1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the MC-JIT runtime dynamic linker. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ExecutionEngine/RuntimeDyld.h" 14 #include "RuntimeDyldCOFF.h" 15 #include "RuntimeDyldELF.h" 16 #include "RuntimeDyldImpl.h" 17 #include "RuntimeDyldMachO.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/Support/Alignment.h" 21 #include "llvm/Support/MSVCErrorWorkarounds.h" 22 #include "llvm/Support/ManagedStatic.h" 23 #include "llvm/Support/MathExtras.h" 24 #include <mutex> 25 26 #include <future> 27 28 using namespace llvm; 29 using namespace llvm::object; 30 31 #define DEBUG_TYPE "dyld" 32 33 namespace { 34 35 enum RuntimeDyldErrorCode { 36 GenericRTDyldError = 1 37 }; 38 39 // FIXME: This class is only here to support the transition to llvm::Error. It 40 // will be removed once this transition is complete. Clients should prefer to 41 // deal with the Error value directly, rather than converting to error_code. 42 class RuntimeDyldErrorCategory : public std::error_category { 43 public: 44 const char *name() const noexcept override { return "runtimedyld"; } 45 46 std::string message(int Condition) const override { 47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 48 case GenericRTDyldError: return "Generic RuntimeDyld error"; 49 } 50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 51 } 52 }; 53 54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 55 56 } 57 58 char RuntimeDyldError::ID = 0; 59 60 void RuntimeDyldError::log(raw_ostream &OS) const { 61 OS << ErrMsg << "\n"; 62 } 63 64 std::error_code RuntimeDyldError::convertToErrorCode() const { 65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 66 } 67 68 // Empty out-of-line virtual destructor as the key function. 69 RuntimeDyldImpl::~RuntimeDyldImpl() {} 70 71 // Pin LoadedObjectInfo's vtables to this file. 72 void RuntimeDyld::LoadedObjectInfo::anchor() {} 73 74 namespace llvm { 75 76 void RuntimeDyldImpl::registerEHFrames() {} 77 78 void RuntimeDyldImpl::deregisterEHFrames() { 79 MemMgr.deregisterEHFrames(); 80 } 81 82 #ifndef NDEBUG 83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 84 dbgs() << "----- Contents of section " << S.getName() << " " << State 85 << " -----"; 86 87 if (S.getAddress() == nullptr) { 88 dbgs() << "\n <section not emitted>\n"; 89 return; 90 } 91 92 const unsigned ColsPerRow = 16; 93 94 uint8_t *DataAddr = S.getAddress(); 95 uint64_t LoadAddr = S.getLoadAddress(); 96 97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 98 unsigned BytesRemaining = S.getSize(); 99 100 if (StartPadding) { 101 dbgs() << "\n" << format("0x%016" PRIx64, 102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 103 while (StartPadding--) 104 dbgs() << " "; 105 } 106 107 while (BytesRemaining > 0) { 108 if ((LoadAddr & (ColsPerRow - 1)) == 0) 109 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 110 111 dbgs() << " " << format("%02x", *DataAddr); 112 113 ++DataAddr; 114 ++LoadAddr; 115 --BytesRemaining; 116 } 117 118 dbgs() << "\n"; 119 } 120 #endif 121 122 // Resolve the relocations for all symbols we currently know about. 123 void RuntimeDyldImpl::resolveRelocations() { 124 std::lock_guard<sys::Mutex> locked(lock); 125 126 // Print out the sections prior to relocation. 127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 128 dumpSectionMemory(Sections[i], "before relocations");); 129 130 // First, resolve relocations associated with external symbols. 131 if (auto Err = resolveExternalSymbols()) { 132 HasError = true; 133 ErrorStr = toString(std::move(Err)); 134 } 135 136 resolveLocalRelocations(); 137 138 // Print out sections after relocation. 139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 140 dumpSectionMemory(Sections[i], "after relocations");); 141 } 142 143 void RuntimeDyldImpl::resolveLocalRelocations() { 144 // Iterate over all outstanding relocations 145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 146 // The Section here (Sections[i]) refers to the section in which the 147 // symbol for the relocation is located. The SectionID in the relocation 148 // entry provides the section to which the relocation will be applied. 149 unsigned Idx = it->first; 150 uint64_t Addr = getSectionLoadAddress(Idx); 151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 152 << format("%p", (uintptr_t)Addr) << "\n"); 153 resolveRelocationList(it->second, Addr); 154 } 155 Relocations.clear(); 156 } 157 158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 159 uint64_t TargetAddress) { 160 std::lock_guard<sys::Mutex> locked(lock); 161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 162 if (Sections[i].getAddress() == LocalAddress) { 163 reassignSectionAddress(i, TargetAddress); 164 return; 165 } 166 } 167 llvm_unreachable("Attempting to remap address of unknown section!"); 168 } 169 170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 171 uint64_t &Result) { 172 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 173 if (!AddressOrErr) 174 return AddressOrErr.takeError(); 175 Result = *AddressOrErr - Sec.getAddress(); 176 return Error::success(); 177 } 178 179 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 181 std::lock_guard<sys::Mutex> locked(lock); 182 183 // Save information about our target 184 Arch = (Triple::ArchType)Obj.getArch(); 185 IsTargetLittleEndian = Obj.isLittleEndian(); 186 setMipsABI(Obj); 187 188 // Compute the memory size required to load all sections to be loaded 189 // and pass this information to the memory manager 190 if (MemMgr.needsToReserveAllocationSpace()) { 191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 193 if (auto Err = computeTotalAllocSize(Obj, 194 CodeSize, CodeAlign, 195 RODataSize, RODataAlign, 196 RWDataSize, RWDataAlign)) 197 return std::move(Err); 198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 199 RWDataSize, RWDataAlign); 200 } 201 202 // Used sections from the object file 203 ObjSectionToIDMap LocalSections; 204 205 // Common symbols requiring allocation, with their sizes and alignments 206 CommonSymbolList CommonSymbolsToAllocate; 207 208 uint64_t CommonSize = 0; 209 uint32_t CommonAlign = 0; 210 211 // First, collect all weak and common symbols. We need to know if stronger 212 // definitions occur elsewhere. 