xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp (revision 8bcb0991864975618c09697b1aca10683346d9f0)
1 //===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCJIT.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ExecutionEngine/GenericValue.h"
12 #include "llvm/ExecutionEngine/JITEventListener.h"
13 #include "llvm/ExecutionEngine/MCJIT.h"
14 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/IR/DerivedTypes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/LegacyPassManager.h"
19 #include "llvm/IR/Mangler.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/Object/Archive.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/DynamicLibrary.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include <mutex>
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 static struct RegisterJIT {
33   RegisterJIT() { MCJIT::Register(); }
34 } JITRegistrator;
35 
36 }
37 
38 extern "C" void LLVMLinkInMCJIT() {
39 }
40 
41 ExecutionEngine *
42 MCJIT::createJIT(std::unique_ptr<Module> M, std::string *ErrorStr,
43                  std::shared_ptr<MCJITMemoryManager> MemMgr,
44                  std::shared_ptr<LegacyJITSymbolResolver> Resolver,
45                  std::unique_ptr<TargetMachine> TM) {
46   // Try to register the program as a source of symbols to resolve against.
47   //
48   // FIXME: Don't do this here.
49   sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
50 
51   if (!MemMgr || !Resolver) {
52     auto RTDyldMM = std::make_shared<SectionMemoryManager>();
53     if (!MemMgr)
54       MemMgr = RTDyldMM;
55     if (!Resolver)
56       Resolver = RTDyldMM;
57   }
58 
59   return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
60                    std::move(Resolver));
61 }
62 
63 MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> TM,
64              std::shared_ptr<MCJITMemoryManager> MemMgr,
65              std::shared_ptr<LegacyJITSymbolResolver> Resolver)
66     : ExecutionEngine(TM->createDataLayout(), std::move(M)), TM(std::move(TM)),
67       Ctx(nullptr), MemMgr(std::move(MemMgr)),
68       Resolver(*this, std::move(Resolver)), Dyld(*this->MemMgr, this->Resolver),
69       ObjCache(nullptr) {
70   // FIXME: We are managing our modules, so we do not want the base class
71   // ExecutionEngine to manage them as well. To avoid double destruction
72   // of the first (and only) module added in ExecutionEngine constructor
73   // we remove it from EE and will destruct it ourselves.
74   //
75   // It may make sense to move our module manager (based on SmallStPtr) back
76   // into EE if the JIT and Interpreter can live with it.
77   // If so, additional functions: addModule, removeModule, FindFunctionNamed,
78   // runStaticConstructorsDestructors could be moved back to EE as well.
79   //
80   std::unique_ptr<Module> First = std::move(Modules[0]);
81   Modules.clear();
82 
83   if (First->getDataLayout().isDefault())
84     First->setDataLayout(getDataLayout());
85 
86   OwnedModules.addModule(std::move(First));
87   RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
88 }
89 
90 MCJIT::~MCJIT() {
91   std::lock_guard<sys::Mutex> locked(lock);
92 
93   Dyld.deregisterEHFrames();
94 
95   for (auto &Obj : LoadedObjects)
96     if (Obj)
97       notifyFreeingObject(*Obj);
98 
99   Archives.clear();
100 }
101 
102 void MCJIT::addModule(std::unique_ptr<Module> M) {
103   std::lock_guard<sys::Mutex> locked(lock);
104 
105   if (M->getDataLayout().isDefault())
106     M->setDataLayout(getDataLayout());
107 
108   OwnedModules.addModule(std::move(M));
109 }
110 
111 bool MCJIT::removeModule(Module *M) {
112   std::lock_guard<sys::Mutex> locked(lock);
113   return OwnedModules.removeModule(M);
114 }
115 
116 void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
117   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
118   if (Dyld.hasError())
119     report_fatal_error(Dyld.getErrorString());
120 
121   notifyObjectLoaded(*Obj, *L);
122 
123   LoadedObjects.push_back(std::move(Obj));
124 }
125 
126 void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
127   std::unique_ptr<object::ObjectFile> ObjFile;
128   std::unique_ptr<MemoryBuffer> MemBuf;
129   std::tie(ObjFile, MemBuf) = Obj.takeBinary();
130   addObjectFile(std::move(ObjFile));
131   Buffers.push_back(std::move(MemBuf));
132 }
133 
134 void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
135   Archives.push_back(std::move(A));
136 }
137 
138 void MCJIT::setObjectCache(ObjectCache* NewCache) {
139   std::lock_guard<sys::Mutex> locked(lock);
140   ObjCache = NewCache;
141 }
142 
143 std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
144   assert(M && "Can not emit a null module");
145 
146   std::lock_guard<sys::Mutex> locked(lock);
147 
148   // Materialize all globals in the module if they have not been
149   // materialized already.
