1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the MC-JIT runtime dynamic linker. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ExecutionEngine/RuntimeDyld.h" 14 #include "RuntimeDyldCOFF.h" 15 #include "RuntimeDyldELF.h" 16 #include "RuntimeDyldImpl.h" 17 #include "RuntimeDyldMachO.h" 18 #include "llvm/Object/COFF.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/Support/Alignment.h" 21 #include "llvm/Support/MSVCErrorWorkarounds.h" 22 #include "llvm/Support/ManagedStatic.h" 23 #include "llvm/Support/MathExtras.h" 24 #include <mutex> 25 26 #include <future> 27 28 using namespace llvm; 29 using namespace llvm::object; 30 31 #define DEBUG_TYPE "dyld" 32 33 namespace { 34 35 enum RuntimeDyldErrorCode { 36 GenericRTDyldError = 1 37 }; 38 39 // FIXME: This class is only here to support the transition to llvm::Error. It 40 // will be removed once this transition is complete. Clients should prefer to 41 // deal with the Error value directly, rather than converting to error_code. 42 class RuntimeDyldErrorCategory : public std::error_category { 43 public: 44 const char *name() const noexcept override { return "runtimedyld"; } 45 46 std::string message(int Condition) const override { 47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 48 case GenericRTDyldError: return "Generic RuntimeDyld error"; 49 } 50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 51 } 52 }; 53 54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 55 56 } 57 58 char RuntimeDyldError::ID = 0; 59 60 void RuntimeDyldError::log(raw_ostream &OS) const { 61 OS << ErrMsg << "\n"; 62 } 63 64 std::error_code RuntimeDyldError::convertToErrorCode() const { 65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 66 } 67 68 // Empty out-of-line virtual destructor as the key function. 69 RuntimeDyldImpl::~RuntimeDyldImpl() {} 70 71 // Pin LoadedObjectInfo's vtables to this file. 72 void RuntimeDyld::LoadedObjectInfo::anchor() {} 73 74 namespace llvm { 75 76 void RuntimeDyldImpl::registerEHFrames() {} 77 78 void RuntimeDyldImpl::deregisterEHFrames() { 79 MemMgr.deregisterEHFrames(); 80 } 81 82 #ifndef NDEBUG 83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 84 dbgs() << "----- Contents of section " << S.getName() << " " << State 85 << " -----"; 86 87 if (S.getAddress() == nullptr) { 88 dbgs() << "\n <section not emitted>\n"; 89 return; 90 } 91 92 const unsigned ColsPerRow = 16; 93 94 uint8_t *DataAddr = S.getAddress(); 95 uint64_t LoadAddr = S.getLoadAddress(); 96 97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 98 unsigned BytesRemaining = S.getSize(); 99 100 if (StartPadding) { 101 dbgs() << "\n" << format("0x%016" PRIx64, 102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 103 while (StartPadding--) 104 dbgs() << " "; 105 } 106 107 while (BytesRemaining > 0) { 108 if ((LoadAddr & (ColsPerRow - 1)) == 0) 109 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 110 111 dbgs() << " " << format("%02x", *DataAddr); 112 113 ++DataAddr; 114 ++LoadAddr; 115 --BytesRemaining; 116 } 117 118 dbgs() << "\n"; 119 } 120 #endif 121 122 // Resolve the relocations for all symbols we currently know about. 123 void RuntimeDyldImpl::resolveRelocations() { 124 std::lock_guard<sys::Mutex> locked(lock); 125 126 // Print out the sections prior to relocation. 127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 128 dumpSectionMemory(Sections[i], "before relocations");); 129 130 // First, resolve relocations associated with external symbols. 131 if (auto Err = resolveExternalSymbols()) { 132 HasError = true; 133 ErrorStr = toString(std::move(Err)); 134 } 135 136 resolveLocalRelocations(); 137 138 // Print out sections after relocation. 139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) 140 dumpSectionMemory(Sections[i], "after relocations");); 141 } 142 143 void RuntimeDyldImpl::resolveLocalRelocations() { 144 // Iterate over all outstanding relocations 145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 146 // The Section here (Sections[i]) refers to the section in which the 147 // symbol for the relocation is located. The SectionID in the relocation 148 // entry provides the section to which the relocation will be applied. 149 unsigned Idx = it->first; 150 uint64_t Addr = getSectionLoadAddress(Idx); 151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 152 << format("%p", (uintptr_t)Addr) << "\n"); 153 resolveRelocationList(it->second, Addr); 154 } 155 Relocations.clear(); 156 } 157 158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 159 uint64_t TargetAddress) { 160 std::lock_guard<sys::Mutex> locked(lock); 161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 162 if (Sections[i].getAddress() == LocalAddress) { 163 reassignSectionAddress(i, TargetAddress); 164 return; 165 } 166 } 167 llvm_unreachable("Attempting to remap address of unknown section!"); 168 } 169 170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 171 uint64_t &Result) { 172 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 173 if (!AddressOrErr) 174 return AddressOrErr.takeError(); 175 Result = *AddressOrErr - Sec.getAddress(); 176 return Error::success(); 177 } 178 179 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 181 std::lock_guard<sys::Mutex> locked(lock); 182 183 // Save information about our target 184 Arch = (Triple::ArchType)Obj.getArch(); 185 IsTargetLittleEndian = Obj.isLittleEndian(); 186 setMipsABI(Obj); 187 188 // Compute the memory size required to load all sections to be loaded 189 // and pass this information to the memory manager 190 if (MemMgr.needsToReserveAllocationSpace()) { 191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 193 if (auto Err = computeTotalAllocSize(Obj, 194 CodeSize, CodeAlign, 195 RODataSize, RODataAlign, 196 RWDataSize, RWDataAlign)) 197 return std::move(Err); 198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 199 RWDataSize, RWDataAlign); 200 } 201 202 // Used sections from the object file 203 ObjSectionToIDMap LocalSections; 204 205 // Common symbols requiring allocation, with their sizes and alignments 206 CommonSymbolList CommonSymbolsToAllocate; 207 208 uint64_t CommonSize = 0; 209 uint32_t CommonAlign = 0; 210 211 // First, collect all weak and common symbols. We need to know if stronger 212 // definitions occur elsewhere. 