1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the MC-JIT runtime dynamic linker. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ExecutionEngine/RuntimeDyld.h" 14 #include "RuntimeDyldCOFF.h" 15 #include "RuntimeDyldELF.h" 16 #include "RuntimeDyldImpl.h" 17 #include "RuntimeDyldMachO.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/Support/Alignment.h" 21 #include "llvm/Support/MSVCErrorWorkarounds.h" 22 #include "llvm/Support/ManagedStatic.h" 23 #include "llvm/Support/MathExtras.h" 24 #include <mutex> 25 26 #include <future> 27 28 using namespace llvm; 29 using namespace llvm::object; 30 31 #define DEBUG_TYPE "dyld" 32 33 namespace { 34 35 enum RuntimeDyldErrorCode { 36 GenericRTDyldError = 1 37 }; 38 39 // FIXME: This class is only here to support the transition to llvm::Error. It 40 // will be removed once this transition is complete. Clients should prefer to 41 // deal with the Error value directly, rather than converting to error_code. 42 class RuntimeDyldErrorCategory : public std::error_category { 43 public: 44 const char *name() const noexcept override { return "runtimedyld"; } 45 46 std::string message(int Condition) const override { 47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 48 case GenericRTDyldError: return "Generic RuntimeDyld error"; 49 } 50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 51 } 52 }; 53 54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 55 56 } 57 58 char RuntimeDyldError::ID = 0; 59 60 void RuntimeDyldError::log(raw_ostream &OS) const { 61 OS << ErrMsg << "\n"; 62 } 63 64 std::error_code RuntimeDyldError::convertToErrorCode() const { 65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 66 } 67 68 // Empty out-of-line virtual destructor as the key function. 69 RuntimeDyldImpl::~RuntimeDyldImpl() {} 70 71 // Pin LoadedObjectInfo's vtables to this file. 72 void RuntimeDyld::LoadedObjectInfo::anchor() {} 73 74 namespace llvm { 75 76 void RuntimeDyldImpl::registerEHFrames() {} 77 78 void RuntimeDyldImpl::deregisterEHFrames() { 79 MemMgr.deregisterEHFrames(); 80 } 81 82 #ifndef NDEBUG 83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 84 dbgs() << "----- Contents of section " << S.getName() << " " << State 85 << " -----"; 86 87 if (S.getAddress() == nullptr) { 88 dbgs() << "\n <section not emitted>\n"; 89 return; 90 } 91 92 const unsigned ColsPerRow = 16; 93 94 uint8_t *DataAddr = S.getAddress(); 95 uint64_t LoadAddr = S.getLoadAddress(); 96 97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 98 unsigned BytesRemaining = S.getSize(); 99 100 if (StartPadding) { 101 dbgs() << "\n" << format("0x%016" PRIx64, 102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 103 while (StartPadding--) 104 dbgs() << " "; 105 } 106 107 while (BytesRemaining > 0) { 108 if ((LoadAddr & (ColsPerRow - 1)) == 0) 109 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 110 111 dbgs() << " " << format("%02x", *DataAddr); 112 113 ++DataAddr; 114 ++LoadAddr; 115 --BytesRemaining; 116 } 117 118 dbgs() << "\n"; 119 } 120 #endif 121 122 // Resolve the relocations for all symbols we currently know about. 123 void RuntimeDyldImpl::resolveRelocations() { 124 std::lock_guard<sys::Mutex> locked(lock); 125 126 // Print out the sections prior to relocation. 127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 128 dumpSectionMemory(Sections[i], "before relocations");); 129 130 // First, resolve relocations associated with external symbols. 131 if (auto Err = resolveExternalSymbols()) { 132 HasError = true; 133 ErrorStr = toString(std::move(Err)); 134 } 135 136 resolveLocalRelocations(); 137 138 // Print out sections after relocation. 139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 140 dumpSectionMemory(Sections[i], "after relocations");); 141 } 142 143 void RuntimeDyldImpl::resolveLocalRelocations() { 144 // Iterate over all outstanding relocations 145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 146 // The Section here (Sections[i]) refers to the section in which the 147 // symbol for the relocation is located. The SectionID in the relocation 148 // entry provides the section to which the relocation will be applied. 149 int Idx = it->first; 150 uint64_t Addr = Sections[Idx].getLoadAddress(); 151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 152 << format("%p", (uintptr_t)Addr) << "\n"); 153 resolveRelocationList(it->second, Addr); 154 } 155 Relocations.clear(); 156 } 157 158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 159 uint64_t TargetAddress) { 160 std::lock_guard<sys::Mutex> locked(lock); 161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 162 if (Sections[i].getAddress() == LocalAddress) { 163 reassignSectionAddress(i, TargetAddress); 164 return; 165 } 166 } 167 llvm_unreachable("Attempting to remap address of unknown section!"); 168 } 169 170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 171 uint64_t &Result) { 172 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 173 if (!AddressOrErr) 174 return AddressOrErr.takeError(); 175 Result = *AddressOrErr - Sec.getAddress(); 176 return Error::success(); 177 } 178 179 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 181 std::lock_guard<sys::Mutex> locked(lock); 182 183 // Save information about our target 184 Arch = (Triple::ArchType)Obj.getArch(); 185 IsTargetLittleEndian = Obj.isLittleEndian(); 186 setMipsABI(Obj); 187 188 // Compute the memory size required to load all sections to be loaded 189 // and pass this information to the memory manager 190 if (MemMgr.needsToReserveAllocationSpace()) { 191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 193 if (auto Err = computeTotalAllocSize(Obj, 194 CodeSize, CodeAlign, 195 RODataSize, RODataAlign, 196 RWDataSize, RWDataAlign)) 197 return std::move(Err); 198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 199 RWDataSize, RWDataAlign); 200 } 201 202 // Used sections from the object file 203 ObjSectionToIDMap LocalSections; 204 205 // Common symbols requiring allocation, with their sizes and alignments 206 CommonSymbolList CommonSymbolsToAllocate; 207 208 uint64_t CommonSize = 0; 209 uint32_t CommonAlign = 0; 210 211 // First, collect all weak and common symbols. We need to know if stronger 212 // definitions occur elsewhere. 