEntry.second; 419 if (GSTEntry.getSectionID() == VR.SectionID && 420 GSTEntry.getOffset() == VR.Offset) { 421 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, 422 StubAddr); 423 break; 424 } 425 } 426 } 427 } 428 } 429 430 // Process remaining sections 431 if (ProcessAllSections) { 432 LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); 433 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 434 SI != SE; ++SI) { 435 436 /* Ignore already loaded sections */ 437 if (LocalSections.find(*SI) != LocalSections.end()) 438 continue; 439 440 bool IsCode = SI->isText(); 441 if (auto SectionIDOrErr = 442 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 443 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); 444 else 445 return SectionIDOrErr.takeError(); 446 } 447 } 448 449 // Give the subclasses a chance to tie-up any loose ends. 450 if (auto Err = finalizeLoad(Obj, LocalSections)) 451 return std::move(Err); 452 453 // for (auto E : LocalSections) 454 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 455 456 return LocalSections; 457 } 458 459 // A helper method for computeTotalAllocSize. 460 // Computes the memory size required to allocate sections with the given sizes, 461 // assuming that all sections are allocated with the given alignment 462 static uint64_t 463 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 464 Align Alignment) { 465 uint64_t TotalSize = 0; 466 for (uint64_t SectionSize : SectionSizes) 467 TotalSize += alignTo(SectionSize, Alignment); 468 return TotalSize; 469 } 470 471 static bool isRequiredForExecution(const SectionRef Section) { 472 const ObjectFile *Obj = Section.getObject(); 473 if (isa<object::ELFObjectFileBase>(Obj)) 474 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 475 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 476 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 477 // Avoid loading zero-sized COFF sections. 478 // In PE files, VirtualSize gives the section size, and SizeOfRawData 479 // may be zero for sections with content. In Obj files, SizeOfRawData 480 // gives the section size, and VirtualSize is always zero. Hence 481 // the need to check for both cases below. 482 bool HasContent = 483 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 484 bool IsDiscardable = 485 CoffSection->Characteristics & 486 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 487 return HasContent && !IsDiscardable; 488 } 489 490 assert(isa<MachOObjectFile>(Obj)); 491 return true; 492 } 493 494 static bool isReadOnlyData(const SectionRef Section) { 495 const ObjectFile *Obj = Section.getObject(); 496 if (isa<object::ELFObjectFileBase>(Obj)) 497 return !(ELFSectionRef(Section).getFlags() & 498 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 499 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 500 return ((COFFObj->getCOFFSection(Section)->Characteristics & 501 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 502 | COFF::IMAGE_SCN_MEM_READ 503 | COFF::IMAGE_SCN_MEM_WRITE)) 504 == 505 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 506 | COFF::IMAGE_SCN_MEM_READ)); 507 508 assert(isa<MachOObjectFile>(Obj)); 509 return false; 510 } 511 512 static bool isZeroInit(const SectionRef Section) { 513 const ObjectFile *Obj = Section.getObject(); 514 if (isa<object::ELFObjectFileBase>(Obj)) 515 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 516 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 517 return COFFObj->getCOFFSection(Section)->Characteristics & 518 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 519 520 auto *MachO = cast<MachOObjectFile>(Obj); 521 unsigned SectionType = MachO->getSectionType(Section); 522 return SectionType == MachO::S_ZEROFILL || 523 SectionType == MachO::S_GB_ZEROFILL; 524 } 525 526 static bool isTLS(const SectionRef Section) { 527 const ObjectFile *Obj = Section.getObject(); 528 if (isa<object::ELFObjectFileBase>(Obj)) 529 return ELFSectionRef(Section).getFlags() & ELF::SHF_TLS; 530 return false; 531 } 532 533 // Compute an upper bound of the memory size that is required to load all 534 // sections 535 Error RuntimeDyldImpl::computeTotalAllocSize( 536 const ObjectFile &Obj, uint64_t &CodeSize, Align &CodeAlign, 537 uint64_t &RODataSize, Align &RODataAlign, uint64_t &RWDataSize, 538 Align &RWDataAlign) { 539 // Compute the size of all sections required for execution 540 std::vector<uint64_t> CodeSectionSizes; 541 std::vector<uint64_t> ROSectionSizes; 542 std::vector<uint64_t> RWSectionSizes; 543 544 // Collect sizes of all sections to be loaded; 545 // also determine the max alignment of all sections 546 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 547 SI != SE; ++SI) { 548 const