xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include <mutex>
25 
26 #include <future>
27 
28 using namespace llvm;
29 using namespace llvm::object;
30 
31 #define DEBUG_TYPE "dyld"
32 
33 namespace {
34 
35 enum RuntimeDyldErrorCode {
36   GenericRTDyldError = 1
37 };
38 
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory : public std::error_category {
43 public:
44   const char *name() const noexcept override { return "runtimedyld"; }
45 
46   std::string message(int Condition) const override {
47     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48       case GenericRTDyldError: return "Generic RuntimeDyld error";
49     }
50     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
51   }
52 };
53 
54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
55 
56 }
57 
58 char RuntimeDyldError::ID = 0;
59 
60 void RuntimeDyldError::log(raw_ostream &OS) const {
61   OS << ErrMsg << "\n";
62 }
63 
64 std::error_code RuntimeDyldError::convertToErrorCode() const {
65   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
66 }
67 
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
70 
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
73 
74 namespace llvm {
75 
76 void RuntimeDyldImpl::registerEHFrames() {}
77 
78 void RuntimeDyldImpl::deregisterEHFrames() {
79   MemMgr.deregisterEHFrames();
80 }
81 
82 #ifndef NDEBUG
83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84   dbgs() << "----- Contents of section " << S.getName() << " " << State
85          << " -----";
86 
87   if (S.getAddress() == nullptr) {
88     dbgs() << "\n          <section not emitted>\n";
89     return;
90   }
91 
92   const unsigned ColsPerRow = 16;
93 
94   uint8_t *DataAddr = S.getAddress();
95   uint64_t LoadAddr = S.getLoadAddress();
96 
97   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98   unsigned BytesRemaining = S.getSize();
99 
100   if (StartPadding) {
101     dbgs() << "\n" << format("0x%016" PRIx64,
102                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103     while (StartPadding--)
104       dbgs() << "   ";
105   }
106 
107   while (BytesRemaining > 0) {
108     if ((LoadAddr & (ColsPerRow - 1)) == 0)
109       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
110 
111     dbgs() << " " << format("%02x", *DataAddr);
112 
113     ++DataAddr;
114     ++LoadAddr;
115     --BytesRemaining;
116   }
117 
118   dbgs() << "\n";
119 }
120 #endif
121 
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124   std::lock_guard<sys::Mutex> locked(lock);
125 
126   // Print out the sections prior to relocation.
127   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
128                  dumpSectionMemory(Sections[i], "before relocations"););
129 
130   // First, resolve relocations associated with external symbols.
131   if (auto Err = resolveExternalSymbols()) {
132     HasError = true;
133     ErrorStr = toString(std::move(Err));
134   }
135 
136   resolveLocalRelocations();
137 
138   // Print out sections after relocation.
139   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
140                  dumpSectionMemory(Sections[i], "after relocations"););
141 }
142 
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144   // Iterate over all outstanding relocations
145   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146     // The Section here (Sections[i]) refers to the section in which the
147     // symbol for the relocation is located.  The SectionID in the relocation
148     // entry provides the section to which the relocation will be applied.
149     unsigned Idx = it->first;
150     uint64_t Addr = getSectionLoadAddress(Idx);
151     LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
152                       << format("%p", (uintptr_t)Addr) << "\n");
153     resolveRelocationList(it->second, Addr);
154   }
155   Relocations.clear();
156 }
157 
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159                                         uint64_t TargetAddress) {
160   std::lock_guard<sys::Mutex> locked(lock);
161   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162     if (Sections[i].getAddress() == LocalAddress) {
163       reassignSectionAddress(i, TargetAddress);
164       return;
165     }
166   }
167   llvm_unreachable("Attempting to remap address of unknown section!");
168 }
169 
170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171                        uint64_t &Result) {
172   Expected<uint64_t> AddressOrErr = Sym.getAddress();
173   if (!AddressOrErr)
174     return AddressOrErr.takeError();
175   Result = *AddressOrErr - Sec.getAddress();
176   return Error::success();
177 }
178 
179 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181   std::lock_guard<sys::Mutex> locked(lock);
182 
183   // Save information about our target
184   Arch = (Triple::ArchType)Obj.getArch();
185   IsTargetLittleEndian = Obj.isLittleEndian();
186   setMipsABI(Obj);
187 
188   // Compute the memory size required to load all sections to be loaded
189   // and pass this information to the memory manager
190   if (MemMgr.needsToReserveAllocationSpace()) {
191     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193     if (auto Err = computeTotalAllocSize(Obj,
194                                          CodeSize, CodeAlign,
195                                          RODataSize, RODataAlign,
196                                          RWDataSize, RWDataAlign))
197       return std::move(Err);
198     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199                                   RWDataSize, RWDataAlign);
200   }
201 
202   // Used sections from the object file
203   ObjSectionToIDMap LocalSections;
204 
205   // Common symbols requiring allocation, with their sizes and alignments
206   CommonSymbolList CommonSymbolsToAllocate;
207 
208   uint64_t CommonSize = 0;
209   uint32_t CommonAlign = 0;
210 
211   // First, collect all weak and common symbols. We need to know if stronger
212   // definitions occur elsewhere.
213   JITSymbolResolver::LookupSet ResponsibilitySet;
214   {
215     JITSymbolResolver::LookupSet Symbols;
216     for (auto &Sym : Obj.symbols()) {
217       Expected<uint32_t> FlagsOrErr = Sym.getFlags();
218       if (!FlagsOrErr)
219         // TODO: Test this error.
220         return FlagsOrErr.takeError();
221       if ((*FlagsOrErr & SymbolRef::SF_Common) ||
222           (*FlagsOrErr & SymbolRef::SF_Weak)) {
223         // Get symbol name.