213 JITSymbolResolver::LookupSet ResponsibilitySet; 214 { 215 JITSymbolResolver::LookupSet Symbols; 216 for (auto &Sym : Obj.symbols()) { 217 Expected<uint32_t> FlagsOrErr = Sym.getFlags(); 218 if (!FlagsOrErr) 219 // TODO: Test this error. 220 return FlagsOrErr.takeError(); 221 if ((*FlagsOrErr & SymbolRef::SF_Common) || 222 (*FlagsOrErr & SymbolRef::SF_Weak)) { 223 // Get symbol name. 224 if (auto NameOrErr = Sym.getName()) 225 Symbols.insert(*NameOrErr); 226 else 227 return NameOrErr.takeError(); 228 } 229 } 230 231 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) 232 ResponsibilitySet = std::move(*ResultOrErr); 233 else 234 return ResultOrErr.takeError(); 235 } 236 237 // Parse symbols 238 LLVM_DEBUG(dbgs() << "Parse symbols:\n"); 239 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 240 ++I) { 241 Expected<uint32_t> FlagsOrErr = I->getFlags(); 242 if (!FlagsOrErr) 243 // TODO: Test this error. 244 return FlagsOrErr.takeError(); 245 246 // Skip undefined symbols. 247 if (*FlagsOrErr & SymbolRef::SF_Undefined) 248 continue; 249 250 // Get the symbol type. 251 object::SymbolRef::Type SymType; 252 if (auto SymTypeOrErr = I->getType()) 253 SymType = *SymTypeOrErr; 254 else 255 return SymTypeOrErr.takeError(); 256 257 // Get symbol name. 258 StringRef Name; 259 if (auto NameOrErr = I->getName()) 260 Name = *NameOrErr; 261 else 262 return NameOrErr.takeError(); 263 264 // Compute JIT symbol flags. 265 auto JITSymFlags = getJITSymbolFlags(*I); 266 if (!JITSymFlags) 267 return JITSymFlags.takeError(); 268 269 // If this is a weak definition, check to see if there's a strong one. 270 // If there is, skip this symbol (we won't be providing it: the strong 271 // definition will). If there's no strong definition, make this definition 272 // strong. 273 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { 274 // First check whether there's already a definition in this instance. 275 if (GlobalSymbolTable.count(Name)) 276 continue; 277 278 // If we're not responsible for this symbol, skip it. 279 if (!ResponsibilitySet.count(Name)) 280 continue; 281 282 // Otherwise update the flags on the symbol to make this definition 283 // strong. 284 if (JITSymFlags->isWeak()) 285 *JITSymFlags &= ~JITSymbolFlags::Weak; 286 if (JITSymFlags->isCommon()) { 287 *JITSymFlags &= ~JITSymbolFlags::Common; 288 uint32_t Align = I->getAlignment(); 289 uint64_t Size = I->getCommonSize(); 290 if (!CommonAlign) 291 CommonAlign = Align; 292 CommonSize = alignTo(CommonSize, Align) + Size; 293 CommonSymbolsToAllocate.push_back(*I); 294 } 295 } 296 297 if (*FlagsOrErr & SymbolRef::SF_Absolute && 298 SymType != object::SymbolRef::ST_File) { 299 uint64_t Addr = 0; 300 if (auto AddrOrErr = I->getAddress()) 301 Addr = *AddrOrErr; 302 else 303 return AddrOrErr.takeError(); 304 305 unsigned SectionID = AbsoluteSymbolSection; 306 307 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 308 << " SID: " << SectionID 309 << " Offset: " << format("%p", (uintptr_t)Addr) 310 << " flags: " << *FlagsOrErr << "\n"); 311 if (!Name.empty()) // Skip absolute symbol relocations. 312 GlobalSymbolTable[Name] = 313 SymbolTableEntry(SectionID, Addr, *JITSymFlags); 314 } else if (SymType == object::SymbolRef::ST_Function || 315 SymType == object::SymbolRef::ST_Data || 316 SymType == object::SymbolRef::ST_Unknown || 317 SymType == object::SymbolRef::ST_Other) { 318 319 section_iterator SI = Obj.section_end(); 320 if (auto SIOrErr = I->getSection()) 321 SI = *SIOrErr; 322 else 323 return SIOrErr.takeError(); 324 325 if (SI == Obj.section_end()) 326 continue; 327 328 // Get symbol offset. 329 uint64_t SectOffset; 330 if (auto Err = getOffset(*I, *SI, SectOffset)) 331 return std::move(Err); 332 333 bool IsCode = SI->isText(); 334 unsigned SectionID; 335 if (auto SectionIDOrErr = 336 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 337 SectionID = *SectionIDOrErr; 338 else 339 return SectionIDOrErr.takeError(); 340 341 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 342 << " SID: " << SectionID 343 << " Offset: " << format("%p", (uintptr_t)SectOffset) 344 << " flags: " << *FlagsOrErr << "\n"); 345 if (!Name.empty()) // Skip absolute symbol relocations 346 GlobalSymbolTable[Name] = 347 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); 348 } 349 } 350 351 // Allocate common symbols 352 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, 353 CommonAlign)) 354 return std::move(Err); 355 356 // Parse and process relocations 357 LLVM_DEBUG(dbgs() << "Parse relocations:\n"); 358 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 359 SI != SE; ++SI) { 360 StubMap Stubs; 361 362 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 363 if (!RelSecOrErr) 364 return RelSecOrErr.takeError(); 365 366 section_iterator RelocatedSection = *RelSecOrErr; 367 if (RelocatedSection == SE) 368 continue; 369 370 relocation_iterator I = SI->relocation_begin(); 371 relocation_iterator E = SI->relocation_end(); 372 373 if (I == E && !ProcessAllSections) 374 continue; 375 376 bool IsCode = RelocatedSection->isText(); 377 unsigned SectionID = 0; 378 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 379 LocalSections)) 380 SectionID = *SectionIDOrErr; 381 else 382 return SectionIDOrErr.takeError(); 383 384 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 385 386 for (; I != E;) 387 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 388 I = *IOrErr; 389 else 390 return IOrErr.takeError(); 391 392 // If there is a NotifyStubEmitted callback set, call it to register any 393 // stubs created for this section. 394 if (NotifyStubEmitted) { 395 StringRef FileName = Obj.getFileName(); 396 StringRef SectionName = Sections[SectionID].getName(); 397 for (auto &KV : Stubs) { 398 399 auto &VR = KV.first; 400 uint64_t StubAddr = KV.second; 401 402 // If this is a named stub, just call NotifyStubEmitted. 403 if (VR.SymbolName) { 404 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, 405 StubAddr); 406 continue; 407 } 408 409 // Otherwise we will have to try a reverse lookup on the globla symbol table. 