213 JITSymbolResolver::LookupSet ResponsibilitySet; 214 { 215 JITSymbolResolver::LookupSet Symbols; 216 for (auto &Sym : Obj.symbols()) { 217 Expected<uint32_t> FlagsOrErr = Sym.getFlags(); 218 if (!FlagsOrErr) 219 // TODO: Test this error. 220 return FlagsOrErr.takeError(); 221 if ((*FlagsOrErr & SymbolRef::SF_Common) || 222 (*FlagsOrErr & SymbolRef::SF_Weak)) { 223 // Get symbol name. 224 if (auto NameOrErr = Sym.getName()) 225 Symbols.insert(*NameOrErr); 226 else 227 return NameOrErr.takeError(); 228 } 229 } 230 231 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) 232 ResponsibilitySet = std::move(*ResultOrErr); 233 else 234 return ResultOrErr.takeError(); 235 } 236 237 // Parse symbols 238 LLVM_DEBUG(dbgs() << "Parse symbols:\n"); 239 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 240 ++I) { 241 Expected<uint32_t> FlagsOrErr = I->getFlags(); 242 if (!FlagsOrErr) 243 // TODO: Test this error. 244 return FlagsOrErr.takeError(); 245 246 // Skip undefined symbols. 247 if (*FlagsOrErr & SymbolRef::SF_Undefined) 248 continue; 249 250 // Get the symbol type. 251 object::SymbolRef::Type SymType; 252 if (auto SymTypeOrErr = I->getType()) 253 SymType = *SymTypeOrErr; 254 else 255 return SymTypeOrErr.takeError(); 256 257 // Get symbol name. 258 StringRef Name; 259 if (auto NameOrErr = I->getName()) 260 Name = *NameOrErr; 261 else 262 return NameOrErr.takeError(); 263 264 // Compute JIT symbol flags. 265 auto JITSymFlags = getJITSymbolFlags(*I); 266 if (!JITSymFlags) 267 return JITSymFlags.takeError(); 268 269 // If this is a weak definition, check to see if there's a strong one. 270 // If there is, skip this symbol (we won't be providing it: the strong 271 // definition will). If there's no strong definition, make this definition 272 // strong. 273 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { 274 // First check whether there's already a definition in this instance. 275 if (GlobalSymbolTable.count(Name)) 276 continue; 277 278 // If we're not responsible for this symbol, skip it. 279 if (!ResponsibilitySet.count(Name)) 280 continue; 281 282 // Otherwise update the flags on the symbol to make this definition 283 // strong. 284 if (JITSymFlags->isWeak()) 285 *JITSymFlags &= ~JITSymbolFlags::Weak; 286 if (JITSymFlags->isCommon()) { 287 *JITSymFlags &= ~JITSymbolFlags::Common; 288 uint32_t Align = I->getAlignment(); 289 uint64_t Size = I->getCommonSize(); 290 if (!CommonAlign) 291 CommonAlign = Align; 292 CommonSize = alignTo(CommonSize, Align) + Size; 293 CommonSymbolsToAllocate.push_back(*I); 294 } 295 } 296 297 if (*FlagsOrErr & SymbolRef::SF_Absolute && 298 SymType != object::SymbolRef::ST_File) { 299 uint64_t Addr = 0; 300 if (auto AddrOrErr = I->getAddress()) 301 Addr = *AddrOrErr; 302 else 303 return AddrOrErr.takeError(); 304 305 unsigned SectionID = AbsoluteSymbolSection; 306 307 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 308 << " SID: " << SectionID 309 << " Offset: " << format("%p", (uintptr_t)Addr) 310 << " flags: " << *FlagsOrErr << "\n"); 311 if (!Name.empty()) // Skip absolute symbol relocations. 312 GlobalSymbolTable[Name] = 313 SymbolTableEntry(SectionID, Addr, *JITSymFlags); 314 } else if (SymType == object::SymbolRef::ST_Function || 315 SymType == object::SymbolRef::ST_Data || 316 SymType == object::SymbolRef::ST_Unknown || 317 SymType == object::SymbolRef::ST_Other) { 318 319 section_iterator SI = Obj.section_end(); 320 if (auto SIOrErr = I->getSection()) 321 SI = *SIOrErr; 322 else 323 return SIOrErr.takeError(); 324 325 if (SI == Obj.section_end()) 326 continue; 327 328 // Get symbol offset. 329 uint64_t SectOffset; 330 if (auto Err = getOffset(*I, *SI, SectOffset)) 331 return std::move(Err); 332 333 bool IsCode = SI->isText(); 334 unsigned SectionID; 335 if (auto SectionIDOrErr = 336 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 337 SectionID = *SectionIDOrErr; 338 else 339 return SectionIDOrErr.takeError(); 340 341 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 342 << " SID: " << SectionID 343 << " Offset: " << format("%p", (uintptr_t)SectOffset) 344 << " flags: " << *FlagsOrErr << "\n"); 345 if (!Name.empty()) // Skip absolute symbol relocations 346 GlobalSymbolTable[Name] = 347 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); 348 } 349 } 350 351 // Allocate common symbols 352 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, 353 CommonAlign)) 354 return std::move(Err); 355 356 // Parse and process relocations 357 LLVM_DEBUG(dbgs() << "Parse relocations:\n"); 358 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 359 SI != SE; ++SI) { 360 StubMap Stubs; 361 362 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 363 if (!RelSecOrErr) 364 return RelSecOrErr.takeError(); 365 366 section_iterator RelocatedSection = *RelSecOrErr; 367 if (RelocatedSection == SE) 368 continue; 369 370 relocation_iterator I = SI->relocation_begin(); 371 relocation_iterator E = SI->relocation_end(); 372 373 if (I == E && !ProcessAllSections) 374 continue; 375 376 bool IsCode = RelocatedSection->isText(); 377 unsigned SectionID = 0; 378 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 379 LocalSections)) 380 SectionID = *SectionIDOrErr; 381 else 382 return SectionIDOrErr.takeError(); 383 384 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 385 386 for (; I != E;) 387 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 388 I = *IOrErr; 389 else 390 return IOrErr.takeError(); 391 392 // If there is a NotifyStubEmitted callback set, call it to register any 393 // stubs created for this section. 394 if (NotifyStubEmitted) { 395 StringRef FileName = Obj.getFileName(); 396 StringRef SectionName = Sections[SectionID].getName(); 397 for (auto &KV : Stubs) { 398 399 auto &VR = KV.first; 400 uint64_t StubAddr = KV.second; 401 402 // If this is a named stub, just call NotifyStubEmitted. 403 if (VR.SymbolName) { 404 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, 405 StubAddr); 406 continue; 407 } 408 409 // Otherwise we will have to try a reverse lookup on the globla symbol table. 