224         if (auto NameOrErr = Sym.getName())
225           Symbols.insert(*NameOrErr);
226         else
227           return NameOrErr.takeError();
228       }
229     }
230 
231     if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
232       ResponsibilitySet = std::move(*ResultOrErr);
233     else
234       return ResultOrErr.takeError();
235   }
236 
237   // Parse symbols
238   LLVM_DEBUG(dbgs() << "Parse symbols:\n");
239   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
240        ++I) {
241     Expected<uint32_t> FlagsOrErr = I->getFlags();
242     if (!FlagsOrErr)
243       // TODO: Test this error.
244       return FlagsOrErr.takeError();
245 
246     // Skip undefined symbols.
247     if (*FlagsOrErr & SymbolRef::SF_Undefined)
248       continue;
249 
250     // Get the symbol type.
251     object::SymbolRef::Type SymType;
252     if (auto SymTypeOrErr = I->getType())
253       SymType = *SymTypeOrErr;
254     else
255       return SymTypeOrErr.takeError();
256 
257     // Get symbol name.
258     StringRef Name;
259     if (auto NameOrErr = I->getName())
260       Name = *NameOrErr;
261     else
262       return NameOrErr.takeError();
263 
264     // Compute JIT symbol flags.
265     auto JITSymFlags = getJITSymbolFlags(*I);
266     if (!JITSymFlags)
267       return JITSymFlags.takeError();
268 
269     // If this is a weak definition, check to see if there's a strong one.
270     // If there is, skip this symbol (we won't be providing it: the strong
271     // definition will). If there's no strong definition, make this definition
272     // strong.
273     if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
274       // First check whether there's already a definition in this instance.
275       if (GlobalSymbolTable.count(Name))
276         continue;
277 
278       // If we're not responsible for this symbol, skip it.
279       if (!ResponsibilitySet.count(Name))
280         continue;
281 
282       // Otherwise update the flags on the symbol to make this definition
283       // strong.
284       if (JITSymFlags->isWeak())
285         *JITSymFlags &= ~JITSymbolFlags::Weak;
286       if (JITSymFlags->isCommon()) {
287         *JITSymFlags &= ~JITSymbolFlags::Common;
288         uint32_t Align = I->getAlignment();
289         uint64_t Size = I->getCommonSize();
290         if (!CommonAlign)
291           CommonAlign = Align;
292         CommonSize = alignTo(CommonSize, Align) + Size;
293         CommonSymbolsToAllocate.push_back(*I);
294       }
295     }
296 
297     if (*FlagsOrErr & SymbolRef::SF_Absolute &&
298         SymType != object::SymbolRef::ST_File) {
299       uint64_t Addr = 0;
300       if (auto AddrOrErr = I->getAddress())
301         Addr = *AddrOrErr;
302       else
303         return AddrOrErr.takeError();
304 
305       unsigned SectionID = AbsoluteSymbolSection;
306 
307       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
308                         << " SID: " << SectionID
309                         << " Offset: " << format("%p", (uintptr_t)Addr)
310                         << " flags: " << *FlagsOrErr << "\n");
311       if (!Name.empty()) // Skip absolute symbol relocations.
312         GlobalSymbolTable[Name] =
313             SymbolTableEntry(SectionID, Addr, *JITSymFlags);
314     } else if (SymType == object::SymbolRef::ST_Function ||
315                SymType == object::SymbolRef::ST_Data ||
316                SymType == object::SymbolRef::ST_Unknown ||
317                SymType == object::SymbolRef::ST_Other) {
318 
319       section_iterator SI = Obj.section_end();
320       if (auto SIOrErr = I->getSection())
321         SI = *SIOrErr;
322       else
323         return SIOrErr.takeError();
324 
325       if (SI == Obj.section_end())
326         continue;
327 
328       // Get symbol offset.
329       uint64_t SectOffset;
330       if (auto Err = getOffset(*I, *SI, SectOffset))
331         return std::move(Err);
332 
333       bool IsCode = SI->isText();
334       unsigned SectionID;
335       if (auto SectionIDOrErr =
336               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
337         SectionID = *SectionIDOrErr;
338       else
339         return SectionIDOrErr.takeError();
340 
341       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
342                         << " SID: " << SectionID
343                         << " Offset: " << format("%p", (uintptr_t)SectOffset)
344                         << " flags: " << *FlagsOrErr << "\n");
345       if (!Name.empty()) // Skip absolute symbol relocations
346         GlobalSymbolTable[Name] =
347             SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
348     }
349   }
350 
351   // Allocate common symbols
352   if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
353                                    CommonAlign))
354     return std::move(Err);
355 
356   // Parse and process relocations
357   LLVM_DEBUG(dbgs() << "Parse relocations:\n");
358   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
359        SI != SE; ++SI) {
360     StubMap Stubs;
361 
362     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
363     if (!RelSecOrErr)
364       return RelSecOrErr.takeError();
365 
366     section_iterator RelocatedSection = *RelSecOrErr;
367     if (RelocatedSection == SE)
368       continue;
369 
370     relocation_iterator I = SI->relocation_begin();
371     relocation_iterator E = SI->relocation_end();
372 
373     if (I == E && !ProcessAllSections)
374       continue;
375 
376     bool IsCode = RelocatedSection->isText();
377     unsigned SectionID = 0;
378     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
379                                                 LocalSections))
380       SectionID = *SectionIDOrErr;
381     else
382       return SectionIDOrErr.takeError();
383 
384     LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
385 
386     for (; I != E;)
387       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
388         I = *IOrErr;
389       else
390         return IOrErr.takeError();
391 
392     // If there is a NotifyStubEmitted callback set, call it to register any
393     // stubs created for this section.
394     if (NotifyStubEmitted) {
395       StringRef FileName = Obj.getFileName();
396       StringRef SectionName = Sections[SectionID].getName();
397       for (auto &KV : Stubs) {
398 
399         auto &VR = KV.first;
400         uint64_t StubAddr = KV.second;
401 
402         // If this is a named stub, just call NotifyStubEmitted.