SectionRef &Section = *SI; 549 550 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; 551 552 // Consider only the sections that are required to be loaded for execution 553 if (IsRequired) { 554 uint64_t DataSize = Section.getSize(); 555 Align Alignment = Section.getAlignment(); 556 bool IsCode = Section.isText(); 557 bool IsReadOnly = isReadOnlyData(Section); 558 bool IsTLS = isTLS(Section); 559 560 Expected<StringRef> NameOrErr = Section.getName(); 561 if (!NameOrErr) 562 return NameOrErr.takeError(); 563 StringRef Name = *NameOrErr; 564 565 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 566 567 uint64_t PaddingSize = 0; 568 if (Name == ".eh_frame") 569 PaddingSize += 4; 570 if (StubBufSize != 0) 571 PaddingSize += getStubAlignment().value() - 1; 572 573 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; 574 575 // The .eh_frame section (at least on Linux) needs an extra four bytes 576 // padded 577 // with zeroes added at the end. For MachO objects, this section has a 578 // slightly different name, so this won't have any effect for MachO 579 // objects. 580 if (Name == ".eh_frame") 581 SectionSize += 4; 582 583 if (!SectionSize) 584 SectionSize = 1; 585 586 if (IsCode) { 587 CodeAlign = std::max(CodeAlign, Alignment); 588 CodeSectionSizes.push_back(SectionSize); 589 } else if (IsReadOnly) { 590 RODataAlign = std::max(RODataAlign, Alignment); 591 ROSectionSizes.push_back(SectionSize); 592 } else if (!IsTLS) { 593 RWDataAlign = std::max(RWDataAlign, Alignment); 594 RWSectionSizes.push_back(SectionSize); 595 } 596 } 597 } 598 599 // Compute Global Offset Table size. If it is not zero we 600 // also update alignment, which is equal to a size of a 601 // single GOT entry. 602 if (unsigned GotSize = computeGOTSize(Obj)) { 603 RWSectionSizes.push_back(GotSize); 604 RWDataAlign = std::max(RWDataAlign, Align(getGOTEntrySize())); 605 } 606 607 // Compute the size of all common symbols 608 uint64_t CommonSize = 0; 609 Align CommonAlign; 610 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 611 ++I) { 612 Expected<uint32_t> FlagsOrErr = I->getFlags(); 613 if (!FlagsOrErr) 614 // TODO: Test this error. 615 return FlagsOrErr.takeError(); 616 if (*FlagsOrErr & SymbolRef::SF_Common) { 617 // Add the common symbols to a list. We'll allocate them all below. 618 uint64_t Size = I->getCommonSize(); 619 Align Alignment = Align(I->getAlignment()); 620 // If this is the first common symbol, use its alignment as the alignment 621 // for the common symbols section. 622 if (CommonSize == 0) 623 CommonAlign = Alignment; 624 CommonSize = alignTo(CommonSize, Alignment) + Size; 625 } 626 } 627 if (CommonSize != 0) { 628 RWSectionSizes.push_back(CommonSize); 629 RWDataAlign = std::max(RWDataAlign, CommonAlign); 630 } 631 632 if (!CodeSectionSizes.empty()) { 633 // Add 64 bytes for a potential IFunc resolver stub 634 CodeSectionSizes.push_back(64); 635 } 636 637 // Compute the required allocation space for each different type of sections 638 // (code, read-only data, read-write data) assuming that all sections are 639 // allocated with the max alignment. Note that we cannot compute with the 640 // individual alignments of the sections, because then the required size 641 // depends on the order, in which the sections are allocated. 642 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 643 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 644 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 645 646 return Error::success(); 647 } 648 649 // compute GOT size 650 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { 651 size_t GotEntrySize = getGOTEntrySize(); 652 if (!GotEntrySize) 653 return 0; 654 655 size_t GotSize = 0; 656 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 657 SI != SE; ++SI) { 658 659 for (const RelocationRef &Reloc : SI->relocations()) 660 if (relocationNeedsGot(Reloc)) 661 GotSize += GotEntrySize; 662 } 663 664 return GotSize; 665 } 666 667 // compute stub buffer size for the given section 668 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 669 const SectionRef &Section) { 670 if (!MemMgr.allowStubAllocation()) { 671 return 0; 672 } 673 674 unsigned StubSize = getMaxStubSize(); 675 if (StubSize == 0) { 676 return 0; 677 } 678 // FIXME: this is an inefficient way to handle this. We should computed the 679 // necessary section allocation size in loadObject by walking all the sections 680 // once. 681 unsigned StubBufSize = 0; 682 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 683 SI != SE; ++SI) { 684 685 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 686 if (!RelSecOrErr) 687 report_fatal_error(Twine(toString(RelSecOrErr.takeError()))); 688 689 section_iterator RelSecI = *RelSecOrErr; 690 if (!