213 JITSymbolResolver::LookupSet ResponsibilitySet; 214 { 215 JITSymbolResolver::LookupSet Symbols; 216 for (auto &Sym : Obj.symbols()) { 217 Expected<uint32_t> FlagsOrErr = Sym.getFlags(); 218 if (!FlagsOrErr) 219 // TODO: Test this error. 220 return FlagsOrErr.takeError(); 221 if ((*FlagsOrErr & SymbolRef::SF_Common) || 222 (*FlagsOrErr & SymbolRef::SF_Weak)) { 223 // Get symbol name. 224 if (auto NameOrErr = Sym.getName()) 225 Symbols.insert(*NameOrErr); 226 else 227 return NameOrErr.takeError(); 228 } 229 } 230 231 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) 232 ResponsibilitySet = std::move(*ResultOrErr); 233 else 234 return ResultOrErr.takeError(); 235 } 236 237 // Parse symbols 238 LLVM_DEBUG(dbgs() << "Parse symbols:\n"); 239 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 240 ++I) { 241 Expected<uint32_t> FlagsOrErr = I->getFlags(); 242 if (!FlagsOrErr) 243 // TODO: Test this error. 244 return FlagsOrErr.takeError(); 245 246 // Skip undefined symbols. 247 if (*FlagsOrErr & SymbolRef::SF_Undefined) 248 continue; 249 250 // Get the symbol type. 251 object::SymbolRef::Type SymType; 252 if (auto SymTypeOrErr = I->getType()) 253 SymType = *SymTypeOrErr; 254 else 255 return SymTypeOrErr.takeError(); 256 257 // Get symbol name. 258 StringRef Name; 259 if (auto NameOrErr = I->getName()) 260 Name = *NameOrErr; 261 else 262 return NameOrErr.takeError(); 263 264 // Compute JIT symbol flags. 265 auto JITSymFlags = getJITSymbolFlags(*I); 266 if (!JITSymFlags) 267 return JITSymFlags.takeError(); 268 269 // If this is a weak definition, check to see if there's a strong one. 270 // If there is, skip this symbol (we won't be providing it: the strong 271 // definition will). If there's no strong definition, make this definition 272 // strong. 273 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { 274 // First check whether there's already a definition in this instance. 275 if (GlobalSymbolTable.count(Name)) 276 continue; 277 278 // If we're not responsible for this symbol, skip it. 279 if (!ResponsibilitySet.count(Name)) 280 continue; 281 282 // Otherwise update the flags on the symbol to make this definition 283 // strong. 284 if (JITSymFlags->isWeak()) 285 *JITSymFlags &= ~JITSymbolFlags::Weak; 286 if (JITSymFlags->isCommon()) { 287 *JITSymFlags &= ~JITSymbolFlags::Common; 288 uint32_t Align = I->getAlignment(); 289 uint64_t Size = I->getCommonSize(); 290 if (!CommonAlign) 291 CommonAlign = Align; 292 CommonSize = alignTo(CommonSize, Align) + Size; 293 CommonSymbolsToAllocate.push_back(*I); 294 } 295 } 296 297 if (*FlagsOrErr & SymbolRef::SF_Absolute && 298 SymType != object::SymbolRef::ST_File) { 299 uint64_t Addr = 0; 300 if (auto AddrOrErr = I->getAddress()) 301 Addr = *AddrOrErr; 302 else 303 return AddrOrErr.takeError(); 304 305 unsigned SectionID = AbsoluteSymbolSection; 306 307 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 308 << " SID: " << SectionID 309 << " Offset: " << format("%p", (uintptr_t)Addr) 310 << " flags: " << *FlagsOrErr << "\n"); 311 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags); 312 } else if (SymType == object::SymbolRef::ST_Function || 313 SymType == object::SymbolRef::ST_Data || 314 SymType == object::SymbolRef::ST_Unknown || 315 SymType == object::SymbolRef::ST_Other) { 316 317 section_iterator SI = Obj.section_end(); 318 if (auto SIOrErr = I->getSection()) 319 SI = *SIOrErr; 320 else 321 return SIOrErr.takeError(); 322 323 if (SI == Obj.section_end()) 324 continue; 325 326 // Get symbol offset. 327 uint64_t SectOffset; 328 if (auto Err = getOffset(*I, *SI, SectOffset)) 329 return std::move(Err); 330 331 bool IsCode = SI->isText(); 332 unsigned SectionID; 333 if (auto SectionIDOrErr = 334 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 335 SectionID = *SectionIDOrErr; 336 else 337 return SectionIDOrErr.takeError(); 338 339 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 340 << " SID: " << SectionID 341 << " Offset: " << format("%p", (uintptr_t)SectOffset) 342 << " flags: " << *FlagsOrErr << "\n"); 343 GlobalSymbolTable[Name] = 344 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); 345 } 346 } 347 348 // Allocate common symbols 349 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, 350 CommonAlign)) 351 return std::move(Err); 352 353 // Parse and process relocations 354 LLVM_DEBUG(dbgs() << "Parse relocations:\n"); 355 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 356 SI != SE; ++SI) { 357 StubMap Stubs; 358 359 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 360 if (!RelSecOrErr) 361 return RelSecOrErr.takeError(); 362 363 section_iterator RelocatedSection = *RelSecOrErr; 364 if (RelocatedSection == SE) 365 continue; 366 367 relocation_iterator I = SI->relocation_begin(); 368 relocation_iterator E = SI->relocation_end(); 369 370 if (I == E && !ProcessAllSections) 371 continue; 372 373 bool IsCode = RelocatedSection->isText(); 374 unsigned SectionID = 0; 375 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 376 LocalSections)) 377 SectionID = *SectionIDOrErr; 378 else 379 return SectionIDOrErr.takeError(); 380 381 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 382 383 for (; I != E;) 384 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 385 I = *IOrErr; 386 else 387 return IOrErr.takeError(); 388 389 // If there is a NotifyStubEmitted callback set, call it to register any 390 // stubs created for this section. 391 if (NotifyStubEmitted) { 392 StringRef FileName = Obj.getFileName(); 393 StringRef SectionName = Sections[SectionID].getName(); 394 for (auto &KV : Stubs) { 395 396 auto &VR = KV.first; 397 uint64_t StubAddr = KV.second; 398 399 // If this is a named stub, just call NotifyStubEmitted. 400 if (VR.SymbolName) { 401 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, 402 StubAddr); 403 continue; 404 } 405 406 // Otherwise we will have to try a reverse lookup on the globla symbol table. 