xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp (revision 06e20d1babecec1f45ffda513f55a8db5f1c0f56)
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include <mutex>
25 
26 #include <future>
27 
28 using namespace llvm;
29 using namespace llvm::object;
30 
31 #define DEBUG_TYPE "dyld"
32 
33 namespace {
34 
35 enum RuntimeDyldErrorCode {
36   GenericRTDyldError = 1
37 };
38 
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory : public std::error_category {
43 public:
44   const char *name() const noexcept override { return "runtimedyld"; }
45 
46   std::string message(int Condition) const override {
47     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48       case GenericRTDyldError: return "Generic RuntimeDyld error";
49     }
50     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
51   }
52 };
53 
54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
55 
56 }
57 
58 char RuntimeDyldError::ID = 0;
59 
60 void RuntimeDyldError::log(raw_ostream &OS) const {
61   OS << ErrMsg << "\n";
62 }
63 
64 std::error_code RuntimeDyldError::convertToErrorCode() const {
65   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
66 }
67 
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
70 
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
73 
74 namespace llvm {
75 
76 void RuntimeDyldImpl::registerEHFrames() {}
77 
78 void RuntimeDyldImpl::deregisterEHFrames() {
79   MemMgr.deregisterEHFrames();
80 }
81 
82 #ifndef NDEBUG
83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84   dbgs() << "----- Contents of section " << S.getName() << " " << State
85          << " -----";
86 
87   if (S.getAddress() == nullptr) {
88     dbgs() << "\n          <section not emitted>\n";
89     return;
90   }
91 
92   const unsigned ColsPerRow = 16;
93 
94   uint8_t *DataAddr = S.getAddress();
95   uint64_t LoadAddr = S.getLoadAddress();
96 
97   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98   unsigned BytesRemaining = S.getSize();
99 
100   if (StartPadding) {
101     dbgs() << "\n" << format("0x%016" PRIx64,
102                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103     while (StartPadding--)
104       dbgs() << "   ";
105   }
106 
107   while (BytesRemaining > 0) {
108     if ((LoadAddr & (ColsPerRow - 1)) == 0)
109       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
110 
111     dbgs() << " " << format("%02x", *DataAddr);
112 
113     ++DataAddr;
114     ++LoadAddr;
115     --BytesRemaining;
116   }
117 
118   dbgs() << "\n";
119 }
120 #endif
121 
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124   std::lock_guard<sys::Mutex> locked(lock);
125 
126   // Print out the sections prior to relocation.
127   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
128                  dumpSectionMemory(Sections[i], "before relocations"););
129 
130   // First, resolve relocations associated with external symbols.
131   if (auto Err = resolveExternalSymbols()) {
132     HasError = true;
133     ErrorStr = toString(std::move(Err));
134   }
135 
136   resolveLocalRelocations();
137 
138   // Print out sections after relocation.
139   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
140                  dumpSectionMemory(Sections[i], "after relocations"););
141 }
142 
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144   // Iterate over all outstanding relocations
145   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146     // The Section here (Sections[i]) refers to the section in which the
147     // symbol for the relocation is located.  The SectionID in the relocation
148     // entry provides the section to which the relocation will be applied.
149     int Idx = it->first;
150     uint64_t Addr = Sections[Idx].getLoadAddress();
151     LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
152                       << format("%p", (uintptr_t)Addr) << "\n");
153     resolveRelocationList(it->second, Addr);
154   }
155   Relocations.clear();
156 }
157 
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159                                         uint64_t TargetAddress) {
160   std::lock_guard<sys::Mutex> locked(lock);
161   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162     if (Sections[i].getAddress() == LocalAddress) {
163       reassignSectionAddress(i, TargetAddress);
164       return;
165     }
166   }
167   llvm_unreachable("Attempting to remap address of unknown section!");
168 }
169 
170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171                        uint64_t &Result) {
172   Expected<uint64_t> AddressOrErr = Sym.getAddress();
173   if (!AddressOrErr)
174     return AddressOrErr.takeError();
175   Result = *AddressOrErr - Sec.getAddress();
176   return Error::success();
177 }
178 
179 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181   std::lock_guard<sys::Mutex> locked(lock);
182 
183   // Save information about our target
184   Arch = (Triple::ArchType)Obj.getArch();
185   IsTargetLittleEndian = Obj.isLittleEndian();
186   setMipsABI(Obj);
187 
188   // Compute the memory size required to load all sections to be loaded
189   // and pass this information to the memory manager
190   if (MemMgr.needsToReserveAllocationSpace()) {
191     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193     if (auto Err = computeTotalAllocSize(Obj,
194                                          CodeSize, CodeAlign,
195                                          RODataSize, RODataAlign,
196                                          RWDataSize, RWDataAlign))
197       return std::move(Err);
198     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199                                   RWDataSize, RWDataAlign);
200   }
201 
202   // Used sections from the object file
203   ObjSectionToIDMap LocalSections;
204 
205   // Common symbols requiring allocation, with their sizes and alignments
206   CommonSymbolList CommonSymbolsToAllocate;
207 
208   uint64_t CommonSize = 0;
209   uint32_t CommonAlign = 0;
210 
211   // First, collect all weak and common symbols. We need to know if stronger
212   // definitions occur elsewhere.
213   JITSymbolResolver::LookupSet ResponsibilitySet;
214   {
215     JITSymbolResolver::LookupSet Symbols;
216     for (auto &Sym : Obj.symbols()) {
217       Expected<uint32_t> FlagsOrErr = Sym.getFlags();
218       if (!FlagsOrErr)
219         // TODO: Test this error.
220         return FlagsOrErr.takeError();
221       if ((*FlagsOrErr & SymbolRef::SF_Common) ||
222           (*FlagsOrErr & SymbolRef::SF_Weak)) {
223         // Get symbol name.