410 for (auto &GSTMapEntry : GlobalSymbolTable) { 411 StringRef SymbolName = GSTMapEntry.first(); 412 auto &GSTEntry = GSTMapEntry.second; 413 if (GSTEntry.getSectionID() == VR.SectionID && 414 GSTEntry.getOffset() == VR.Offset) { 415 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, 416 StubAddr); 417 break; 418 } 419 } 420 } 421 } 422 } 423 424 // Process remaining sections 425 if (ProcessAllSections) { 426 LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); 427 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 428 SI != SE; ++SI) { 429 430 /* Ignore already loaded sections */ 431 if (LocalSections.find(*SI) != LocalSections.end()) 432 continue; 433 434 bool IsCode = SI->isText(); 435 if (auto SectionIDOrErr = 436 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 437 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); 438 else 439 return SectionIDOrErr.takeError(); 440 } 441 } 442 443 // Give the subclasses a chance to tie-up any loose ends. 444 if (auto Err = finalizeLoad(Obj, LocalSections)) 445 return std::move(Err); 446 447 // for (auto E : LocalSections) 448 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 449 450 return LocalSections; 451 } 452 453 // A helper method for computeTotalAllocSize. 454 // Computes the memory size required to allocate sections with the given sizes, 455 // assuming that all sections are allocated with the given alignment 456 static uint64_t 457 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 458 uint64_t Alignment) { 459 uint64_t TotalSize = 0; 460 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 461 uint64_t AlignedSize = 462 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 463 TotalSize += AlignedSize; 464 } 465 return TotalSize; 466 } 467 468 static bool isRequiredForExecution(const SectionRef Section) { 469 const ObjectFile *Obj = Section.getObject(); 470 if (isa<object::ELFObjectFileBase>(Obj)) 471 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 472 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 473 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 474 // Avoid loading zero-sized COFF sections. 475 // In PE files, VirtualSize gives the section size, and SizeOfRawData 476 // may be zero for sections with content. In Obj files, SizeOfRawData 477 // gives the section size, and VirtualSize is always zero. Hence 478 // the need to check for both cases below. 479 bool HasContent = 480 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 481 bool IsDiscardable = 482 CoffSection->Characteristics & 483 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 484 return HasContent && !IsDiscardable; 485 } 486 487 assert(isa<MachOObjectFile>(Obj)); 488 return true; 489 } 490 491 static bool isReadOnlyData(const SectionRef Section) { 492 const ObjectFile *Obj = Section.getObject(); 493 if (isa<object::ELFObjectFileBase>(Obj)) 494 return !(ELFSectionRef(Section).getFlags() & 495 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 496 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 497 return ((COFFObj->getCOFFSection(Section)->Characteristics & 498 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 499 | COFF::IMAGE_SCN_MEM_READ 500 | COFF::IMAGE_SCN_MEM_WRITE)) 501 == 502 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 503 | COFF::IMAGE_SCN_MEM_READ)); 504 505 assert(isa<MachOObjectFile>(Obj)); 506 return false; 507 } 508 509 static bool isZeroInit(const SectionRef Section) { 510 const ObjectFile *Obj = Section.getObject(); 511 if (isa<object::ELFObjectFileBase>(Obj)) 512 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 513 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 514 return COFFObj->getCOFFSection(Section)->Characteristics & 515 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 516 517 auto *MachO = cast<MachOObjectFile>(Obj); 518 unsigned SectionType = MachO->getSectionType(Section); 519 return SectionType == MachO::S_ZEROFILL || 520 SectionType == MachO::S_GB_ZEROFILL; 521 } 522 523 static bool isTLS(const SectionRef Section) { 524 const ObjectFile *Obj = Section.getObject(); 525 if (isa<object::ELFObjectFileBase>(Obj)) 526 return ELFSectionRef(Section).getFlags() & ELF::SHF_TLS; 527 return false; 528 } 529 530 // Compute an upper bound of the memory size that is required to load all 531 // sections 532 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 533 uint64_t &CodeSize, 534 uint32_t &CodeAlign, 535 uint64_t &RODataSize, 536 uint32_t &RODataAlign, 537 uint64_t &RWDataSize, 538 uint32_t &RWDataAlign) { 539 // Compute the size of all sections required for execution 540 std::vector<uint64_t> CodeSectionSizes; 541 std::vector<uint64_t> ROSectionSizes; 542 std::vector<uint64_t> RWSectionSizes; 543 544 // Collect sizes of all sections to be loaded; 545 // also determine the max alignment of all sections 546 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 547 SI != SE; ++SI) { 548 const SectionRef &Section = *SI; 549 550 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; 551 552 // Consider only the sections that are required to be loaded for execution 553 if (IsRequired) { 554 uint64_t DataSize = Section.getSize(); 555 uint64_t Alignment64 = Section.getAlignment(); 556 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 557 bool IsCode = Section.isText(); 558 bool IsReadOnly = isReadOnlyData(Section); 559 bool IsTLS = isTLS(Section); 560 561 Expected<StringRef> NameOrErr = Section.getName(); 562 if (!NameOrErr) 563 return NameOrErr.takeError(); 564 StringRef Name = *NameOrErr; 565 566 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 567 568 uint64_t PaddingSize = 0; 569 if (Name == ".eh_frame") 570 PaddingSize += 4; 571 if (StubBufSize != 0) 572 PaddingSize += getStubAlignment() - 1; 573 574 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; 575 576 // The .eh_frame section (at least on Linux) needs an extra four bytes 577 // padded 578 // with zeroes added at the end. For MachO objects, this section has a 579 // slightly different name, so this won't have any effect for MachO 580 // objects. 581 if (Name == ".eh_frame") 582 SectionSize += 4; 583 584 if (!SectionSize) 585 SectionSize = 1; 586 587 if (IsCode) { 588 CodeAlign = std::max(CodeAlign, Alignment); 589 CodeSectionSizes.push_back(SectionSize); 590 } else if (IsReadOnly) { 591 RODataAlign = std::max(RODataAlign, Alignment); 592 ROSectionSizes.push_back(SectionSize); 593 } else if (!IsTLS) { 594 RWDataAlign = std::max(RWDataAlign, Alignment); 595 RWSectionSizes.push_back(SectionSize); 596 } 597 } 598 } 599 600 // Compute Global Offset Table size. If it is not zero we 601 // also update alignment, which is equal to a size of a 602 // single GOT entry. 