(RelSecI == Section)) 691 continue; 692 693 for (const RelocationRef &Reloc : SI->relocations()) 694 if (relocationNeedsStub(Reloc)) 695 StubBufSize += StubSize; 696 } 697 698 // Get section data size and alignment 699 uint64_t DataSize = Section.getSize(); 700 Align Alignment = Section.getAlignment(); 701 702 // Add stubbuf size alignment 703 Align StubAlignment = getStubAlignment(); 704 Align EndAlignment = commonAlignment(Alignment, DataSize); 705 if (StubAlignment > EndAlignment) 706 StubBufSize += StubAlignment.value() - EndAlignment.value(); 707 return StubBufSize; 708 } 709 710 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 711 unsigned Size) const { 712 uint64_t Result = 0; 713 if (IsTargetLittleEndian) { 714 Src += Size - 1; 715 while (Size--) 716 Result = (Result << 8) | *Src--; 717 } else 718 while (Size--) 719 Result = (Result << 8) | *Src++; 720 721 return Result; 722 } 723 724 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 725 unsigned Size) const { 726 if (IsTargetLittleEndian) { 727 while (Size--) { 728 *Dst++ = Value & 0xFF; 729 Value >>= 8; 730 } 731 } else { 732 Dst += Size - 1; 733 while (Size--) { 734 *Dst-- = Value & 0xFF; 735 Value >>= 8; 736 } 737 } 738 } 739 740 Expected<JITSymbolFlags> 741 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { 742 return JITSymbolFlags::fromObjectSymbol(SR); 743 } 744 745 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 746 CommonSymbolList &SymbolsToAllocate, 747 uint64_t CommonSize, 748 uint32_t CommonAlign) { 749 if (SymbolsToAllocate.empty()) 750 return Error::success(); 751 752 // Allocate memory for the section 753 unsigned SectionID = Sections.size(); 754 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 755 "<common symbols>", false); 756 if (!Addr) 757 report_fatal_error("Unable to allocate memory for common symbols!"); 758 uint64_t Offset = 0; 759 Sections.push_back( 760 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 761 memset(Addr, 0, CommonSize); 762 763 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID 764 << " new addr: " << format("%p", Addr) 765 << " DataSize: " << CommonSize << "\n"); 766 767 // Assign the address of each symbol 768 for (auto &Sym : SymbolsToAllocate) { 769 uint32_t Alignment = Sym.getAlignment(); 770 uint64_t Size = Sym.getCommonSize(); 771 StringRef Name; 772 if (auto NameOrErr = Sym.getName()) 773 Name = *NameOrErr; 774 else 775 return NameOrErr.takeError(); 776 if (Alignment) { 777 // This symbol has an alignment requirement. 778 uint64_t AlignOffset = 779 offsetToAlignment((uint64_t)Addr, Align(Alignment)); 780 Addr += AlignOffset; 781 Offset += AlignOffset; 782 } 783 auto JITSymFlags = getJITSymbolFlags(Sym); 784 785 if (!JITSymFlags) 786 return JITSymFlags.takeError(); 787 788 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 789 << format("%p", Addr) << "\n"); 790 if (!Name.empty()) // Skip absolute symbol relocations. 791 GlobalSymbolTable[Name] = 792 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); 793 Offset += Size; 794 Addr += Size; 795 } 796 797 return Error::success(); 798 } 799 800 Expected<unsigned> 801 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 802 const SectionRef &Section, 803 bool IsCode) { 804 StringRef data; 805 Align Alignment = Section.getAlignment(); 806 807 unsigned PaddingSize = 0; 808 unsigned StubBufSize = 0; 809 bool IsRequired = isRequiredForExecution(Section); 810 bool IsVirtual = Section.isVirtual(); 811 bool IsZeroInit = isZeroInit(Section); 812 bool IsReadOnly = isReadOnlyData(Section); 813 bool IsTLS = isTLS(Section); 814 uint64_t DataSize = Section.getSize(); 815 816 Expected<StringRef> NameOrErr = Section.getName(); 817 if (!NameOrErr) 818 return NameOrErr.takeError(); 819 StringRef Name = *NameOrErr; 820 821 StubBufSize = computeSectionStubBufSize(Obj, Section); 822 823 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 824 // with zeroes added at the end. For MachO objects, this section has a 825 // slightly different name, so this won't have any effect for MachO objects. 826 if (Name == ".eh_frame") 827 PaddingSize = 4; 828 829 uintptr_t Allocate; 830 unsigned SectionID = Sections.size(); 831 uint8_t *Addr; 832 uint64_t LoadAddress = 0; 833 const char *pData = nullptr; 834 835 // If this section contains any bits (i.e. isn't a virtual or bss section), 836 // grab a reference to them. 837 if (!IsVirtual && !IsZeroInit) { 838 // In either case, set the location of the unrelocated section in memory, 839 // since we still process relocations for it even if we're not applying them. 840 if (Expected<StringRef> E = Section.getContents()) 841 data = *E; 842 else 843 return E.takeError(); 844 pData = data.data(); 845 } 846 847 // If there are any stubs then the section alignment needs to be at least as 848 // high as stub alignment or padding calculations may by incorrect when the 849 // section is remapped. 