224         if (auto NameOrErr = Sym.getName())
225           Symbols.insert(*NameOrErr);
226         else
227           return NameOrErr.takeError();
228       }
229     }
230 
231     if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
232       ResponsibilitySet = std::move(*ResultOrErr);
233     else
234       return ResultOrErr.takeError();
235   }
236 
237   // Parse symbols
238   LLVM_DEBUG(dbgs() << "Parse symbols:\n");
239   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
240        ++I) {
241     Expected<uint32_t> FlagsOrErr = I->getFlags();
242     if (!FlagsOrErr)
243       // TODO: Test this error.
244       return FlagsOrErr.takeError();
245 
246     // Skip undefined symbols.
247     if (*FlagsOrErr & SymbolRef::SF_Undefined)
248       continue;
249 
250     // Get the symbol type.
251     object::SymbolRef::Type SymType;
252     if (auto SymTypeOrErr = I->getType())
253       SymType = *SymTypeOrErr;
254     else
255       return SymTypeOrErr.takeError();
256 
257     // Get symbol name.
258     StringRef Name;
259     if (auto NameOrErr = I->getName())
260       Name = *NameOrErr;
261     else
262       return NameOrErr.takeError();
263 
264     // Compute JIT symbol flags.
265     auto JITSymFlags = getJITSymbolFlags(*I);
266     if (!JITSymFlags)
267       return JITSymFlags.takeError();
268 
269     // If this is a weak definition, check to see if there's a strong one.
270     // If there is, skip this symbol (we won't be providing it: the strong
271     // definition will). If there's no strong definition, make this definition
272     // strong.
273     if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
274       // First check whether there's already a definition in this instance.
275       if (GlobalSymbolTable.count(Name))
276         continue;
277 
278       // If we're not responsible for this symbol, skip it.
279       if (!ResponsibilitySet.count(Name))
280         continue;
281 
282       // Otherwise update the flags on the symbol to make this definition
283       // strong.
284       if (JITSymFlags->isWeak())
285         *JITSymFlags &= ~JITSymbolFlags::Weak;
286       if (JITSymFlags->isCommon()) {
287         *JITSymFlags &= ~JITSymbolFlags::Common;
288         uint32_t Align = I->getAlignment();
289         uint64_t Size = I->getCommonSize();
290         if (!CommonAlign)
291           CommonAlign = Align;
292         CommonSize = alignTo(CommonSize, Align) + Size;
293         CommonSymbolsToAllocate.push_back(*I);
294       }
295     }
296 
297     if (*FlagsOrErr & SymbolRef::SF_Absolute &&
298         SymType != object::SymbolRef::ST_File) {
299       uint64_t Addr = 0;
300       if (auto AddrOrErr = I->getAddress())
301         Addr = *AddrOrErr;
302       else
303         return AddrOrErr.takeError();
304 
305       unsigned SectionID = AbsoluteSymbolSection;
306 
307       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
308                         << " SID: " << SectionID
309                         << " Offset: " << format("%p", (uintptr_t)Addr)
310                         << " flags: " << *FlagsOrErr << "\n");
311       GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
312     } else if (SymType == object::SymbolRef::ST_Function ||
313                SymType == object::SymbolRef::ST_Data ||
314                SymType == object::SymbolRef::ST_Unknown ||
315                SymType == object::SymbolRef::ST_Other) {
316 
317       section_iterator SI = Obj.section_end();
318       if (auto SIOrErr = I->getSection())
319         SI = *SIOrErr;
320       else
321         return SIOrErr.takeError();
322 
323       if (SI == Obj.section_end())
324         continue;
325 
326       // Get symbol offset.
327       uint64_t SectOffset;
328       if (auto Err = getOffset(*I, *SI, SectOffset))
329         return std::move(Err);
330 
331       bool IsCode = SI->isText();
332       unsigned SectionID;
333       if (auto SectionIDOrErr =
334               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
335         SectionID = *SectionIDOrErr;
336       else
337         return SectionIDOrErr.takeError();
338 
339       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
340                         << " SID: " << SectionID
341                         << " Offset: " << format("%p", (uintptr_t)SectOffset)
342                         << " flags: " << *FlagsOrErr << "\n");
343       GlobalSymbolTable[Name] =
344           SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
345     }
346   }
347 
348   // Allocate common symbols
349   if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
350                                    CommonAlign))
351     return std::move(Err);
352 
353   // Parse and process relocations
354   LLVM_DEBUG(dbgs() << "Parse relocations:\n");
355   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
356        SI != SE; ++SI) {
357     StubMap Stubs;
358 
359     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
360     if (!RelSecOrErr)
361       return RelSecOrErr.takeError();
362 
363     section_iterator RelocatedSection = *RelSecOrErr;
364     if (RelocatedSection == SE)
365       continue;
366 
367     relocation_iterator I = SI->relocation_begin();
368     relocation_iterator E = SI->relocation_end();
369 
370     if (I == E && !ProcessAllSections)
371       continue;
372 
373     bool IsCode = RelocatedSection->isText();
374     unsigned SectionID = 0;
375     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
376                                                 LocalSections))
377       SectionID = *SectionIDOrErr;
378     else
379       return SectionIDOrErr.takeError();
380 
381     LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
382 
383     for (; I != E;)
384       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
385         I = *IOrErr;
386       else
387         return IOrErr.takeError();
388 
389     // If there is a NotifyStubEmitted callback set, call it to register any
390     // stubs created for this section.
391     if (NotifyStubEmitted) {
392       StringRef FileName = Obj.getFileName();
393       StringRef SectionName = Sections[SectionID].getName();
394       for (auto &KV : Stubs) {
395 
396         auto &VR = KV.first;
397         uint64_t StubAddr = KV.second;
398 
399         // If this is a named stub, just call NotifyStubEmitted.
400         if (VR.SymbolName) {
401           NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
402                             StubAddr);
403           continue;
404         }
405 
406         // Otherwise we will have to try a reverse lookup on the globla symbol table.