403         if (VR.SymbolName) {
404           NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
405                             StubAddr);
406           continue;
407         }
408 
409         // Otherwise we will have to try a reverse lookup on the globla symbol table.
410         for (auto &GSTMapEntry : GlobalSymbolTable) {
411           StringRef SymbolName = GSTMapEntry.first();
412           auto &GSTEntry = GSTMapEntry.second;
413           if (GSTEntry.getSectionID() == VR.SectionID &&
414               GSTEntry.getOffset() == VR.Offset) {
415             NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
416                               StubAddr);
417             break;
418           }
419         }
420       }
421     }
422   }
423 
424   // Process remaining sections
425   if (ProcessAllSections) {
426     LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
427     for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
428          SI != SE; ++SI) {
429 
430       /* Ignore already loaded sections */
431       if (LocalSections.find(*SI) != LocalSections.end())
432         continue;
433 
434       bool IsCode = SI->isText();
435       if (auto SectionIDOrErr =
436               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
437         LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
438       else
439         return SectionIDOrErr.takeError();
440     }
441   }
442 
443   // Give the subclasses a chance to tie-up any loose ends.
444   if (auto Err = finalizeLoad(Obj, LocalSections))
445     return std::move(Err);
446 
447 //   for (auto E : LocalSections)
448 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
449 
450   return LocalSections;
451 }
452 
453 // A helper method for computeTotalAllocSize.
454 // Computes the memory size required to allocate sections with the given sizes,
455 // assuming that all sections are allocated with the given alignment
456 static uint64_t
457 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
458                                  uint64_t Alignment) {
459   uint64_t TotalSize = 0;
460   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
461     uint64_t AlignedSize =
462         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
463     TotalSize += AlignedSize;
464   }
465   return TotalSize;
466 }
467 
468 static bool isRequiredForExecution(const SectionRef Section) {
469   const ObjectFile *Obj = Section.getObject();
470   if (isa<object::ELFObjectFileBase>(Obj))
471     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
472   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
473     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
474     // Avoid loading zero-sized COFF sections.
475     // In PE files, VirtualSize gives the section size, and SizeOfRawData
476     // may be zero for sections with content. In Obj files, SizeOfRawData
477     // gives the section size, and VirtualSize is always zero. Hence
478     // the need to check for both cases below.
479     bool HasContent =
480         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
481     bool IsDiscardable =
482         CoffSection->Characteristics &
483         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
484     return HasContent && !IsDiscardable;
485   }
486 
487   assert(isa<MachOObjectFile>(Obj));
488   return true;
489 }
490 
491 static bool isReadOnlyData(const SectionRef Section) {
492   const ObjectFile *Obj = Section.getObject();
493   if (isa<object::ELFObjectFileBase>(Obj))
494     return !(ELFSectionRef(Section).getFlags() &
495              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
496   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
497     return ((COFFObj->getCOFFSection(Section)->Characteristics &
498              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
499              | COFF::IMAGE_SCN_MEM_READ
500              | COFF::IMAGE_SCN_MEM_WRITE))
501              ==
502              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
503              | COFF::IMAGE_SCN_MEM_READ));
504 
505   assert(isa<MachOObjectFile>(Obj));
506   return false;
507 }
508 
509 static bool isZeroInit(const SectionRef Section) {
510   const ObjectFile *Obj = Section.getObject();
511   if (isa<object::ELFObjectFileBase>(Obj))
512     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
513   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
514     return COFFObj->getCOFFSection(Section)->Characteristics &
515             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
516 
517   auto *MachO = cast<MachOObjectFile>(Obj);
518   unsigned SectionType = MachO->getSectionType(Section);
519   return SectionType == MachO::S_ZEROFILL ||
520          SectionType == MachO::S_GB_ZEROFILL;
521 }
522 
523 // Compute an upper bound of the memory size that is required to load all
524 // sections
525 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
526                                              uint64_t &CodeSize,
527                                              uint32_t &CodeAlign,
528                                              uint64_t &RODataSize,
529                                              uint32_t &RODataAlign,
530                                              uint64_t &RWDataSize,
531                                              uint32_t &RWDataAlign) {
532   // Compute the size of all sections required for execution
533   std::vector<uint64_t> CodeSectionSizes;
534   std::vector<uint64_t> ROSectionSizes;
535   std::vector<uint64_t> RWSectionSizes;
536 
537   // Collect sizes of all sections to be loaded;
538   // also determine the max alignment of all sections
539   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
540        SI != SE; ++SI) {
541     const SectionRef &Section = *SI;
542 
543     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
544 
545     // Consider only the sections that are required to be loaded for execution
546     if (IsRequired) {
547       uint64_t DataSize = Section.getSize();
548       uint64_t Alignment64 = Section.getAlignment();
549       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
550       bool IsCode = Section.isText();
551       bool IsReadOnly = isReadOnlyData(Section);
552 
553       Expected<StringRef> NameOrErr = Section.getName();
554       if (!NameOrErr)
555         return NameOrErr.takeError();
556       StringRef Name = *NameOrErr;
557 
558       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
559 
560       uint64_t PaddingSize = 0;
561       if (Name == ".eh_frame")
562         PaddingSize += 4;
563       if (StubBufSize != 0)
564         PaddingSize += getStubAlignment() - 1;
565 
566       uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
567 
568       // The .eh_frame section (at least on Linux) needs an extra four bytes
569       // padded
570       // with zeroes added at the end.  For MachO objects, this section has a
571       // slightly different name, so this won't have any effect for MachO
572       // objects.
