xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include <mutex>
25 
26 #include <future>
27 
28 using namespace llvm;
29 using namespace llvm::object;
30 
31 #define DEBUG_TYPE "dyld"
32 
33 namespace {
34 
35 enum RuntimeDyldErrorCode {
36   GenericRTDyldError = 1
37 };
38 
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory : public std::error_category {
43 public:
44   const char *name() const noexcept override { return "runtimedyld"; }
45 
46   std::string message(int Condition) const override {
47     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48       case GenericRTDyldError: return "Generic RuntimeDyld error";
49     }
50     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
51   }
52 };
53 
54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
55 
56 }
57 
58 char RuntimeDyldError::ID = 0;
59 
60 void RuntimeDyldError::log(raw_ostream &OS) const {
61   OS << ErrMsg << "\n";
62 }
63 
64 std::error_code RuntimeDyldError::convertToErrorCode() const {
65   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
66 }
67 
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
70 
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
73 
74 namespace llvm {
75 
76 void RuntimeDyldImpl::registerEHFrames() {}
77 
78 void RuntimeDyldImpl::deregisterEHFrames() {
79   MemMgr.deregisterEHFrames();
80 }
81 
82 #ifndef NDEBUG
83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84   dbgs() << "----- Contents of section " << S.getName() << " " << State
85          << " -----";
86 
87   if (S.getAddress() == nullptr) {
88     dbgs() << "\n          <section not emitted>\n";
89     return;
90   }
91 
92   const unsigned ColsPerRow = 16;
93 
94   uint8_t *DataAddr = S.getAddress();
95   uint64_t LoadAddr = S.getLoadAddress();
96 
97   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98   unsigned BytesRemaining = S.getSize();
99 
100   if (StartPadding) {
101     dbgs() << "\n" << format("0x%016" PRIx64,
102                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103     while (StartPadding--)
104       dbgs() << "   ";
105   }
106 
107   while (BytesRemaining > 0) {
108     if ((LoadAddr & (ColsPerRow - 1)) == 0)
109       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
110 
111     dbgs() << " " << format("%02x", *DataAddr);
112 
113     ++DataAddr;
114     ++LoadAddr;
115     --BytesRemaining;
116   }
117 
118   dbgs() << "\n";
119 }
120 #endif
121 
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124   std::lock_guard<sys::Mutex> locked(lock);
125 
126   // Print out the sections prior to relocation.
127   LLVM_DEBUG({
128     for (SectionEntry &S : Sections)
129       dumpSectionMemory(S, "before relocations");
130   });
131 
132   // First, resolve relocations associated with external symbols.
133   if (auto Err = resolveExternalSymbols()) {
134     HasError = true;
135     ErrorStr = toString(std::move(Err));
136   }
137 
138   resolveLocalRelocations();
139 
140   // Print out sections after relocation.
141   LLVM_DEBUG({
142     for (SectionEntry &S : Sections)
143       dumpSectionMemory(S, "after relocations");
144   });
145 }
146 
147 void RuntimeDyldImpl::resolveLocalRelocations() {
148   // Iterate over all outstanding relocations
149   for (const auto &Rel : Relocations) {
150     // The Section here (Sections[i]) refers to the section in which the
151     // symbol for the relocation is located.  The SectionID in the relocation
152     // entry provides the section to which the relocation will be applied.
153     unsigned Idx = Rel.first;
154     uint64_t Addr = getSectionLoadAddress(Idx);
155     LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
156                       << format("%p", (uintptr_t)Addr) << "\n");
157     resolveRelocationList(Rel.second, Addr);
158   }
159   Relocations.clear();
160 }
161 
162 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
163                                         uint64_t TargetAddress) {
164   std::lock_guard<sys::Mutex> locked(lock);
165   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
166     if (Sections[i].getAddress() == LocalAddress) {
167       reassignSectionAddress(i, TargetAddress);
168       return;
169     }
170   }
171   llvm_unreachable("Attempting to remap address of unknown section!");
172 }
173 
174 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
175                        uint64_t &Result) {
176   Expected<uint64_t> AddressOrErr = Sym.getAddress();
177   if (!AddressOrErr)
178     return AddressOrErr.takeError();
179   Result = *AddressOrErr - Sec.getAddress();
180   return Error::success();
181 }
182 
183 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
184 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
185   std::lock_guard<sys::Mutex> locked(lock);
186 
187   // Save information about our target
188   Arch = (Triple::ArchType)Obj.getArch();
189   IsTargetLittleEndian = Obj.isLittleEndian();
190   setMipsABI(Obj);
191 
192   // Compute the memory size required to load all sections to be loaded
193   // and pass this information to the memory manager
194   if (MemMgr.needsToReserveAllocationSpace()) {
195     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
196     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
197     if (auto Err = computeTotalAllocSize(Obj,
198                                          CodeSize, CodeAlign,
199                                          RODataSize, RODataAlign,
200                                          RWDataSize, RWDataAlign))
201       return std::move(Err);
202     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
203                                   RWDataSize, RWDataAlign);
204   }
205 
206   // Used sections from the object file
207   ObjSectionToIDMap LocalSections;
208 
209   // Common symbols requiring allocation, with their sizes and alignments
210   CommonSymbolList CommonSymbolsToAllocate;
211 
212   uint64_t CommonSize = 0;
213   uint32_t CommonAlign = 0;
214 
215   // First, collect all weak and common symbols. We need to know if stronger
216   // definitions occur elsewhere.
217   JITSymbolResolver::LookupSet ResponsibilitySet;
218   {
219     JITSymbolResolver::LookupSet Symbols;
220     for (auto &Sym : Obj.symbols()) {
221       Expected<uint32_t> FlagsOrErr = Sym.getFlags();
222       if (!FlagsOrErr)
223         // TODO: Test this error.
224         return FlagsOrErr.takeError();
225       if ((*FlagsOrErr & SymbolRef::SF_Common) ||
226           (*FlagsOrErr & SymbolRef::SF_Weak)) {
227         // Get symbol name.
