xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp (revision c2de0116c80176829406289da3b79b6e70855ea4)
1  //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  //  This file contains both code to deal with invoking "external" functions, but
10  //  also contains code that implements "exported" external functions.
11  //
12  //  There are currently two mechanisms for handling external functions in the
13  //  Interpreter.  The first is to implement lle_* wrapper functions that are
14  //  specific to well-known library functions which manually translate the
15  //  arguments from GenericValues and make the call.  If such a wrapper does
16  //  not exist, and libffi is available, then the Interpreter will attempt to
17  //  invoke the function using libffi, after finding its address.
18  //
19  //===----------------------------------------------------------------------===//
20  
21  #include "Interpreter.h"
22  #include "llvm/ADT/APInt.h"
23  #include "llvm/ADT/ArrayRef.h"
24  #include "llvm/Config/config.h" // Detect libffi
25  #include "llvm/ExecutionEngine/GenericValue.h"
26  #include "llvm/IR/DataLayout.h"
27  #include "llvm/IR/DerivedTypes.h"
28  #include "llvm/IR/Function.h"
29  #include "llvm/IR/Type.h"
30  #include "llvm/Support/Casting.h"
31  #include "llvm/Support/DynamicLibrary.h"
32  #include "llvm/Support/ErrorHandling.h"
33  #include "llvm/Support/Mutex.h"
34  #include "llvm/Support/raw_ostream.h"
35  #include <cassert>
36  #include <cmath>
37  #include <csignal>
38  #include <cstdint>
39  #include <cstdio>
40  #include <cstring>
41  #include <map>
42  #include <mutex>
43  #include <string>
44  #include <utility>
45  #include <vector>
46  
47  #ifdef HAVE_FFI_CALL
48  #ifdef HAVE_FFI_H
49  #include <ffi.h>
50  #define USE_LIBFFI
51  #elif HAVE_FFI_FFI_H
52  #include <ffi/ffi.h>
53  #define USE_LIBFFI
54  #endif
55  #endif
56  
57  using namespace llvm;
58  
59  namespace {
60  
61  typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
62  typedef void (*RawFunc)();
63  
64  struct Functions {
65    sys::Mutex Lock;
66    std::map<const Function *, ExFunc> ExportedFunctions;
67    std::map<std::string, ExFunc> FuncNames;
68  #ifdef USE_LIBFFI
69    std::map<const Function *, RawFunc> RawFunctions;
70  #endif
71  };
72  
73  Functions &getFunctions() {
74    static Functions F;
75    return F;
76  }
77  
78  } // anonymous namespace
79  
80  static Interpreter *TheInterpreter;
81  
82  static char getTypeID(Type *Ty) {
83    switch (Ty->getTypeID()) {
84    case Type::VoidTyID:    return 'V';
85    case Type::IntegerTyID:
86      switch (cast<IntegerType>(Ty)->getBitWidth()) {
87        case 1:  return 'o';
88        case 8:  return 'B';
89        case 16: return 'S';
90        case 32: return 'I';
91        case 64: return 'L';
92        default: return 'N';
93      }
94    case Type::FloatTyID:   return 'F';
95    case Type::DoubleTyID:  return 'D';
96    case Type::PointerTyID: return 'P';
97    case Type::FunctionTyID:return 'M';
98    case Type::StructTyID:  return 'T';
99    case Type::ArrayTyID:   return 'A';
100    default: return 'U';
101    }
102  }
103  
104  // Try to find address of external function given a Function object.
105  // Please note, that interpreter doesn't know how to assemble a
106  // real call in general case (this is JIT job), that's why it assumes,
107  // that all external functions has the same (and pretty "general") signature.
108  // The typical example of such functions are "lle_X_" ones.
109  static ExFunc lookupFunction(const Function *F) {
110    // Function not found, look it up... start by figuring out what the
111    // composite function name should be.