407         for (auto &GSTMapEntry : GlobalSymbolTable) {
408           StringRef SymbolName = GSTMapEntry.first();
409           auto &GSTEntry = GSTMapEntry.second;
410           if (GSTEntry.getSectionID() == VR.SectionID &&
411               GSTEntry.getOffset() == VR.Offset) {
412             NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
413                               StubAddr);
414             break;
415           }
416         }
417       }
418     }
419   }
420 
421   // Process remaining sections
422   if (ProcessAllSections) {
423     LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
424     for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
425          SI != SE; ++SI) {
426 
427       /* Ignore already loaded sections */
428       if (LocalSections.find(*SI) != LocalSections.end())
429         continue;
430 
431       bool IsCode = SI->isText();
432       if (auto SectionIDOrErr =
433               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
434         LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
435       else
436         return SectionIDOrErr.takeError();
437     }
438   }
439 
440   // Give the subclasses a chance to tie-up any loose ends.
441   if (auto Err = finalizeLoad(Obj, LocalSections))
442     return std::move(Err);
443 
444 //   for (auto E : LocalSections)
445 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
446 
447   return LocalSections;
448 }
449 
450 // A helper method for computeTotalAllocSize.
451 // Computes the memory size required to allocate sections with the given sizes,
452 // assuming that all sections are allocated with the given alignment
453 static uint64_t
454 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
455                                  uint64_t Alignment) {
456   uint64_t TotalSize = 0;
457   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
458     uint64_t AlignedSize =
459         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
460     TotalSize += AlignedSize;
461   }
462   return TotalSize;
463 }
464 
465 static bool isRequiredForExecution(const SectionRef Section) {
466   const ObjectFile *Obj = Section.getObject();
467   if (isa<object::ELFObjectFileBase>(Obj))
468     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
469   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
470     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
471     // Avoid loading zero-sized COFF sections.
472     // In PE files, VirtualSize gives the section size, and SizeOfRawData
473     // may be zero for sections with content. In Obj files, SizeOfRawData
474     // gives the section size, and VirtualSize is always zero. Hence
475     // the need to check for both cases below.
476     bool HasContent =
477         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
478     bool IsDiscardable =
479         CoffSection->Characteristics &
480         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
481     return HasContent && !IsDiscardable;
482   }
483 
484   assert(isa<MachOObjectFile>(Obj));
485   return true;
486 }
487 
488 static bool isReadOnlyData(const SectionRef Section) {
489   const ObjectFile *Obj = Section.getObject();
490   if (isa<object::ELFObjectFileBase>(Obj))
491     return !(ELFSectionRef(Section).getFlags() &
492              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
493   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
494     return ((COFFObj->getCOFFSection(Section)->Characteristics &
495              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
496              | COFF::IMAGE_SCN_MEM_READ
497              | COFF::IMAGE_SCN_MEM_WRITE))
498              ==
499              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
500              | COFF::IMAGE_SCN_MEM_READ));
501 
502   assert(isa<MachOObjectFile>(Obj));
503   return false;
504 }
505 
506 static bool isZeroInit(const SectionRef Section) {
507   const ObjectFile *Obj = Section.getObject();
508   if (isa<object::ELFObjectFileBase>(Obj))
509     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
510   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
511     return COFFObj->getCOFFSection(Section)->Characteristics &
512             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
513 
514   auto *MachO = cast<MachOObjectFile>(Obj);
515   unsigned SectionType = MachO->getSectionType(Section);
516   return SectionType == MachO::S_ZEROFILL ||
517          SectionType == MachO::S_GB_ZEROFILL;
518 }
519 
520 // Compute an upper bound of the memory size that is required to load all
521 // sections
522 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
523                                              uint64_t &CodeSize,
524                                              uint32_t &CodeAlign,
525                                              uint64_t &RODataSize,
526                                              uint32_t &RODataAlign,
527                                              uint64_t &RWDataSize,
528                                              uint32_t &RWDataAlign) {
529   // Compute the size of all sections required for execution
530   std::vector<uint64_t> CodeSectionSizes;
531   std::vector<uint64_t> ROSectionSizes;
532   std::vector<uint64_t> RWSectionSizes;
533 
534   // Collect sizes of all sections to be loaded;
535   // also determine the max alignment of all sections
536   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
537        SI != SE; ++SI) {
538     const SectionRef &Section = *SI;
539 
540     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
541 
542     // Consider only the sections that are required to be loaded for execution
543     if (IsRequired) {
544       uint64_t DataSize = Section.getSize();
545       uint64_t Alignment64 = Section.getAlignment();
546       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
547       bool IsCode = Section.isText();
548       bool IsReadOnly = isReadOnlyData(Section);
549 
550       Expected<StringRef> NameOrErr = Section.getName();
551       if (!NameOrErr)
552         return NameOrErr.takeError();
553       StringRef Name = *NameOrErr;
554 
555       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
556 
557       uint64_t PaddingSize = 0;
558       if (Name == ".eh_frame")
559         PaddingSize += 4;
560       if (StubBufSize != 0)
561         PaddingSize += getStubAlignment() - 1;
562 
563       uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
564 
565       // The .eh_frame section (at least on Linux) needs an extra four bytes
566       // padded
567       // with zeroes added at the end.  For MachO objects, this section has a
568       // slightly different name, so this won't have any effect for MachO
569       // objects.
570       if (Name == ".eh_frame")
571         SectionSize += 4;
572 
573       if (!SectionSize)
574         SectionSize = 1;
575 
576       if (IsCode) {
577         CodeAlign = std::max(CodeAlign, Alignment);
578         CodeSectionSizes.push_back(SectionSize);
579       } else if (IsReadOnly) {
580         RODataAlign = std::max(RODataAlign, Alignment);
581         ROSectionSizes.push_back(SectionSize);
582       } else {
583         RWDataAlign = std::max(RWDataAlign, Alignment);
584         RWSectionSizes.push_back(SectionSize);
585       }
586     }
587   }
588 
589   // Compute Global Offset Table size. If it is not zero we
590   // also update alignment, which is equal to a size of a
591   // single GOT entry.