228         if (auto NameOrErr = Sym.getName())
229           Symbols.insert(*NameOrErr);
230         else
231           return NameOrErr.takeError();
232       }
233     }
234 
235     if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
236       ResponsibilitySet = std::move(*ResultOrErr);
237     else
238       return ResultOrErr.takeError();
239   }
240 
241   // Parse symbols
242   LLVM_DEBUG(dbgs() << "Parse symbols:\n");
243   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
244        ++I) {
245     Expected<uint32_t> FlagsOrErr = I->getFlags();
246     if (!FlagsOrErr)
247       // TODO: Test this error.
248       return FlagsOrErr.takeError();
249 
250     // Skip undefined symbols.
251     if (*FlagsOrErr & SymbolRef::SF_Undefined)
252       continue;
253 
254     // Get the symbol type.
255     object::SymbolRef::Type SymType;
256     if (auto SymTypeOrErr = I->getType())
257       SymType = *SymTypeOrErr;
258     else
259       return SymTypeOrErr.takeError();
260 
261     // Get symbol name.
262     StringRef Name;
263     if (auto NameOrErr = I->getName())
264       Name = *NameOrErr;
265     else
266       return NameOrErr.takeError();
267 
268     // Compute JIT symbol flags.
269     auto JITSymFlags = getJITSymbolFlags(*I);
270     if (!JITSymFlags)
271       return JITSymFlags.takeError();
272 
273     // If this is a weak definition, check to see if there's a strong one.
274     // If there is, skip this symbol (we won't be providing it: the strong
275     // definition will). If there's no strong definition, make this definition
276     // strong.
277     if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
278       // First check whether there's already a definition in this instance.
279       if (GlobalSymbolTable.count(Name))
280         continue;
281 
282       // If we're not responsible for this symbol, skip it.
283       if (!ResponsibilitySet.count(Name))
284         continue;
285 
286       // Otherwise update the flags on the symbol to make this definition
287       // strong.
288       if (JITSymFlags->isWeak())
289         *JITSymFlags &= ~JITSymbolFlags::Weak;
290       if (JITSymFlags->isCommon()) {
291         *JITSymFlags &= ~JITSymbolFlags::Common;
292         uint32_t Align = I->getAlignment();
293         uint64_t Size = I->getCommonSize();
294         if (!CommonAlign)
295           CommonAlign = Align;
296         CommonSize = alignTo(CommonSize, Align) + Size;
297         CommonSymbolsToAllocate.push_back(*I);
298       }
299     }
300 
301     if (*FlagsOrErr & SymbolRef::SF_Absolute &&
302         SymType != object::SymbolRef::ST_File) {
303       uint64_t Addr = 0;
304       if (auto AddrOrErr = I->getAddress())
305         Addr = *AddrOrErr;
306       else
307         return AddrOrErr.takeError();
308 
309       unsigned SectionID = AbsoluteSymbolSection;
310 
311       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
312                         << " SID: " << SectionID
313                         << " Offset: " << format("%p", (uintptr_t)Addr)
314                         << " flags: " << *FlagsOrErr << "\n");
315       if (!Name.empty()) // Skip absolute symbol relocations.
316         GlobalSymbolTable[Name] =
317             SymbolTableEntry(SectionID, Addr, *JITSymFlags);
318     } else if (SymType == object::SymbolRef::ST_Function ||
319                SymType == object::SymbolRef::ST_Data ||
320                SymType == object::SymbolRef::ST_Unknown ||
321                SymType == object::SymbolRef::ST_Other) {
322 
323       section_iterator SI = Obj.section_end();
324       if (auto SIOrErr = I->getSection())
325         SI = *SIOrErr;
326       else
327         return SIOrErr.takeError();
328 
329       if (SI == Obj.section_end())
330         continue;
331 
332       // Get symbol offset.
333       uint64_t SectOffset;
334       if (auto Err = getOffset(*I, *SI, SectOffset))
335         return std::move(Err);
336 
337       bool IsCode = SI->isText();
338       unsigned SectionID;
339       if (auto SectionIDOrErr =
340               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
341         SectionID = *SectionIDOrErr;
342       else
343         return SectionIDOrErr.takeError();
344 
345       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
346                         << " SID: " << SectionID
347                         << " Offset: " << format("%p", (uintptr_t)SectOffset)
348                         << " flags: " << *FlagsOrErr << "\n");
349       if (!Name.empty()) // Skip absolute symbol relocations
350         GlobalSymbolTable[Name] =
351             SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
352     }
353   }
354 
355   // Allocate common symbols
356   if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
357                                    CommonAlign))
358     return std::move(Err);
359 
360   // Parse and process relocations
361   LLVM_DEBUG(dbgs() << "Parse relocations:\n");
362   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
363        SI != SE; ++SI) {
364     StubMap Stubs;
365 
366     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
367     if (!RelSecOrErr)
368       return RelSecOrErr.takeError();
369 
370     section_iterator RelocatedSection = *RelSecOrErr;
371     if (RelocatedSection == SE)
372       continue;
373 
374     relocation_iterator I = SI->relocation_begin();
375     relocation_iterator E = SI->relocation_end();
376 
377     if (I == E && !ProcessAllSections)
378       continue;
379 
380     bool IsCode = RelocatedSection->isText();
381     unsigned SectionID = 0;
382     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
383                                                 LocalSections))
384       SectionID = *SectionIDOrErr;
385     else
386       return SectionIDOrErr.takeError();
387 
388     LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
389 
390     for (; I != E;)
391       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
392         I = *IOrErr;
393       else
394         return IOrErr.takeError();
395 
396     // If there is a NotifyStubEmitted callback set, call it to register any
397     // stubs created for this section.
398     if (NotifyStubEmitted) {
399       StringRef FileName = Obj.getFileName();
400       StringRef SectionName = Sections[SectionID].getName();
401       for (auto &KV : Stubs) {
402 
403         auto &VR = KV.first;
404         uint64_t StubAddr = KV.second;
405 
406         // If this is a named stub, just call NotifyStubEmitted.
407         if (VR.SymbolName) {
408           NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
409                             StubAddr);
410           continue;
411         }
412 
413         // Otherwise we will have to try a reverse lookup on the globla symbol table.