603 if (unsigned GotSize = computeGOTSize(Obj)) { 604 RWSectionSizes.push_back(GotSize); 605 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); 606 } 607 608 // Compute the size of all common symbols 609 uint64_t CommonSize = 0; 610 uint32_t CommonAlign = 1; 611 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 612 ++I) { 613 Expected<uint32_t> FlagsOrErr = I->getFlags(); 614 if (!FlagsOrErr) 615 // TODO: Test this error. 616 return FlagsOrErr.takeError(); 617 if (*FlagsOrErr & SymbolRef::SF_Common) { 618 // Add the common symbols to a list. We'll allocate them all below. 619 uint64_t Size = I->getCommonSize(); 620 uint32_t Align = I->getAlignment(); 621 // If this is the first common symbol, use its alignment as the alignment 622 // for the common symbols section. 623 if (CommonSize == 0) 624 CommonAlign = Align; 625 CommonSize = alignTo(CommonSize, Align) + Size; 626 } 627 } 628 if (CommonSize != 0) { 629 RWSectionSizes.push_back(CommonSize); 630 RWDataAlign = std::max(RWDataAlign, CommonAlign); 631 } 632 633 // Compute the required allocation space for each different type of sections 634 // (code, read-only data, read-write data) assuming that all sections are 635 // allocated with the max alignment. Note that we cannot compute with the 636 // individual alignments of the sections, because then the required size 637 // depends on the order, in which the sections are allocated. 638 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 639 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 640 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 641 642 return Error::success(); 643 } 644 645 // compute GOT size 646 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { 647 size_t GotEntrySize = getGOTEntrySize(); 648 if (!GotEntrySize) 649 return 0; 650 651 size_t GotSize = 0; 652 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 653 SI != SE; ++SI) { 654 655 for (const RelocationRef &Reloc : SI->relocations()) 656 if (relocationNeedsGot(Reloc)) 657 GotSize += GotEntrySize; 658 } 659 660 return GotSize; 661 } 662 663 // compute stub buffer size for the given section 664 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 665 const SectionRef &Section) { 666 if (!MemMgr.allowStubAllocation()) { 667 return 0; 668 } 669 670 unsigned StubSize = getMaxStubSize(); 671 if (StubSize == 0) { 672 return 0; 673 } 674 // FIXME: this is an inefficient way to handle this. We should computed the 675 // necessary section allocation size in loadObject by walking all the sections 676 // once. 677 unsigned StubBufSize = 0; 678 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 679 SI != SE; ++SI) { 680 681 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 682 if (!RelSecOrErr) 683 report_fatal_error(Twine(toString(RelSecOrErr.takeError()))); 684 685 section_iterator RelSecI = *RelSecOrErr; 686 if (!(RelSecI == Section)) 687 continue; 688 689 for (const RelocationRef &Reloc : SI->relocations()) 690 if (relocationNeedsStub(Reloc)) 691 StubBufSize += StubSize; 692 } 693 694 // Get section data size and alignment 695 uint64_t DataSize = Section.getSize(); 696 uint64_t Alignment64 = Section.getAlignment(); 697 698 // Add stubbuf size alignment 699 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 700 unsigned StubAlignment = getStubAlignment(); 701 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 702 if (StubAlignment > EndAlignment) 703 StubBufSize += StubAlignment - EndAlignment; 704 return StubBufSize; 705 } 706 707 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 708 unsigned Size) const { 709 uint64_t Result = 0; 710 if (IsTargetLittleEndian) { 711 Src += Size - 1; 712 while (Size--) 713 Result = (Result << 8) | *Src--; 714 } else 715 while (Size--) 716 Result = (Result << 8) | *Src++; 717 718 return Result; 719 } 720 721 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 722 unsigned Size) const { 723 if (IsTargetLittleEndian) { 724 while (Size--) { 725 *Dst++ = Value & 0xFF; 726 Value >>= 8; 727 } 728 } else { 729 Dst += Size - 1; 730 while (Size--) { 731 *Dst-- = Value & 0xFF; 732 Value >>= 8; 733 } 734 } 735 } 736 737 Expected<JITSymbolFlags> 738 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { 739 return JITSymbolFlags::fromObjectSymbol(SR); 740 } 741 742 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 743 CommonSymbolList &SymbolsToAllocate, 744 uint64_t CommonSize, 745 uint32_t CommonAlign) { 746 if (SymbolsToAllocate.empty()) 747 return Error::success(); 748 749 // Allocate memory for the section 750 unsigned SectionID = Sections.size(); 751 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 752 "<common symbols>", false); 753 if (!Addr) 754 report_fatal_error("Unable to allocate memory for common symbols!"); 755 uint64_t Offset = 0; 756 Sections.push_back( 757 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 758 memset(Addr, 0, CommonSize); 759 760 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID 761 << " new addr: " << format("%p", Addr) 762 << " DataSize: " << CommonSize << "\n"); 763 764 // Assign the address of each symbol 765 for (auto &Sym : SymbolsToAllocate) { 766 uint32_t Alignment = Sym.getAlignment(); 767 uint64_t Size = Sym.getCommonSize(); 768 StringRef Name; 769 if (auto NameOrErr = Sym.getName()) 770 Name = *NameOrErr; 771 else 772 return NameOrErr.takeError(); 773 if (Alignment) { 774 // This symbol has an alignment requirement. 775 uint64_t AlignOffset = 776 offsetToAlignment((uint64_t)Addr, Align(Alignment)); 777 Addr += AlignOffset; 778 Offset += AlignOffset; 779 } 780 auto JITSymFlags = getJITSymbolFlags(Sym); 781 782 if (!JITSymFlags) 783 return JITSymFlags.takeError(); 784 785 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 786 << format("%p", Addr) << "\n"); 787 if (!Name.empty()) // Skip absolute symbol relocations. 