850 if (StubBufSize != 0) { 851 Alignment = std::max(Alignment, getStubAlignment()); 852 PaddingSize += getStubAlignment().value() - 1; 853 } 854 855 // Some sections, such as debug info, don't need to be loaded for execution. 856 // Process those only if explicitly requested. 857 if (IsRequired || ProcessAllSections) { 858 Allocate = DataSize + PaddingSize + StubBufSize; 859 if (!Allocate) 860 Allocate = 1; 861 if (IsTLS) { 862 auto TLSSection = MemMgr.allocateTLSSection(Allocate, Alignment.value(), 863 SectionID, Name); 864 Addr = TLSSection.InitializationImage; 865 LoadAddress = TLSSection.Offset; 866 } else if (IsCode) { 867 Addr = MemMgr.allocateCodeSection(Allocate, Alignment.value(), SectionID, 868 Name); 869 } else { 870 Addr = MemMgr.allocateDataSection(Allocate, Alignment.value(), SectionID, 871 Name, IsReadOnly); 872 } 873 if (!Addr) 874 report_fatal_error("Unable to allocate section memory!"); 875 876 // Zero-initialize or copy the data from the image 877 if (IsZeroInit || IsVirtual) 878 memset(Addr, 0, DataSize); 879 else 880 memcpy(Addr, pData, DataSize); 881 882 // Fill in any extra bytes we allocated for padding 883 if (PaddingSize != 0) { 884 memset(Addr + DataSize, 0, PaddingSize); 885 // Update the DataSize variable to include padding. 886 DataSize += PaddingSize; 887 888 // Align DataSize to stub alignment if we have any stubs (PaddingSize will 889 // have been increased above to account for this). 890 if (StubBufSize > 0) 891 DataSize &= -(uint64_t)getStubAlignment().value(); 892 } 893 894 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " 895 << Name << " obj addr: " << format("%p", pData) 896 << " new addr: " << format("%p", Addr) << " DataSize: " 897 << DataSize << " StubBufSize: " << StubBufSize 898 << " Allocate: " << Allocate << "\n"); 899 } else { 900 // Even if we didn't load the section, we need to record an entry for it 901 // to handle later processing (and by 'handle' I mean don't do anything 902 // with these sections). 903 Allocate = 0; 904 Addr = nullptr; 905 LLVM_DEBUG( 906 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 907 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 908 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 909 << " Allocate: " << Allocate << "\n"); 910 } 911 912 Sections.push_back( 913 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 914 915 // The load address of a TLS section is not equal to the address of its 916 // initialization image 917 if (IsTLS) 918 Sections.back().setLoadAddress(LoadAddress); 919 // Debug info sections are linked as if their load address was zero 920 if (!IsRequired) 921 Sections.back().setLoadAddress(0); 922 923 return SectionID; 924 } 925 926 Expected<unsigned> 927 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 928 const SectionRef &Section, 929 bool IsCode, 930 ObjSectionToIDMap &LocalSections) { 931 932 unsigned SectionID = 0; 933 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 934 if (i != LocalSections.end()) 935 SectionID = i->second; 936 else { 937 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 938 SectionID = *SectionIDOrErr; 939 else 940 return SectionIDOrErr.takeError(); 941 LocalSections[Section] = SectionID; 942 } 943 return SectionID; 944 } 945 946 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 947 unsigned SectionID) { 948 Relocations[SectionID].push_back(RE); 949 } 950 951 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 952 StringRef SymbolName) { 953 // Relocation by symbol. If the symbol is found in the global symbol table, 954 // create an appropriate section relocation. Otherwise, add it to 955 // ExternalSymbolRelocations. 956 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 957 if (Loc == GlobalSymbolTable.end()) { 958 ExternalSymbolRelocations[SymbolName].push_back(RE); 959 } else { 960 assert(!SymbolName.empty() && 961 "Empty symbol should not be in GlobalSymbolTable"); 962 // Copy the RE since we want to modify its addend. 963 RelocationEntry RECopy = RE; 964 const auto &SymInfo = Loc->second; 965 RECopy.Addend += SymInfo.getOffset(); 966 Relocations[SymInfo.getSectionID()].push_back(RECopy); 967 } 968 } 969 970 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 971 unsigned AbiVariant) { 972 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || 973 Arch == Triple::aarch64_32) { 974 // This stub has to be able to access the full address space, 975 // since symbol lookup won't necessarily find a handy, in-range, 976 // PLT stub for functions which could be anywhere. 