410 for (auto &GSTMapEntry : GlobalSymbolTable) { 411 StringRef SymbolName = GSTMapEntry.first(); 412 auto &GSTEntry = GSTMapEntry.second; 413 if (GSTEntry.getSectionID() == VR.SectionID && 414 GSTEntry.getOffset() == VR.Offset) { 415 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, 416 StubAddr); 417 break; 418 } 419 } 420 } 421 } 422 } 423 424 // Process remaining sections 425 if (ProcessAllSections) { 426 LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); 427 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 428 SI != SE; ++SI) { 429 430 /* Ignore already loaded sections */ 431 if (LocalSections.find(*SI) != LocalSections.end()) 432 continue; 433 434 bool IsCode = SI->isText(); 435 if (auto SectionIDOrErr = 436 findOrEmitSection(Obj, *SI, IsCode, LocalSections)) 437 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); 438 else 439 return SectionIDOrErr.takeError(); 440 } 441 } 442 443 // Give the subclasses a chance to tie-up any loose ends. 444 if (auto Err = finalizeLoad(Obj, LocalSections)) 445 return std::move(Err); 446 447 // for (auto E : LocalSections) 448 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 449 450 return LocalSections; 451 } 452 453 // A helper method for computeTotalAllocSize. 454 // Computes the memory size required to allocate sections with the given sizes, 455 // assuming that all sections are allocated with the given alignment 456 static uint64_t 457 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 458 uint64_t Alignment) { 459 uint64_t TotalSize = 0; 460 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 461 uint64_t AlignedSize = 462 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 463 TotalSize += AlignedSize; 464 } 465 return TotalSize; 466 } 467 468 static bool isRequiredForExecution(const SectionRef Section) { 469 const ObjectFile *Obj = Section.getObject(); 470 if (isa<object::ELFObjectFileBase>(Obj)) 471 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 472 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 473 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 474 // Avoid loading zero-sized COFF sections. 475 // In PE files, VirtualSize gives the section size, and SizeOfRawData 476 // may be zero for sections with content. In Obj files, SizeOfRawData 477 // gives the section size, and VirtualSize is always zero. Hence 478 // the need to check for both cases below. 479 bool HasContent = 480 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 481 bool IsDiscardable = 482 CoffSection->Characteristics & 483 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 484 return HasContent && !IsDiscardable; 485 } 486 487 assert(isa<MachOObjectFile>(Obj)); 488 return true; 489 } 490 491 static bool isReadOnlyData(const SectionRef Section) { 492 const ObjectFile *Obj = Section.getObject(); 493 if (isa<object::ELFObjectFileBase>(Obj)) 494 return !(ELFSectionRef(Section).getFlags() & 495 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 496 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 497 return ((COFFObj->getCOFFSection(Section)->Characteristics & 498 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 499 | COFF::IMAGE_SCN_MEM_READ 500 | COFF::IMAGE_SCN_MEM_WRITE)) 501 == 502 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 503 | COFF::IMAGE_SCN_MEM_READ)); 504 505 assert(isa<MachOObjectFile>(Obj)); 506 return false; 507 } 508 509 static bool isZeroInit(const SectionRef Section) { 510 const ObjectFile *Obj = Section.getObject(); 511 if (isa<object::ELFObjectFileBase>(Obj)) 512 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 513 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 514 return COFFObj->getCOFFSection(Section)->Characteristics & 515 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 516 517 auto *MachO = cast<MachOObjectFile>(Obj); 518 unsigned SectionType = MachO->getSectionType(Section); 519 return SectionType == MachO::S_ZEROFILL || 520 SectionType == MachO::S_GB_ZEROFILL; 521 } 522 523 // Compute an upper bound of the memory size that is required to load all 524 // sections 525 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 526 uint64_t &CodeSize, 527 uint32_t &CodeAlign, 528 uint64_t &RODataSize, 529 uint32_t &RODataAlign, 530 uint64_t &RWDataSize, 531 uint32_t &RWDataAlign) { 532 // Compute the size of all sections required for execution 533 std::vector<uint64_t> CodeSectionSizes; 534 std::vector<uint64_t> ROSectionSizes; 535 std::vector<uint64_t> RWSectionSizes; 536 537 // Collect sizes of all sections to be loaded; 538 // also determine the max alignment of all sections 539 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 540 SI != SE; ++SI) { 541 const SectionRef &Section = *SI; 542 543 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; 544 545 // Consider only the sections that are required to be loaded for execution 546 if (IsRequired) { 547 uint64_t DataSize = Section.getSize(); 548 uint64_t Alignment64 = Section.getAlignment(); 549 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 550 bool IsCode = Section.isText(); 551 bool IsReadOnly = isReadOnlyData(Section); 552 553 Expected<StringRef> NameOrErr = Section.getName(); 554 if (!NameOrErr) 555 return NameOrErr.takeError(); 556 StringRef Name = *NameOrErr; 557 558 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 559 560 uint64_t PaddingSize = 0; 561 if (Name == ".eh_frame") 562 PaddingSize += 4; 563 if (StubBufSize != 0) 564 PaddingSize += getStubAlignment() - 1; 565 566 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; 567 568 // The .eh_frame section (at least on Linux) needs an extra four bytes 569 // padded 570 // with zeroes added at the end. For MachO objects, this section has a 571 // slightly different name, so this won't have any effect for MachO 572 // objects. 573 if (Name == ".eh_frame") 574 SectionSize += 4; 575 576 if (!SectionSize) 577 SectionSize = 1; 578 579 if (IsCode) { 580 CodeAlign = std::max(CodeAlign, Alignment); 581 CodeSectionSizes.push_back(SectionSize); 582 } else if (IsReadOnly) { 583 RODataAlign = std::max(RODataAlign, Alignment); 584 ROSectionSizes.push_back(SectionSize); 585 } else { 586 RWDataAlign = std::max(RWDataAlign, Alignment); 587 RWSectionSizes.push_back(SectionSize); 588 } 589 } 590 } 591 592 // Compute Global Offset Table size. If it is not zero we 593 // also update alignment, which is equal to a size of a 594 // single GOT entry. 