788 GlobalSymbolTable[Name] = 789 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); 790 Offset += Size; 791 Addr += Size; 792 } 793 794 return Error::success(); 795 } 796 797 Expected<unsigned> 798 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 799 const SectionRef &Section, 800 bool IsCode) { 801 StringRef data; 802 uint64_t Alignment64 = Section.getAlignment(); 803 804 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 805 unsigned PaddingSize = 0; 806 unsigned StubBufSize = 0; 807 bool IsRequired = isRequiredForExecution(Section); 808 bool IsVirtual = Section.isVirtual(); 809 bool IsZeroInit = isZeroInit(Section); 810 bool IsReadOnly = isReadOnlyData(Section); 811 bool IsTLS = isTLS(Section); 812 uint64_t DataSize = Section.getSize(); 813 814 // An alignment of 0 (at least with ELF) is identical to an alignment of 1, 815 // while being more "polite". Other formats do not support 0-aligned sections 816 // anyway, so we should guarantee that the alignment is always at least 1. 817 Alignment = std::max(1u, Alignment); 818 819 Expected<StringRef> NameOrErr = Section.getName(); 820 if (!NameOrErr) 821 return NameOrErr.takeError(); 822 StringRef Name = *NameOrErr; 823 824 StubBufSize = computeSectionStubBufSize(Obj, Section); 825 826 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 827 // with zeroes added at the end. For MachO objects, this section has a 828 // slightly different name, so this won't have any effect for MachO objects. 829 if (Name == ".eh_frame") 830 PaddingSize = 4; 831 832 uintptr_t Allocate; 833 unsigned SectionID = Sections.size(); 834 uint8_t *Addr; 835 uint64_t LoadAddress = 0; 836 const char *pData = nullptr; 837 838 // If this section contains any bits (i.e. isn't a virtual or bss section), 839 // grab a reference to them. 840 if (!IsVirtual && !IsZeroInit) { 841 // In either case, set the location of the unrelocated section in memory, 842 // since we still process relocations for it even if we're not applying them. 843 if (Expected<StringRef> E = Section.getContents()) 844 data = *E; 845 else 846 return E.takeError(); 847 pData = data.data(); 848 } 849 850 // If there are any stubs then the section alignment needs to be at least as 851 // high as stub alignment or padding calculations may by incorrect when the 852 // section is remapped. 853 if (StubBufSize != 0) { 854 Alignment = std::max(Alignment, getStubAlignment()); 855 PaddingSize += getStubAlignment() - 1; 856 } 857 858 // Some sections, such as debug info, don't need to be loaded for execution. 859 // Process those only if explicitly requested. 860 if (IsRequired || ProcessAllSections) { 861 Allocate = DataSize + PaddingSize + StubBufSize; 862 if (!Allocate) 863 Allocate = 1; 864 if (IsTLS) { 865 auto TLSSection = 866 MemMgr.allocateTLSSection(Allocate, Alignment, SectionID, Name); 867 Addr = TLSSection.InitializationImage; 868 LoadAddress = TLSSection.Offset; 869 } else if (IsCode) { 870 Addr = MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, Name); 871 } else { 872 Addr = MemMgr.allocateDataSection(Allocate, Alignment, SectionID, Name, 873 IsReadOnly); 874 } 875 if (!Addr) 876 report_fatal_error("Unable to allocate section memory!"); 877 878 // Zero-initialize or copy the data from the image 879 if (IsZeroInit || IsVirtual) 880 memset(Addr, 0, DataSize); 881 else 882 memcpy(Addr, pData, DataSize); 883 884 // Fill in any extra bytes we allocated for padding 885 if (PaddingSize != 0) { 886 memset(Addr + DataSize, 0, PaddingSize); 887 // Update the DataSize variable to include padding. 888 DataSize += PaddingSize; 889 890 // Align DataSize to stub alignment if we have any stubs (PaddingSize will 891 // have been increased above to account for this). 892 if (StubBufSize > 0) 893 DataSize &= -(uint64_t)getStubAlignment(); 894 } 895 896 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " 897 << Name << " obj addr: " << format("%p", pData) 898 << " new addr: " << format("%p", Addr) << " DataSize: " 899 << DataSize << " StubBufSize: " << StubBufSize 900 << " Allocate: " << Allocate << "\n"); 901 } else { 902 // Even if we didn't load the section, we need to record an entry for it 903 // to handle later processing (and by 'handle' I mean don't do anything 904 // with these sections). 905 Allocate = 0; 906 Addr = nullptr; 907 LLVM_DEBUG( 908 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 909 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 910 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 911 << " Allocate: " << Allocate << "\n"); 912 } 913 914 Sections.push_back( 915 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 916 917 // The load address of a TLS section is not equal to the address of its 918 // initialization image 919 if (IsTLS) 920 Sections.back().setLoadAddress(LoadAddress); 921 // Debug info sections are linked as if their load address was zero 922 if (!IsRequired) 923 Sections.back().setLoadAddress(0); 924 925 return SectionID; 926 } 927 928 Expected<unsigned> 929 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 930 const SectionRef &Section, 931 bool IsCode, 932 ObjSectionToIDMap &LocalSections) { 933 934 unsigned SectionID = 0; 935 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 936 if (i != LocalSections.end()) 937 SectionID = i->second; 938 else { 939 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 940 SectionID = *SectionIDOrErr; 941 else 942 return SectionIDOrErr.takeError(); 943 LocalSections[Section] = SectionID; 944 } 945 return SectionID; 946 } 947 948 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 949 unsigned SectionID) { 950 Relocations[SectionID].push_back(RE); 951 } 952 953 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 954 StringRef SymbolName) { 955 // Relocation by symbol. If the symbol is found in the global symbol table, 956 // create an appropriate section relocation. Otherwise, add it to 957 // ExternalSymbolRelocations. 958 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 959 if (Loc == GlobalSymbolTable.end()) { 960 ExternalSymbolRelocations[SymbolName].push_back(RE); 961 } else { 962 assert(!SymbolName.empty() && 963 "Empty symbol should not be in GlobalSymbolTable"); 964 // Copy the RE since we want to modify its addend. 965 RelocationEntry RECopy = RE; 966 const auto &SymInfo = Loc->second; 967 RECopy.Addend += SymInfo.getOffset(); 968 Relocations[SymInfo.getSectionID()].push_back(RECopy); 969 } 970 } 971 972 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 973 unsigned AbiVariant) { 974 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || 975 Arch == Triple::aarch64_32) { 976 // This stub has to be able to access the full address space, 977 // since symbol lookup won't necessarily find a handy, in-range, 978 // PLT stub for functions which could be anywhere. 