407 for (auto &GSTMapEntry : GlobalSymbolTable) { 408 StringRef SymbolName = GSTMapEntry.first(); 409 auto &GSTEntry = GSTMapEntry.second; 410 if (GSTEntry.getSectionID() == VR.SectionID && 411 GSTEntry.getOffset() == VR.Offset) { 412 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, 413 StubAddr); 414 break; 415 } 416 } 417 } 418 } 419 } 420 421 // Process remaining sections 422 if (ProcessAllSections) { 423 LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); 424 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 425 SI != SE; ++SI) { 426 427 /* Ignore already loaded sections */ 428 if (LocalSections.find(*SI) != LocalSections.end()) 429 continue; 430 431 bool IsCode = SI->isText(); 432 if (auto SectionIDOrErr = 433 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 434 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); 435 else 436 return SectionIDOrErr.takeError(); 437 } 438 } 439 440 // Give the subclasses a chance to tie-up any loose ends. 441 if (auto Err = finalizeLoad(Obj, LocalSections)) 442 return std::move(Err); 443 444 // for (auto E : LocalSections) 445 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 446 447 return LocalSections; 448 } 449 450 // A helper method for computeTotalAllocSize. 451 // Computes the memory size required to allocate sections with the given sizes, 452 // assuming that all sections are allocated with the given alignment 453 static uint64_t 454 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 455 uint64_t Alignment) { 456 uint64_t TotalSize = 0; 457 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 458 uint64_t AlignedSize = 459 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 460 TotalSize += AlignedSize; 461 } 462 return TotalSize; 463 } 464 465 static bool isRequiredForExecution(const SectionRef Section) { 466 const ObjectFile *Obj = Section.getObject(); 467 if (isa<object::ELFObjectFileBase>(Obj)) 468 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 469 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 470 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 471 // Avoid loading zero-sized COFF sections. 472 // In PE files, VirtualSize gives the section size, and SizeOfRawData 473 // may be zero for sections with content. In Obj files, SizeOfRawData 474 // gives the section size, and VirtualSize is always zero. Hence 475 // the need to check for both cases below. 476 bool HasContent = 477 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 478 bool IsDiscardable = 479 CoffSection->Characteristics & 480 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 481 return HasContent && !IsDiscardable; 482 } 483 484 assert(isa<MachOObjectFile>(Obj)); 485 return true; 486 } 487 488 static bool isReadOnlyData(const SectionRef Section) { 489 const ObjectFile *Obj = Section.getObject(); 490 if (isa<object::ELFObjectFileBase>(Obj)) 491 return !(ELFSectionRef(Section).getFlags() & 492 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 493 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 494 return ((COFFObj->getCOFFSection(Section)->Characteristics & 495 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 496 | COFF::IMAGE_SCN_MEM_READ 497 | COFF::IMAGE_SCN_MEM_WRITE)) 498 == 499 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 500 | COFF::IMAGE_SCN_MEM_READ)); 501 502 assert(isa<MachOObjectFile>(Obj)); 503 return false; 504 } 505 506 static bool isZeroInit(const SectionRef Section) { 507 const ObjectFile *Obj = Section.getObject(); 508 if (isa<object::ELFObjectFileBase>(Obj)) 509 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 510 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 511 return COFFObj->getCOFFSection(Section)->Characteristics & 512 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 513 514 auto *MachO = cast<MachOObjectFile>(Obj); 515 unsigned SectionType = MachO->getSectionType(Section); 516 return SectionType == MachO::S_ZEROFILL || 517 SectionType == MachO::S_GB_ZEROFILL; 518 } 519 520 // Compute an upper bound of the memory size that is required to load all 521 // sections 522 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 523 uint64_t &CodeSize, 524 uint32_t &CodeAlign, 525 uint64_t &RODataSize, 526 uint32_t &RODataAlign, 527 uint64_t &RWDataSize, 528 uint32_t &RWDataAlign) { 529 // Compute the size of all sections required for execution 530 std::vector<uint64_t> CodeSectionSizes; 531 std::vector<uint64_t> ROSectionSizes; 532 std::vector<uint64_t> RWSectionSizes; 533 534 // Collect sizes of all sections to be loaded; 535 // also determine the max alignment of all sections 536 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 537 SI != SE; ++SI) { 538 const SectionRef &Section = *SI; 539 540 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; 541 542 // Consider only the sections that are required to be loaded for execution 543 if (IsRequired) { 544 uint64_t DataSize = Section.getSize(); 545 uint64_t Alignment64 = Section.getAlignment(); 546 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 547 bool IsCode = Section.isText(); 548 bool IsReadOnly = isReadOnlyData(Section); 549 550 Expected<StringRef> NameOrErr = Section.getName(); 551 if (!NameOrErr) 552 return NameOrErr.takeError(); 553 StringRef Name = *NameOrErr; 554 555 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 556 557 uint64_t PaddingSize = 0; 558 if (Name == ".eh_frame") 559 PaddingSize += 4; 560 if (StubBufSize != 0) 561 PaddingSize += getStubAlignment() - 1; 562 563 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; 564 565 // The .eh_frame section (at least on Linux) needs an extra four bytes 566 // padded 567 // with zeroes added at the end. For MachO objects, this section has a 568 // slightly different name, so this won't have any effect for MachO 569 // objects. 570 if (Name == ".eh_frame") 571 SectionSize += 4; 572 573 if (!SectionSize) 574 SectionSize = 1; 575 576 if (IsCode) { 577 CodeAlign = std::max(CodeAlign, Alignment); 578 CodeSectionSizes.push_back(SectionSize); 579 } else if (IsReadOnly) { 580 RODataAlign = std::max(RODataAlign, Alignment); 581 ROSectionSizes.push_back(SectionSize); 582 } else { 583 RWDataAlign = std::max(RWDataAlign, Alignment); 584 RWSectionSizes.push_back(SectionSize); 585 } 586 } 587 } 588 589 // Compute Global Offset Table size. If it is not zero we 590 // also update alignment, which is equal to a size of a 591 // single GOT entry. 