573       if (Name == ".eh_frame")
574         SectionSize += 4;
575 
576       if (!SectionSize)
577         SectionSize = 1;
578 
579       if (IsCode) {
580         CodeAlign = std::max(CodeAlign, Alignment);
581         CodeSectionSizes.push_back(SectionSize);
582       } else if (IsReadOnly) {
583         RODataAlign = std::max(RODataAlign, Alignment);
584         ROSectionSizes.push_back(SectionSize);
585       } else {
586         RWDataAlign = std::max(RWDataAlign, Alignment);
587         RWSectionSizes.push_back(SectionSize);
588       }
589     }
590   }
591 
592   // Compute Global Offset Table size. If it is not zero we
593   // also update alignment, which is equal to a size of a
594   // single GOT entry.
595   if (unsigned GotSize = computeGOTSize(Obj)) {
596     RWSectionSizes.push_back(GotSize);
597     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
598   }
599 
600   // Compute the size of all common symbols
601   uint64_t CommonSize = 0;
602   uint32_t CommonAlign = 1;
603   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
604        ++I) {
605     Expected<uint32_t> FlagsOrErr = I->getFlags();
606     if (!FlagsOrErr)
607       // TODO: Test this error.
608       return FlagsOrErr.takeError();
609     if (*FlagsOrErr & SymbolRef::SF_Common) {
610       // Add the common symbols to a list.  We'll allocate them all below.
611       uint64_t Size = I->getCommonSize();
612       uint32_t Align = I->getAlignment();
613       // If this is the first common symbol, use its alignment as the alignment
614       // for the common symbols section.
615       if (CommonSize == 0)
616         CommonAlign = Align;
617       CommonSize = alignTo(CommonSize, Align) + Size;
618     }
619   }
620   if (CommonSize != 0) {
621     RWSectionSizes.push_back(CommonSize);
622     RWDataAlign = std::max(RWDataAlign, CommonAlign);
623   }
624 
625   // Compute the required allocation space for each different type of sections
626   // (code, read-only data, read-write data) assuming that all sections are
627   // allocated with the max alignment. Note that we cannot compute with the
628   // individual alignments of the sections, because then the required size
629   // depends on the order, in which the sections are allocated.
630   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
631   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
632   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
633 
634   return Error::success();
635 }
636 
637 // compute GOT size
638 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
639   size_t GotEntrySize = getGOTEntrySize();
640   if (!GotEntrySize)
641     return 0;
642 
643   size_t GotSize = 0;
644   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
645        SI != SE; ++SI) {
646 
647     for (const RelocationRef &Reloc : SI->relocations())
648       if (relocationNeedsGot(Reloc))
649         GotSize += GotEntrySize;
650   }
651 
652   return GotSize;
653 }
654 
655 // compute stub buffer size for the given section
656 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
657                                                     const SectionRef &Section) {
658   if (!MemMgr.allowStubAllocation()) {
659     return 0;
660   }
661 
662   unsigned StubSize = getMaxStubSize();
663   if (StubSize == 0) {
664     return 0;
665   }
666   // FIXME: this is an inefficient way to handle this. We should computed the
667   // necessary section allocation size in loadObject by walking all the sections
668   // once.
669   unsigned StubBufSize = 0;
670   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
671        SI != SE; ++SI) {
672 
673     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
674     if (!RelSecOrErr)
675       report_fatal_error(toString(RelSecOrErr.takeError()));
676 
677     section_iterator RelSecI = *RelSecOrErr;
678     if (!(RelSecI == Section))
679       continue;
680 
681     for (const RelocationRef &Reloc : SI->relocations())
682       if (relocationNeedsStub(Reloc))
683         StubBufSize += StubSize;
684   }
685 
686   // Get section data size and alignment
687   uint64_t DataSize = Section.getSize();
688   uint64_t Alignment64 = Section.getAlignment();
689 
690   // Add stubbuf size alignment
691   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
692   unsigned StubAlignment = getStubAlignment();
693   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
694   if (StubAlignment > EndAlignment)
695     StubBufSize += StubAlignment - EndAlignment;
696   return StubBufSize;
697 }
698 
699 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
700                                              unsigned Size) const {
701   uint64_t Result = 0;
702   if (IsTargetLittleEndian) {
703     Src += Size - 1;
704     while (Size--)
705       Result = (Result << 8) | *Src--;
706   } else
707     while (Size--)
708       Result = (Result << 8) | *Src++;
709 
710   return Result;
711 }
712 
713 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
714                                           unsigned Size) const {
715   if (IsTargetLittleEndian) {
716     while (Size--) {
717       *Dst++ = Value & 0xFF;
718       Value >>= 8;
719     }
720   } else {
721     Dst += Size - 1;
722     while (Size--) {
723       *Dst-- = Value & 0xFF;
724       Value >>= 8;
725     }
726   }
727 }
728 
729 Expected<JITSymbolFlags>
730 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
731   return JITSymbolFlags::fromObjectSymbol(SR);
732 }
733 
734 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
735                                          CommonSymbolList &SymbolsToAllocate,
736                                          uint64_t CommonSize,
737                                          uint32_t CommonAlign) {
738   if (SymbolsToAllocate.empty())
739     return Error::success();
740 
741   // Allocate memory for the section
742   unsigned SectionID = Sections.size();
743   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
744                                              "<common symbols>", false);
745   if (!Addr)
746     report_fatal_error("Unable to allocate memory for common symbols!");
747   uint64_t Offset = 0;
748   Sections.push_back(
749       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
750   memset(Addr, 0, CommonSize);
751 
752   LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
753                     << " new addr: " << format("%p", Addr)
754                     << " DataSize: " << CommonSize << "\n");
755 
756   // Assign the address of each symbol
757   for (auto &Sym : SymbolsToAllocate) {
758     uint32_t Alignment = Sym.getAlignment();
759     uint64_t Size = Sym.getCommonSize();
760     StringRef Name;
761     if (auto NameOrErr = Sym.getName())
762       Name = *NameOrErr;
763     else
764       return NameOrErr.takeError();
765     if (Alignment) {
766       // This symbol has an alignment requirement.