977 // Stub can use ip0 (== x16) to calculate address 978 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 979 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 980 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 981 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 982 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 983 984 return Addr; 985 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 986 // TODO: There is only ARM far stub now. We should add the Thumb stub, 987 // and stubs for branches Thumb - ARM and ARM - Thumb. 988 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] 989 return Addr + 4; 990 } else if (IsMipsO32ABI || IsMipsN32ABI) { 991 // 0: 3c190000 lui t9,%hi(addr). 992 // 4: 27390000 addiu t9,t9,%lo(addr). 993 // 8: 03200008 jr t9. 994 // c: 00000000 nop. 995 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 996 const unsigned NopInstr = 0x0; 997 unsigned JrT9Instr = 0x03200008; 998 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || 999 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 1000 JrT9Instr = 0x03200009; 1001 1002 writeBytesUnaligned(LuiT9Instr, Addr, 4); 1003 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); 1004 writeBytesUnaligned(JrT9Instr, Addr + 8, 4); 1005 writeBytesUnaligned(NopInstr, Addr + 12, 4); 1006 return Addr; 1007 } else if (IsMipsN64ABI) { 1008 // 0: 3c190000 lui t9,%highest(addr). 1009 // 4: 67390000 daddiu t9,t9,%higher(addr). 1010 // 8: 0019CC38 dsll t9,t9,16. 1011 // c: 67390000 daddiu t9,t9,%hi(addr). 1012 // 10: 0019CC38 dsll t9,t9,16. 1013 // 14: 67390000 daddiu t9,t9,%lo(addr). 1014 // 18: 03200008 jr t9. 1015 // 1c: 00000000 nop. 1016 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, 1017 DsllT9Instr = 0x19CC38; 1018 const unsigned NopInstr = 0x0; 1019 unsigned JrT9Instr = 0x03200008; 1020 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 1021 JrT9Instr = 0x03200009; 1022 1023 writeBytesUnaligned(LuiT9Instr, Addr, 4); 1024 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); 1025 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); 1026 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); 1027 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); 1028 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); 1029 writeBytesUnaligned(JrT9Instr, Addr + 24, 4); 1030 writeBytesUnaligned(NopInstr, Addr + 28, 4); 1031 return Addr; 1032 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1033 // Depending on which version of the ELF ABI is in use, we need to 1034 // generate one of two variants of the stub. They both start with 1035 // the same sequence to load the target address into r12. 1036 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 1037 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 1038 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 1039 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 1040 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 1041 if (AbiVariant == 2) { 1042 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 1043 // The address is already in r12 as required by the ABI. Branch to it. 1044 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 1045 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 1046 writeInt32BE(Addr+28, 0x4E800420); // bctr 1047 } else { 1048 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 1049 // Load the function address on r11 and sets it to control register. Also 1050 // loads the function TOC in r2 and environment pointer to r11. 1051 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 1052 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 1053 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 1054 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 1055 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 1056 writeInt32BE(Addr+40, 0x4E800420); // bctr 1057 } 1058 return Addr; 1059 } else if (Arch == Triple::systemz) { 1060 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 1061 writeInt16BE(Addr+2, 0x0000); 1062 writeInt16BE(Addr+4, 0x0004); 1063 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 1064 // 8-byte address stored at Addr + 8 1065 return Addr; 1066 } else if (Arch == Triple::x86_64) { 1067 *Addr = 0xFF; // jmp 1068 *(Addr+1) = 0x25; // rip 1069 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 1070 } else if (Arch == Triple::x86) { 1071 *Addr = 0xE9; // 32-bit pc-relative jump. 1072 } 1073 return Addr; 1074 } 1075 1076 // Assign an address to a symbol name and resolve all the relocations 1077 // associated with it. 1078 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 1079 uint64_t Addr) { 1080 // The address to use for relocation resolution is not 1081 // the address of the local section buffer. We must be doing 1082 // a remote execution environment of some sort. Relocations can't 1083 // be applied until all the sections have been moved. The client must 1084 // trigger this with a call to MCJIT::finalize() or 1085 // RuntimeDyld::resolveRelocations(). 