592 if (unsigned GotSize = computeGOTSize(Obj)) { 593 RWSectionSizes.push_back(GotSize); 594 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); 595 } 596 597 // Compute the size of all common symbols 598 uint64_t CommonSize = 0; 599 uint32_t CommonAlign = 1; 600 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 601 ++I) { 602 Expected<uint32_t> FlagsOrErr = I->getFlags(); 603 if (!FlagsOrErr) 604 // TODO: Test this error. 605 return FlagsOrErr.takeError(); 606 if (*FlagsOrErr & SymbolRef::SF_Common) { 607 // Add the common symbols to a list. We'll allocate them all below. 608 uint64_t Size = I->getCommonSize(); 609 uint32_t Align = I->getAlignment(); 610 // If this is the first common symbol, use its alignment as the alignment 611 // for the common symbols section. 612 if (CommonSize == 0) 613 CommonAlign = Align; 614 CommonSize = alignTo(CommonSize, Align) + Size; 615 } 616 } 617 if (CommonSize != 0) { 618 RWSectionSizes.push_back(CommonSize); 619 RWDataAlign = std::max(RWDataAlign, CommonAlign); 620 } 621 622 // Compute the required allocation space for each different type of sections 623 // (code, read-only data, read-write data) assuming that all sections are 624 // allocated with the max alignment. Note that we cannot compute with the 625 // individual alignments of the sections, because then the required size 626 // depends on the order, in which the sections are allocated. 627 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 628 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 629 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 630 631 return Error::success(); 632 } 633 634 // compute GOT size 635 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { 636 size_t GotEntrySize = getGOTEntrySize(); 637 if (!GotEntrySize) 638 return 0; 639 640 size_t GotSize = 0; 641 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 642 SI != SE; ++SI) { 643 644 for (const RelocationRef &Reloc : SI->relocations()) 645 if (relocationNeedsGot(Reloc)) 646 GotSize += GotEntrySize; 647 } 648 649 return GotSize; 650 } 651 652 // compute stub buffer size for the given section 653 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 654 const SectionRef &Section) { 655 unsigned StubSize = getMaxStubSize(); 656 if (StubSize == 0) { 657 return 0; 658 } 659 // FIXME: this is an inefficient way to handle this. We should computed the 660 // necessary section allocation size in loadObject by walking all the sections 661 // once. 662 unsigned StubBufSize = 0; 663 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 664 SI != SE; ++SI) { 665 666 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 667 if (!RelSecOrErr) 668 report_fatal_error(toString(RelSecOrErr.takeError())); 669 670 section_iterator RelSecI = *RelSecOrErr; 671 if (!(RelSecI == Section)) 672 continue; 673 674 for (const RelocationRef &Reloc : SI->relocations()) 675 if (relocationNeedsStub(Reloc)) 676 StubBufSize += StubSize; 677 } 678 679 // Get section data size and alignment 680 uint64_t DataSize = Section.getSize(); 681 uint64_t Alignment64 = Section.getAlignment(); 682 683 // Add stubbuf size alignment 684 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 685 unsigned StubAlignment = getStubAlignment(); 686 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 687 if (StubAlignment > EndAlignment) 688 StubBufSize += StubAlignment - EndAlignment; 689 return StubBufSize; 690 } 691 692 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 693 unsigned Size) const { 694 uint64_t Result = 0; 695 if (IsTargetLittleEndian) { 696 Src += Size - 1; 697 while (Size--) 698 Result = (Result << 8) | *Src--; 699 } else 700 while (Size--) 701 Result = (Result << 8) | *Src++; 702 703 return Result; 704 } 705 706 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 707 unsigned Size) const { 708 if (IsTargetLittleEndian) { 709 while (Size--) { 710 *Dst++ = Value & 0xFF; 711 Value >>= 8; 712 } 713 } else { 714 Dst += Size - 1; 715 while (Size--) { 716 *Dst-- = Value & 0xFF; 717 Value >>= 8; 718 } 719 } 720 } 721 722 Expected<JITSymbolFlags> 723 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { 724 return JITSymbolFlags::fromObjectSymbol(SR); 725 } 726 727 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 728 CommonSymbolList &SymbolsToAllocate, 729 uint64_t CommonSize, 730 uint32_t CommonAlign) { 731 if (SymbolsToAllocate.empty()) 732 return Error::success(); 733 734 // Allocate memory for the section 735 unsigned SectionID = Sections.size(); 736 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 737 "<common symbols>", false); 738 if (!Addr) 739 report_fatal_error("Unable to allocate memory for common symbols!"); 740 uint64_t Offset = 0; 741 Sections.push_back( 742 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 743 memset(Addr, 0, CommonSize); 744 745 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID 746 << " new addr: " << format("%p", Addr) 747 << " DataSize: " << CommonSize << "\n"); 748 749 // Assign the address of each symbol 750 for (auto &Sym : SymbolsToAllocate) { 751 uint32_t Alignment = Sym.getAlignment(); 752 uint64_t Size = Sym.getCommonSize(); 753 StringRef Name; 754 if (auto NameOrErr = Sym.getName()) 755 Name = *NameOrErr; 756 else 757 return NameOrErr.takeError(); 758 if (Alignment) { 759 // This symbol has an alignment requirement. 760 uint64_t AlignOffset = 761 offsetToAlignment((uint64_t)Addr, Align(Alignment)); 762 Addr += AlignOffset; 763 Offset += AlignOffset; 764 } 765 auto JITSymFlags = getJITSymbolFlags(Sym); 766 767 if (!JITSymFlags) 768 return JITSymFlags.takeError(); 769 770 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 771 << format("%p", Addr) << "\n"); 772 GlobalSymbolTable[Name] = 773 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); 774 Offset += Size; 775 Addr += Size; 776 } 777 778 return Error::success(); 779 } 780 781 Expected<unsigned> 782 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 783 const SectionRef &Section, 784 bool IsCode) { 785 StringRef data; 786 uint64_t Alignment64 = Section.getAlignment(); 787 788 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 789 unsigned PaddingSize = 0; 790 unsigned StubBufSize = 0; 791 bool IsRequired = isRequiredForExecution(Section); 792 bool IsVirtual = Section.isVirtual(); 793 bool IsZeroInit = isZeroInit(Section); 794 bool IsReadOnly = isReadOnlyData(Section); 795 uint64_t DataSize = Section.getSize(); 796 797 // An alignment of 0 (at least with ELF) is identical to an alignment of 1, 798 // while being more "polite". Other formats do not support 0-aligned sections 799 // anyway, so we should guarantee that the alignment is always at least 1. 