112    std::string ExtName = "lle_";
113    FunctionType *FT = F->getFunctionType();
114    ExtName += getTypeID(FT->getReturnType());
115    for (Type *T : FT->params())
116      ExtName += getTypeID(T);
117    ExtName += ("_" + F->getName()).str();
118  
119    auto &Fns = getFunctions();
120    sys::ScopedLock Writer(Fns.Lock);
121    ExFunc FnPtr = Fns.FuncNames[ExtName];
122    if (!FnPtr)
123      FnPtr = Fns.FuncNames[("lle_X_" + F->getName()).str()];
124    if (!FnPtr)  // Try calling a generic function... if it exists...
125      FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
126          ("lle_X_" + F->getName()).str());
127    if (FnPtr)
128      Fns.ExportedFunctions.insert(std::make_pair(F, FnPtr)); // Cache for later
129    return FnPtr;
130  }
131  
132  #ifdef USE_LIBFFI
133  static ffi_type *ffiTypeFor(Type *Ty) {
134    switch (Ty->getTypeID()) {
135      case Type::VoidTyID: return &ffi_type_void;
136      case Type::IntegerTyID:
137        switch (cast<IntegerType>(Ty)->getBitWidth()) {
138          case 8:  return &ffi_type_sint8;
139          case 16: return &ffi_type_sint16;
140          case 32: return &ffi_type_sint32;
141          case 64: return &ffi_type_sint64;
142        }
143        llvm_unreachable("Unhandled integer type bitwidth");
144      case Type::FloatTyID:   return &ffi_type_float;
145      case Type::DoubleTyID:  return &ffi_type_double;
146      case Type::PointerTyID: return &ffi_type_pointer;
147      default: break;
148    }
149    // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
150    report_fatal_error("Type could not be mapped for use with libffi.");
151    return NULL;
152  }
153  
154  static void *ffiValueFor(Type *Ty, const GenericValue &AV,
155                           void *ArgDataPtr) {
156    switch (Ty->getTypeID()) {
157      case Type::IntegerTyID:
158        switch (cast<IntegerType>(Ty)->getBitWidth()) {
159          case 8: {
160            int8_t *I8Ptr = (int8_t *) ArgDataPtr;
161            *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
162            return ArgDataPtr;
163          }
164          case 16: {
165            int16_t *I16Ptr = (int16_t *) ArgDataPtr;
166            *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
167            return ArgDataPtr;
168          }
169          case 32: {
170            int32_t *I32Ptr = (int32_t *) ArgDataPtr;
171            *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
172            return ArgDataPtr;
173          }
174          case 64: {
175            int64_t *I64Ptr = (int64_t *) ArgDataPtr;
176            *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
177            return ArgDataPtr;
178          }
179        }
180        llvm_unreachable("Unhandled integer type bitwidth");
181      case Type::FloatTyID: {
182        float *FloatPtr = (float *) ArgDataPtr;
183        *FloatPtr = AV.FloatVal;
184        return ArgDataPtr;
185      }
186      case Type::DoubleTyID: {
187        double *DoublePtr = (double *) ArgDataPtr;
188        *DoublePtr = AV.DoubleVal;
189        return ArgDataPtr;
190      }
191      case Type::PointerTyID: {
192        void **PtrPtr = (void **) ArgDataPtr;
193        *PtrPtr = GVTOP(AV);
194        return ArgDataPtr;
195      }
196      default: break;
197    }
198    // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
199    report_fatal_error("Type value could not be mapped for use with libffi.");
200    return NULL;
201  }
202  
203  static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
204                        const DataLayout &TD, GenericValue &Result) {
205    ffi_cif cif;
206    FunctionType *FTy = F->getFunctionType();
207    const unsigned NumArgs = F->arg_size();
208  
209    // TODO: We don't have type information about the remaining arguments, because
210    // this information is never passed into ExecutionEngine::runFunction().