1086 // 1087 // Addr is a uint64_t because we can't assume the pointer width 1088 // of the target is the same as that of the host. Just use a generic 1089 // "big enough" type. 1090 LLVM_DEBUG( 1091 dbgs() << "Reassigning address for section " << SectionID << " (" 1092 << Sections[SectionID].getName() << "): " 1093 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 1094 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 1095 Sections[SectionID].setLoadAddress(Addr); 1096 } 1097 1098 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 1099 uint64_t Value) { 1100 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1101 const RelocationEntry &RE = Relocs[i]; 1102 // Ignore relocations for sections that were not loaded 1103 if (RE.SectionID != AbsoluteSymbolSection && 1104 Sections[RE.SectionID].getAddress() == nullptr) 1105 continue; 1106 resolveRelocation(RE, Value); 1107 } 1108 } 1109 1110 void RuntimeDyldImpl::applyExternalSymbolRelocations( 1111 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { 1112 for (auto &RelocKV : ExternalSymbolRelocations) { 1113 StringRef Name = RelocKV.first(); 1114 RelocationList &Relocs = RelocKV.second; 1115 if (Name.size() == 0) { 1116 // This is an absolute symbol, use an address of zero. 1117 LLVM_DEBUG(dbgs() << "Resolving absolute relocations." 1118 << "\n"); 1119 resolveRelocationList(Relocs, 0); 1120 } else { 1121 uint64_t Addr = 0; 1122 JITSymbolFlags Flags; 1123 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 1124 if (Loc == GlobalSymbolTable.end()) { 1125 auto RRI = ExternalSymbolMap.find(Name); 1126 assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); 1127 Addr = RRI->second.getAddress(); 1128 Flags = RRI->second.getFlags(); 1129 } else { 1130 // We found the symbol in our global table. It was probably in a 1131 // Module that we loaded previously. 1132 const auto &SymInfo = Loc->second; 1133 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 1134 SymInfo.getOffset(); 1135 Flags = SymInfo.getFlags(); 1136 } 1137 1138 // FIXME: Implement error handling that doesn't kill the host program! 1139 if (!Addr && !Resolver.allowsZeroSymbols()) 1140 report_fatal_error(Twine("Program used external function '") + Name + 1141 "' which could not be resolved!"); 1142 1143 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 1144 // manually and we shouldn't resolve its relocations. 1145 if (Addr != UINT64_MAX) { 1146 1147 // Tweak the address based on the symbol flags if necessary. 1148 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit 1149 // if the target symbol is Thumb. 1150 Addr = modifyAddressBasedOnFlags(Addr, Flags); 1151 1152 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 1153 << format("0x%lx", Addr) << "\n"); 1154 resolveRelocationList(Relocs, Addr); 1155 } 1156 } 1157 } 1158 ExternalSymbolRelocations.clear(); 1159 } 1160 1161 Error RuntimeDyldImpl::resolveExternalSymbols() { 1162 StringMap<JITEvaluatedSymbol> ExternalSymbolMap; 1163 1164 // Resolution can trigger emission of more symbols, so iterate until 1165 // we've resolved *everything*. 1166 { 1167 JITSymbolResolver::LookupSet ResolvedSymbols; 1168 1169 while (true) { 1170 JITSymbolResolver::LookupSet NewSymbols; 1171 1172 for (auto &RelocKV : ExternalSymbolRelocations) { 1173 StringRef Name = RelocKV.first(); 1174 if (!Name.empty() && !GlobalSymbolTable.count(Name) && 1175 !ResolvedSymbols.count(Name)) 1176 NewSymbols.insert(Name); 1177 } 1178 1179 if (NewSymbols.empty()) 1180 break; 1181 1182 #ifdef _MSC_VER 1183 using ExpectedLookupResult = 1184 MSVCPExpected<JITSymbolResolver::LookupResult>; 1185 #else 1186 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; 1187 #endif 1188 1189 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); 1190 auto NewSymbolsF = NewSymbolsP->get_future(); 1191 Resolver.lookup(NewSymbols, 1192 [=](Expected<JITSymbolResolver::LookupResult> Result) { 1193 NewSymbolsP->set_value(std::move(Result)); 1194 }); 1195 1196 auto NewResolverResults = NewSymbolsF.get(); 1197 1198 if (!NewResolverResults) 1199 return NewResolverResults.takeError(); 1200 1201 assert(NewResolverResults->size() == NewSymbols.size() && 1202 "Should have errored on unresolved symbols"); 1203 1204 for (auto &RRKV : *NewResolverResults) { 1205 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); 1206 ExternalSymbolMap.insert(RRKV); 