800 Alignment = std::max(1u, Alignment); 801 802 Expected<StringRef> NameOrErr = Section.getName(); 803 if (!NameOrErr) 804 return NameOrErr.takeError(); 805 StringRef Name = *NameOrErr; 806 807 StubBufSize = computeSectionStubBufSize(Obj, Section); 808 809 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 810 // with zeroes added at the end. For MachO objects, this section has a 811 // slightly different name, so this won't have any effect for MachO objects. 812 if (Name == ".eh_frame") 813 PaddingSize = 4; 814 815 uintptr_t Allocate; 816 unsigned SectionID = Sections.size(); 817 uint8_t *Addr; 818 const char *pData = nullptr; 819 820 // If this section contains any bits (i.e. isn't a virtual or bss section), 821 // grab a reference to them. 822 if (!IsVirtual && !IsZeroInit) { 823 // In either case, set the location of the unrelocated section in memory, 824 // since we still process relocations for it even if we're not applying them. 825 if (Expected<StringRef> E = Section.getContents()) 826 data = *E; 827 else 828 return E.takeError(); 829 pData = data.data(); 830 } 831 832 // If there are any stubs then the section alignment needs to be at least as 833 // high as stub alignment or padding calculations may by incorrect when the 834 // section is remapped. 835 if (StubBufSize != 0) { 836 Alignment = std::max(Alignment, getStubAlignment()); 837 PaddingSize += getStubAlignment() - 1; 838 } 839 840 // Some sections, such as debug info, don't need to be loaded for execution. 841 // Process those only if explicitly requested. 842 if (IsRequired || ProcessAllSections) { 843 Allocate = DataSize + PaddingSize + StubBufSize; 844 if (!Allocate) 845 Allocate = 1; 846 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 847 Name) 848 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 849 Name, IsReadOnly); 850 if (!Addr) 851 report_fatal_error("Unable to allocate section memory!"); 852 853 // Zero-initialize or copy the data from the image 854 if (IsZeroInit || IsVirtual) 855 memset(Addr, 0, DataSize); 856 else 857 memcpy(Addr, pData, DataSize); 858 859 // Fill in any extra bytes we allocated for padding 860 if (PaddingSize != 0) { 861 memset(Addr + DataSize, 0, PaddingSize); 862 // Update the DataSize variable to include padding. 863 DataSize += PaddingSize; 864 865 // Align DataSize to stub alignment if we have any stubs (PaddingSize will 866 // have been increased above to account for this). 867 if (StubBufSize > 0) 868 DataSize &= -(uint64_t)getStubAlignment(); 869 } 870 871 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " 872 << Name << " obj addr: " << format("%p", pData) 873 << " new addr: " << format("%p", Addr) << " DataSize: " 874 << DataSize << " StubBufSize: " << StubBufSize 875 << " Allocate: " << Allocate << "\n"); 876 } else { 877 // Even if we didn't load the section, we need to record an entry for it 878 // to handle later processing (and by 'handle' I mean don't do anything 879 // with these sections). 880 Allocate = 0; 881 Addr = nullptr; 882 LLVM_DEBUG( 883 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 884 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 885 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 886 << " Allocate: " << Allocate << "\n"); 887 } 888 889 Sections.push_back( 890 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 891 892 // Debug info sections are linked as if their load address was zero 893 if (!IsRequired) 894 Sections.back().setLoadAddress(0); 895 896 return SectionID; 897 } 898 899 Expected<unsigned> 900 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 901 const SectionRef &Section, 902 bool IsCode, 903 ObjSectionToIDMap &LocalSections) { 904 905 unsigned SectionID = 0; 906 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 907 if (i != LocalSections.end()) 908 SectionID = i->second; 909 else { 910 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 911 SectionID = *SectionIDOrErr; 912 else 913 return SectionIDOrErr.takeError(); 914 LocalSections[Section] = SectionID; 915 } 916 return SectionID; 917 } 918 919 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 920 unsigned SectionID) { 921 Relocations[SectionID].push_back(RE); 922 } 923 924 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 925 StringRef SymbolName) { 926 // Relocation by symbol. If the symbol is found in the global symbol table, 927 // create an appropriate section relocation. Otherwise, add it to 928 // ExternalSymbolRelocations. 929 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 930 if (Loc == GlobalSymbolTable.end()) { 931 ExternalSymbolRelocations[SymbolName].push_back(RE); 932 } else { 933 // Copy the RE since we want to modify its addend. 934 RelocationEntry RECopy = RE; 935 const auto &SymInfo = Loc->second; 936 RECopy.Addend += SymInfo.getOffset(); 937 Relocations[SymInfo.getSectionID()].push_back(RECopy); 938 } 939 } 940 941 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 942 unsigned AbiVariant) { 943 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || 944 Arch == Triple::aarch64_32) { 945 // This stub has to be able to access the full address space, 946 // since symbol lookup won't necessarily find a handy, in-range, 947 // PLT stub for functions which could be anywhere. 948 // Stub can use ip0 (== x16) to calculate address 949 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 950 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 951 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 952 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 953 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 954 955 return Addr; 956 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 957 // TODO: There is only ARM far stub now. We should add the Thumb stub, 958 // and stubs for branches Thumb - ARM and ARM - Thumb. 