767       uint64_t AlignOffset =
768           offsetToAlignment((uint64_t)Addr, Align(Alignment));
769       Addr += AlignOffset;
770       Offset += AlignOffset;
771     }
772     auto JITSymFlags = getJITSymbolFlags(Sym);
773 
774     if (!JITSymFlags)
775       return JITSymFlags.takeError();
776 
777     LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
778                       << format("%p", Addr) << "\n");
779     if (!Name.empty()) // Skip absolute symbol relocations.
780       GlobalSymbolTable[Name] =
781           SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
782     Offset += Size;
783     Addr += Size;
784   }
785 
786   return Error::success();
787 }
788 
789 Expected<unsigned>
790 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
791                              const SectionRef &Section,
792                              bool IsCode) {
793   StringRef data;
794   uint64_t Alignment64 = Section.getAlignment();
795 
796   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
797   unsigned PaddingSize = 0;
798   unsigned StubBufSize = 0;
799   bool IsRequired = isRequiredForExecution(Section);
800   bool IsVirtual = Section.isVirtual();
801   bool IsZeroInit = isZeroInit(Section);
802   bool IsReadOnly = isReadOnlyData(Section);
803   uint64_t DataSize = Section.getSize();
804 
805   // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
806   // while being more "polite".  Other formats do not support 0-aligned sections
807   // anyway, so we should guarantee that the alignment is always at least 1.
808   Alignment = std::max(1u, Alignment);
809 
810   Expected<StringRef> NameOrErr = Section.getName();
811   if (!NameOrErr)
812     return NameOrErr.takeError();
813   StringRef Name = *NameOrErr;
814 
815   StubBufSize = computeSectionStubBufSize(Obj, Section);
816 
817   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
818   // with zeroes added at the end.  For MachO objects, this section has a
819   // slightly different name, so this won't have any effect for MachO objects.
820   if (Name == ".eh_frame")
821     PaddingSize = 4;
822 
823   uintptr_t Allocate;
824   unsigned SectionID = Sections.size();
825   uint8_t *Addr;
826   const char *pData = nullptr;
827 
828   // If this section contains any bits (i.e. isn't a virtual or bss section),
829   // grab a reference to them.
830   if (!IsVirtual && !IsZeroInit) {
831     // In either case, set the location of the unrelocated section in memory,
832     // since we still process relocations for it even if we're not applying them.
833     if (Expected<StringRef> E = Section.getContents())
834       data = *E;
835     else
836       return E.takeError();
837     pData = data.data();
838   }
839 
840   // If there are any stubs then the section alignment needs to be at least as
841   // high as stub alignment or padding calculations may by incorrect when the
842   // section is remapped.
843   if (StubBufSize != 0) {
844     Alignment = std::max(Alignment, getStubAlignment());
845     PaddingSize += getStubAlignment() - 1;
846   }
847 
848   // Some sections, such as debug info, don't need to be loaded for execution.
849   // Process those only if explicitly requested.
850   if (IsRequired || ProcessAllSections) {
851     Allocate = DataSize + PaddingSize + StubBufSize;
852     if (!Allocate)
853       Allocate = 1;
854     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
855                                                Name)
856                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
857                                                Name, IsReadOnly);
858     if (!Addr)
859       report_fatal_error("Unable to allocate section memory!");
860 
861     // Zero-initialize or copy the data from the image
862     if (IsZeroInit || IsVirtual)
863       memset(Addr, 0, DataSize);
864     else
865       memcpy(Addr, pData, DataSize);
866 
867     // Fill in any extra bytes we allocated for padding
868     if (PaddingSize != 0) {
869       memset(Addr + DataSize, 0, PaddingSize);
870       // Update the DataSize variable to include padding.
871       DataSize += PaddingSize;
872 
873       // Align DataSize to stub alignment if we have any stubs (PaddingSize will
874       // have been increased above to account for this).
875       if (StubBufSize > 0)
876         DataSize &= -(uint64_t)getStubAlignment();
877     }
878 
879     LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
880                       << Name << " obj addr: " << format("%p", pData)
881                       << " new addr: " << format("%p", Addr) << " DataSize: "
882                       << DataSize << " StubBufSize: " << StubBufSize
883                       << " Allocate: " << Allocate << "\n");
884   } else {
885     // Even if we didn't load the section, we need to record an entry for it
886     // to handle later processing (and by 'handle' I mean don't do anything
887     // with these sections).
888     Allocate = 0;
889     Addr = nullptr;
890     LLVM_DEBUG(
891         dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
892                << " obj addr: " << format("%p", data.data()) << " new addr: 0"
893                << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
894                << " Allocate: " << Allocate << "\n");
895   }
896 
897   Sections.push_back(
898       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
899 
900   // Debug info sections are linked as if their load address was zero
901   if (!IsRequired)
902     Sections.back().setLoadAddress(0);
903 
904   return SectionID;
905 }
906 
907 Expected<unsigned>
908 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
909                                    const SectionRef &Section,
910                                    bool IsCode,
911                                    ObjSectionToIDMap &LocalSections) {
912 
913   unsigned SectionID = 0;
914   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
915   if (i != LocalSections.end())
916     SectionID = i->second;
917   else {
918     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
919       SectionID = *SectionIDOrErr;
920     else
921       return SectionIDOrErr.takeError();
922     LocalSections[Section] = SectionID;
923   }
924   return SectionID;
925 }
926 
927 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
928                                               unsigned SectionID) {
929   Relocations[SectionID].push_back(RE);
930 }
931 
932 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
933                                              StringRef SymbolName) {
934   // Relocation by symbol.  If the symbol is found in the global symbol table,
935   // create an appropriate section relocation.  Otherwise, add it to
936   // ExternalSymbolRelocations.
937   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
938   if (Loc == GlobalSymbolTable.end()) {
939     ExternalSymbolRelocations[SymbolName].push_back(RE);
940   } else {
941     assert(!SymbolName.empty() &&
942            "Empty symbol should not be in GlobalSymbolTable");
943     // Copy the RE since we want to modify its addend.