1207 ResolvedSymbols.insert(RRKV.first); 1208 } 1209 } 1210 } 1211 1212 applyExternalSymbolRelocations(ExternalSymbolMap); 1213 1214 return Error::success(); 1215 } 1216 1217 void RuntimeDyldImpl::finalizeAsync( 1218 std::unique_ptr<RuntimeDyldImpl> This, 1219 unique_function<void(object::OwningBinary<object::ObjectFile>, 1220 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> 1221 OnEmitted, 1222 object::OwningBinary<object::ObjectFile> O, 1223 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) { 1224 1225 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); 1226 auto PostResolveContinuation = 1227 [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O), 1228 Info = std::move(Info)]( 1229 Expected<JITSymbolResolver::LookupResult> Result) mutable { 1230 if (!Result) { 1231 OnEmitted(std::move(O), std::move(Info), Result.takeError()); 1232 return; 1233 } 1234 1235 /// Copy the result into a StringMap, where the keys are held by value. 1236 StringMap<JITEvaluatedSymbol> Resolved; 1237 for (auto &KV : *Result) 1238 Resolved[KV.first] = KV.second; 1239 1240 SharedThis->applyExternalSymbolRelocations(Resolved); 1241 SharedThis->resolveLocalRelocations(); 1242 SharedThis->registerEHFrames(); 1243 std::string ErrMsg; 1244 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) 1245 OnEmitted(std::move(O), std::move(Info), 1246 make_error<StringError>(std::move(ErrMsg), 1247 inconvertibleErrorCode())); 1248 else 1249 OnEmitted(std::move(O), std::move(Info), Error::success()); 1250 }; 1251 1252 JITSymbolResolver::LookupSet Symbols; 1253 1254 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { 1255 StringRef Name = RelocKV.first(); 1256 if (Name.empty()) // Skip absolute symbol relocations. 1257 continue; 1258 assert(!SharedThis->GlobalSymbolTable.count(Name) && 1259 "Name already processed. RuntimeDyld instances can not be re-used " 1260 "when finalizing with finalizeAsync."); 1261 Symbols.insert(Name); 1262 } 1263 1264 if (!Symbols.empty()) { 1265 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation)); 1266 } else 1267 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); 1268 } 1269 1270 //===----------------------------------------------------------------------===// 1271 // RuntimeDyld class implementation 1272 1273 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 1274 const object::SectionRef &Sec) const { 1275 1276 auto I = ObjSecToIDMap.find(Sec); 1277 if (I != ObjSecToIDMap.end()) 1278 return RTDyld.Sections[I->second].getLoadAddress(); 1279 1280 return 0; 1281 } 1282 1283 RuntimeDyld::MemoryManager::TLSSection 1284 RuntimeDyld::MemoryManager::allocateTLSSection(uintptr_t Size, 1285 unsigned Alignment, 1286 unsigned SectionID, 1287 StringRef SectionName) { 1288 report_fatal_error("allocation of TLS not implemented"); 1289 } 1290 1291 void RuntimeDyld::MemoryManager::anchor() {} 1292 void JITSymbolResolver::anchor() {} 1293 void LegacyJITSymbolResolver::anchor() {} 1294 1295 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 1296 JITSymbolResolver &Resolver) 1297 : MemMgr(MemMgr), Resolver(Resolver) { 1298 // FIXME: There's a potential issue lurking here if a single instance of 1299 // RuntimeDyld is used to load multiple objects. The current implementation 1300 // associates a single memory manager with a RuntimeDyld instance. Even 1301 // though the public class spawns a new 'impl' instance for each load, 1302 // they share a single memory manager. This can become a problem when page 1303 // permissions are applied. 1304 Dyld = nullptr; 1305 ProcessAllSections = false; 1306 } 1307 1308 RuntimeDyld::~RuntimeDyld() = default; 1309 1310 static std::unique_ptr<RuntimeDyldCOFF> 1311 createRuntimeDyldCOFF( 1312 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1313 JITSymbolResolver &Resolver, bool ProcessAllSections, 1314 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1315 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1316 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1317 Dyld->setProcessAllSections(ProcessAllSections); 1318 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1319 return Dyld; 1320 } 1321 1322 static std::unique_ptr<RuntimeDyldELF> 1323 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1324 JITSymbolResolver &Resolver, bool ProcessAllSections, 1325 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1326 std::unique_ptr<RuntimeDyldELF> Dyld = 1327 RuntimeDyldELF::create(Arch, MM, Resolver); 1328 Dyld->setProcessAllSections(ProcessAllSections); 1329 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1330 return Dyld; 1331 } 1332 1333 static std::unique_ptr<RuntimeDyldMachO> 1334 createRuntimeDyldMachO( 1335 