959 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] 960 return Addr + 4; 961 } else if (IsMipsO32ABI || IsMipsN32ABI) { 962 // 0: 3c190000 lui t9,%hi(addr). 963 // 4: 27390000 addiu t9,t9,%lo(addr). 964 // 8: 03200008 jr t9. 965 // c: 00000000 nop. 966 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 967 const unsigned NopInstr = 0x0; 968 unsigned JrT9Instr = 0x03200008; 969 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || 970 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 971 JrT9Instr = 0x03200009; 972 973 writeBytesUnaligned(LuiT9Instr, Addr, 4); 974 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); 975 writeBytesUnaligned(JrT9Instr, Addr + 8, 4); 976 writeBytesUnaligned(NopInstr, Addr + 12, 4); 977 return Addr; 978 } else if (IsMipsN64ABI) { 979 // 0: 3c190000 lui t9,%highest(addr). 980 // 4: 67390000 daddiu t9,t9,%higher(addr). 981 // 8: 0019CC38 dsll t9,t9,16. 982 // c: 67390000 daddiu t9,t9,%hi(addr). 983 // 10: 0019CC38 dsll t9,t9,16. 984 // 14: 67390000 daddiu t9,t9,%lo(addr). 985 // 18: 03200008 jr t9. 986 // 1c: 00000000 nop. 987 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, 988 DsllT9Instr = 0x19CC38; 989 const unsigned NopInstr = 0x0; 990 unsigned JrT9Instr = 0x03200008; 991 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 992 JrT9Instr = 0x03200009; 993 994 writeBytesUnaligned(LuiT9Instr, Addr, 4); 995 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); 996 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); 997 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); 998 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); 999 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); 1000 writeBytesUnaligned(JrT9Instr, Addr + 24, 4); 1001 writeBytesUnaligned(NopInstr, Addr + 28, 4); 1002 return Addr; 1003 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1004 // Depending on which version of the ELF ABI is in use, we need to 1005 // generate one of two variants of the stub. They both start with 1006 // the same sequence to load the target address into r12. 1007 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 1008 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 1009 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 1010 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 1011 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 1012 if (AbiVariant == 2) { 1013 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 1014 // The address is already in r12 as required by the ABI. Branch to it. 1015 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 1016 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 1017 writeInt32BE(Addr+28, 0x4E800420); // bctr 1018 } else { 1019 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 1020 // Load the function address on r11 and sets it to control register. Also 1021 // loads the function TOC in r2 and environment pointer to r11. 1022 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 1023 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 1024 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 1025 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 1026 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 1027 writeInt32BE(Addr+40, 0x4E800420); // bctr 1028 } 1029 return Addr; 1030 } else if (Arch == Triple::systemz) { 1031 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 1032 writeInt16BE(Addr+2, 0x0000); 1033 writeInt16BE(Addr+4, 0x0004); 1034 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 1035 // 8-byte address stored at Addr + 8 1036 return Addr; 1037 } else if (Arch == Triple::x86_64) { 1038 *Addr = 0xFF; // jmp 1039 *(Addr+1) = 0x25; // rip 1040 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 1041 } else if (Arch == Triple::x86) { 1042 *Addr = 0xE9; // 32-bit pc-relative jump. 1043 } 1044 return Addr; 1045 } 1046 1047 // Assign an address to a symbol name and resolve all the relocations 1048 // associated with it. 1049 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 1050 uint64_t Addr) { 1051 // The address to use for relocation resolution is not 1052 // the address of the local section buffer. We must be doing 1053 // a remote execution environment of some sort. Relocations can't 1054 // be applied until all the sections have been moved. The client must 1055 // trigger this with a call to MCJIT::finalize() or 1056 // RuntimeDyld::resolveRelocations(). 1057 // 1058 // Addr is a uint64_t because we can't assume the pointer width 1059 // of the target is the same as that of the host. Just use a generic 1060 // "big enough" type. 1061 LLVM_DEBUG( 1062 dbgs() << "Reassigning address for section " << SectionID << " (" 1063 << Sections[SectionID].getName() << "): " 1064 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 1065 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 1066 Sections[SectionID].setLoadAddress(Addr); 1067 } 1068 1069 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 1070 uint64_t Value) { 1071 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1072 const RelocationEntry &RE = Relocs[i]; 1073 // Ignore relocations for sections that were not loaded 1074 if (Sections[RE.SectionID].getAddress() == nullptr) 1075 continue; 1076 resolveRelocation(RE, Value); 1077 } 1078 } 1079 1080 void RuntimeDyldImpl::applyExternalSymbolRelocations( 1081 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { 1082 while (!ExternalSymbolRelocations.empty()) { 1083 1084 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 1085 1086 StringRef Name = i->first(); 1087 if (Name.size() == 0) { 1088 // This is an absolute symbol, use an address of zero. 1089 LLVM_DEBUG(dbgs() << "Resolving absolute relocations." 