944     RelocationEntry RECopy = RE;
945     const auto &SymInfo = Loc->second;
946     RECopy.Addend += SymInfo.getOffset();
947     Relocations[SymInfo.getSectionID()].push_back(RECopy);
948   }
949 }
950 
951 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
952                                              unsigned AbiVariant) {
953   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
954       Arch == Triple::aarch64_32) {
955     // This stub has to be able to access the full address space,
956     // since symbol lookup won't necessarily find a handy, in-range,
957     // PLT stub for functions which could be anywhere.
958     // Stub can use ip0 (== x16) to calculate address
959     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
960     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
961     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
962     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
963     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
964 
965     return Addr;
966   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
967     // TODO: There is only ARM far stub now. We should add the Thumb stub,
968     // and stubs for branches Thumb - ARM and ARM - Thumb.
969     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
970     return Addr + 4;
971   } else if (IsMipsO32ABI || IsMipsN32ABI) {
972     // 0:   3c190000        lui     t9,%hi(addr).
973     // 4:   27390000        addiu   t9,t9,%lo(addr).
974     // 8:   03200008        jr      t9.
975     // c:   00000000        nop.
976     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
977     const unsigned NopInstr = 0x0;
978     unsigned JrT9Instr = 0x03200008;
979     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
980         (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
981       JrT9Instr = 0x03200009;
982 
983     writeBytesUnaligned(LuiT9Instr, Addr, 4);
984     writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
985     writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
986     writeBytesUnaligned(NopInstr, Addr + 12, 4);
987     return Addr;
988   } else if (IsMipsN64ABI) {
989     // 0:   3c190000        lui     t9,%highest(addr).
990     // 4:   67390000        daddiu  t9,t9,%higher(addr).
991     // 8:   0019CC38        dsll    t9,t9,16.
992     // c:   67390000        daddiu  t9,t9,%hi(addr).
993     // 10:  0019CC38        dsll    t9,t9,16.
994     // 14:  67390000        daddiu  t9,t9,%lo(addr).
995     // 18:  03200008        jr      t9.
996     // 1c:  00000000        nop.
997     const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
998                    DsllT9Instr = 0x19CC38;
999     const unsigned NopInstr = 0x0;
1000     unsigned JrT9Instr = 0x03200008;
1001     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1002       JrT9Instr = 0x03200009;
1003 
1004     writeBytesUnaligned(LuiT9Instr, Addr, 4);
1005     writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
1006     writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
1007     writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
1008     writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
1009     writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
1010     writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
1011     writeBytesUnaligned(NopInstr, Addr + 28, 4);
1012     return Addr;
1013   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1014     // Depending on which version of the ELF ABI is in use, we need to
1015     // generate one of two variants of the stub.  They both start with
1016     // the same sequence to load the target address into r12.
1017     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
1018     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
1019     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
1020     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
1021     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
1022     if (AbiVariant == 2) {
1023       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1024       // The address is already in r12 as required by the ABI.  Branch to it.
1025       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
1026       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1027       writeInt32BE(Addr+28, 0x4E800420); // bctr
1028     } else {
1029       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1030       // Load the function address on r11 and sets it to control register. Also
1031       // loads the function TOC in r2 and environment pointer to r11.
1032       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
1033       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
1034       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
1035       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1036       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
1037       writeInt32BE(Addr+40, 0x4E800420); // bctr
1038     }
1039     return Addr;
1040   } else if (Arch == Triple::systemz) {
1041     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
1042     writeInt16BE(Addr+2,  0x0000);
1043     writeInt16BE(Addr+4,  0x0004);
1044     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
1045     // 8-byte address stored at Addr + 8
1046     return Addr;
1047   } else if (Arch == Triple::x86_64) {
1048     *Addr      = 0xFF; // jmp
1049     *(Addr+1)  = 0x25; // rip
1050     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1051   } else if (Arch == Triple::x86) {
1052     *Addr      = 0xE9; // 32-bit pc-relative jump.
1053   }
1054   return Addr;
1055 }
1056 
1057 // Assign an address to a symbol name and resolve all the relocations
1058 // associated with it.
1059 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1060                                              uint64_t Addr) {
1061   // The address to use for relocation resolution is not
1062   // the address of the local section buffer. We must be doing
1063   // a remote execution environment of some sort. Relocations can't
1064   // be applied until all the sections have been moved.  The client must
1065   // trigger this with a call to MCJIT::finalize() or
1066   // RuntimeDyld::resolveRelocations().
1067   //
1068   // Addr is a uint64_t because we can't assume the pointer width
1069   // of the target is the same as that of the host. Just use a generic
1070   // "big enough" type.
1071   LLVM_DEBUG(
1072       dbgs() << "Reassigning address for section " << SectionID << " ("
1073              << Sections[SectionID].getName() << "): "
1074              << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1075              << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1076   Sections[SectionID].setLoadAddress(Addr);
1077 }
1078 
1079 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1080                                             uint64_t Value) {
1081   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1082     const RelocationEntry &RE = Relocs[i];
1083     // Ignore relocations for sections that were not loaded
1084     if (RE.SectionID != AbsoluteSymbolSection &&
1085         Sections[RE.SectionID].getAddress() == nullptr)
1086       continue;
1087     resolveRelocation(RE, Value);
1088   }
1089 }
1090 
1091 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1092     const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1093   for (auto &RelocKV : ExternalSymbolRelocations) {
1094     StringRef Name = RelocKV.first();
1095     RelocationList &Relocs = RelocKV.second;
1096     if (Name.size() == 0) {
1097       // This is an absolute symbol, use an address of zero.