595 if (unsigned GotSize = computeGOTSize(Obj)) { 596 RWSectionSizes.push_back(GotSize); 597 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); 598 } 599 600 // Compute the size of all common symbols 601 uint64_t CommonSize = 0; 602 uint32_t CommonAlign = 1; 603 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 604 ++I) { 605 Expected<uint32_t> FlagsOrErr = I->getFlags(); 606 if (!FlagsOrErr) 607 // TODO: Test this error. 608 return FlagsOrErr.takeError(); 609 if (*FlagsOrErr & SymbolRef::SF_Common) { 610 // Add the common symbols to a list. We'll allocate them all below. 611 uint64_t Size = I->getCommonSize(); 612 uint32_t Align = I->getAlignment(); 613 // If this is the first common symbol, use its alignment as the alignment 614 // for the common symbols section. 615 if (CommonSize == 0) 616 CommonAlign = Align; 617 CommonSize = alignTo(CommonSize, Align) + Size; 618 } 619 } 620 if (CommonSize != 0) { 621 RWSectionSizes.push_back(CommonSize); 622 RWDataAlign = std::max(RWDataAlign, CommonAlign); 623 } 624 625 // Compute the required allocation space for each different type of sections 626 // (code, read-only data, read-write data) assuming that all sections are 627 // allocated with the max alignment. Note that we cannot compute with the 628 // individual alignments of the sections, because then the required size 629 // depends on the order, in which the sections are allocated. 630 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 631 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 632 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 633 634 return Error::success(); 635 } 636 637 // compute GOT size 638 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { 639 size_t GotEntrySize = getGOTEntrySize(); 640 if (!GotEntrySize) 641 return 0; 642 643 size_t GotSize = 0; 644 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 645 SI != SE; ++SI) { 646 647 for (const RelocationRef &Reloc : SI->relocations()) 648 if (relocationNeedsGot(Reloc)) 649 GotSize += GotEntrySize; 650 } 651 652 return GotSize; 653 } 654 655 // compute stub buffer size for the given section 656 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 657 const SectionRef &Section) { 658 if (!MemMgr.allowStubAllocation()) { 659 return 0; 660 } 661 662 unsigned StubSize = getMaxStubSize(); 663 if (StubSize == 0) { 664 return 0; 665 } 666 // FIXME: this is an inefficient way to handle this. We should computed the 667 // necessary section allocation size in loadObject by walking all the sections 668 // once. 669 unsigned StubBufSize = 0; 670 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 671 SI != SE; ++SI) { 672 673 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); 674 if (!RelSecOrErr) 675 report_fatal_error(toString(RelSecOrErr.takeError())); 676 677 section_iterator RelSecI = *RelSecOrErr; 678 if (!(RelSecI == Section)) 679 continue; 680 681 for (const RelocationRef &Reloc : SI->relocations()) 682 if (relocationNeedsStub(Reloc)) 683 StubBufSize += StubSize; 684 } 685 686 // Get section data size and alignment 687 uint64_t DataSize = Section.getSize(); 688 uint64_t Alignment64 = Section.getAlignment(); 689 690 // Add stubbuf size alignment 691 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 692 unsigned StubAlignment = getStubAlignment(); 693 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 694 if (StubAlignment > EndAlignment) 695 StubBufSize += StubAlignment - EndAlignment; 696 return StubBufSize; 697 } 698 699 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 700 unsigned Size) const { 701 uint64_t Result = 0; 702 if (IsTargetLittleEndian) { 703 Src += Size - 1; 704 while (Size--) 705 Result = (Result << 8) | *Src--; 706 } else 707 while (Size--) 708 Result = (Result << 8) | *Src++; 709 710 return Result; 711 } 712 713 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 714 unsigned Size) const { 715 if (IsTargetLittleEndian) { 716 while (Size--) { 717 *Dst++ = Value & 0xFF; 718 Value >>= 8; 719 } 720 } else { 721 Dst += Size - 1; 722 while (Size--) { 723 *Dst-- = Value & 0xFF; 724 Value >>= 8; 725 } 726 } 727 } 728 729 Expected<JITSymbolFlags> 730 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { 731 return JITSymbolFlags::fromObjectSymbol(SR); 732 } 733 734 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 735 CommonSymbolList &SymbolsToAllocate, 736 uint64_t CommonSize, 737 uint32_t CommonAlign) { 738 if (SymbolsToAllocate.empty()) 739 return Error::success(); 740 741 // Allocate memory for the section 742 unsigned SectionID = Sections.size(); 743 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 744 "<common symbols>", false); 745 if (!Addr) 746 report_fatal_error("Unable to allocate memory for common symbols!"); 747 uint64_t Offset = 0; 748 Sections.push_back( 749 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 750 memset(Addr, 0, CommonSize); 751 752 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID 753 << " new addr: " << format("%p", Addr) 754 << " DataSize: " << CommonSize << "\n"); 755 756 // Assign the address of each symbol 757 for (auto &Sym : SymbolsToAllocate) { 758 uint32_t Alignment = Sym.getAlignment(); 759 uint64_t Size = Sym.getCommonSize(); 760 StringRef Name; 761 if (auto NameOrErr = Sym.getName()) 762 Name = *NameOrErr; 763 else 764 return NameOrErr.takeError(); 765 if (Alignment) { 766 // This symbol has an alignment requirement. 767 uint64_t AlignOffset = 768 offsetToAlignment((uint64_t)Addr, Align(Alignment)); 769 Addr += AlignOffset; 770 Offset += AlignOffset; 771 } 772 auto JITSymFlags = getJITSymbolFlags(Sym); 773 774 if (!JITSymFlags) 775 return JITSymFlags.takeError(); 776 777 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 778 << format("%p", Addr) << "\n"); 779 if (!Name.empty()) // Skip absolute symbol relocations. 