150   cantFail(M->materializeAll());
151 
152   // This must be a module which has already been added but not loaded to this
153   // MCJIT instance, since these conditions are tested by our caller,
154   // generateCodeForModule.
155 
156   legacy::PassManager PM;
157 
158   // The RuntimeDyld will take ownership of this shortly
159   SmallVector<char, 4096> ObjBufferSV;
160   raw_svector_ostream ObjStream(ObjBufferSV);
161 
162   // Turn the machine code intermediate representation into bytes in memory
163   // that may be executed.
164   if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
165     report_fatal_error("Target does not support MC emission!");
166 
167   // Initialize passes.
168   PM.run(*M);
169   // Flush the output buffer to get the generated code into memory
170 
171   std::unique_ptr<MemoryBuffer> CompiledObjBuffer(
172       new SmallVectorMemoryBuffer(std::move(ObjBufferSV)));
173 
174   // If we have an object cache, tell it about the new object.
175   // Note that we're using the compiled image, not the loaded image (as below).
176   if (ObjCache) {
177     // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
178     // to create a temporary object here and delete it after the call.
179     MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
180     ObjCache->notifyObjectCompiled(M, MB);
181   }
182 
183   return CompiledObjBuffer;
184 }
185 
186 void MCJIT::generateCodeForModule(Module *M) {
187   // Get a thread lock to make sure we aren't trying to load multiple times
188   std::lock_guard<sys::Mutex> locked(lock);
189 
190   // This must be a module which has already been added to this MCJIT instance.
191   assert(OwnedModules.ownsModule(M) &&
192          "MCJIT::generateCodeForModule: Unknown module.");
193 
194   // Re-compilation is not supported
195   if (OwnedModules.hasModuleBeenLoaded(M))
196     return;
197 
198   std::unique_ptr<MemoryBuffer> ObjectToLoad;
199   // Try to load the pre-compiled object from cache if possible
200   if (ObjCache)
201     ObjectToLoad = ObjCache->getObject(M);
202 
203   assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
204 
205   // If the cache did not contain a suitable object, compile the object
206   if (!ObjectToLoad) {
207     ObjectToLoad = emitObject(M);
208     assert(ObjectToLoad && "Compilation did not produce an object.");
209   }
210 
211   // Load the object into the dynamic linker.
212   // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
213   Expected<std::unique_ptr<object::ObjectFile>> LoadedObject =
214     object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
215   if (!LoadedObject) {
216     std::string Buf;
217     raw_string_ostream OS(Buf);
218     logAllUnhandledErrors(LoadedObject.takeError(), OS);
219     OS.flush();
220     report_fatal_error(Buf);
221   }
222   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
223     Dyld.loadObject(*LoadedObject.get());
224 
225   if (Dyld.hasError())
226     report_fatal_error(Dyld.getErrorString());
227 
228   notifyObjectLoaded(*LoadedObject.get(), *L);
229 
230   Buffers.push_back(std::move(ObjectToLoad));
231   LoadedObjects.push_back(std::move(*LoadedObject));
232 
233   OwnedModules.markModuleAsLoaded(M);
234 }
235 
236 void MCJIT::finalizeLoadedModules() {
237   std::lock_guard<sys::Mutex> locked(lock);
238 
239   // Resolve any outstanding relocations.