1090 << "\n"); 1091 RelocationList &Relocs = i->second; 1092 resolveRelocationList(Relocs, 0); 1093 } else { 1094 uint64_t Addr = 0; 1095 JITSymbolFlags Flags; 1096 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 1097 if (Loc == GlobalSymbolTable.end()) { 1098 auto RRI = ExternalSymbolMap.find(Name); 1099 assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); 1100 Addr = RRI->second.getAddress(); 1101 Flags = RRI->second.getFlags(); 1102 // The call to getSymbolAddress may have caused additional modules to 1103 // be loaded, which may have added new entries to the 1104 // ExternalSymbolRelocations map. Consquently, we need to update our 1105 // iterator. This is also why retrieval of the relocation list 1106 // associated with this symbol is deferred until below this point. 1107 // New entries may have been added to the relocation list. 1108 i = ExternalSymbolRelocations.find(Name); 1109 } else { 1110 // We found the symbol in our global table. It was probably in a 1111 // Module that we loaded previously. 1112 const auto &SymInfo = Loc->second; 1113 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 1114 SymInfo.getOffset(); 1115 Flags = SymInfo.getFlags(); 1116 } 1117 1118 // FIXME: Implement error handling that doesn't kill the host program! 1119 if (!Addr) 1120 report_fatal_error("Program used external function '" + Name + 1121 "' which could not be resolved!"); 1122 1123 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 1124 // manually and we shouldn't resolve its relocations. 1125 if (Addr != UINT64_MAX) { 1126 1127 // Tweak the address based on the symbol flags if necessary. 1128 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit 1129 // if the target symbol is Thumb. 1130 Addr = modifyAddressBasedOnFlags(Addr, Flags); 1131 1132 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 1133 << format("0x%lx", Addr) << "\n"); 1134 // This list may have been updated when we called getSymbolAddress, so 1135 // don't change this code to get the list earlier. 1136 RelocationList &Relocs = i->second; 1137 resolveRelocationList(Relocs, Addr); 1138 } 1139 } 1140 1141 ExternalSymbolRelocations.erase(i); 1142 } 1143 } 1144 1145 Error RuntimeDyldImpl::resolveExternalSymbols() { 1146 StringMap<JITEvaluatedSymbol> ExternalSymbolMap; 1147 1148 // Resolution can trigger emission of more symbols, so iterate until 1149 // we've resolved *everything*. 1150 { 1151 JITSymbolResolver::LookupSet ResolvedSymbols; 1152 1153 while (true) { 1154 JITSymbolResolver::LookupSet NewSymbols; 1155 1156 for (auto &RelocKV : ExternalSymbolRelocations) { 1157 StringRef Name = RelocKV.first(); 1158 if (!Name.empty() && !GlobalSymbolTable.count(Name) && 1159 !ResolvedSymbols.count(Name)) 1160 NewSymbols.insert(Name); 1161 } 1162 1163 if (NewSymbols.empty()) 1164 break; 1165 1166 #ifdef _MSC_VER 1167 using ExpectedLookupResult = 1168 MSVCPExpected<JITSymbolResolver::LookupResult>; 1169 #else 1170 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; 1171 #endif 1172 1173 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); 1174 auto NewSymbolsF = NewSymbolsP->get_future(); 1175 Resolver.lookup(NewSymbols, 1176 [=](Expected<JITSymbolResolver::LookupResult> Result) { 1177 NewSymbolsP->set_value(std::move(Result)); 1178 }); 1179 1180 auto NewResolverResults = NewSymbolsF.get(); 1181 1182 if (!NewResolverResults) 1183 return NewResolverResults.takeError(); 1184 1185 assert(NewResolverResults->size() == NewSymbols.size() && 1186 "Should have errored on unresolved symbols"); 1187 1188 for (auto &RRKV : *NewResolverResults) { 1189 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); 1190 ExternalSymbolMap.insert(RRKV); 1191 ResolvedSymbols.insert(RRKV.first); 1192 } 1193 } 1194 } 1195 1196 applyExternalSymbolRelocations(ExternalSymbolMap); 1197 1198 return Error::success(); 1199 } 1200 1201 void RuntimeDyldImpl::finalizeAsync( 1202 std::unique_ptr<RuntimeDyldImpl> This, 1203 unique_function<void(object::OwningBinary<object::ObjectFile>, Error)> 1204 OnEmitted, 1205 object::OwningBinary<object::ObjectFile> O) { 1206 1207 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); 1208 auto PostResolveContinuation = 1209 [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O)]( 1210 Expected<JITSymbolResolver::LookupResult> Result) mutable { 1211 if (!Result) { 1212 OnEmitted(std::move(O), Result.takeError()); 1213 return; 1214 } 1215 1216 /// Copy the result into a StringMap, where the keys are held by value. 1217 StringMap<JITEvaluatedSymbol> Resolved; 1218 for (auto &KV : *Result) 1219 Resolved[KV.first] = KV.second; 1220 1221 SharedThis->applyExternalSymbolRelocations(Resolved); 1222 SharedThis->resolveLocalRelocations(); 1223 SharedThis->registerEHFrames(); 1224 std::string ErrMsg; 1225 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) 1226 OnEmitted(std::move(O), 1227 make_error<StringError>(std::move(ErrMsg), 1228 inconvertibleErrorCode())); 1229 else 1230 OnEmitted(std::move(O), Error::success()); 1231 }; 1232 1233 JITSymbolResolver::LookupSet Symbols; 1234 1235 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { 1236 StringRef Name = RelocKV.first(); 1237 assert(!Name.empty() && "Symbol has no name?"); 1238 assert(!SharedThis->GlobalSymbolTable.count(Name) && 1239 "Name already processed. RuntimeDyld instances can not be re-used " 1240 "when finalizing with finalizeAsync."); 1241 Symbols.insert(Name); 1242 } 1243 1244 if (!Symbols.empty()) { 1245 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation)); 1246 } else 1247 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); 1248 } 1249 1250 //===----------------------------------------------------------------------===// 1251 // RuntimeDyld class implementation 1252 1253 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 1254 const object::SectionRef &Sec) const { 1255 1256 auto I = ObjSecToIDMap.find(Sec); 1257 if (I != ObjSecToIDMap.end()) 1258 return RTDyld.Sections[I->second].getLoadAddress(); 1259 1260 return 0; 1261 } 1262 1263 void RuntimeDyld::MemoryManager::anchor() {} 1264 void JITSymbolResolver::anchor() {} 1265 void LegacyJITSymbolResolver::anchor() {} 1266 1267 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 1268 JITSymbolResolver &Resolver) 1269 : MemMgr(MemMgr), Resolver(Resolver) { 1270 // FIXME: There's a potential issue lurking here if a single instance of 1271 // RuntimeDyld is used to load multiple objects. The current implementation 1272 // associates a single memory manager with a RuntimeDyld instance. Even 1273 // though the public class spawns a new 'impl' instance for each load, 1274 // they share a single memory manager. This can become a problem when page 1275 // permissions are applied. 