414         for (auto &GSTMapEntry : GlobalSymbolTable) {
415           StringRef SymbolName = GSTMapEntry.first();
416           auto &GSTEntry = GSTMapEntry.second;
417           if (GSTEntry.getSectionID() == VR.SectionID &&
418               GSTEntry.getOffset() == VR.Offset) {
419             NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
420                               StubAddr);
421             break;
422           }
423         }
424       }
425     }
426   }
427 
428   // Process remaining sections
429   if (ProcessAllSections) {
430     LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
431     for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
432          SI != SE; ++SI) {
433 
434       /* Ignore already loaded sections */
435       if (LocalSections.find(*SI) != LocalSections.end())
436         continue;
437 
438       bool IsCode = SI->isText();
439       if (auto SectionIDOrErr =
440               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
441         LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
442       else
443         return SectionIDOrErr.takeError();
444     }
445   }
446 
447   // Give the subclasses a chance to tie-up any loose ends.
448   if (auto Err = finalizeLoad(Obj, LocalSections))
449     return std::move(Err);
450 
451 //   for (auto E : LocalSections)
452 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
453 
454   return LocalSections;
455 }
456 
457 // A helper method for computeTotalAllocSize.
458 // Computes the memory size required to allocate sections with the given sizes,
459 // assuming that all sections are allocated with the given alignment
460 static uint64_t
461 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
462                                  uint64_t Alignment) {
463   uint64_t TotalSize = 0;
464   for (uint64_t SectionSize : SectionSizes) {
465     uint64_t AlignedSize =
466         (SectionSize + Alignment - 1) / Alignment * Alignment;
467     TotalSize += AlignedSize;
468   }
469   return TotalSize;
470 }
471 
472 static bool isRequiredForExecution(const SectionRef Section) {
473   const ObjectFile *Obj = Section.getObject();
474   if (isa<object::ELFObjectFileBase>(Obj))
475     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
476   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
477     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
478     // Avoid loading zero-sized COFF sections.
479     // In PE files, VirtualSize gives the section size, and SizeOfRawData
480     // may be zero for sections with content. In Obj files, SizeOfRawData
481     // gives the section size, and VirtualSize is always zero. Hence
482     // the need to check for both cases below.
483     bool HasContent =
484         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
485     bool IsDiscardable =
486         CoffSection->Characteristics &
487         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
488     return HasContent && !IsDiscardable;
489   }
490 
491   assert(isa<MachOObjectFile>(Obj));
492   return true;
493 }
494 
495 static bool isReadOnlyData(const SectionRef Section) {
496   const ObjectFile *Obj = Section.getObject();
497   if (isa<object::ELFObjectFileBase>(Obj))
498     return !(ELFSectionRef(Section).getFlags() &
499              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
500   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
501     return ((COFFObj->getCOFFSection(Section)->Characteristics &
502              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
503              | COFF::IMAGE_SCN_MEM_READ
504              | COFF::IMAGE_SCN_MEM_WRITE))
505              ==
506              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
507              | COFF::IMAGE_SCN_MEM_READ));
508 
509   assert(isa<MachOObjectFile>(Obj));
510   return false;
511 }
512 
513 static bool isZeroInit(const SectionRef Section) {
514   const ObjectFile *Obj = Section.getObject();
515   if (isa<object::ELFObjectFileBase>(Obj))
516     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
517   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
518     return COFFObj->getCOFFSection(Section)->Characteristics &
519             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
520 
521   auto *MachO = cast<MachOObjectFile>(Obj);
522   unsigned SectionType = MachO->getSectionType(Section);
523   return SectionType == MachO::S_ZEROFILL ||
524          SectionType == MachO::S_GB_ZEROFILL;
525 }
526 
527 static bool isTLS(const SectionRef Section) {
528   const ObjectFile *Obj = Section.getObject();
529   if (isa<object::ELFObjectFileBase>(Obj))
530     return ELFSectionRef(Section).getFlags() & ELF::SHF_TLS;
531   return false;
532 }
533 
534 // Compute an upper bound of the memory size that is required to load all
535 // sections
536 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
537                                              uint64_t &CodeSize,
538                                              uint32_t &CodeAlign,
539                                              uint64_t &RODataSize,
540                                              uint32_t &RODataAlign,
541                                              uint64_t &RWDataSize,
542                                              uint32_t &RWDataAlign) {
543   // Compute the size of all sections required for execution
544   std::vector<uint64_t> CodeSectionSizes;
545   std::vector<uint64_t> ROSectionSizes;
546   std::vector<uint64_t> RWSectionSizes;
547 
548   // Collect sizes of all sections to be loaded;
549   // also determine the max alignment of all sections
550   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
551        SI != SE; ++SI) {
552     const SectionRef &Section = *SI;
553 
554     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
555 
556     // Consider only the sections that are required to be loaded for execution
557     if (IsRequired) {
558       uint64_t DataSize = Section.getSize();
559       uint64_t Alignment64 = Section.getAlignment();
560       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
561       bool IsCode = Section.isText();
562       bool IsReadOnly = isReadOnlyData(Section);
563       bool IsTLS = isTLS(Section);
564 
565       Expected<StringRef> NameOrErr = Section.getName();
566       if (!NameOrErr)
567         return NameOrErr.takeError();
568       StringRef Name = *NameOrErr;
569 
570       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
571 
572       uint64_t PaddingSize = 0;
573       if (Name == ".eh_frame")
574         PaddingSize += 4;
575       if (StubBufSize != 0)
576         PaddingSize += getStubAlignment() - 1;
577 
578       uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
579 
580       // The .eh_frame section (at least on Linux) needs an extra four bytes
581       // padded
582       // with zeroes added at the end.  For MachO objects, this section has a
583       // slightly different name, so this won't have any effect for MachO
584       // objects.