592   if (unsigned GotSize = computeGOTSize(Obj)) {
593     RWSectionSizes.push_back(GotSize);
594     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
595   }
596 
597   // Compute the size of all common symbols
598   uint64_t CommonSize = 0;
599   uint32_t CommonAlign = 1;
600   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
601        ++I) {
602     Expected<uint32_t> FlagsOrErr = I->getFlags();
603     if (!FlagsOrErr)
604       // TODO: Test this error.
605       return FlagsOrErr.takeError();
606     if (*FlagsOrErr & SymbolRef::SF_Common) {
607       // Add the common symbols to a list.  We'll allocate them all below.
608       uint64_t Size = I->getCommonSize();
609       uint32_t Align = I->getAlignment();
610       // If this is the first common symbol, use its alignment as the alignment
611       // for the common symbols section.
612       if (CommonSize == 0)
613         CommonAlign = Align;
614       CommonSize = alignTo(CommonSize, Align) + Size;
615     }
616   }
617   if (CommonSize != 0) {
618     RWSectionSizes.push_back(CommonSize);
619     RWDataAlign = std::max(RWDataAlign, CommonAlign);
620   }
621 
622   // Compute the required allocation space for each different type of sections
623   // (code, read-only data, read-write data) assuming that all sections are
624   // allocated with the max alignment. Note that we cannot compute with the
625   // individual alignments of the sections, because then the required size
626   // depends on the order, in which the sections are allocated.
627   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
628   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
629   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
630 
631   return Error::success();
632 }
633 
634 // compute GOT size
635 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
636   size_t GotEntrySize = getGOTEntrySize();
637   if (!GotEntrySize)
638     return 0;
639 
640   size_t GotSize = 0;
641   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
642        SI != SE; ++SI) {
643 
644     for (const RelocationRef &Reloc : SI->relocations())
645       if (relocationNeedsGot(Reloc))
646         GotSize += GotEntrySize;
647   }
648 
649   return GotSize;
650 }
651 
652 // compute stub buffer size for the given section
653 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
654                                                     const SectionRef &Section) {
655   unsigned StubSize = getMaxStubSize();
656   if (StubSize == 0) {
657     return 0;
658   }
659   // FIXME: this is an inefficient way to handle this. We should computed the
660   // necessary section allocation size in loadObject by walking all the sections
661   // once.
662   unsigned StubBufSize = 0;
663   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
664        SI != SE; ++SI) {
665 
666     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
667     if (!RelSecOrErr)
668       report_fatal_error(toString(RelSecOrErr.takeError()));
669 
670     section_iterator RelSecI = *RelSecOrErr;
671     if (!(RelSecI == Section))
672       continue;
673 
674     for (const RelocationRef &Reloc : SI->relocations())
675       if (relocationNeedsStub(Reloc))
676         StubBufSize += StubSize;
677   }
678 
679   // Get section data size and alignment
680   uint64_t DataSize = Section.getSize();
681   uint64_t Alignment64 = Section.getAlignment();
682 
683   // Add stubbuf size alignment
684   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
685   unsigned StubAlignment = getStubAlignment();
686   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
687   if (StubAlignment > EndAlignment)
688     StubBufSize += StubAlignment - EndAlignment;
689   return StubBufSize;
690 }
691 
692 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
693                                              unsigned Size) const {
694   uint64_t Result = 0;
695   if (IsTargetLittleEndian) {
696     Src += Size - 1;
697     while (Size--)
698       Result = (Result << 8) | *Src--;
699   } else
700     while (Size--)
701       Result = (Result << 8) | *Src++;
702 
703   return Result;
704 }
705 
706 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
707                                           unsigned Size) const {
708   if (IsTargetLittleEndian) {
709     while (Size--) {
710       *Dst++ = Value & 0xFF;
711       Value >>= 8;
712     }
713   } else {
714     Dst += Size - 1;
715     while (Size--) {
716       *Dst-- = Value & 0xFF;
717       Value >>= 8;
718     }
719   }
720 }
721 
722 Expected<JITSymbolFlags>
723 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
724   return JITSymbolFlags::fromObjectSymbol(SR);
725 }
726 
727 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
728                                          CommonSymbolList &SymbolsToAllocate,
729                                          uint64_t CommonSize,
730                                          uint32_t CommonAlign) {
731   if (SymbolsToAllocate.empty())
732     return Error::success();
733 
734   // Allocate memory for the section
735   unsigned SectionID = Sections.size();
736   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
737                                              "<common symbols>", false);
738   if (!Addr)
739     report_fatal_error("Unable to allocate memory for common symbols!");
740   uint64_t Offset = 0;
741   Sections.push_back(
742       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
743   memset(Addr, 0, CommonSize);
744 
745   LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
746                     << " new addr: " << format("%p", Addr)
747                     << " DataSize: " << CommonSize << "\n");
748 
749   // Assign the address of each symbol
750   for (auto &Sym : SymbolsToAllocate) {
751     uint32_t Alignment = Sym.getAlignment();
752     uint64_t Size = Sym.getCommonSize();
753     StringRef Name;
754     if (auto NameOrErr = Sym.getName())
755       Name = *NameOrErr;
756     else
757       return NameOrErr.takeError();
758     if (Alignment) {
759       // This symbol has an alignment requirement.