780 GlobalSymbolTable[Name] = 781 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); 782 Offset += Size; 783 Addr += Size; 784 } 785 786 return Error::success(); 787 } 788 789 Expected<unsigned> 790 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 791 const SectionRef &Section, 792 bool IsCode) { 793 StringRef data; 794 uint64_t Alignment64 = Section.getAlignment(); 795 796 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 797 unsigned PaddingSize = 0; 798 unsigned StubBufSize = 0; 799 bool IsRequired = isRequiredForExecution(Section); 800 bool IsVirtual = Section.isVirtual(); 801 bool IsZeroInit = isZeroInit(Section); 802 bool IsReadOnly = isReadOnlyData(Section); 803 uint64_t DataSize = Section.getSize(); 804 805 // An alignment of 0 (at least with ELF) is identical to an alignment of 1, 806 // while being more "polite". Other formats do not support 0-aligned sections 807 // anyway, so we should guarantee that the alignment is always at least 1. 808 Alignment = std::max(1u, Alignment); 809 810 Expected<StringRef> NameOrErr = Section.getName(); 811 if (!NameOrErr) 812 return NameOrErr.takeError(); 813 StringRef Name = *NameOrErr; 814 815 StubBufSize = computeSectionStubBufSize(Obj, Section); 816 817 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 818 // with zeroes added at the end. For MachO objects, this section has a 819 // slightly different name, so this won't have any effect for MachO objects. 820 if (Name == ".eh_frame") 821 PaddingSize = 4; 822 823 uintptr_t Allocate; 824 unsigned SectionID = Sections.size(); 825 uint8_t *Addr; 826 const char *pData = nullptr; 827 828 // If this section contains any bits (i.e. isn't a virtual or bss section), 829 // grab a reference to them. 830 if (!IsVirtual && !IsZeroInit) { 831 // In either case, set the location of the unrelocated section in memory, 832 // since we still process relocations for it even if we're not applying them. 833 if (Expected<StringRef> E = Section.getContents()) 834 data = *E; 835 else 836 return E.takeError(); 837 pData = data.data(); 838 } 839 840 // If there are any stubs then the section alignment needs to be at least as 841 // high as stub alignment or padding calculations may by incorrect when the 842 // section is remapped. 843 if (StubBufSize != 0) { 844 Alignment = std::max(Alignment, getStubAlignment()); 845 PaddingSize += getStubAlignment() - 1; 846 } 847 848 // Some sections, such as debug info, don't need to be loaded for execution. 849 // Process those only if explicitly requested. 850 if (IsRequired || ProcessAllSections) { 851 Allocate = DataSize + PaddingSize + StubBufSize; 852 if (!Allocate) 853 Allocate = 1; 854 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 855 Name) 856 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 857 Name, IsReadOnly); 858 if (!Addr) 859 report_fatal_error("Unable to allocate section memory!"); 860 861 // Zero-initialize or copy the data from the image 862 if (IsZeroInit || IsVirtual) 863 memset(Addr, 0, DataSize); 864 else 865 memcpy(Addr, pData, DataSize); 866 867 // Fill in any extra bytes we allocated for padding 868 if (PaddingSize != 0) { 869 memset(Addr + DataSize, 0, PaddingSize); 870 // Update the DataSize variable to include padding. 871 DataSize += PaddingSize; 872 873 // Align DataSize to stub alignment if we have any stubs (PaddingSize will 874 // have been increased above to account for this). 875 if (StubBufSize > 0) 876 DataSize &= -(uint64_t)getStubAlignment(); 877 } 878 879 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " 880 << Name << " obj addr: " << format("%p", pData) 881 << " new addr: " << format("%p", Addr) << " DataSize: " 882 << DataSize << " StubBufSize: " << StubBufSize 883 << " Allocate: " << Allocate << "\n"); 884 } else { 885 // Even if we didn't load the section, we need to record an entry for it 886 // to handle later processing (and by 'handle' I mean don't do anything 887 // with these sections). 888 Allocate = 0; 889 Addr = nullptr; 890 LLVM_DEBUG( 891 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 892 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 893 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 894 << " Allocate: " << Allocate << "\n"); 895 } 896 897 Sections.push_back( 898 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 899 900 // Debug info sections are linked as if their load address was zero 901 if (!IsRequired) 902 Sections.back().setLoadAddress(0); 903 904 return SectionID; 905 } 906 907 Expected<unsigned> 908 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 909 const SectionRef &Section, 910 bool IsCode, 911 ObjSectionToIDMap &LocalSections) { 912 913 unsigned SectionID = 0; 914 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 915 if (i != LocalSections.end()) 916 SectionID = i->second; 917 else { 918 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 919 SectionID = *SectionIDOrErr; 920 else 921 return SectionIDOrErr.takeError(); 922 LocalSections[Section] = SectionID; 923 } 924 return SectionID; 925 } 926 927 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 928 unsigned SectionID) { 929 Relocations[SectionID].push_back(RE); 930 } 931 932 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 933 StringRef SymbolName) { 934 // Relocation by symbol. If the symbol is found in the global symbol table, 935 // create an appropriate section relocation. Otherwise, add it to 936 // ExternalSymbolRelocations. 937 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 938 if (Loc == GlobalSymbolTable.end()) { 939 ExternalSymbolRelocations[SymbolName].push_back(RE); 940 } else { 941 assert(!SymbolName.empty() && 942 "Empty symbol should not be in GlobalSymbolTable"); 943 // Copy the RE since we want to modify its addend. 944 RelocationEntry RECopy = RE; 945 const auto &SymInfo = Loc->second; 946 RECopy.Addend += SymInfo.getOffset(); 947 Relocations[SymInfo.getSectionID()].push_back(RECopy); 948 } 949 } 950 951 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 952 unsigned AbiVariant) { 953 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || 954 Arch == Triple::aarch64_32) { 955 // This stub has to be able to access the full address space, 956 // since symbol lookup won't necessarily find a handy, in-range, 957 // PLT stub for functions which could be anywhere. 