585       if (Name == ".eh_frame")
586         SectionSize += 4;
587 
588       if (!SectionSize)
589         SectionSize = 1;
590 
591       if (IsCode) {
592         CodeAlign = std::max(CodeAlign, Alignment);
593         CodeSectionSizes.push_back(SectionSize);
594       } else if (IsReadOnly) {
595         RODataAlign = std::max(RODataAlign, Alignment);
596         ROSectionSizes.push_back(SectionSize);
597       } else if (!IsTLS) {
598         RWDataAlign = std::max(RWDataAlign, Alignment);
599         RWSectionSizes.push_back(SectionSize);
600       }
601     }
602   }
603 
604   // Compute Global Offset Table size. If it is not zero we
605   // also update alignment, which is equal to a size of a
606   // single GOT entry.
607   if (unsigned GotSize = computeGOTSize(Obj)) {
608     RWSectionSizes.push_back(GotSize);
609     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
610   }
611 
612   // Compute the size of all common symbols
613   uint64_t CommonSize = 0;
614   uint32_t CommonAlign = 1;
615   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
616        ++I) {
617     Expected<uint32_t> FlagsOrErr = I->getFlags();
618     if (!FlagsOrErr)
619       // TODO: Test this error.
620       return FlagsOrErr.takeError();
621     if (*FlagsOrErr & SymbolRef::SF_Common) {
622       // Add the common symbols to a list.  We'll allocate them all below.
623       uint64_t Size = I->getCommonSize();
624       uint32_t Align = I->getAlignment();
625       // If this is the first common symbol, use its alignment as the alignment
626       // for the common symbols section.
627       if (CommonSize == 0)
628         CommonAlign = Align;
629       CommonSize = alignTo(CommonSize, Align) + Size;
630     }
631   }
632   if (CommonSize != 0) {
633     RWSectionSizes.push_back(CommonSize);
634     RWDataAlign = std::max(RWDataAlign, CommonAlign);
635   }
636 
637   // Compute the required allocation space for each different type of sections
638   // (code, read-only data, read-write data) assuming that all sections are
639   // allocated with the max alignment. Note that we cannot compute with the
640   // individual alignments of the sections, because then the required size
641   // depends on the order, in which the sections are allocated.
642   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
643   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
644   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
645 
646   return Error::success();
647 }
648 
649 // compute GOT size
650 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
651   size_t GotEntrySize = getGOTEntrySize();
652   if (!GotEntrySize)
653     return 0;
654 
655   size_t GotSize = 0;
656   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
657        SI != SE; ++SI) {
658 
659     for (const RelocationRef &Reloc : SI->relocations())
660       if (relocationNeedsGot(Reloc))
661         GotSize += GotEntrySize;
662   }
663 
664   return GotSize;
665 }
666 
667 // compute stub buffer size for the given section
668 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
669                                                     const SectionRef &Section) {
670   if (!MemMgr.allowStubAllocation()) {
671     return 0;
672   }
673 
674   unsigned StubSize = getMaxStubSize();
675   if (StubSize == 0) {
676     return 0;
677   }
678   // FIXME: this is an inefficient way to handle this. We should computed the
679   // necessary section allocation size in loadObject by walking all the sections
680   // once.
681   unsigned StubBufSize = 0;
682   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
683        SI != SE; ++SI) {
684 
685     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
686     if (!RelSecOrErr)
687       report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
688 
689     section_iterator RelSecI = *RelSecOrErr;
690     if (!(RelSecI == Section))
691       continue;
692 
693     for (const RelocationRef &Reloc : SI->relocations())
694       if (relocationNeedsStub(Reloc))
695         StubBufSize += StubSize;
696   }
697 
698   // Get section data size and alignment
699   uint64_t DataSize = Section.getSize();
700   uint64_t Alignment64 = Section.getAlignment();
701 
702   // Add stubbuf size alignment
703   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
704   unsigned StubAlignment = getStubAlignment();
705   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
706   if (StubAlignment > EndAlignment)
707     StubBufSize += StubAlignment - EndAlignment;
708   return StubBufSize;
709 }
710 
711 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
712                                              unsigned Size) const {
713   uint64_t Result = 0;
714   if (IsTargetLittleEndian) {
715     Src += Size - 1;
716     while (Size--)
717       Result = (Result << 8) | *Src--;
718   } else
719     while (Size--)
720       Result = (Result << 8) | *Src++;
721 
722   return Result;
723 }
724 
725 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
726                                           unsigned Size) const {
727   if (IsTargetLittleEndian) {
728     while (Size--) {
729       *Dst++ = Value & 0xFF;
730       Value >>= 8;
731     }
732   } else {
733     Dst += Size - 1;
734     while (Size--) {
735       *Dst-- = Value & 0xFF;
736       Value >>= 8;
737     }
738   }
739 }
740 
741 Expected<JITSymbolFlags>
742 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
743   return JITSymbolFlags::fromObjectSymbol(SR);
744 }
745 
746 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
747                                          CommonSymbolList &SymbolsToAllocate,
748                                          uint64_t CommonSize,
749                                          uint32_t CommonAlign) {
750   if (SymbolsToAllocate.empty())
751     return Error::success();
752 
753   // Allocate memory for the section
754   unsigned SectionID = Sections.size();
755   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
756                                              "<common symbols>", false);
757   if (!Addr)
758     report_fatal_error("Unable to allocate memory for common symbols!");
759   uint64_t Offset = 0;
760   Sections.push_back(
761       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
762   memset(Addr, 0, CommonSize);
763 
764   LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
765                     << " new addr: " << format("%p", Addr)
766                     << " DataSize: " << CommonSize << "\n");
767 
768   // Assign the address of each symbol
769   for (auto &Sym : SymbolsToAllocate) {
770     uint32_t Alignment = Sym.getAlignment();
771     uint64_t Size = Sym.getCommonSize();
772     StringRef Name;
773     if (auto NameOrErr = Sym.getName())
774       Name = *NameOrErr;
775     else
776       return NameOrErr.takeError();
777     if (Alignment) {
778       // This symbol has an alignment requirement.
779       uint64_t AlignOffset =
780           offsetToAlignment((uint64_t)Addr, Align(Alignment));
781       Addr += AlignOffset;
782       Offset += AlignOffset;
783     }
784     auto JITSymFlags = getJITSymbolFlags(Sym);
785 
786     if (!JITSymFlags)
787       return JITSymFlags.takeError();
788 
789     LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
790                       << format("%p", Addr) << "\n");
791     if (!Name.empty()) // Skip absolute symbol relocations.