760       uint64_t AlignOffset =
761           offsetToAlignment((uint64_t)Addr, Align(Alignment));
762       Addr += AlignOffset;
763       Offset += AlignOffset;
764     }
765     auto JITSymFlags = getJITSymbolFlags(Sym);
766 
767     if (!JITSymFlags)
768       return JITSymFlags.takeError();
769 
770     LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
771                       << format("%p", Addr) << "\n");
772     GlobalSymbolTable[Name] =
773         SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
774     Offset += Size;
775     Addr += Size;
776   }
777 
778   return Error::success();
779 }
780 
781 Expected<unsigned>
782 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
783                              const SectionRef &Section,
784                              bool IsCode) {
785   StringRef data;
786   uint64_t Alignment64 = Section.getAlignment();
787 
788   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
789   unsigned PaddingSize = 0;
790   unsigned StubBufSize = 0;
791   bool IsRequired = isRequiredForExecution(Section);
792   bool IsVirtual = Section.isVirtual();
793   bool IsZeroInit = isZeroInit(Section);
794   bool IsReadOnly = isReadOnlyData(Section);
795   uint64_t DataSize = Section.getSize();
796 
797   // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
798   // while being more "polite".  Other formats do not support 0-aligned sections
799   // anyway, so we should guarantee that the alignment is always at least 1.
800   Alignment = std::max(1u, Alignment);
801 
802   Expected<StringRef> NameOrErr = Section.getName();
803   if (!NameOrErr)
804     return NameOrErr.takeError();
805   StringRef Name = *NameOrErr;
806 
807   StubBufSize = computeSectionStubBufSize(Obj, Section);
808 
809   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
810   // with zeroes added at the end.  For MachO objects, this section has a
811   // slightly different name, so this won't have any effect for MachO objects.
812   if (Name == ".eh_frame")
813     PaddingSize = 4;
814 
815   uintptr_t Allocate;
816   unsigned SectionID = Sections.size();
817   uint8_t *Addr;
818   const char *pData = nullptr;
819 
820   // If this section contains any bits (i.e. isn't a virtual or bss section),
821   // grab a reference to them.
822   if (!IsVirtual && !IsZeroInit) {
823     // In either case, set the location of the unrelocated section in memory,
824     // since we still process relocations for it even if we're not applying them.
825     if (Expected<StringRef> E = Section.getContents())
826       data = *E;
827     else
828       return E.takeError();
829     pData = data.data();
830   }
831 
832   // If there are any stubs then the section alignment needs to be at least as
833   // high as stub alignment or padding calculations may by incorrect when the
834   // section is remapped.
835   if (StubBufSize != 0) {
836     Alignment = std::max(Alignment, getStubAlignment());
837     PaddingSize += getStubAlignment() - 1;
838   }
839 
840   // Some sections, such as debug info, don't need to be loaded for execution.
841   // Process those only if explicitly requested.
842   if (IsRequired || ProcessAllSections) {
843     Allocate = DataSize + PaddingSize + StubBufSize;
844     if (!Allocate)
845       Allocate = 1;
846     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
847                                                Name)
848                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
849                                                Name, IsReadOnly);
850     if (!Addr)
851       report_fatal_error("Unable to allocate section memory!");
852 
853     // Zero-initialize or copy the data from the image
854     if (IsZeroInit || IsVirtual)
855       memset(Addr, 0, DataSize);
856     else
857       memcpy(Addr, pData, DataSize);
858 
859     // Fill in any extra bytes we allocated for padding
860     if (PaddingSize != 0) {
861       memset(Addr + DataSize, 0, PaddingSize);
862       // Update the DataSize variable to include padding.
863       DataSize += PaddingSize;
864 
865       // Align DataSize to stub alignment if we have any stubs (PaddingSize will
866       // have been increased above to account for this).
867       if (StubBufSize > 0)
868         DataSize &= -(uint64_t)getStubAlignment();
869     }
870 
871     LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
872                       << Name << " obj addr: " << format("%p", pData)
873                       << " new addr: " << format("%p", Addr) << " DataSize: "
874                       << DataSize << " StubBufSize: " << StubBufSize
875                       << " Allocate: " << Allocate << "\n");
876   } else {
877     // Even if we didn't load the section, we need to record an entry for it
878     // to handle later processing (and by 'handle' I mean don't do anything
879     // with these sections).
880     Allocate = 0;
881     Addr = nullptr;
882     LLVM_DEBUG(
883         dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
884                << " obj addr: " << format("%p", data.data()) << " new addr: 0"
885                << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
886                << " Allocate: " << Allocate << "\n");
887   }
888 
889   Sections.push_back(
890       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
891 
892   // Debug info sections are linked as if their load address was zero
893   if (!IsRequired)
894     Sections.back().setLoadAddress(0);
895 
896   return SectionID;
897 }
898 
899 Expected<unsigned>
900 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
901                                    const SectionRef &Section,
902                                    bool IsCode,
903                                    ObjSectionToIDMap &LocalSections) {
904 
905   unsigned SectionID = 0;
906   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
907   if (i != LocalSections.end())
908     SectionID = i->second;
909   else {
910     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
911       SectionID = *SectionIDOrErr;
912     else
913       return SectionIDOrErr.takeError();
914     LocalSections[Section] = SectionID;
915   }
916   return SectionID;
917 }
918 
919 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
920                                               unsigned SectionID) {
921   Relocations[SectionID].push_back(RE);
922 }
923 
924 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
925                                              StringRef SymbolName) {
926   // Relocation by symbol.  If the symbol is found in the global symbol table,
927   // create an appropriate section relocation.  Otherwise, add it to
928   // ExternalSymbolRelocations.
929   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
930   if (Loc == GlobalSymbolTable.end()) {
931     ExternalSymbolRelocations[SymbolName].push_back(RE);
932   } else {
933     // Copy the RE since we want to modify its addend.
934     RelocationEntry RECopy = RE;
935     const auto &SymInfo = Loc->second;
936     RECopy.Addend += SymInfo.getOffset();
937     Relocations[SymInfo.getSectionID()].push_back(RECopy);
938   }
939 }
940 
941 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
942                                              unsigned AbiVariant) {
943   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
944       Arch == Triple::aarch64_32) {
945     // This stub has to be able to access the full address space,
946     // since symbol lookup won't necessarily find a handy, in-range,
947     // PLT stub for functions which could be anywhere.