240   Dyld.resolveRelocations();
241 
242   OwnedModules.markAllLoadedModulesAsFinalized();
243 
244   // Register EH frame data for any module we own which has been loaded
245   Dyld.registerEHFrames();
246 
247   // Set page permissions.
248   MemMgr->finalizeMemory();
249 }
250 
251 // FIXME: Rename this.
252 void MCJIT::finalizeObject() {
253   std::lock_guard<sys::Mutex> locked(lock);
254 
255   // Generate code for module is going to move objects out of the 'added' list,
256   // so we need to copy that out before using it:
257   SmallVector<Module*, 16> ModsToAdd;
258   for (auto M : OwnedModules.added())
259     ModsToAdd.push_back(M);
260 
261   for (auto M : ModsToAdd)
262     generateCodeForModule(M);
263 
264   finalizeLoadedModules();
265 }
266 
267 void MCJIT::finalizeModule(Module *M) {
268   std::lock_guard<sys::Mutex> locked(lock);
269 
270   // This must be a module which has already been added to this MCJIT instance.
271   assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
272 
273   // If the module hasn't been compiled, just do that.
274   if (!OwnedModules.hasModuleBeenLoaded(M))
275     generateCodeForModule(M);
276 
277   finalizeLoadedModules();
278 }
279 
280 JITSymbol MCJIT::findExistingSymbol(const std::string &Name) {
281   if (void *Addr = getPointerToGlobalIfAvailable(Name))
282     return JITSymbol(static_cast<uint64_t>(
283                          reinterpret_cast<uintptr_t>(Addr)),
284                      JITSymbolFlags::Exported);
285 
286   return Dyld.getSymbol(Name);
287 }
288 
289 Module *MCJIT::findModuleForSymbol(const std::string &Name,
290                                    bool CheckFunctionsOnly) {
291   StringRef DemangledName = Name;
292   if (DemangledName[0] == getDataLayout().getGlobalPrefix())
293     DemangledName = DemangledName.substr(1);
294 
295   std::lock_guard<sys::Mutex> locked(lock);
296 
297   // If it hasn't already been generated, see if it's in one of our modules.
298   for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
299                               E = OwnedModules.end_added();
300        I != E; ++I) {
301     Module *M = *I;
302     Function *F = M->getFunction(DemangledName);
303     if (F && !F->isDeclaration())
304       return M;
305     if (!CheckFunctionsOnly) {
306       GlobalVariable *G = M->getGlobalVariable(DemangledName);
307       if (G && !G->isDeclaration())
308         return M;
309       // FIXME: Do we need to worry about global aliases?
310     }
311   }
312   // We didn't find the symbol in any of our modules.
313   return nullptr;
314 }
315 
316 uint64_t MCJIT::getSymbolAddress(const std::string &Name,
317                                  bool CheckFunctionsOnly) {
318   std::string MangledName;
319   {
320     raw_string_ostream MangledNameStream(MangledName);
321     Mangler::getNameWithPrefix(MangledNameStream, Name, getDataLayout());
322   }
323   if (auto Sym = findSymbol(MangledName, CheckFunctionsOnly)) {
324     if (auto AddrOrErr = Sym.getAddress())
325       return *AddrOrErr;
326     else
327       report_fatal_error(AddrOrErr.takeError());
328   } else if (auto Err = Sym.takeError())
329     report_fatal_error(Sym.takeError());
330   return 0;
331 }
332 
333 JITSymbol MCJIT::findSymbol(const std::string &Name,
334                             bool CheckFunctionsOnly) {
335   std::lock_guard<sys::Mutex> locked(lock);
336 
337   // First, check to see if we already have this symbol.