792       GlobalSymbolTable[Name] =
793           SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
794     Offset += Size;
795     Addr += Size;
796   }
797 
798   return Error::success();
799 }
800 
801 Expected<unsigned>
802 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
803                              const SectionRef &Section,
804                              bool IsCode) {
805   StringRef data;
806   uint64_t Alignment64 = Section.getAlignment();
807 
808   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
809   unsigned PaddingSize = 0;
810   unsigned StubBufSize = 0;
811   bool IsRequired = isRequiredForExecution(Section);
812   bool IsVirtual = Section.isVirtual();
813   bool IsZeroInit = isZeroInit(Section);
814   bool IsReadOnly = isReadOnlyData(Section);
815   bool IsTLS = isTLS(Section);
816   uint64_t DataSize = Section.getSize();
817 
818   // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
819   // while being more "polite".  Other formats do not support 0-aligned sections
820   // anyway, so we should guarantee that the alignment is always at least 1.
821   Alignment = std::max(1u, Alignment);
822 
823   Expected<StringRef> NameOrErr = Section.getName();
824   if (!NameOrErr)
825     return NameOrErr.takeError();
826   StringRef Name = *NameOrErr;
827 
828   StubBufSize = computeSectionStubBufSize(Obj, Section);
829 
830   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
831   // with zeroes added at the end.  For MachO objects, this section has a
832   // slightly different name, so this won't have any effect for MachO objects.
833   if (Name == ".eh_frame")
834     PaddingSize = 4;
835 
836   uintptr_t Allocate;
837   unsigned SectionID = Sections.size();
838   uint8_t *Addr;
839   uint64_t LoadAddress = 0;
840   const char *pData = nullptr;
841 
842   // If this section contains any bits (i.e. isn't a virtual or bss section),
843   // grab a reference to them.
844   if (!IsVirtual && !IsZeroInit) {
845     // In either case, set the location of the unrelocated section in memory,
846     // since we still process relocations for it even if we're not applying them.
847     if (Expected<StringRef> E = Section.getContents())
848       data = *E;
849     else
850       return E.takeError();
851     pData = data.data();
852   }
853 
854   // If there are any stubs then the section alignment needs to be at least as
855   // high as stub alignment or padding calculations may by incorrect when the
856   // section is remapped.
857   if (StubBufSize != 0) {
858     Alignment = std::max(Alignment, getStubAlignment());
859     PaddingSize += getStubAlignment() - 1;
860   }
861 
862   // Some sections, such as debug info, don't need to be loaded for execution.
863   // Process those only if explicitly requested.
864   if (IsRequired || ProcessAllSections) {
865     Allocate = DataSize + PaddingSize + StubBufSize;
866     if (!Allocate)
867       Allocate = 1;
868     if (IsTLS) {
869       auto TLSSection =
870           MemMgr.allocateTLSSection(Allocate, Alignment, SectionID, Name);
871       Addr = TLSSection.InitializationImage;
872       LoadAddress = TLSSection.Offset;
873     } else if (IsCode) {
874       Addr = MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, Name);
875     } else {
876       Addr = MemMgr.allocateDataSection(Allocate, Alignment, SectionID, Name,
877                                         IsReadOnly);
878     }
879     if (!Addr)
880       report_fatal_error("Unable to allocate section memory!");
881 
882     // Zero-initialize or copy the data from the image
883     if (IsZeroInit || IsVirtual)
884       memset(Addr, 0, DataSize);
885     else
886       memcpy(Addr, pData, DataSize);
887 
888     // Fill in any extra bytes we allocated for padding
889     if (PaddingSize != 0) {
890       memset(Addr + DataSize, 0, PaddingSize);
891       // Update the DataSize variable to include padding.
892       DataSize += PaddingSize;
893 
894       // Align DataSize to stub alignment if we have any stubs (PaddingSize will
895       // have been increased above to account for this).
896       if (StubBufSize > 0)
897         DataSize &= -(uint64_t)getStubAlignment();
898     }
899 
900     LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
901                       << Name << " obj addr: " << format("%p", pData)
902                       << " new addr: " << format("%p", Addr) << " DataSize: "
903                       << DataSize << " StubBufSize: " << StubBufSize
904                       << " Allocate: " << Allocate << "\n");
905   } else {
906     // Even if we didn't load the section, we need to record an entry for it
907     // to handle later processing (and by 'handle' I mean don't do anything
908     // with these sections).
909     Allocate = 0;
910     Addr = nullptr;
911     LLVM_DEBUG(
912         dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
913                << " obj addr: " << format("%p", data.data()) << " new addr: 0"
914                << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
915                << " Allocate: " << Allocate << "\n");
916   }
917 
918   Sections.push_back(
919       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
920 
921   // The load address of a TLS section is not equal to the address of its
922   // initialization image
923   if (IsTLS)
924     Sections.back().setLoadAddress(LoadAddress);
925   // Debug info sections are linked as if their load address was zero
926   if (!IsRequired)
927     Sections.back().setLoadAddress(0);
928 
929   return SectionID;
930 }
931 
932 Expected<unsigned>
933 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
934                                    const SectionRef &Section,
935                                    bool IsCode,
936                                    ObjSectionToIDMap &LocalSections) {
937 
938   unsigned SectionID = 0;
939   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
940   if (i != LocalSections.end())
941     SectionID = i->second;
942   else {
943     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
944       SectionID = *SectionIDOrErr;
945     else
946       return SectionIDOrErr.takeError();
947     LocalSections[Section] = SectionID;
948   }
949   return SectionID;
950 }
951 
952 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
953                                               unsigned SectionID) {
954   Relocations[SectionID].push_back(RE);
955 }
956 
957 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
958                                              StringRef SymbolName) {
959   // Relocation by symbol.  If the symbol is found in the global symbol table,
960   // create an appropriate section relocation.  Otherwise, add it to
961   // ExternalSymbolRelocations.