211    if (ArgVals.size() > NumArgs && F->isVarArg()) {
212      report_fatal_error("Calling external var arg function '" + F->getName()
213                        + "' is not supported by the Interpreter.");
214    }
215  
216    unsigned ArgBytes = 0;
217  
218    std::vector<ffi_type*> args(NumArgs);
219    for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
220         A != E; ++A) {
221      const unsigned ArgNo = A->getArgNo();
222      Type *ArgTy = FTy->getParamType(ArgNo);
223      args[ArgNo] = ffiTypeFor(ArgTy);
224      ArgBytes += TD.getTypeStoreSize(ArgTy);
225    }
226  
227    SmallVector<uint8_t, 128> ArgData;
228    ArgData.resize(ArgBytes);
229    uint8_t *ArgDataPtr = ArgData.data();
230    SmallVector<void*, 16> values(NumArgs);
231    for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
232         A != E; ++A) {
233      const unsigned ArgNo = A->getArgNo();
234      Type *ArgTy = FTy->getParamType(ArgNo);
235      values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
236      ArgDataPtr += TD.getTypeStoreSize(ArgTy);
237    }
238  
239    Type *RetTy = FTy->getReturnType();
240    ffi_type *rtype = ffiTypeFor(RetTy);
241  
242    if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) ==
243        FFI_OK) {
244      SmallVector<uint8_t, 128> ret;
245      if (RetTy->getTypeID() != Type::VoidTyID)
246        ret.resize(TD.getTypeStoreSize(RetTy));
247      ffi_call(&cif, Fn, ret.data(), values.data());
248      switch (RetTy->getTypeID()) {
249        case Type::IntegerTyID:
250          switch (cast<IntegerType>(RetTy)->getBitWidth()) {
251            case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
252            case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
253            case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
254            case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
255          }
256          break;
257        case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
258        case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
259        case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
260        default: break;
261      }
262      return true;
263    }
264  
265    return false;
266  }
267  #endif // USE_LIBFFI
268  
269  GenericValue Interpreter::callExternalFunction(Function *F,
270                                                 ArrayRef<GenericValue> ArgVals) {
271    TheInterpreter = this;
272  
273    auto &Fns = getFunctions();
274    std::unique_lock<sys::Mutex> Guard(Fns.Lock);
275  
276    // Do a lookup to see if the function is in our cache... this should just be a
277    // deferred annotation!
278    std::map<const Function *, ExFunc>::iterator FI =
279        Fns.ExportedFunctions.find(F);
280    if (ExFunc Fn = (FI == Fns.ExportedFunctions.end()) ? lookupFunction(F)
281                                                        : FI->second) {
282      Guard.unlock();
283      return Fn(F->getFunctionType(), ArgVals);
284    }
285  
286  #ifdef USE_LIBFFI
287    std::map<const Function *, RawFunc>::iterator RF = Fns.RawFunctions.find(F);
288    RawFunc RawFn;
289    if (RF == Fns.RawFunctions.end()) {
290      RawFn = (RawFunc)(intptr_t)
291        sys::DynamicLibrary::SearchForAddressOfSymbol(std::string(F->getName()));
292      if (!RawFn)
293        RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
294      if (RawFn != 0)
295        Fns.RawFunctions.insert(std::make_pair(F, RawFn)); // Cache for later
296    } else {
297      RawFn = RF->second;
298    }
299  
300    Guard.unlock();
301  
302    GenericValue Result;
303    if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
304      return Result;
305  #endif // USE_LIBFFI
306  
307    if (F->getName() == "__main")
308      errs() << "Tried to execute an unknown external function: "
309        << *F->getType() << " __main\n";
310    else
311      report_fatal_error("Tried to execute an unknown external function: " +
312                         F->getName());
313  #ifndef USE_LIBFFI
314    errs() << "Recompiling LLVM with --enable-libffi might help.\n";
315  #endif
316    return GenericValue();
317  }
318  
319  //===----------------------------------------------------------------------===//
320  //  Functions "exported" to the running application...