979 // Stub can use ip0 (== x16) to calculate address 980 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 981 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 982 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 983 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 984 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 985 986 return Addr; 987 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 988 // TODO: There is only ARM far stub now. We should add the Thumb stub, 989 // and stubs for branches Thumb - ARM and ARM - Thumb. 990 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] 991 return Addr + 4; 992 } else if (IsMipsO32ABI || IsMipsN32ABI) { 993 // 0: 3c190000 lui t9,%hi(addr). 994 // 4: 27390000 addiu t9,t9,%lo(addr). 995 // 8: 03200008 jr t9. 996 // c: 00000000 nop. 997 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 998 const unsigned NopInstr = 0x0; 999 unsigned JrT9Instr = 0x03200008; 1000 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || 1001 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 1002 JrT9Instr = 0x03200009; 1003 1004 writeBytesUnaligned(LuiT9Instr, Addr, 4); 1005 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); 1006 writeBytesUnaligned(JrT9Instr, Addr + 8, 4); 1007 writeBytesUnaligned(NopInstr, Addr + 12, 4); 1008 return Addr; 1009 } else if (IsMipsN64ABI) { 1010 // 0: 3c190000 lui t9,%highest(addr). 1011 // 4: 67390000 daddiu t9,t9,%higher(addr). 1012 // 8: 0019CC38 dsll t9,t9,16. 1013 // c: 67390000 daddiu t9,t9,%hi(addr). 1014 // 10: 0019CC38 dsll t9,t9,16. 1015 // 14: 67390000 daddiu t9,t9,%lo(addr). 1016 // 18: 03200008 jr t9. 1017 // 1c: 00000000 nop. 1018 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, 1019 DsllT9Instr = 0x19CC38; 1020 const unsigned NopInstr = 0x0; 1021 unsigned JrT9Instr = 0x03200008; 1022 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 1023 JrT9Instr = 0x03200009; 1024 1025 writeBytesUnaligned(LuiT9Instr, Addr, 4); 1026 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); 1027 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); 1028 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); 1029 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); 1030 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); 1031 writeBytesUnaligned(JrT9Instr, Addr + 24, 4); 1032 writeBytesUnaligned(NopInstr, Addr + 28, 4); 1033 return Addr; 1034 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1035 // Depending on which version of the ELF ABI is in use, we need to 1036 // generate one of two variants of the stub. They both start with 1037 // the same sequence to load the target address into r12. 1038 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 1039 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 1040 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 1041 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 1042 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 1043 if (AbiVariant == 2) { 1044 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 1045 // The address is already in r12 as required by the ABI. Branch to it. 1046 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 1047 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 1048 writeInt32BE(Addr+28, 0x4E800420); // bctr 1049 } else { 1050 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 1051 // Load the function address on r11 and sets it to control register. Also 1052 // loads the function TOC in r2 and environment pointer to r11. 1053 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 1054 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 1055 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 1056 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 1057 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 1058 writeInt32BE(Addr+40, 0x4E800420); // bctr 1059 } 1060 return Addr; 1061 } else if (Arch == Triple::systemz) { 1062 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 1063 writeInt16BE(Addr+2, 0x0000); 1064 writeInt16BE(Addr+4, 0x0004); 1065 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 1066 // 8-byte address stored at Addr + 8 1067 return Addr; 1068 } else if (Arch == Triple::x86_64) { 1069 *Addr = 0xFF; // jmp 1070 *(Addr+1) = 0x25; // rip 1071 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 1072 } else if (Arch == Triple::x86) { 1073 *Addr = 0xE9; // 32-bit pc-relative jump. 1074 } 1075 return Addr; 1076 } 1077 1078 // Assign an address to a symbol name and resolve all the relocations 1079 // associated with it. 1080 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 1081 uint64_t Addr) { 1082 // The address to use for relocation resolution is not 1083 // the address of the local section buffer. We must be doing 1084 // a remote execution environment of some sort. Relocations can't 1085 // be applied until all the sections have been moved. The client must 1086 // trigger this with a call to MCJIT::finalize() or 1087 // RuntimeDyld::resolveRelocations(). 1088 // 1089 // Addr is a uint64_t because we can't assume the pointer width 1090 // of the target is the same as that of the host. Just use a generic 1091 // "big enough" type. 1092 LLVM_DEBUG( 1093 dbgs() << "Reassigning address for section " << SectionID << " (" 1094 << Sections[SectionID].getName() << "): " 1095 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 1096 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 1097 Sections[SectionID].setLoadAddress(Addr); 1098 } 1099 1100 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 1101 uint64_t Value) { 1102 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1103 const RelocationEntry &RE = Relocs[i]; 1104 // Ignore relocations for sections that were not loaded 1105 if (RE.SectionID != AbsoluteSymbolSection && 1106 Sections[RE.SectionID].getAddress() == nullptr) 1107 continue; 1108 resolveRelocation(RE, Value); 1109 } 1110 } 1111 1112 void RuntimeDyldImpl::applyExternalSymbolRelocations( 1113 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { 1114 for (auto &RelocKV : ExternalSymbolRelocations) { 1115 StringRef Name = RelocKV.first(); 1116 RelocationList &Relocs = RelocKV.second; 1117 if (Name.size() == 0) { 1118 // This is an absolute symbol, use an address of zero. 1119 LLVM_DEBUG(dbgs() << "Resolving absolute relocations." 