962   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
963   if (Loc == GlobalSymbolTable.end()) {
964     ExternalSymbolRelocations[SymbolName].push_back(RE);
965   } else {
966     assert(!SymbolName.empty() &&
967            "Empty symbol should not be in GlobalSymbolTable");
968     // Copy the RE since we want to modify its addend.
969     RelocationEntry RECopy = RE;
970     const auto &SymInfo = Loc->second;
971     RECopy.Addend += SymInfo.getOffset();
972     Relocations[SymInfo.getSectionID()].push_back(RECopy);
973   }
974 }
975 
976 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
977                                              unsigned AbiVariant) {
978   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
979       Arch == Triple::aarch64_32) {
980     // This stub has to be able to access the full address space,
981     // since symbol lookup won't necessarily find a handy, in-range,
982     // PLT stub for functions which could be anywhere.
983     // Stub can use ip0 (== x16) to calculate address
984     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
985     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
986     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
987     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
988     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
989 
990     return Addr;
991   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
992     // TODO: There is only ARM far stub now. We should add the Thumb stub,
993     // and stubs for branches Thumb - ARM and ARM - Thumb.
994     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
995     return Addr + 4;
996   } else if (IsMipsO32ABI || IsMipsN32ABI) {
997     // 0:   3c190000        lui     t9,%hi(addr).
998     // 4:   27390000        addiu   t9,t9,%lo(addr).
999     // 8:   03200008        jr      t9.
1000     // c:   00000000        nop.
1001     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
1002     const unsigned NopInstr = 0x0;
1003     unsigned JrT9Instr = 0x03200008;
1004     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
1005         (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1006       JrT9Instr = 0x03200009;
1007 
1008     writeBytesUnaligned(LuiT9Instr, Addr, 4);
1009     writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
1010     writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
1011     writeBytesUnaligned(NopInstr, Addr + 12, 4);
1012     return Addr;
1013   } else if (IsMipsN64ABI) {
1014     // 0:   3c190000        lui     t9,%highest(addr).
1015     // 4:   67390000        daddiu  t9,t9,%higher(addr).
1016     // 8:   0019CC38        dsll    t9,t9,16.
1017     // c:   67390000        daddiu  t9,t9,%hi(addr).
1018     // 10:  0019CC38        dsll    t9,t9,16.
1019     // 14:  67390000        daddiu  t9,t9,%lo(addr).
1020     // 18:  03200008        jr      t9.
1021     // 1c:  00000000        nop.
1022     const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
1023                    DsllT9Instr = 0x19CC38;
1024     const unsigned NopInstr = 0x0;
1025     unsigned JrT9Instr = 0x03200008;
1026     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1027       JrT9Instr = 0x03200009;
1028 
1029     writeBytesUnaligned(LuiT9Instr, Addr, 4);
1030     writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
1031     writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
1032     writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
1033     writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
1034     writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
1035     writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
1036     writeBytesUnaligned(NopInstr, Addr + 28, 4);
1037     return Addr;
1038   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1039     // Depending on which version of the ELF ABI is in use, we need to
1040     // generate one of two variants of the stub.  They both start with
1041     // the same sequence to load the target address into r12.
1042     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
1043     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
1044     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
1045     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
1046     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
1047     if (AbiVariant == 2) {
1048       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1049       // The address is already in r12 as required by the ABI.  Branch to it.
1050       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
1051       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1052       writeInt32BE(Addr+28, 0x4E800420); // bctr
1053     } else {
1054       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1055       // Load the function address on r11 and sets it to control register. Also
1056       // loads the function TOC in r2 and environment pointer to r11.
1057       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
1058       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
1059       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
1060       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1061       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
1062       writeInt32BE(Addr+40, 0x4E800420); // bctr
1063     }
1064     return Addr;
1065   } else if (Arch == Triple::systemz) {
1066     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
1067     writeInt16BE(Addr+2,  0x0000);
1068     writeInt16BE(Addr+4,  0x0004);
1069     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
1070     // 8-byte address stored at Addr + 8
1071     return Addr;
1072   } else if (Arch == Triple::x86_64) {
1073     *Addr      = 0xFF; // jmp
1074     *(Addr+1)  = 0x25; // rip
1075     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1076   } else if (Arch == Triple::x86) {
1077     *Addr      = 0xE9; // 32-bit pc-relative jump.
1078   }
1079   return Addr;
1080 }
1081 
1082 // Assign an address to a symbol name and resolve all the relocations
1083 // associated with it.
1084 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1085                                              uint64_t Addr) {
1086   // The address to use for relocation resolution is not
1087   // the address of the local section buffer. We must be doing
1088   // a remote execution environment of some sort. Relocations can't
1089   // be applied until all the sections have been moved.  The client must
1090   // trigger this with a call to MCJIT::finalize() or
1091   // RuntimeDyld::resolveRelocations().
1092   //
1093   // Addr is a uint64_t because we can't assume the pointer width
1094   // of the target is the same as that of the host. Just use a generic
1095   // "big enough" type.
1096   LLVM_DEBUG(
1097       dbgs() << "Reassigning address for section " << SectionID << " ("
1098              << Sections[SectionID].getName() << "): "
1099              << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1100              << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1101   Sections[SectionID].setLoadAddress(Addr);
1102 }
1103 
1104 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1105                                             uint64_t Value) {
1106   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1107     const RelocationEntry &RE = Relocs[i];
1108     // Ignore relocations for sections that were not loaded
1109     if (RE.SectionID != AbsoluteSymbolSection &&
1110         Sections[RE.SectionID].getAddress() == nullptr)
1111       continue;
1112     resolveRelocation(RE, Value);
1113   }
1114 }
1115 
1116 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1117     const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1118   for (auto &RelocKV : ExternalSymbolRelocations) {
1119     StringRef Name = RelocKV.first();
1120     RelocationList &Relocs = RelocKV.second;
1121     if (Name.size() == 0) {
1122       // This is an absolute symbol, use an address of zero.