321  //
322  
323  // void atexit(Function*)
324  static GenericValue lle_X_atexit(FunctionType *FT,
325                                   ArrayRef<GenericValue> Args) {
326    assert(Args.size() == 1);
327    TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
328    GenericValue GV;
329    GV.IntVal = 0;
330    return GV;
331  }
332  
333  // void exit(int)
334  static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
335    TheInterpreter->exitCalled(Args[0]);
336    return GenericValue();
337  }
338  
339  // void abort(void)
340  static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
341    //FIXME: should we report or raise here?
342    //report_fatal_error("Interpreted program raised SIGABRT");
343    raise (SIGABRT);
344    return GenericValue();
345  }
346  
347  // Silence warnings about sprintf. (See also
348  // https://github.com/llvm/llvm-project/issues/58086)
349  #if defined(__clang__)
350  #pragma clang diagnostic push
351  #pragma clang diagnostic ignored "-Wdeprecated-declarations"
352  #endif
353  // int sprintf(char *, const char *, ...) - a very rough implementation to make
354  // output useful.
355  static GenericValue lle_X_sprintf(FunctionType *FT,
356                                    ArrayRef<GenericValue> Args) {
357    char *OutputBuffer = (char *)GVTOP(Args[0]);
358    const char *FmtStr = (const char *)GVTOP(Args[1]);
359    unsigned ArgNo = 2;
360  
361    // printf should return # chars printed.  This is completely incorrect, but
362    // close enough for now.
363    GenericValue GV;
364    GV.IntVal = APInt(32, strlen(FmtStr));
365    while (true) {
366      switch (*FmtStr) {
367      case 0: return GV;             // Null terminator...
368      default:                       // Normal nonspecial character
369        sprintf(OutputBuffer++, "%c", *FmtStr++);
370        break;
371      case '\\': {                   // Handle escape codes
372        sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
373        FmtStr += 2; OutputBuffer += 2;
374        break;
375      }
376      case '%': {                    // Handle format specifiers
377        char FmtBuf[100] = "", Buffer[1000] = "";
378        char *FB = FmtBuf;
379        *FB++ = *FmtStr++;
380        char Last = *FB++ = *FmtStr++;
381        unsigned HowLong = 0;
382        while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
383               Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
384               Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
385               Last != 'p' && Last != 's' && Last != '%') {
386          if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
387          Last = *FB++ = *FmtStr++;
388        }
389        *FB = 0;
390  
391        switch (Last) {
392        case '%':
393          memcpy(Buffer, "%", 2); break;
394        case 'c':
395          sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
396          break;
397        case 'd': case 'i':
398        case 'u': case 'o':
399        case 'x': case 'X':
400          if (HowLong >= 1) {
401            if (HowLong == 1 &&
402                TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
403                sizeof(long) < sizeof(int64_t)) {
404              // Make sure we use %lld with a 64 bit argument because we might be
405              // compiling LLI on a 32 bit compiler.
406              unsigned Size = strlen(FmtBuf);
407              FmtBuf[Size] = FmtBuf[Size-1];
408              FmtBuf[Size+1] = 0;
409              FmtBuf[Size-1] = 'l';
410            }
411            sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
412          } else
413            sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
414          break;
415        case 'e': case 'E': case 'g': case 'G': case 'f':
416          sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
417        case 'p':
418          sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
419        case 's':
420          sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
421        default:
422          errs() << "<unknown printf code '" << *FmtStr << "'!>";
423          ArgNo++; break;
424        }
425        size_t Len = strlen(Buffer);
426        memcpy(OutputBuffer, Buffer, Len + 1);
427        OutputBuffer += Len;
428        }
429        break;
430      }
431    }
432    return GV;
433  }
434  #if defined(__clang__)
435  #pragma clang diagnostic pop
436  #endif
437  
438  // int printf(const char *, ...) - a very rough implementation to make output
439  // useful.