1276 Dyld = nullptr; 1277 ProcessAllSections = false; 1278 } 1279 1280 RuntimeDyld::~RuntimeDyld() {} 1281 1282 static std::unique_ptr<RuntimeDyldCOFF> 1283 createRuntimeDyldCOFF( 1284 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1285 JITSymbolResolver &Resolver, bool ProcessAllSections, 1286 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1287 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1288 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1289 Dyld->setProcessAllSections(ProcessAllSections); 1290 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1291 return Dyld; 1292 } 1293 1294 static std::unique_ptr<RuntimeDyldELF> 1295 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1296 JITSymbolResolver &Resolver, bool ProcessAllSections, 1297 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1298 std::unique_ptr<RuntimeDyldELF> Dyld = 1299 RuntimeDyldELF::create(Arch, MM, Resolver); 1300 Dyld->setProcessAllSections(ProcessAllSections); 1301 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1302 return Dyld; 1303 } 1304 1305 static std::unique_ptr<RuntimeDyldMachO> 1306 createRuntimeDyldMachO( 1307 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1308 JITSymbolResolver &Resolver, 1309 bool ProcessAllSections, 1310 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1311 std::unique_ptr<RuntimeDyldMachO> Dyld = 1312 RuntimeDyldMachO::create(Arch, MM, Resolver); 1313 Dyld->setProcessAllSections(ProcessAllSections); 1314 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1315 return Dyld; 1316 } 1317 1318 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1319 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1320 if (!Dyld) { 1321 if (Obj.isELF()) 1322 Dyld = 1323 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1324 MemMgr, Resolver, ProcessAllSections, 1325 std::move(NotifyStubEmitted)); 1326 else if (Obj.isMachO()) 1327 Dyld = createRuntimeDyldMachO( 1328 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1329 ProcessAllSections, std::move(NotifyStubEmitted)); 1330 else if (Obj.isCOFF()) 1331 Dyld = createRuntimeDyldCOFF( 1332 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1333 ProcessAllSections, std::move(NotifyStubEmitted)); 1334 else 1335 report_fatal_error("Incompatible object format!"); 1336 } 1337 1338 if (!Dyld->isCompatibleFile(Obj)) 1339 report_fatal_error("Incompatible object format!"); 1340 1341 auto LoadedObjInfo = Dyld->loadObject(Obj); 1342 MemMgr.notifyObjectLoaded(*this, Obj); 1343 return LoadedObjInfo; 1344 } 1345 1346 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1347 if (!Dyld) 1348 return nullptr; 1349 return Dyld->getSymbolLocalAddress(Name); 1350 } 1351 1352 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { 1353 assert(Dyld && "No RuntimeDyld instance attached"); 1354 return Dyld->getSymbolSectionID(Name); 1355 } 1356 1357 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1358 if (!Dyld) 1359 return nullptr; 1360 return Dyld->getSymbol(Name); 1361 } 1362 1363 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { 1364 if (!Dyld) 1365 return std::map<StringRef, JITEvaluatedSymbol>(); 1366 return Dyld->getSymbolTable(); 1367 } 1368 1369 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1370 1371 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1372 Dyld->reassignSectionAddress(SectionID, Addr); 1373 } 1374 1375 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1376 uint64_t TargetAddress) { 1377 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1378 } 1379 1380 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1381 1382 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1383 1384 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1385 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1386 MemMgr.FinalizationLocked = true; 1387 resolveRelocations(); 1388 registerEHFrames(); 1389 if (!MemoryFinalizationLocked) { 1390 MemMgr.finalizeMemory(); 1391 MemMgr.FinalizationLocked = false; 1392 } 1393 } 1394 1395 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { 1396 assert(Dyld && "No Dyld instance attached"); 1397 return Dyld->getSectionContent(SectionID); 1398 } 1399 1400 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { 1401 assert(Dyld && "No Dyld instance attached"); 1402 return Dyld->getSectionLoadAddress(SectionID); 1403 } 1404 1405 void RuntimeDyld::registerEHFrames() { 1406 if (Dyld) 1407 Dyld->registerEHFrames(); 1408 } 1409 1410 void RuntimeDyld::deregisterEHFrames() { 1411 if (Dyld) 1412 Dyld->deregisterEHFrames(); 1413 } 1414 // FIXME: Kill this with fire once we have a new JIT linker: this is only here 1415 // so that we can re-use RuntimeDyld's implementation without twisting the 1416 // interface any further for ORC's purposes. 1417 void jitLinkForORC( 1418 object::OwningBinary<object::ObjectFile> O, 1419 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver, 1420 bool ProcessAllSections, 1421 unique_function< 1422 Error(const object::ObjectFile &Obj, 1423 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj, 1424 std::map<StringRef, JITEvaluatedSymbol>)> 1425 OnLoaded, 1426 unique_function<void(object::OwningBinary<object::ObjectFile>, Error)> 1427 OnEmitted) { 1428 1429 RuntimeDyld RTDyld(MemMgr, Resolver); 1430 RTDyld.setProcessAllSections(ProcessAllSections); 1431 1432 auto Info = RTDyld.loadObject(*O.getBinary()); 1433 1434 if (RTDyld.hasError()) { 1435 OnEmitted(std::move(O), make_error<StringError>(RTDyld.getErrorString(), 1436 inconvertibleErrorCode())); 1437 return; 1438 } 1439 1440 if (auto Err = 1441 OnLoaded(*O.getBinary(), std::move(Info), RTDyld.getSymbolTable())) 1442 OnEmitted(std::move(O), std::move(Err)); 1443 1444 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), 1445 std::move(O)); 1446 } 1447 1448 } // end namespace llvm 1449