338   if (auto Sym = findExistingSymbol(Name))
339     return Sym;
340 
341   for (object::OwningBinary<object::Archive> &OB : Archives) {
342     object::Archive *A = OB.getBinary();
343     // Look for our symbols in each Archive
344     auto OptionalChildOrErr = A->findSym(Name);
345     if (!OptionalChildOrErr)
346       report_fatal_error(OptionalChildOrErr.takeError());
347     auto &OptionalChild = *OptionalChildOrErr;
348     if (OptionalChild) {
349       // FIXME: Support nested archives?
350       Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
351           OptionalChild->getAsBinary();
352       if (!ChildBinOrErr) {
353         // TODO: Actually report errors helpfully.
354         consumeError(ChildBinOrErr.takeError());
355         continue;
356       }
357       std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
358       if (ChildBin->isObject()) {
359         std::unique_ptr<object::ObjectFile> OF(
360             static_cast<object::ObjectFile *>(ChildBin.release()));
361         // This causes the object file to be loaded.
362         addObjectFile(std::move(OF));
363         // The address should be here now.
364         if (auto Sym = findExistingSymbol(Name))
365           return Sym;
366       }
367     }
368   }
369 
370   // If it hasn't already been generated, see if it's in one of our modules.
371   Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
372   if (M) {
373     generateCodeForModule(M);
374 
375     // Check the RuntimeDyld table again, it should be there now.
376     return findExistingSymbol(Name);
377   }
378 
379   // If a LazyFunctionCreator is installed, use it to get/create the function.
380   // FIXME: Should we instead have a LazySymbolCreator callback?
381   if (LazyFunctionCreator) {
382     auto Addr = static_cast<uint64_t>(
383                   reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
384     return JITSymbol(Addr, JITSymbolFlags::Exported);
385   }
386 
387   return nullptr;
388 }
389 
390 uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
391   std::lock_guard<sys::Mutex> locked(lock);
392   uint64_t Result = getSymbolAddress(Name, false);
393   if (Result != 0)
394     finalizeLoadedModules();
395   return Result;
396 }
397 
398 uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
399   std::lock_guard<sys::Mutex> locked(lock);
400   uint64_t Result = getSymbolAddress(Name, true);
401   if (Result != 0)
402     finalizeLoadedModules();
403   return Result;
404 }
405 
406 // Deprecated.  Use getFunctionAddress instead.
407 void *MCJIT::getPointerToFunction(Function *F) {
408   std::lock_guard<sys::Mutex> locked(lock);
409 
410   Mangler Mang;
411   SmallString<128> Name;
412   TM->getNameWithPrefix(Name, F, Mang);
413 
414   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
415     bool AbortOnFailure = !F->hasExternalWeakLinkage();
416     void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
417     updateGlobalMapping(F, Addr);
418     return Addr;
419   }
420 
421   Module *M = F->getParent();
422   bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
423 
424   // Make sure the relevant module has been compiled and loaded.
425   if (HasBeenAddedButNotLoaded)
426     generateCodeForModule(M);
427   else if (!OwnedModules.hasModuleBeenLoaded(M)) {
428     // If this function doesn't belong to one of our modules, we're done.
429     // FIXME: Asking for the pointer to a function that hasn't been registered,
430     //        and isn't a declaration (which is handled above) should probably
431     //        be an assertion.
432     return nullptr;
433   }
434 
435   // FIXME: Should the Dyld be retaining module information? Probably not.
436   //
437   // This is the accessor for the target address, so make sure to check the
438   // load address of the symbol, not the local address.
439   return (void*)Dyld.getSymbol(Name).getAddress();
440 }
441 
442 void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
443     bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
444   for (; I != E; ++I) {
445     ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
446   }
447 }
448 
449 void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
450   // Execute global ctors/dtors for each module in the program.