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1336 JITSymbolResolver &Resolver, 1337 bool ProcessAllSections, 1338 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1339 std::unique_ptr<RuntimeDyldMachO> Dyld = 1340 RuntimeDyldMachO::create(Arch, MM, Resolver); 1341 Dyld->setProcessAllSections(ProcessAllSections); 1342 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1343 return Dyld; 1344 } 1345 1346 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1347 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1348 if (!Dyld) { 1349 if (Obj.isELF()) 1350 Dyld = 1351 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1352 MemMgr, Resolver, ProcessAllSections, 1353 std::move(NotifyStubEmitted)); 1354 else if (Obj.isMachO()) 1355 Dyld = createRuntimeDyldMachO( 1356 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1357 ProcessAllSections, std::move(NotifyStubEmitted)); 1358 else if (Obj.isCOFF()) 1359 Dyld = createRuntimeDyldCOFF( 1360 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1361 ProcessAllSections, std::move(NotifyStubEmitted)); 1362 else 1363 report_fatal_error("Incompatible object format!"); 1364 } 1365 1366 if (!Dyld->isCompatibleFile(Obj)) 1367 report_fatal_error("Incompatible object format!"); 1368 1369 auto LoadedObjInfo = Dyld->loadObject(Obj); 1370 MemMgr.notifyObjectLoaded(*this, Obj); 1371 return LoadedObjInfo; 1372 } 1373 1374 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1375 if (!Dyld) 1376 return nullptr; 1377 return Dyld->getSymbolLocalAddress(Name); 1378 } 1379 1380 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { 1381 assert(Dyld && "No RuntimeDyld instance attached"); 1382 return Dyld->getSymbolSectionID(Name); 1383 } 1384 1385 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1386 if (!Dyld) 1387 return nullptr; 1388 return Dyld->getSymbol(Name); 1389 } 1390 1391 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { 1392 if (!Dyld) 1393 return std::map<StringRef, JITEvaluatedSymbol>(); 1394 return Dyld->getSymbolTable(); 1395 } 1396 1397 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1398 1399 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1400 Dyld->reassignSectionAddress(SectionID, Addr); 1401 } 1402 1403 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1404 uint64_t TargetAddress) { 1405 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1406 } 1407 1408 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1409 1410 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1411 1412 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1413 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1414 MemMgr.FinalizationLocked = true; 1415 resolveRelocations(); 1416 registerEHFrames(); 1417 if (!MemoryFinalizationLocked) { 1418 MemMgr.finalizeMemory(); 1419 MemMgr.FinalizationLocked = false; 1420 } 1421 } 1422 1423 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { 1424 assert(Dyld && "No Dyld instance attached"); 1425 return Dyld->getSectionContent(SectionID); 1426 } 1427 1428 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { 1429 assert(Dyld && "No Dyld instance attached"); 1430 return Dyld->getSectionLoadAddress(SectionID); 1431 } 1432 1433 void RuntimeDyld::registerEHFrames() { 1434 if (Dyld) 1435 Dyld->registerEHFrames(); 1436 } 1437 1438 void RuntimeDyld::deregisterEHFrames() { 1439 if (Dyld) 1440 Dyld->deregisterEHFrames(); 1441 } 1442 // FIXME: Kill this with fire once we have a new JIT linker: this is only here 1443 // so that we can re-use RuntimeDyld's implementation without twisting the 1444 // interface any further for ORC's purposes. 1445 void jitLinkForORC( 1446 object::OwningBinary<object::ObjectFile> O, 1447 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver, 1448 bool ProcessAllSections, 1449 unique_function<Error(const object::ObjectFile &Obj, 1450 RuntimeDyld::LoadedObjectInfo &LoadedObj, 1451 std::map<StringRef, JITEvaluatedSymbol>)> 1452 OnLoaded, 1453 unique_function<void(object::OwningBinary<object::ObjectFile>, 1454 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> 1455 OnEmitted) { 1456 1457 RuntimeDyld RTDyld(MemMgr, Resolver); 1458 RTDyld.setProcessAllSections(ProcessAllSections); 1459 1460 auto Info = RTDyld.loadObject(*O.getBinary()); 1461 1462 if (RTDyld.hasError()) { 1463 OnEmitted(std::move(O), std::move(Info), 1464 make_error<StringError>(RTDyld.getErrorString(), 1465 inconvertibleErrorCode())); 1466 return; 1467 } 1468 1469 if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable())) 1470 OnEmitted(std::move(O), std::move(Info), std::move(Err)); 1471 1472 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), 1473 std::move(O), std::move(Info)); 1474 } 1475 1476 } // end namespace llvm 1477