1123       LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1124                         << "\n");
1125       resolveRelocationList(Relocs, 0);
1126     } else {
1127       uint64_t Addr = 0;
1128       JITSymbolFlags Flags;
1129       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1130       if (Loc == GlobalSymbolTable.end()) {
1131         auto RRI = ExternalSymbolMap.find(Name);
1132         assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1133         Addr = RRI->second.getAddress();
1134         Flags = RRI->second.getFlags();
1135       } else {
1136         // We found the symbol in our global table.  It was probably in a
1137         // Module that we loaded previously.
1138         const auto &SymInfo = Loc->second;
1139         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1140                SymInfo.getOffset();
1141         Flags = SymInfo.getFlags();
1142       }
1143 
1144       // FIXME: Implement error handling that doesn't kill the host program!
1145       if (!Addr && !Resolver.allowsZeroSymbols())
1146         report_fatal_error(Twine("Program used external function '") + Name +
1147                            "' which could not be resolved!");
1148 
1149       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1150       // manually and we shouldn't resolve its relocations.
1151       if (Addr != UINT64_MAX) {
1152 
1153         // Tweak the address based on the symbol flags if necessary.
1154         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1155         // if the target symbol is Thumb.
1156         Addr = modifyAddressBasedOnFlags(Addr, Flags);
1157 
1158         LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1159                           << format("0x%lx", Addr) << "\n");
1160         resolveRelocationList(Relocs, Addr);
1161       }
1162     }
1163   }
1164   ExternalSymbolRelocations.clear();
1165 }
1166 
1167 Error RuntimeDyldImpl::resolveExternalSymbols() {
1168   StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1169 
1170   // Resolution can trigger emission of more symbols, so iterate until
1171   // we've resolved *everything*.
1172   {
1173     JITSymbolResolver::LookupSet ResolvedSymbols;
1174 
1175     while (true) {
1176       JITSymbolResolver::LookupSet NewSymbols;
1177 
1178       for (auto &RelocKV : ExternalSymbolRelocations) {
1179         StringRef Name = RelocKV.first();
1180         if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1181             !ResolvedSymbols.count(Name))
1182           NewSymbols.insert(Name);
1183       }
1184 
1185       if (NewSymbols.empty())
1186         break;
1187 
1188 #ifdef _MSC_VER
1189       using ExpectedLookupResult =
1190           MSVCPExpected<JITSymbolResolver::LookupResult>;
1191 #else
1192       using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1193 #endif
1194 
1195       auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1196       auto NewSymbolsF = NewSymbolsP->get_future();
1197       Resolver.lookup(NewSymbols,
1198                       [=](Expected<JITSymbolResolver::LookupResult> Result) {
1199                         NewSymbolsP->set_value(std::move(Result));
1200                       });
1201 
1202       auto NewResolverResults = NewSymbolsF.get();
1203 
1204       if (!NewResolverResults)
1205         return NewResolverResults.takeError();
1206 
1207       assert(NewResolverResults->size() == NewSymbols.size() &&
1208              "Should have errored on unresolved symbols");
1209 
1210       for (auto &RRKV : *NewResolverResults) {
1211         assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1212         ExternalSymbolMap.insert(RRKV);
1213         ResolvedSymbols.insert(RRKV.first);
1214       }
1215     }
1216   }
1217 
1218   applyExternalSymbolRelocations(ExternalSymbolMap);
1219 
1220   return Error::success();
1221 }
1222 
1223 void RuntimeDyldImpl::finalizeAsync(
1224     std::unique_ptr<RuntimeDyldImpl> This,
1225     unique_function<void(object::OwningBinary<object::ObjectFile>,
1226                          std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1227         OnEmitted,
1228     object::OwningBinary<object::ObjectFile> O,
1229     std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) {
1230 
1231   auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1232   auto PostResolveContinuation =
1233       [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O),
1234        Info = std::move(Info)](
1235           Expected<JITSymbolResolver::LookupResult> Result) mutable {
1236         if (!Result) {
1237           OnEmitted(std::move(O), std::move(Info), Result.takeError());
1238           return;
1239         }
1240 
1241         /// Copy the result into a StringMap, where the keys are held by value.
1242         StringMap<JITEvaluatedSymbol> Resolved;
1243         for (auto &KV : *Result)
1244           Resolved[KV.first] = KV.second;
1245 
1246         SharedThis->applyExternalSymbolRelocations(Resolved);
1247         SharedThis->resolveLocalRelocations();
1248         SharedThis->registerEHFrames();
1249         std::string ErrMsg;
1250         if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1251           OnEmitted(std::move(O), std::move(Info),
1252                     make_error<StringError>(std::move(ErrMsg),
1253                                             inconvertibleErrorCode()));
1254         else
1255           OnEmitted(std::move(O), std::move(Info), Error::success());
1256       };
1257 
1258   JITSymbolResolver::LookupSet Symbols;
1259 
1260   for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1261     StringRef Name = RelocKV.first();
1262     if (Name.empty()) // Skip absolute symbol relocations.
1263       continue;
1264     assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1265            "Name already processed. RuntimeDyld instances can not be re-used "
1266            "when finalizing with finalizeAsync.");
1267     Symbols.insert(Name);
1268   }
1269 
1270   if (!Symbols.empty()) {
1271     SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1272   } else
1273     PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1274 }
1275 
1276 //===----------------------------------------------------------------------===//
1277 // RuntimeDyld class implementation
1278 
1279 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1280                                           const object::SectionRef &Sec) const {
1281 
1282   auto I = ObjSecToIDMap.find(Sec);
1283   if (I != ObjSecToIDMap.end())
1284     return RTDyld.Sections[I->second].getLoadAddress();
1285 
1286   return 0;
1287 }
1288 
1289 RuntimeDyld::MemoryManager::TLSSection
1290 RuntimeDyld::MemoryManager::allocateTLSSection(uintptr_t Size,
1291                                                unsigned Alignment,
1292                                                unsigned SectionID,
1293                                                StringRef SectionName) {
1294   report_fatal_error("allocation of TLS not implemented");
1295 }
1296 
1297 void RuntimeDyld::MemoryManager::anchor() {}
1298 void JITSymbolResolver::anchor() {}
1299 void LegacyJITSymbolResolver::anchor() {}
1300 
1301 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1302                          JITSymbolResolver &Resolver)
1303     : MemMgr(MemMgr), Resolver(Resolver) {
1304   // FIXME: There's a potential issue lurking here if a single instance of
1305   // RuntimeDyld is used to load multiple objects.  The current implementation
1306   // associates a single memory manager with a RuntimeDyld instance.  Even
1307   // though the public class spawns a new 'impl' instance for each load,
1308   // they share a single memory manager.  This can become a problem when page
1309   // permissions are applied.