1120 << "\n"); 1121 resolveRelocationList(Relocs, 0); 1122 } else { 1123 uint64_t Addr = 0; 1124 JITSymbolFlags Flags; 1125 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 1126 if (Loc == GlobalSymbolTable.end()) { 1127 auto RRI = ExternalSymbolMap.find(Name); 1128 assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); 1129 Addr = RRI->second.getAddress(); 1130 Flags = RRI->second.getFlags(); 1131 } else { 1132 // We found the symbol in our global table. It was probably in a 1133 // Module that we loaded previously. 1134 const auto &SymInfo = Loc->second; 1135 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 1136 SymInfo.getOffset(); 1137 Flags = SymInfo.getFlags(); 1138 } 1139 1140 // FIXME: Implement error handling that doesn't kill the host program! 1141 if (!Addr && !Resolver.allowsZeroSymbols()) 1142 report_fatal_error(Twine("Program used external function '") + Name + 1143 "' which could not be resolved!"); 1144 1145 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 1146 // manually and we shouldn't resolve its relocations. 1147 if (Addr != UINT64_MAX) { 1148 1149 // Tweak the address based on the symbol flags if necessary. 1150 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit 1151 // if the target symbol is Thumb. 1152 Addr = modifyAddressBasedOnFlags(Addr, Flags); 1153 1154 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 1155 << format("0x%lx", Addr) << "\n"); 1156 resolveRelocationList(Relocs, Addr); 1157 } 1158 } 1159 } 1160 ExternalSymbolRelocations.clear(); 1161 } 1162 1163 Error RuntimeDyldImpl::resolveExternalSymbols() { 1164 StringMap<JITEvaluatedSymbol> ExternalSymbolMap; 1165 1166 // Resolution can trigger emission of more symbols, so iterate until 1167 // we've resolved *everything*. 1168 { 1169 JITSymbolResolver::LookupSet ResolvedSymbols; 1170 1171 while (true) { 1172 JITSymbolResolver::LookupSet NewSymbols; 1173 1174 for (auto &RelocKV : ExternalSymbolRelocations) { 1175 StringRef Name = RelocKV.first(); 1176 if (!Name.empty() && !GlobalSymbolTable.count(Name) && 1177 !ResolvedSymbols.count(Name)) 1178 NewSymbols.insert(Name); 1179 } 1180 1181 if (NewSymbols.empty()) 1182 break; 1183 1184 #ifdef _MSC_VER 1185 using ExpectedLookupResult = 1186 MSVCPExpected<JITSymbolResolver::LookupResult>; 1187 #else 1188 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; 1189 #endif 1190 1191 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); 1192 auto NewSymbolsF = NewSymbolsP->get_future(); 1193 Resolver.lookup(NewSymbols, 1194 [=](Expected<JITSymbolResolver::LookupResult> Result) { 1195 NewSymbolsP->set_value(std::move(Result)); 1196 }); 1197 1198 auto NewResolverResults = NewSymbolsF.get(); 1199 1200 if (!NewResolverResults) 1201 return NewResolverResults.takeError(); 1202 1203 assert(NewResolverResults->size() == NewSymbols.size() && 1204 "Should have errored on unresolved symbols"); 1205 1206 for (auto &RRKV : *NewResolverResults) { 1207 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); 1208 ExternalSymbolMap.insert(RRKV); 1209 ResolvedSymbols.insert(RRKV.first); 1210 } 1211 } 1212 } 1213 1214 applyExternalSymbolRelocations(ExternalSymbolMap); 1215 1216 return Error::success(); 1217 } 1218 1219 void RuntimeDyldImpl::finalizeAsync( 1220 std::unique_ptr<RuntimeDyldImpl> This, 1221 unique_function<void(object::OwningBinary<object::ObjectFile>, 1222 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> 1223 OnEmitted, 1224 object::OwningBinary<object::ObjectFile> O, 1225 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) { 1226 1227 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); 1228 auto PostResolveContinuation = 1229 [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O), 1230 Info = std::move(Info)]( 1231 Expected<JITSymbolResolver::LookupResult> Result) mutable { 1232 if (!Result) { 1233 OnEmitted(std::move(O), std::move(Info), Result.takeError()); 1234 return; 1235 } 1236 1237 /// Copy the result into a StringMap, where the keys are held by value. 1238 StringMap<JITEvaluatedSymbol> Resolved; 1239 for (auto &KV : *Result) 1240 Resolved[KV.first] = KV.second; 1241 1242 SharedThis->applyExternalSymbolRelocations(Resolved); 1243 SharedThis->resolveLocalRelocations(); 1244 SharedThis->registerEHFrames(); 1245 std::string ErrMsg; 1246 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) 1247 OnEmitted(std::move(O), std::move(Info), 1248 make_error<StringError>(std::move(ErrMsg), 1249 inconvertibleErrorCode())); 1250 else 1251 OnEmitted(std::move(O), std::move(Info), Error::success()); 1252 }; 1253 1254 JITSymbolResolver::LookupSet Symbols; 1255 1256 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { 1257 StringRef Name = RelocKV.first(); 1258 if (Name.empty()) // Skip absolute symbol relocations. 1259 continue; 1260 assert(!SharedThis->GlobalSymbolTable.count(Name) && 1261 "Name already processed. RuntimeDyld instances can not be re-used " 1262 "when finalizing with finalizeAsync."); 1263 Symbols.insert(Name); 1264 } 1265 1266 if (!Symbols.empty()) { 1267 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation)); 1268 } else 1269 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); 1270 } 1271 1272 //===----------------------------------------------------------------------===// 1273 // RuntimeDyld class implementation 1274 1275 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 1276 const object::SectionRef &Sec) const { 1277 1278 auto I = ObjSecToIDMap.find(Sec); 1279 if (I != ObjSecToIDMap.end()) 1280 return RTDyld.Sections[I->second].getLoadAddress(); 1281 1282 return 0; 1283 } 1284 1285 RuntimeDyld::MemoryManager::TLSSection 1286 RuntimeDyld::MemoryManager::allocateTLSSection(uintptr_t Size, 1287 unsigned Alignment, 1288 unsigned SectionID, 1289 StringRef SectionName) { 1290 report_fatal_error("allocation of TLS not implemented"); 1291 } 1292 1293 void RuntimeDyld::MemoryManager::anchor() {} 1294 void JITSymbolResolver::anchor() {} 1295 void LegacyJITSymbolResolver::anchor() {} 1296 1297 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 1298 JITSymbolResolver &Resolver) 1299 : MemMgr(MemMgr), Resolver(Resolver) { 1300 // FIXME: There's a potential issue lurking here if a single instance of 1301 // RuntimeDyld is used to load multiple objects. The current implementation 1302 // associates a single memory manager with a RuntimeDyld instance. Even 1303 // though the public class spawns a new 'impl' instance for each load, 1304 // they share a single memory manager. This can become a problem when page 1305 // permissions are applied. 