1098       LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1099                         << "\n");
1100       resolveRelocationList(Relocs, 0);
1101     } else {
1102       uint64_t Addr = 0;
1103       JITSymbolFlags Flags;
1104       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1105       if (Loc == GlobalSymbolTable.end()) {
1106         auto RRI = ExternalSymbolMap.find(Name);
1107         assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1108         Addr = RRI->second.getAddress();
1109         Flags = RRI->second.getFlags();
1110       } else {
1111         // We found the symbol in our global table.  It was probably in a
1112         // Module that we loaded previously.
1113         const auto &SymInfo = Loc->second;
1114         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1115                SymInfo.getOffset();
1116         Flags = SymInfo.getFlags();
1117       }
1118 
1119       // FIXME: Implement error handling that doesn't kill the host program!
1120       if (!Addr && !Resolver.allowsZeroSymbols())
1121         report_fatal_error("Program used external function '" + Name +
1122                            "' which could not be resolved!");
1123 
1124       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1125       // manually and we shouldn't resolve its relocations.
1126       if (Addr != UINT64_MAX) {
1127 
1128         // Tweak the address based on the symbol flags if necessary.
1129         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1130         // if the target symbol is Thumb.
1131         Addr = modifyAddressBasedOnFlags(Addr, Flags);
1132 
1133         LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1134                           << format("0x%lx", Addr) << "\n");
1135         resolveRelocationList(Relocs, Addr);
1136       }
1137     }
1138   }
1139   ExternalSymbolRelocations.clear();
1140 }
1141 
1142 Error RuntimeDyldImpl::resolveExternalSymbols() {
1143   StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1144 
1145   // Resolution can trigger emission of more symbols, so iterate until
1146   // we've resolved *everything*.
1147   {
1148     JITSymbolResolver::LookupSet ResolvedSymbols;
1149 
1150     while (true) {
1151       JITSymbolResolver::LookupSet NewSymbols;
1152 
1153       for (auto &RelocKV : ExternalSymbolRelocations) {
1154         StringRef Name = RelocKV.first();
1155         if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1156             !ResolvedSymbols.count(Name))
1157           NewSymbols.insert(Name);
1158       }
1159 
1160       if (NewSymbols.empty())
1161         break;
1162 
1163 #ifdef _MSC_VER
1164       using ExpectedLookupResult =
1165           MSVCPExpected<JITSymbolResolver::LookupResult>;
1166 #else
1167       using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1168 #endif
1169 
1170       auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1171       auto NewSymbolsF = NewSymbolsP->get_future();
1172       Resolver.lookup(NewSymbols,
1173                       [=](Expected<JITSymbolResolver::LookupResult> Result) {
1174                         NewSymbolsP->set_value(std::move(Result));
1175                       });
1176 
1177       auto NewResolverResults = NewSymbolsF.get();
1178 
1179       if (!NewResolverResults)
1180         return NewResolverResults.takeError();
1181 
1182       assert(NewResolverResults->size() == NewSymbols.size() &&
1183              "Should have errored on unresolved symbols");
1184 
1185       for (auto &RRKV : *NewResolverResults) {
1186         assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1187         ExternalSymbolMap.insert(RRKV);
1188         ResolvedSymbols.insert(RRKV.first);
1189       }
1190     }
1191   }
1192 
1193   applyExternalSymbolRelocations(ExternalSymbolMap);
1194 
1195   return Error::success();
1196 }
1197 
1198 void RuntimeDyldImpl::finalizeAsync(
1199     std::unique_ptr<RuntimeDyldImpl> This,
1200     unique_function<void(object::OwningBinary<object::ObjectFile>,
1201                          std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1202         OnEmitted,
1203     object::OwningBinary<object::ObjectFile> O,
1204     std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) {
1205 
1206   auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1207   auto PostResolveContinuation =
1208       [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O),
1209        Info = std::move(Info)](
1210           Expected<JITSymbolResolver::LookupResult> Result) mutable {
1211         if (!Result) {
1212           OnEmitted(std::move(O), std::move(Info), Result.takeError());
1213           return;
1214         }
1215 
1216         /// Copy the result into a StringMap, where the keys are held by value.
1217         StringMap<JITEvaluatedSymbol> Resolved;
1218         for (auto &KV : *Result)
1219           Resolved[KV.first] = KV.second;
1220 
1221         SharedThis->applyExternalSymbolRelocations(Resolved);
1222         SharedThis->resolveLocalRelocations();
1223         SharedThis->registerEHFrames();
1224         std::string ErrMsg;
1225         if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1226           OnEmitted(std::move(O), std::move(Info),
1227                     make_error<StringError>(std::move(ErrMsg),
1228                                             inconvertibleErrorCode()));
1229         else
1230           OnEmitted(std::move(O), std::move(Info), Error::success());
1231       };
1232 
1233   JITSymbolResolver::LookupSet Symbols;
1234 
1235   for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1236     StringRef Name = RelocKV.first();
1237     if (Name.empty()) // Skip absolute symbol relocations.
1238       continue;
1239     assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1240            "Name already processed. RuntimeDyld instances can not be re-used "
1241            "when finalizing with finalizeAsync.");
1242     Symbols.insert(Name);
1243   }
1244 
1245   if (!Symbols.empty()) {
1246     SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1247   } else
1248     PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1249 }
1250 
1251 //===----------------------------------------------------------------------===//
1252 // RuntimeDyld class implementation
1253 
1254 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1255                                           const object::SectionRef &Sec) const {
1256 
1257   auto I = ObjSecToIDMap.find(Sec);
1258   if (I != ObjSecToIDMap.end())
1259     return RTDyld.Sections[I->second].getLoadAddress();
1260 
1261   return 0;
1262 }
1263 
1264 void RuntimeDyld::MemoryManager::anchor() {}
1265 void JITSymbolResolver::anchor() {}
1266 void LegacyJITSymbolResolver::anchor() {}
1267 
1268 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1269                          JITSymbolResolver &Resolver)
1270     : MemMgr(MemMgr), Resolver(Resolver) {
1271   // FIXME: There's a potential issue lurking here if a single instance of
1272   // RuntimeDyld is used to load multiple objects.  The current implementation
1273   // associates a single memory manager with a RuntimeDyld instance.  Even
1274   // though the public class spawns a new 'impl' instance for each load,
1275   // they share a single memory manager.  This can become a problem when page
1276   // permissions are applied.