958 // Stub can use ip0 (== x16) to calculate address 959 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 960 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 961 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 962 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 963 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 964 965 return Addr; 966 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 967 // TODO: There is only ARM far stub now. We should add the Thumb stub, 968 // and stubs for branches Thumb - ARM and ARM - Thumb. 969 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] 970 return Addr + 4; 971 } else if (IsMipsO32ABI || IsMipsN32ABI) { 972 // 0: 3c190000 lui t9,%hi(addr). 973 // 4: 27390000 addiu t9,t9,%lo(addr). 974 // 8: 03200008 jr t9. 975 // c: 00000000 nop. 976 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 977 const unsigned NopInstr = 0x0; 978 unsigned JrT9Instr = 0x03200008; 979 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || 980 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 981 JrT9Instr = 0x03200009; 982 983 writeBytesUnaligned(LuiT9Instr, Addr, 4); 984 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); 985 writeBytesUnaligned(JrT9Instr, Addr + 8, 4); 986 writeBytesUnaligned(NopInstr, Addr + 12, 4); 987 return Addr; 988 } else if (IsMipsN64ABI) { 989 // 0: 3c190000 lui t9,%highest(addr). 990 // 4: 67390000 daddiu t9,t9,%higher(addr). 991 // 8: 0019CC38 dsll t9,t9,16. 992 // c: 67390000 daddiu t9,t9,%hi(addr). 993 // 10: 0019CC38 dsll t9,t9,16. 994 // 14: 67390000 daddiu t9,t9,%lo(addr). 995 // 18: 03200008 jr t9. 996 // 1c: 00000000 nop. 997 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, 998 DsllT9Instr = 0x19CC38; 999 const unsigned NopInstr = 0x0; 1000 unsigned JrT9Instr = 0x03200008; 1001 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) 1002 JrT9Instr = 0x03200009; 1003 1004 writeBytesUnaligned(LuiT9Instr, Addr, 4); 1005 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); 1006 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); 1007 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); 1008 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); 1009 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); 1010 writeBytesUnaligned(JrT9Instr, Addr + 24, 4); 1011 writeBytesUnaligned(NopInstr, Addr + 28, 4); 1012 return Addr; 1013 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1014 // Depending on which version of the ELF ABI is in use, we need to 1015 // generate one of two variants of the stub. They both start with 1016 // the same sequence to load the target address into r12. 1017 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 1018 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 1019 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 1020 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 1021 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 1022 if (AbiVariant == 2) { 1023 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 1024 // The address is already in r12 as required by the ABI. Branch to it. 1025 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 1026 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 1027 writeInt32BE(Addr+28, 0x4E800420); // bctr 1028 } else { 1029 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 1030 // Load the function address on r11 and sets it to control register. Also 1031 // loads the function TOC in r2 and environment pointer to r11. 1032 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 1033 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 1034 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 1035 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 1036 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 1037 writeInt32BE(Addr+40, 0x4E800420); // bctr 1038 } 1039 return Addr; 1040 } else if (Arch == Triple::systemz) { 1041 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 1042 writeInt16BE(Addr+2, 0x0000); 1043 writeInt16BE(Addr+4, 0x0004); 1044 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 1045 // 8-byte address stored at Addr + 8 1046 return Addr; 1047 } else if (Arch == Triple::x86_64) { 1048 *Addr = 0xFF; // jmp 1049 *(Addr+1) = 0x25; // rip 1050 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 1051 } else if (Arch == Triple::x86) { 1052 *Addr = 0xE9; // 32-bit pc-relative jump. 1053 } 1054 return Addr; 1055 } 1056 1057 // Assign an address to a symbol name and resolve all the relocations 1058 // associated with it. 1059 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 1060 uint64_t Addr) { 1061 // The address to use for relocation resolution is not 1062 // the address of the local section buffer. We must be doing 1063 // a remote execution environment of some sort. Relocations can't 1064 // be applied until all the sections have been moved. The client must 1065 // trigger this with a call to MCJIT::finalize() or 1066 // RuntimeDyld::resolveRelocations(). 1067 // 1068 // Addr is a uint64_t because we can't assume the pointer width 1069 // of the target is the same as that of the host. Just use a generic 1070 // "big enough" type. 1071 LLVM_DEBUG( 1072 dbgs() << "Reassigning address for section " << SectionID << " (" 1073 << Sections[SectionID].getName() << "): " 1074 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 1075 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 1076 Sections[SectionID].setLoadAddress(Addr); 1077 } 1078 1079 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 1080 uint64_t Value) { 1081 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1082 const RelocationEntry &RE = Relocs[i]; 1083 // Ignore relocations for sections that were not loaded 1084 if (RE.SectionID != AbsoluteSymbolSection && 1085 Sections[RE.SectionID].getAddress() == nullptr) 1086 continue; 1087 resolveRelocation(RE, Value); 1088 } 1089 } 1090 1091 void RuntimeDyldImpl::applyExternalSymbolRelocations( 1092 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { 1093 for (auto &RelocKV : ExternalSymbolRelocations) { 1094 StringRef Name = RelocKV.first(); 1095 RelocationList &Relocs = RelocKV.second; 1096 if (Name.size() == 0) { 1097 // This is an absolute symbol, use an address of zero. 1098 LLVM_DEBUG(dbgs() << "Resolving absolute relocations." 