1306 Dyld = nullptr; 1307 ProcessAllSections = false; 1308 } 1309 1310 RuntimeDyld::~RuntimeDyld() {} 1311 1312 static std::unique_ptr<RuntimeDyldCOFF> 1313 createRuntimeDyldCOFF( 1314 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1315 JITSymbolResolver &Resolver, bool ProcessAllSections, 1316 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1317 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1318 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1319 Dyld->setProcessAllSections(ProcessAllSections); 1320 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1321 return Dyld; 1322 } 1323 1324 static std::unique_ptr<RuntimeDyldELF> 1325 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1326 JITSymbolResolver &Resolver, bool ProcessAllSections, 1327 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1328 std::unique_ptr<RuntimeDyldELF> Dyld = 1329 RuntimeDyldELF::create(Arch, MM, Resolver); 1330 Dyld->setProcessAllSections(ProcessAllSections); 1331 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1332 return Dyld; 1333 } 1334 1335 static std::unique_ptr<RuntimeDyldMachO> 1336 createRuntimeDyldMachO( 1337 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1338 JITSymbolResolver &Resolver, 1339 bool ProcessAllSections, 1340 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1341 std::unique_ptr<RuntimeDyldMachO> Dyld = 1342 RuntimeDyldMachO::create(Arch, MM, Resolver); 1343 Dyld->setProcessAllSections(ProcessAllSections); 1344 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1345 return Dyld; 1346 } 1347 1348 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1349 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1350 if (!Dyld) { 1351 if (Obj.isELF()) 1352 Dyld = 1353 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1354 MemMgr, Resolver, ProcessAllSections, 1355 std::move(NotifyStubEmitted)); 1356 else if (Obj.isMachO()) 1357 Dyld = createRuntimeDyldMachO( 1358 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1359 ProcessAllSections, std::move(NotifyStubEmitted)); 1360 else if (Obj.isCOFF()) 1361 Dyld = createRuntimeDyldCOFF( 1362 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1363 ProcessAllSections, std::move(NotifyStubEmitted)); 1364 else 1365 report_fatal_error("Incompatible object format!"); 1366 } 1367 1368 if (!Dyld->isCompatibleFile(Obj)) 1369 report_fatal_error("Incompatible object format!"); 1370 1371 auto LoadedObjInfo = Dyld->loadObject(Obj); 1372 MemMgr.notifyObjectLoaded(*this, Obj); 1373 return LoadedObjInfo; 1374 } 1375 1376 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1377 if (!Dyld) 1378 return nullptr; 1379 return Dyld->getSymbolLocalAddress(Name); 1380 } 1381 1382 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { 1383 assert(Dyld && "No RuntimeDyld instance attached"); 1384 return Dyld->getSymbolSectionID(Name); 1385 } 1386 1387 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1388 if (!Dyld) 1389 return nullptr; 1390 return Dyld->getSymbol(Name); 1391 } 1392 1393 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { 1394 if (!Dyld) 1395 return std::map<StringRef, JITEvaluatedSymbol>(); 1396 return Dyld->getSymbolTable(); 1397 } 1398 1399 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1400 1401 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1402 Dyld->reassignSectionAddress(SectionID, Addr); 1403 } 1404 1405 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1406 uint64_t TargetAddress) { 1407 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1408 } 1409 1410 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1411 1412 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1413 1414 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1415 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1416 MemMgr.FinalizationLocked = true; 1417 resolveRelocations(); 1418 registerEHFrames(); 1419 if (!MemoryFinalizationLocked) { 1420 MemMgr.finalizeMemory(); 1421 MemMgr.FinalizationLocked = false; 1422 } 1423 } 1424 1425 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { 1426 assert(Dyld && "No Dyld instance attached"); 1427 return Dyld->getSectionContent(SectionID); 1428 } 1429 1430 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { 1431 assert(Dyld && "No Dyld instance attached"); 1432 return Dyld->getSectionLoadAddress(SectionID); 1433 } 1434 1435 void RuntimeDyld::registerEHFrames() { 1436 if (Dyld) 1437 Dyld->registerEHFrames(); 1438 } 1439 1440 void RuntimeDyld::deregisterEHFrames() { 1441 if (Dyld) 1442 Dyld->deregisterEHFrames(); 1443 } 1444 // FIXME: Kill this with fire once we have a new JIT linker: this is only here 1445 // so that we can re-use RuntimeDyld's implementation without twisting the 1446 // interface any further for ORC's purposes. 1447 void jitLinkForORC( 1448 object::OwningBinary<object::ObjectFile> O, 1449 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver, 1450 bool ProcessAllSections, 1451 unique_function<Error(const object::ObjectFile &Obj, 1452 RuntimeDyld::LoadedObjectInfo &LoadedObj, 1453 std::map<StringRef, JITEvaluatedSymbol>)> 1454 OnLoaded, 1455 unique_function<void(object::OwningBinary<object::ObjectFile>, 1456 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> 1457 OnEmitted) { 1458 1459 RuntimeDyld RTDyld(MemMgr, Resolver); 1460 RTDyld.setProcessAllSections(ProcessAllSections); 1461 1462 auto Info = RTDyld.loadObject(*O.getBinary()); 1463 1464 if (RTDyld.hasError()) { 1465 OnEmitted(std::move(O), std::move(Info), 1466 make_error<StringError>(RTDyld.getErrorString(), 1467 inconvertibleErrorCode())); 1468 return; 1469 } 1470 1471 if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable())) 1472 OnEmitted(std::move(O), std::move(Info), std::move(Err)); 1473 1474 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), 1475 std::move(O), std::move(Info)); 1476 } 1477 1478 } // end namespace llvm 1479