451   runStaticConstructorsDestructorsInModulePtrSet(
452       isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
453   runStaticConstructorsDestructorsInModulePtrSet(
454       isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
455   runStaticConstructorsDestructorsInModulePtrSet(
456       isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
457 }
458 
459 Function *MCJIT::FindFunctionNamedInModulePtrSet(StringRef FnName,
460                                                  ModulePtrSet::iterator I,
461                                                  ModulePtrSet::iterator E) {
462   for (; I != E; ++I) {
463     Function *F = (*I)->getFunction(FnName);
464     if (F && !F->isDeclaration())
465       return F;
466   }
467   return nullptr;
468 }
469 
470 GlobalVariable *MCJIT::FindGlobalVariableNamedInModulePtrSet(StringRef Name,
471                                                              bool AllowInternal,
472                                                              ModulePtrSet::iterator I,
473                                                              ModulePtrSet::iterator E) {
474   for (; I != E; ++I) {
475     GlobalVariable *GV = (*I)->getGlobalVariable(Name, AllowInternal);
476     if (GV && !GV->isDeclaration())
477       return GV;
478   }
479   return nullptr;
480 }
481 
482 
483 Function *MCJIT::FindFunctionNamed(StringRef FnName) {
484   Function *F = FindFunctionNamedInModulePtrSet(
485       FnName, OwnedModules.begin_added(), OwnedModules.end_added());
486   if (!F)
487     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
488                                         OwnedModules.end_loaded());
489   if (!F)
490     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
491                                         OwnedModules.end_finalized());
492   return F;
493 }
494 
495 GlobalVariable *MCJIT::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
496   GlobalVariable *GV = FindGlobalVariableNamedInModulePtrSet(
497       Name, AllowInternal, OwnedModules.begin_added(), OwnedModules.end_added());
498   if (!GV)
499     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_loaded(),
500                                         OwnedModules.end_loaded());
501   if (!GV)
502     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_finalized(),
503                                         OwnedModules.end_finalized());
504   return GV;
505 }
506 
507 GenericValue MCJIT::runFunction(Function *F, ArrayRef<GenericValue> ArgValues) {
508   assert(F && "Function *F was null at entry to run()");
509 
510   void *FPtr = getPointerToFunction(F);
511   finalizeModule(F->getParent());
512   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
513   FunctionType *FTy = F->getFunctionType();
514   Type *RetTy = FTy->getReturnType();
515 
516   assert((FTy->getNumParams() == ArgValues.size() ||
517           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
518          "Wrong number of arguments passed into function!");
519   assert(FTy->getNumParams() == ArgValues.size() &&
520          "This doesn't support passing arguments through varargs (yet)!");
521 
522   // Handle some common cases first.  These cases correspond to common `main'
523   // prototypes.
524   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
525     switch (ArgValues.size()) {
526     case 3:
527       if (FTy->getParamType(0)->isIntegerTy(32) &&
528           FTy->getParamType(1)->isPointerTy() &&
529           FTy->getParamType(2)->isPointerTy()) {
530         int (*PF)(int, char **, const char **) =
531           (int(*)(int, char **, const char **))(intptr_t)FPtr;
532 
533         // Call the function.
534         GenericValue rv;
535         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
536                                  (char **)GVTOP(ArgValues[1]),
537                                  (const char **)GVTOP(ArgValues[2])));
538         return rv;
539       }
540       break;
541     case 2:
542       if (FTy->getParamType(0)->isIntegerTy(32) &&
543           FTy->getParamType(1)->isPointerTy()) {
544         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
545 
546         // Call the function.
547         GenericValue rv;
548         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
549                                  (char **)GVTOP(ArgValues[1])));
550         return rv;
551       }
552       break;
553     case 1:
554       if (FTy->getNumParams() == 1 &&
555           FTy->getParamType(0)->isIntegerTy(32)) {
556         GenericValue rv;
557         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
558         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
559         return rv;
560       }
561       break;
562     }
563   }
564 
565   // Handle cases where no arguments are passed first.