1099 << "\n"); 1100 resolveRelocationList(Relocs, 0); 1101 } else { 1102 uint64_t Addr = 0; 1103 JITSymbolFlags Flags; 1104 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 1105 if (Loc == GlobalSymbolTable.end()) { 1106 auto RRI = ExternalSymbolMap.find(Name); 1107 assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); 1108 Addr = RRI->second.getAddress(); 1109 Flags = RRI->second.getFlags(); 1110 } else { 1111 // We found the symbol in our global table. It was probably in a 1112 // Module that we loaded previously. 1113 const auto &SymInfo = Loc->second; 1114 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 1115 SymInfo.getOffset(); 1116 Flags = SymInfo.getFlags(); 1117 } 1118 1119 // FIXME: Implement error handling that doesn't kill the host program! 1120 if (!Addr && !Resolver.allowsZeroSymbols()) 1121 report_fatal_error("Program used external function '" + Name + 1122 "' which could not be resolved!"); 1123 1124 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 1125 // manually and we shouldn't resolve its relocations. 1126 if (Addr != UINT64_MAX) { 1127 1128 // Tweak the address based on the symbol flags if necessary. 1129 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit 1130 // if the target symbol is Thumb. 1131 Addr = modifyAddressBasedOnFlags(Addr, Flags); 1132 1133 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 1134 << format("0x%lx", Addr) << "\n"); 1135 resolveRelocationList(Relocs, Addr); 1136 } 1137 } 1138 } 1139 ExternalSymbolRelocations.clear(); 1140 } 1141 1142 Error RuntimeDyldImpl::resolveExternalSymbols() { 1143 StringMap<JITEvaluatedSymbol> ExternalSymbolMap; 1144 1145 // Resolution can trigger emission of more symbols, so iterate until 1146 // we've resolved *everything*. 1147 { 1148 JITSymbolResolver::LookupSet ResolvedSymbols; 1149 1150 while (true) { 1151 JITSymbolResolver::LookupSet NewSymbols; 1152 1153 for (auto &RelocKV : ExternalSymbolRelocations) { 1154 StringRef Name = RelocKV.first(); 1155 if (!Name.empty() && !GlobalSymbolTable.count(Name) && 1156 !ResolvedSymbols.count(Name)) 1157 NewSymbols.insert(Name); 1158 } 1159 1160 if (NewSymbols.empty()) 1161 break; 1162 1163 #ifdef _MSC_VER 1164 using ExpectedLookupResult = 1165 MSVCPExpected<JITSymbolResolver::LookupResult>; 1166 #else 1167 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; 1168 #endif 1169 1170 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); 1171 auto NewSymbolsF = NewSymbolsP->get_future(); 1172 Resolver.lookup(NewSymbols, 1173 [=](Expected<JITSymbolResolver::LookupResult> Result) { 1174 NewSymbolsP->set_value(std::move(Result)); 1175 }); 1176 1177 auto NewResolverResults = NewSymbolsF.get(); 1178 1179 if (!NewResolverResults) 1180 return NewResolverResults.takeError(); 1181 1182 assert(NewResolverResults->size() == NewSymbols.size() && 1183 "Should have errored on unresolved symbols"); 1184 1185 for (auto &RRKV : *NewResolverResults) { 1186 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); 1187 ExternalSymbolMap.insert(RRKV); 1188 ResolvedSymbols.insert(RRKV.first); 1189 } 1190 } 1191 } 1192 1193 applyExternalSymbolRelocations(ExternalSymbolMap); 1194 1195 return Error::success(); 1196 } 1197 1198 void RuntimeDyldImpl::finalizeAsync( 1199 std::unique_ptr<RuntimeDyldImpl> This, 1200 unique_function<void(object::OwningBinary<object::ObjectFile>, 1201 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> 1202 OnEmitted, 1203 object::OwningBinary<object::ObjectFile> O, 1204 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) { 1205 1206 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); 1207 auto PostResolveContinuation = 1208 [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O), 1209 Info = std::move(Info)]( 1210 Expected<JITSymbolResolver::LookupResult> Result) mutable { 1211 if (!Result) { 1212 OnEmitted(std::move(O), std::move(Info), Result.takeError()); 1213 return; 1214 } 1215 1216 /// Copy the result into a StringMap, where the keys are held by value. 1217 StringMap<JITEvaluatedSymbol> Resolved; 1218 for (auto &KV : *Result) 1219 Resolved[KV.first] = KV.second; 1220 1221 SharedThis->applyExternalSymbolRelocations(Resolved); 1222 SharedThis->resolveLocalRelocations(); 1223 SharedThis->registerEHFrames(); 1224 std::string ErrMsg; 1225 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) 1226 OnEmitted(std::move(O), std::move(Info), 1227 make_error<StringError>(std::move(ErrMsg), 1228 inconvertibleErrorCode())); 1229 else 1230 OnEmitted(std::move(O), std::move(Info), Error::success()); 1231 }; 1232 1233 JITSymbolResolver::LookupSet Symbols; 1234 1235 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { 1236 StringRef Name = RelocKV.first(); 1237 if (Name.empty()) // Skip absolute symbol relocations. 1238 continue; 1239 assert(!SharedThis->GlobalSymbolTable.count(Name) && 1240 "Name already processed. RuntimeDyld instances can not be re-used " 1241 "when finalizing with finalizeAsync."); 1242 Symbols.insert(Name); 1243 } 1244 1245 if (!Symbols.empty()) { 1246 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation)); 1247 } else 1248 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); 1249 } 1250 1251 //===----------------------------------------------------------------------===// 1252 // RuntimeDyld class implementation 1253 1254 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 1255 const object::SectionRef &Sec) const { 1256 1257 auto I = ObjSecToIDMap.find(Sec); 1258 if (I != ObjSecToIDMap.end()) 1259 return RTDyld.Sections[I->second].getLoadAddress(); 1260 1261 return 0; 1262 } 1263 1264 void RuntimeDyld::MemoryManager::anchor() {} 1265 void JITSymbolResolver::anchor() {} 1266 void LegacyJITSymbolResolver::anchor() {} 1267 1268 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 1269 JITSymbolResolver &Resolver) 1270 : MemMgr(MemMgr), Resolver(Resolver) { 1271 // FIXME: There's a potential issue lurking here if a single instance of 1272 // RuntimeDyld is used to load multiple objects. The current implementation 1273 // associates a single memory manager with a RuntimeDyld instance. Even 1274 // though the public class spawns a new 'impl' instance for each load, 1275 // they share a single memory manager. This can become a problem when page 1276 // permissions are applied. 