948     // Stub can use ip0 (== x16) to calculate address
949     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
950     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
951     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
952     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
953     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
954 
955     return Addr;
956   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
957     // TODO: There is only ARM far stub now. We should add the Thumb stub,
958     // and stubs for branches Thumb - ARM and ARM - Thumb.
959     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
960     return Addr + 4;
961   } else if (IsMipsO32ABI || IsMipsN32ABI) {
962     // 0:   3c190000        lui     t9,%hi(addr).
963     // 4:   27390000        addiu   t9,t9,%lo(addr).
964     // 8:   03200008        jr      t9.
965     // c:   00000000        nop.
966     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
967     const unsigned NopInstr = 0x0;
968     unsigned JrT9Instr = 0x03200008;
969     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
970         (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
971       JrT9Instr = 0x03200009;
972 
973     writeBytesUnaligned(LuiT9Instr, Addr, 4);
974     writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
975     writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
976     writeBytesUnaligned(NopInstr, Addr + 12, 4);
977     return Addr;
978   } else if (IsMipsN64ABI) {
979     // 0:   3c190000        lui     t9,%highest(addr).
980     // 4:   67390000        daddiu  t9,t9,%higher(addr).
981     // 8:   0019CC38        dsll    t9,t9,16.
982     // c:   67390000        daddiu  t9,t9,%hi(addr).
983     // 10:  0019CC38        dsll    t9,t9,16.
984     // 14:  67390000        daddiu  t9,t9,%lo(addr).
985     // 18:  03200008        jr      t9.
986     // 1c:  00000000        nop.
987     const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
988                    DsllT9Instr = 0x19CC38;
989     const unsigned NopInstr = 0x0;
990     unsigned JrT9Instr = 0x03200008;
991     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
992       JrT9Instr = 0x03200009;
993 
994     writeBytesUnaligned(LuiT9Instr, Addr, 4);
995     writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
996     writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
997     writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
998     writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
999     writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
1000     writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
1001     writeBytesUnaligned(NopInstr, Addr + 28, 4);
1002     return Addr;
1003   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1004     // Depending on which version of the ELF ABI is in use, we need to
1005     // generate one of two variants of the stub.  They both start with
1006     // the same sequence to load the target address into r12.
1007     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
1008     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
1009     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
1010     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
1011     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
1012     if (AbiVariant == 2) {
1013       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1014       // The address is already in r12 as required by the ABI.  Branch to it.
1015       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
1016       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1017       writeInt32BE(Addr+28, 0x4E800420); // bctr
1018     } else {
1019       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1020       // Load the function address on r11 and sets it to control register. Also
1021       // loads the function TOC in r2 and environment pointer to r11.
1022       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
1023       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
1024       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
1025       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1026       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
1027       writeInt32BE(Addr+40, 0x4E800420); // bctr
1028     }
1029     return Addr;
1030   } else if (Arch == Triple::systemz) {
1031     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
1032     writeInt16BE(Addr+2,  0x0000);
1033     writeInt16BE(Addr+4,  0x0004);
1034     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
1035     // 8-byte address stored at Addr + 8
1036     return Addr;
1037   } else if (Arch == Triple::x86_64) {
1038     *Addr      = 0xFF; // jmp
1039     *(Addr+1)  = 0x25; // rip
1040     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1041   } else if (Arch == Triple::x86) {
1042     *Addr      = 0xE9; // 32-bit pc-relative jump.
1043   }
1044   return Addr;
1045 }
1046 
1047 // Assign an address to a symbol name and resolve all the relocations
1048 // associated with it.
1049 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1050                                              uint64_t Addr) {
1051   // The address to use for relocation resolution is not
1052   // the address of the local section buffer. We must be doing
1053   // a remote execution environment of some sort. Relocations can't
1054   // be applied until all the sections have been moved.  The client must
1055   // trigger this with a call to MCJIT::finalize() or
1056   // RuntimeDyld::resolveRelocations().
1057   //
1058   // Addr is a uint64_t because we can't assume the pointer width
1059   // of the target is the same as that of the host. Just use a generic
1060   // "big enough" type.
1061   LLVM_DEBUG(
1062       dbgs() << "Reassigning address for section " << SectionID << " ("
1063              << Sections[SectionID].getName() << "): "
1064              << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1065              << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1066   Sections[SectionID].setLoadAddress(Addr);
1067 }
1068 
1069 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1070                                             uint64_t Value) {
1071   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1072     const RelocationEntry &RE = Relocs[i];
1073     // Ignore relocations for sections that were not loaded
1074     if (Sections[RE.SectionID].getAddress() == nullptr)
1075       continue;
1076     resolveRelocation(RE, Value);
1077   }
1078 }
1079 
1080 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1081     const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1082   while (!ExternalSymbolRelocations.empty()) {
1083 
1084     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1085 
1086     StringRef Name = i->first();
1087     if (Name.size() == 0) {
1088       // This is an absolute symbol, use an address of zero.
1089       LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1090                         << "\n");
1091       RelocationList &Relocs = i->second;
1092       resolveRelocationList(Relocs, 0);
1093     } else {
1094       uint64_t Addr = 0;
1095       JITSymbolFlags Flags;
1096       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1097       if (Loc == GlobalSymbolTable.end()) {
1098         auto RRI = ExternalSymbolMap.find(Name);
1099         assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1100         Addr = RRI->second.getAddress();
1101         Flags = RRI->second.getFlags();
1102         // The call to getSymbolAddress may have caused additional modules to
1103         // be loaded, which may have added new entries to the
1104         // ExternalSymbolRelocations map.  Consquently, we need to update our
1105         // iterator.  This is also why retrieval of the relocation list
1106         // associated with this symbol is deferred until below this point.