1310   Dyld = nullptr;
1311   ProcessAllSections = false;
1312 }
1313 
1314 RuntimeDyld::~RuntimeDyld() {}
1315 
1316 static std::unique_ptr<RuntimeDyldCOFF>
1317 createRuntimeDyldCOFF(
1318                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1319                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1320                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1321   std::unique_ptr<RuntimeDyldCOFF> Dyld =
1322     RuntimeDyldCOFF::create(Arch, MM, Resolver);
1323   Dyld->setProcessAllSections(ProcessAllSections);
1324   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1325   return Dyld;
1326 }
1327 
1328 static std::unique_ptr<RuntimeDyldELF>
1329 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1330                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1331                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1332   std::unique_ptr<RuntimeDyldELF> Dyld =
1333       RuntimeDyldELF::create(Arch, MM, Resolver);
1334   Dyld->setProcessAllSections(ProcessAllSections);
1335   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1336   return Dyld;
1337 }
1338 
1339 static std::unique_ptr<RuntimeDyldMachO>
1340 createRuntimeDyldMachO(
1341                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1342                      JITSymbolResolver &Resolver,
1343                      bool ProcessAllSections,
1344                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1345   std::unique_ptr<RuntimeDyldMachO> Dyld =
1346     RuntimeDyldMachO::create(Arch, MM, Resolver);
1347   Dyld->setProcessAllSections(ProcessAllSections);
1348   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1349   return Dyld;
1350 }
1351 
1352 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1353 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1354   if (!Dyld) {
1355     if (Obj.isELF())
1356       Dyld =
1357           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1358                                MemMgr, Resolver, ProcessAllSections,
1359                                std::move(NotifyStubEmitted));
1360     else if (Obj.isMachO())
1361       Dyld = createRuntimeDyldMachO(
1362                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1363                ProcessAllSections, std::move(NotifyStubEmitted));
1364     else if (Obj.isCOFF())
1365       Dyld = createRuntimeDyldCOFF(
1366                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1367                ProcessAllSections, std::move(NotifyStubEmitted));
1368     else
1369       report_fatal_error("Incompatible object format!");
1370   }
1371 
1372   if (!Dyld->isCompatibleFile(Obj))
1373     report_fatal_error("Incompatible object format!");
1374 
1375   auto LoadedObjInfo = Dyld->loadObject(Obj);
1376   MemMgr.notifyObjectLoaded(*this, Obj);
1377   return LoadedObjInfo;
1378 }
1379 
1380 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1381   if (!Dyld)
1382     return nullptr;
1383   return Dyld->getSymbolLocalAddress(Name);
1384 }
1385 
1386 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1387   assert(Dyld && "No RuntimeDyld instance attached");
1388   return Dyld->getSymbolSectionID(Name);
1389 }
1390 
1391 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1392   if (!Dyld)
1393     return nullptr;
1394   return Dyld->getSymbol(Name);
1395 }
1396 
1397 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1398   if (!Dyld)
1399     return std::map<StringRef, JITEvaluatedSymbol>();
1400   return Dyld->getSymbolTable();
1401 }
1402 
1403 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1404 
1405 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1406   Dyld->reassignSectionAddress(SectionID, Addr);
1407 }
1408 
1409 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1410                                     uint64_t TargetAddress) {
1411   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1412 }
1413 
1414 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1415 
1416 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1417 
1418 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1419   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1420   MemMgr.FinalizationLocked = true;
1421   resolveRelocations();
1422   registerEHFrames();
1423   if (!MemoryFinalizationLocked) {
1424     MemMgr.finalizeMemory();
1425     MemMgr.FinalizationLocked = false;
1426   }
1427 }
1428 
1429 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1430   assert(Dyld && "No Dyld instance attached");
1431   return Dyld->getSectionContent(SectionID);
1432 }
1433 
1434 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1435   assert(Dyld && "No Dyld instance attached");
1436   return Dyld->getSectionLoadAddress(SectionID);
1437 }
1438 
1439 void RuntimeDyld::registerEHFrames() {
1440   if (Dyld)
1441     Dyld->registerEHFrames();
1442 }
1443 
1444 void RuntimeDyld::deregisterEHFrames() {
1445   if (Dyld)
1446     Dyld->deregisterEHFrames();
1447 }
1448 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1449 // so that we can re-use RuntimeDyld's implementation without twisting the
1450 // interface any further for ORC's purposes.
1451 void jitLinkForORC(
1452     object::OwningBinary<object::ObjectFile> O,
1453     RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
1454     bool ProcessAllSections,
1455     unique_function<Error(const object::ObjectFile &Obj,
1456                           RuntimeDyld::LoadedObjectInfo &LoadedObj,
1457                           std::map<StringRef, JITEvaluatedSymbol>)>
1458         OnLoaded,
1459     unique_function<void(object::OwningBinary<object::ObjectFile>,
1460                          std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1461         OnEmitted) {
1462 
1463   RuntimeDyld RTDyld(MemMgr, Resolver);
1464   RTDyld.setProcessAllSections(ProcessAllSections);
1465 
1466   auto Info = RTDyld.loadObject(*O.getBinary());
1467 
1468   if (RTDyld.hasError()) {
1469     OnEmitted(std::move(O), std::move(Info),
1470               make_error<StringError>(RTDyld.getErrorString(),
1471                                       inconvertibleErrorCode()));
1472     return;
1473   }
1474 
1475   if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable()))
1476     OnEmitted(std::move(O), std::move(Info), std::move(Err));
1477 
1478   RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1479                                  std::move(O), std::move(Info));
1480 }
1481 
1482 } // end namespace llvm
1483