1277 Dyld = nullptr; 1278 ProcessAllSections = false; 1279 } 1280 1281 RuntimeDyld::~RuntimeDyld() {} 1282 1283 static std::unique_ptr<RuntimeDyldCOFF> 1284 createRuntimeDyldCOFF( 1285 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1286 JITSymbolResolver &Resolver, bool ProcessAllSections, 1287 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1288 std::unique_ptr<RuntimeDyldCOFF> Dyld = 1289 RuntimeDyldCOFF::create(Arch, MM, Resolver); 1290 Dyld->setProcessAllSections(ProcessAllSections); 1291 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1292 return Dyld; 1293 } 1294 1295 static std::unique_ptr<RuntimeDyldELF> 1296 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1297 JITSymbolResolver &Resolver, bool ProcessAllSections, 1298 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1299 std::unique_ptr<RuntimeDyldELF> Dyld = 1300 RuntimeDyldELF::create(Arch, MM, Resolver); 1301 Dyld->setProcessAllSections(ProcessAllSections); 1302 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1303 return Dyld; 1304 } 1305 1306 static std::unique_ptr<RuntimeDyldMachO> 1307 createRuntimeDyldMachO( 1308 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1309 JITSymbolResolver &Resolver, 1310 bool ProcessAllSections, 1311 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { 1312 std::unique_ptr<RuntimeDyldMachO> Dyld = 1313 RuntimeDyldMachO::create(Arch, MM, Resolver); 1314 Dyld->setProcessAllSections(ProcessAllSections); 1315 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); 1316 return Dyld; 1317 } 1318 1319 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1320 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1321 if (!Dyld) { 1322 if (Obj.isELF()) 1323 Dyld = 1324 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), 1325 MemMgr, Resolver, ProcessAllSections, 1326 std::move(NotifyStubEmitted)); 1327 else if (Obj.isMachO()) 1328 Dyld = createRuntimeDyldMachO( 1329 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1330 ProcessAllSections, std::move(NotifyStubEmitted)); 1331 else if (Obj.isCOFF()) 1332 Dyld = createRuntimeDyldCOFF( 1333 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1334 ProcessAllSections, std::move(NotifyStubEmitted)); 1335 else 1336 report_fatal_error("Incompatible object format!"); 1337 } 1338 1339 if (!Dyld->isCompatibleFile(Obj)) 1340 report_fatal_error("Incompatible object format!"); 1341 1342 auto LoadedObjInfo = Dyld->loadObject(Obj); 1343 MemMgr.notifyObjectLoaded(*this, Obj); 1344 return LoadedObjInfo; 1345 } 1346 1347 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1348 if (!Dyld) 1349 return nullptr; 1350 return Dyld->getSymbolLocalAddress(Name); 1351 } 1352 1353 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { 1354 assert(Dyld && "No RuntimeDyld instance attached"); 1355 return Dyld->getSymbolSectionID(Name); 1356 } 1357 1358 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { 1359 if (!Dyld) 1360 return nullptr; 1361 return Dyld->getSymbol(Name); 1362 } 1363 1364 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { 1365 if (!Dyld) 1366 return std::map<StringRef, JITEvaluatedSymbol>(); 1367 return Dyld->getSymbolTable(); 1368 } 1369 1370 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1371 1372 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1373 Dyld->reassignSectionAddress(SectionID, Addr); 1374 } 1375 1376 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1377 uint64_t TargetAddress) { 1378 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1379 } 1380 1381 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1382 1383 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1384 1385 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1386 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1387 MemMgr.FinalizationLocked = true; 1388 resolveRelocations(); 1389 registerEHFrames(); 1390 if (!MemoryFinalizationLocked) { 1391 MemMgr.finalizeMemory(); 1392 MemMgr.FinalizationLocked = false; 1393 } 1394 } 1395 1396 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { 1397 assert(Dyld && "No Dyld instance attached"); 1398 return Dyld->getSectionContent(SectionID); 1399 } 1400 1401 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { 1402 assert(Dyld && "No Dyld instance attached"); 1403 return Dyld->getSectionLoadAddress(SectionID); 1404 } 1405 1406 void RuntimeDyld::registerEHFrames() { 1407 if (Dyld) 1408 Dyld->registerEHFrames(); 1409 } 1410 1411 void RuntimeDyld::deregisterEHFrames() { 1412 if (Dyld) 1413 Dyld->deregisterEHFrames(); 1414 } 1415 // FIXME: Kill this with fire once we have a new JIT linker: this is only here 1416 // so that we can re-use RuntimeDyld's implementation without twisting the 1417 // interface any further for ORC's purposes. 1418 void jitLinkForORC( 1419 object::OwningBinary<object::ObjectFile> O, 1420 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver, 1421 bool ProcessAllSections, 1422 unique_function<Error(const object::ObjectFile &Obj, 1423 RuntimeDyld::LoadedObjectInfo &LoadedObj, 1424 std::map<StringRef, JITEvaluatedSymbol>)> 1425 OnLoaded, 1426 unique_function<void(object::OwningBinary<object::ObjectFile>, 1427 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> 1428 OnEmitted) { 1429 1430 RuntimeDyld RTDyld(MemMgr, Resolver); 1431 RTDyld.setProcessAllSections(ProcessAllSections); 1432 1433 auto Info = RTDyld.loadObject(*O.getBinary()); 1434 1435 if (RTDyld.hasError()) { 1436 OnEmitted(std::move(O), std::move(Info), 1437 make_error<StringError>(RTDyld.getErrorString(), 1438 inconvertibleErrorCode())); 1439 return; 1440 } 1441 1442 if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable())) 1443 OnEmitted(std::move(O), std::move(Info), std::move(Err)); 1444 1445 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), 1446 std::move(O), std::move(Info)); 1447 } 1448 1449 } // end namespace llvm 1450