440  static GenericValue lle_X_printf(FunctionType *FT,
441                                   ArrayRef<GenericValue> Args) {
442    char Buffer[10000];
443    std::vector<GenericValue> NewArgs;
444    NewArgs.push_back(PTOGV((void*)&Buffer[0]));
445    llvm::append_range(NewArgs, Args);
446    GenericValue GV = lle_X_sprintf(FT, NewArgs);
447    outs() << Buffer;
448    return GV;
449  }
450  
451  // int sscanf(const char *format, ...);
452  static GenericValue lle_X_sscanf(FunctionType *FT,
453                                   ArrayRef<GenericValue> args) {
454    assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
455  
456    char *Args[10];
457    for (unsigned i = 0; i < args.size(); ++i)
458      Args[i] = (char*)GVTOP(args[i]);
459  
460    GenericValue GV;
461    GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
462                      Args[5], Args[6], Args[7], Args[8], Args[9]));
463    return GV;
464  }
465  
466  // int scanf(const char *format, ...);
467  static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
468    assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
469  
470    char *Args[10];
471    for (unsigned i = 0; i < args.size(); ++i)
472      Args[i] = (char*)GVTOP(args[i]);
473  
474    GenericValue GV;
475    GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
476                      Args[5], Args[6], Args[7], Args[8], Args[9]));
477    return GV;
478  }
479  
480  // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
481  // output useful.
482  static GenericValue lle_X_fprintf(FunctionType *FT,
483                                    ArrayRef<GenericValue> Args) {
484    assert(Args.size() >= 2);
485    char Buffer[10000];
486    std::vector<GenericValue> NewArgs;
487    NewArgs.push_back(PTOGV(Buffer));
488    NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
489    GenericValue GV = lle_X_sprintf(FT, NewArgs);
490  
491    fputs(Buffer, (FILE *) GVTOP(Args[0]));
492    return GV;
493  }
494  
495  static GenericValue lle_X_memset(FunctionType *FT,
496                                   ArrayRef<GenericValue> Args) {
497    int val = (int)Args[1].IntVal.getSExtValue();
498    size_t len = (size_t)Args[2].IntVal.getZExtValue();
499    memset((void *)GVTOP(Args[0]), val, len);
500    // llvm.memset.* returns void, lle_X_* returns GenericValue,
501    // so here we return GenericValue with IntVal set to zero
502    GenericValue GV;
503    GV.IntVal = 0;
504    return GV;
505  }
506  
507  static GenericValue lle_X_memcpy(FunctionType *FT,
508                                   ArrayRef<GenericValue> Args) {
509    memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
510           (size_t)(Args[2].IntVal.getLimitedValue()));
511  
512    // llvm.memcpy* returns void, lle_X_* returns GenericValue,
513    // so here we return GenericValue with IntVal set to zero
514    GenericValue GV;
515    GV.IntVal = 0;
516    return GV;
517  }
518  
519  void Interpreter::initializeExternalFunctions() {
520    auto &Fns = getFunctions();
521    sys::ScopedLock Writer(Fns.Lock);
522    Fns.FuncNames["lle_X_atexit"]       = lle_X_atexit;
523    Fns.FuncNames["lle_X_exit"]         = lle_X_exit;
524    Fns.FuncNames["lle_X_abort"]        = lle_X_abort;
525  
526    Fns.FuncNames["lle_X_printf"]       = lle_X_printf;
527    Fns.FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
528    Fns.FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
529    Fns.FuncNames["lle_X_scanf"]        = lle_X_scanf;
530    Fns.FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
531    Fns.FuncNames["lle_X_memset"]       = lle_X_memset;
532    Fns.FuncNames["lle_X_memcpy"]       = lle_X_memcpy;
533  }
534