566   if (ArgValues.empty()) {
567     GenericValue rv;
568     switch (RetTy->getTypeID()) {
569     default: llvm_unreachable("Unknown return type for function call!");
570     case Type::IntegerTyID: {
571       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
572       if (BitWidth == 1)
573         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
574       else if (BitWidth <= 8)
575         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
576       else if (BitWidth <= 16)
577         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
578       else if (BitWidth <= 32)
579         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
580       else if (BitWidth <= 64)
581         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
582       else
583         llvm_unreachable("Integer types > 64 bits not supported");
584       return rv;
585     }
586     case Type::VoidTyID:
587       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
588       return rv;
589     case Type::FloatTyID:
590       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
591       return rv;
592     case Type::DoubleTyID:
593       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
594       return rv;
595     case Type::X86_FP80TyID:
596     case Type::FP128TyID:
597     case Type::PPC_FP128TyID:
598       llvm_unreachable("long double not supported yet");
599     case Type::PointerTyID:
600       return PTOGV(((void*(*)())(intptr_t)FPtr)());
601     }
602   }
603 
604   report_fatal_error("MCJIT::runFunction does not support full-featured "
605                      "argument passing. Please use "
606                      "ExecutionEngine::getFunctionAddress and cast the result "
607                      "to the desired function pointer type.");
608 }
609 
610 void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
611   if (!isSymbolSearchingDisabled()) {
612     if (auto Sym = Resolver.findSymbol(Name)) {
613       if (auto AddrOrErr = Sym.getAddress())
614         return reinterpret_cast<void*>(
615                  static_cast<uintptr_t>(*AddrOrErr));
616     } else if (auto Err = Sym.takeError())
617       report_fatal_error(std::move(Err));
618   }
619 
620   /// If a LazyFunctionCreator is installed, use it to get/create the function.
621   if (LazyFunctionCreator)
622     if (void *RP = LazyFunctionCreator(Name))
623       return RP;
624 
625   if (AbortOnFailure) {
626     report_fatal_error("Program used external function '"+Name+
627                        "' which could not be resolved!");
628   }
629   return nullptr;
630 }
631 
632 void MCJIT::RegisterJITEventListener(JITEventListener *L) {
633   if (!L)
634     return;
635   std::lock_guard<sys::Mutex> locked(lock);
636   EventListeners.push_back(L);
637 }
638 
639 void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
640   if (!L)
641     return;
642   std::lock_guard<sys::Mutex> locked(lock);
643   auto I = find(reverse(EventListeners), L);
644   if (I != EventListeners.rend()) {
645     std::swap(*I, EventListeners.back());
646     EventListeners.pop_back();
647   }
648 }
649 
650 void MCJIT::notifyObjectLoaded(const object::ObjectFile &Obj,
651                                const RuntimeDyld::LoadedObjectInfo &L) {
652   uint64_t Key =
653       static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
654   std::lock_guard<sys::Mutex> locked(lock);
655   MemMgr->notifyObjectLoaded(this, Obj);
656   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
657     EventListeners[I]->notifyObjectLoaded(Key, Obj, L);
658   }
659 }
660 
661 void MCJIT::notifyFreeingObject(const object::ObjectFile &Obj) {
662   uint64_t Key =
663       static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
664   std::lock_guard<sys::Mutex> locked(lock);
665   for (JITEventListener *L : EventListeners)
666     L->notifyFreeingObject(Key);
667 }
668 
669 JITSymbol
670 LinkingSymbolResolver::findSymbol(const std::string &Name) {
671   auto Result = ParentEngine.findSymbol(Name, false);
672   if (Result)
673     return Result;
674   if (ParentEngine.isSymbolSearchingDisabled())
675     return nullptr;
676   return ClientResolver->findSymbol(Name);
677 }
678 
679 void LinkingSymbolResolver::anchor() {}
680