1277   Dyld = nullptr;
1278   ProcessAllSections = false;
1279 }
1280 
1281 RuntimeDyld::~RuntimeDyld() {}
1282 
1283 static std::unique_ptr<RuntimeDyldCOFF>
1284 createRuntimeDyldCOFF(
1285                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1286                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1287                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1288   std::unique_ptr<RuntimeDyldCOFF> Dyld =
1289     RuntimeDyldCOFF::create(Arch, MM, Resolver);
1290   Dyld->setProcessAllSections(ProcessAllSections);
1291   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1292   return Dyld;
1293 }
1294 
1295 static std::unique_ptr<RuntimeDyldELF>
1296 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1297                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1298                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1299   std::unique_ptr<RuntimeDyldELF> Dyld =
1300       RuntimeDyldELF::create(Arch, MM, Resolver);
1301   Dyld->setProcessAllSections(ProcessAllSections);
1302   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1303   return Dyld;
1304 }
1305 
1306 static std::unique_ptr<RuntimeDyldMachO>
1307 createRuntimeDyldMachO(
1308                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1309                      JITSymbolResolver &Resolver,
1310                      bool ProcessAllSections,
1311                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1312   std::unique_ptr<RuntimeDyldMachO> Dyld =
1313     RuntimeDyldMachO::create(Arch, MM, Resolver);
1314   Dyld->setProcessAllSections(ProcessAllSections);
1315   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1316   return Dyld;
1317 }
1318 
1319 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1320 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1321   if (!Dyld) {
1322     if (Obj.isELF())
1323       Dyld =
1324           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1325                                MemMgr, Resolver, ProcessAllSections,
1326                                std::move(NotifyStubEmitted));
1327     else if (Obj.isMachO())
1328       Dyld = createRuntimeDyldMachO(
1329                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1330                ProcessAllSections, std::move(NotifyStubEmitted));
1331     else if (Obj.isCOFF())
1332       Dyld = createRuntimeDyldCOFF(
1333                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1334                ProcessAllSections, std::move(NotifyStubEmitted));
1335     else
1336       report_fatal_error("Incompatible object format!");
1337   }
1338 
1339   if (!Dyld->isCompatibleFile(Obj))
1340     report_fatal_error("Incompatible object format!");
1341 
1342   auto LoadedObjInfo = Dyld->loadObject(Obj);
1343   MemMgr.notifyObjectLoaded(*this, Obj);
1344   return LoadedObjInfo;
1345 }
1346 
1347 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1348   if (!Dyld)
1349     return nullptr;
1350   return Dyld->getSymbolLocalAddress(Name);
1351 }
1352 
1353 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1354   assert(Dyld && "No RuntimeDyld instance attached");
1355   return Dyld->getSymbolSectionID(Name);
1356 }
1357 
1358 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1359   if (!Dyld)
1360     return nullptr;
1361   return Dyld->getSymbol(Name);
1362 }
1363 
1364 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1365   if (!Dyld)
1366     return std::map<StringRef, JITEvaluatedSymbol>();
1367   return Dyld->getSymbolTable();
1368 }
1369 
1370 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1371 
1372 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1373   Dyld->reassignSectionAddress(SectionID, Addr);
1374 }
1375 
1376 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1377                                     uint64_t TargetAddress) {
1378   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1379 }
1380 
1381 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1382 
1383 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1384 
1385 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1386   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1387   MemMgr.FinalizationLocked = true;
1388   resolveRelocations();
1389   registerEHFrames();
1390   if (!MemoryFinalizationLocked) {
1391     MemMgr.finalizeMemory();
1392     MemMgr.FinalizationLocked = false;
1393   }
1394 }
1395 
1396 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1397   assert(Dyld && "No Dyld instance attached");
1398   return Dyld->getSectionContent(SectionID);
1399 }
1400 
1401 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1402   assert(Dyld && "No Dyld instance attached");
1403   return Dyld->getSectionLoadAddress(SectionID);
1404 }
1405 
1406 void RuntimeDyld::registerEHFrames() {
1407   if (Dyld)
1408     Dyld->registerEHFrames();
1409 }
1410 
1411 void RuntimeDyld::deregisterEHFrames() {
1412   if (Dyld)
1413     Dyld->deregisterEHFrames();
1414 }
1415 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1416 // so that we can re-use RuntimeDyld's implementation without twisting the
1417 // interface any further for ORC's purposes.
1418 void jitLinkForORC(
1419     object::OwningBinary<object::ObjectFile> O,
1420     RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
1421     bool ProcessAllSections,
1422     unique_function<Error(const object::ObjectFile &Obj,
1423                           RuntimeDyld::LoadedObjectInfo &LoadedObj,
1424                           std::map<StringRef, JITEvaluatedSymbol>)>
1425         OnLoaded,
1426     unique_function<void(object::OwningBinary<object::ObjectFile>,
1427                          std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1428         OnEmitted) {
1429 
1430   RuntimeDyld RTDyld(MemMgr, Resolver);
1431   RTDyld.setProcessAllSections(ProcessAllSections);
1432 
1433   auto Info = RTDyld.loadObject(*O.getBinary());
1434 
1435   if (RTDyld.hasError()) {
1436     OnEmitted(std::move(O), std::move(Info),
1437               make_error<StringError>(RTDyld.getErrorString(),
1438                                       inconvertibleErrorCode()));
1439     return;
1440   }
1441 
1442   if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable()))
1443     OnEmitted(std::move(O), std::move(Info), std::move(Err));
1444 
1445   RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1446                                  std::move(O), std::move(Info));
1447 }
1448 
1449 } // end namespace llvm
1450