1107         // New entries may have been added to the relocation list.
1108         i = ExternalSymbolRelocations.find(Name);
1109       } else {
1110         // We found the symbol in our global table.  It was probably in a
1111         // Module that we loaded previously.
1112         const auto &SymInfo = Loc->second;
1113         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1114                SymInfo.getOffset();
1115         Flags = SymInfo.getFlags();
1116       }
1117 
1118       // FIXME: Implement error handling that doesn't kill the host program!
1119       if (!Addr)
1120         report_fatal_error("Program used external function '" + Name +
1121                            "' which could not be resolved!");
1122 
1123       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1124       // manually and we shouldn't resolve its relocations.
1125       if (Addr != UINT64_MAX) {
1126 
1127         // Tweak the address based on the symbol flags if necessary.
1128         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1129         // if the target symbol is Thumb.
1130         Addr = modifyAddressBasedOnFlags(Addr, Flags);
1131 
1132         LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1133                           << format("0x%lx", Addr) << "\n");
1134         // This list may have been updated when we called getSymbolAddress, so
1135         // don't change this code to get the list earlier.
1136         RelocationList &Relocs = i->second;
1137         resolveRelocationList(Relocs, Addr);
1138       }
1139     }
1140 
1141     ExternalSymbolRelocations.erase(i);
1142   }
1143 }
1144 
1145 Error RuntimeDyldImpl::resolveExternalSymbols() {
1146   StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1147 
1148   // Resolution can trigger emission of more symbols, so iterate until
1149   // we've resolved *everything*.
1150   {
1151     JITSymbolResolver::LookupSet ResolvedSymbols;
1152 
1153     while (true) {
1154       JITSymbolResolver::LookupSet NewSymbols;
1155 
1156       for (auto &RelocKV : ExternalSymbolRelocations) {
1157         StringRef Name = RelocKV.first();
1158         if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1159             !ResolvedSymbols.count(Name))
1160           NewSymbols.insert(Name);
1161       }
1162 
1163       if (NewSymbols.empty())
1164         break;
1165 
1166 #ifdef _MSC_VER
1167       using ExpectedLookupResult =
1168           MSVCPExpected<JITSymbolResolver::LookupResult>;
1169 #else
1170       using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1171 #endif
1172 
1173       auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1174       auto NewSymbolsF = NewSymbolsP->get_future();
1175       Resolver.lookup(NewSymbols,
1176                       [=](Expected<JITSymbolResolver::LookupResult> Result) {
1177                         NewSymbolsP->set_value(std::move(Result));
1178                       });
1179 
1180       auto NewResolverResults = NewSymbolsF.get();
1181 
1182       if (!NewResolverResults)
1183         return NewResolverResults.takeError();
1184 
1185       assert(NewResolverResults->size() == NewSymbols.size() &&
1186              "Should have errored on unresolved symbols");
1187 
1188       for (auto &RRKV : *NewResolverResults) {
1189         assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1190         ExternalSymbolMap.insert(RRKV);
1191         ResolvedSymbols.insert(RRKV.first);
1192       }
1193     }
1194   }
1195 
1196   applyExternalSymbolRelocations(ExternalSymbolMap);
1197 
1198   return Error::success();
1199 }
1200 
1201 void RuntimeDyldImpl::finalizeAsync(
1202     std::unique_ptr<RuntimeDyldImpl> This,
1203     unique_function<void(object::OwningBinary<object::ObjectFile>, Error)>
1204         OnEmitted,
1205     object::OwningBinary<object::ObjectFile> O) {
1206 
1207   auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1208   auto PostResolveContinuation =
1209       [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O)](
1210           Expected<JITSymbolResolver::LookupResult> Result) mutable {
1211         if (!Result) {
1212           OnEmitted(std::move(O), Result.takeError());
1213           return;
1214         }
1215 
1216         /// Copy the result into a StringMap, where the keys are held by value.
1217         StringMap<JITEvaluatedSymbol> Resolved;
1218         for (auto &KV : *Result)
1219           Resolved[KV.first] = KV.second;
1220 
1221         SharedThis->applyExternalSymbolRelocations(Resolved);
1222         SharedThis->resolveLocalRelocations();
1223         SharedThis->registerEHFrames();
1224         std::string ErrMsg;
1225         if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1226           OnEmitted(std::move(O),
1227                     make_error<StringError>(std::move(ErrMsg),
1228                                             inconvertibleErrorCode()));
1229         else
1230           OnEmitted(std::move(O), Error::success());
1231       };
1232 
1233   JITSymbolResolver::LookupSet Symbols;
1234 
1235   for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1236     StringRef Name = RelocKV.first();
1237     assert(!Name.empty() && "Symbol has no name?");
1238     assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1239            "Name already processed. RuntimeDyld instances can not be re-used "
1240            "when finalizing with finalizeAsync.");
1241     Symbols.insert(Name);
1242   }
1243 
1244   if (!Symbols.empty()) {
1245     SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1246   } else
1247     PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1248 }
1249 
1250 //===----------------------------------------------------------------------===//
1251 // RuntimeDyld class implementation
1252 
1253 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1254                                           const object::SectionRef &Sec) const {
1255 
1256   auto I = ObjSecToIDMap.find(Sec);
1257   if (I != ObjSecToIDMap.end())
1258     return RTDyld.Sections[I->second].getLoadAddress();
1259 
1260   return 0;
1261 }
1262 
1263 void RuntimeDyld::MemoryManager::anchor() {}
1264 void JITSymbolResolver::anchor() {}
1265 void LegacyJITSymbolResolver::anchor() {}
1266 
1267 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1268                          JITSymbolResolver &Resolver)
1269     : MemMgr(MemMgr), Resolver(Resolver) {
1270   // FIXME: There's a potential issue lurking here if a single instance of
1271   // RuntimeDyld is used to load multiple objects.  The current implementation
1272   // associates a single memory manager with a RuntimeDyld instance.  Even
1273   // though the public class spawns a new 'impl' instance for each load,
1274   // they share a single memory manager.  This can become a problem when page
1275   // permissions are applied.
1276   Dyld = nullptr;
1277   ProcessAllSections = false;
1278 }
1279 
1280 RuntimeDyld::~RuntimeDyld() {}
1281 
1282 static std::unique_ptr<RuntimeDyldCOFF>
1283 createRuntimeDyldCOFF(
1284                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1285                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1286                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1287   std::unique_ptr<RuntimeDyldCOFF> Dyld =
1288     RuntimeDyldCOFF::create(Arch, MM, Resolver);
1289   Dyld->setProcessAllSections(ProcessAllSections);
1290   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1291   return Dyld;
1292 }
1293 
1294 static std::unique_ptr<RuntimeDyldELF>
1295 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1296                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1297                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1298   std::unique_ptr<RuntimeDyldELF> Dyld =
1299       RuntimeDyldELF::create(Arch, MM, Resolver);
1300   Dyld->setProcessAllSections(ProcessAllSections);
1301   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1302   return Dyld;
1303 }
1304 
1305 static std::unique_ptr<RuntimeDyldMachO>
1306 createRuntimeDyldMachO(
1307                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1308                      JITSymbolResolver &Resolver,
1309                      bool ProcessAllSections,
1310                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1311   std::unique_ptr<RuntimeDyldMachO> Dyld =
1312     RuntimeDyldMachO::create(Arch, MM, Resolver);
1313   Dyld->setProcessAllSections(ProcessAllSections);
1314   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1315   return Dyld;
1316 }
1317 
1318 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1319 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1320   if (!Dyld) {
1321     if (Obj.isELF())
1322       Dyld =
1323           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1324                                MemMgr, Resolver, ProcessAllSections,
1325                                std::move(NotifyStubEmitted));
1326     else if (Obj.isMachO())
1327       Dyld = createRuntimeDyldMachO(
1328                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1329                ProcessAllSections, std::move(NotifyStubEmitted));
1330     else if (Obj.isCOFF())
1331       Dyld = createRuntimeDyldCOFF(
1332                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1333                ProcessAllSections, std::move(NotifyStubEmitted));
1334     else
1335       report_fatal_error("Incompatible object format!");
1336   }
1337 
1338   if (!Dyld->isCompatibleFile(Obj))
1339     report_fatal_error("Incompatible object format!");
1340 
1341   auto LoadedObjInfo = Dyld->loadObject(Obj);
1342   MemMgr.notifyObjectLoaded(*this, Obj);
1343   return LoadedObjInfo;
1344 }
1345 
1346 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1347   if (!Dyld)
1348     return nullptr;
1349   return Dyld->getSymbolLocalAddress(Name);
1350 }
1351 
1352 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1353   assert(Dyld && "No RuntimeDyld instance attached");
1354   return Dyld->getSymbolSectionID(Name);
1355 }
1356 
1357 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1358   if (!Dyld)
1359     return nullptr;
1360   return Dyld->getSymbol(Name);
1361 }
1362 
1363 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1364   if (!Dyld)
1365     return std::map<StringRef, JITEvaluatedSymbol>();
1366   return Dyld->getSymbolTable();
1367 }
1368 
1369 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1370 
1371 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1372   Dyld->reassignSectionAddress(SectionID, Addr);
1373 }
1374 
1375 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1376                                     uint64_t TargetAddress) {
1377   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1378 }
1379 
1380 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1381 
1382 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1383 
1384 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1385   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1386   MemMgr.FinalizationLocked = true;
1387   resolveRelocations();
1388   registerEHFrames();
1389   if (!MemoryFinalizationLocked) {
1390     MemMgr.finalizeMemory();
1391     MemMgr.FinalizationLocked = false;
1392   }
1393 }
1394 
1395 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1396   assert(Dyld && "No Dyld instance attached");
1397   return Dyld->getSectionContent(SectionID);
1398 }
1399 
1400 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1401   assert(Dyld && "No Dyld instance attached");
1402   return Dyld->getSectionLoadAddress(SectionID);
1403 }
1404 
1405 void RuntimeDyld::registerEHFrames() {
1406   if (Dyld)
1407     Dyld->registerEHFrames();
1408 }
1409 
1410 void RuntimeDyld::deregisterEHFrames() {
1411   if (Dyld)
1412     Dyld->deregisterEHFrames();
1413 }
1414 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1415 // so that we can re-use RuntimeDyld's implementation without twisting the
1416 // interface any further for ORC's purposes.
1417 void jitLinkForORC(
1418     object::OwningBinary<object::ObjectFile> O,
1419     RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
1420     bool ProcessAllSections,
1421     unique_function<
1422         Error(const object::ObjectFile &Obj,
1423               std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1424               std::map<StringRef, JITEvaluatedSymbol>)>
1425         OnLoaded,
1426     unique_function<void(object::OwningBinary<object::ObjectFile>, Error)>
1427         OnEmitted) {
1428 
1429   RuntimeDyld RTDyld(MemMgr, Resolver);
1430   RTDyld.setProcessAllSections(ProcessAllSections);
1431 
1432   auto Info = RTDyld.loadObject(*O.getBinary());
1433 
1434   if (RTDyld.hasError()) {
1435     OnEmitted(std::move(O), make_error<StringError>(RTDyld.getErrorString(),
1436                                                     inconvertibleErrorCode()));
1437     return;
1438   }
1439 
1440   if (auto Err =
1441           OnLoaded(*O.getBinary(), std::move(Info), RTDyld.getSymbolTable()))
1442     OnEmitted(std::move(O), std::move(Err));
1443 
1444   RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1445                                  std::move(O));
1446 }
1447 
1448 } // end namespace llvm
1449