1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains both code to deal with invoking "external" functions, but 10 // also contains code that implements "exported" external functions. 11 // 12 // There are currently two mechanisms for handling external functions in the 13 // Interpreter. The first is to implement lle_* wrapper functions that are 14 // specific to well-known library functions which manually translate the 15 // arguments from GenericValues and make the call. If such a wrapper does 16 // not exist, and libffi is available, then the Interpreter will attempt to 17 // invoke the function using libffi, after finding its address. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "Interpreter.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/Config/config.h" // Detect libffi 25 #include "llvm/ExecutionEngine/GenericValue.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/DynamicLibrary.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/Mutex.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <cmath> 38 #include <csignal> 39 #include <cstdint> 40 #include <cstdio> 41 #include <cstring> 42 #include <map> 43 #include <mutex> 44 #include <string> 45 #include <utility> 46 #include <vector> 47 48 #ifdef HAVE_FFI_CALL 49 #ifdef HAVE_FFI_H 50 #include <ffi.h> 51 #define USE_LIBFFI 52 #elif HAVE_FFI_FFI_H 53 #include <ffi/ffi.h> 54 #define USE_LIBFFI 55 #endif 56 #endif 57 58 using namespace llvm; 59 60 static ManagedStatic<sys::Mutex> FunctionsLock; 61 62 typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>); 63 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; 64 static ManagedStatic<std::map<std::string, ExFunc> > FuncNames; 65 66 #ifdef USE_LIBFFI 67 typedef void (*RawFunc)(); 68 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; 69 #endif 70 71 static Interpreter *TheInterpreter; 72 73 static char getTypeID(Type *Ty) { 74 switch (Ty->getTypeID()) { 75 case Type::VoidTyID: return 'V'; 76 case Type::IntegerTyID: 77 switch (cast<IntegerType>(Ty)->getBitWidth()) { 78 case 1: return 'o'; 79 case 8: return 'B'; 80 case 16: return 'S'; 81 case 32: return 'I'; 82 case 64: return 'L'; 83 default: return 'N'; 84 } 85 case Type::FloatTyID: return 'F'; 86 case Type::DoubleTyID: return 'D'; 87 case Type::PointerTyID: return 'P'; 88 case Type::FunctionTyID:return 'M'; 89 case Type::StructTyID: return 'T'; 90 case Type::ArrayTyID: return 'A'; 91 default: return 'U'; 92 } 93 } 94 95 // Try to find address of external function given a Function object. 96 // Please note, that interpreter doesn't know how to assemble a 97 // real call in general case (this is JIT job), that's why it assumes, 98 // that all external functions has the same (and pretty "general") signature. 99 // The typical example of such functions are "lle_X_" ones. 100 static ExFunc lookupFunction(const Function *F) { 101 // Function not found, look it up... start by figuring out what the 102 // composite function name should be. 103 std::string ExtName = "lle_"; 104 FunctionType *FT = F->getFunctionType(); 105 ExtName += getTypeID(FT->getReturnType()); 106 for (Type *T : FT->params()) 107 ExtName += getTypeID(T); 108 ExtName += ("_" + F->getName()).str(); 109 110 sys::ScopedLock Writer(*FunctionsLock); 111 ExFunc FnPtr = (*FuncNames)[ExtName]; 112 if (!FnPtr) 113 FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()]; 114 if (!FnPtr) // Try calling a generic function... if it exists... 115 FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( 116 ("lle_X_" + F->getName()).str()); 117 if (FnPtr) 118 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later 119 return FnPtr; 120 } 121 122 #ifdef USE_LIBFFI 123 static ffi_type *ffiTypeFor(Type *Ty) { 124 switch (Ty->getTypeID()) { 125 case Type::VoidTyID: return &ffi_type_void; 126 case Type::IntegerTyID: 127 switch (cast<IntegerType>(Ty)->getBitWidth()) { 128 case 8: return &ffi_type_sint8; 129 case 16: return &ffi_type_sint16; 130 case 32: return &ffi_type_sint32; 131 case 64: return &ffi_type_sint64; 132 } 133 case Type::FloatTyID: return &ffi_type_float; 134 case Type::DoubleTyID: return &ffi_type_double; 135 case Type::PointerTyID: return &ffi_type_pointer; 136 default: break; 137 } 138 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 139 report_fatal_error("Type could not be mapped for use with libffi."); 140 return NULL; 141 } 142 143 static void *ffiValueFor(Type *Ty, const GenericValue &AV, 144 void *ArgDataPtr) { 145 switch (Ty->getTypeID()) { 146 case Type::IntegerTyID: 147 switch (cast<IntegerType>(Ty)->getBitWidth()) { 148 case 8: { 149 int8_t *I8Ptr = (int8_t *) ArgDataPtr; 150 *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); 151 return ArgDataPtr; 152 } 153 case 16: { 154 int16_t *I16Ptr = (int16_t *) ArgDataPtr; 155 *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); 156 return ArgDataPtr; 157 } 158 case 32: { 159 int32_t *I32Ptr = (int32_t *) ArgDataPtr; 160 *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); 161 return ArgDataPtr; 162 } 163 case 64: { 164 int64_t *I64Ptr = (int64_t *) ArgDataPtr; 165 *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); 166 return ArgDataPtr; 167 } 168 } 169 case Type::FloatTyID: { 170 float *FloatPtr = (float *) ArgDataPtr; 171 *FloatPtr = AV.FloatVal; 172 return ArgDataPtr; 173 } 174 case Type::DoubleTyID: { 175 double *DoublePtr = (double *) ArgDataPtr; 176 *DoublePtr = AV.DoubleVal; 177 return ArgDataPtr; 178 } 179 case Type::PointerTyID: { 180 void **PtrPtr = (void **) ArgDataPtr; 181 *PtrPtr = GVTOP(AV); 182 return ArgDataPtr; 183 } 184 default: break; 185 } 186 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 187 report_fatal_error("Type value could not be mapped for use with libffi."); 188 return NULL; 189 } 190 191 static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals, 192 const DataLayout &TD, GenericValue &Result) { 193 ffi_cif cif; 194 FunctionType *FTy = F->getFunctionType(); 195 const unsigned NumArgs = F->arg_size(); 196 197 // TODO: We don't have type information about the remaining arguments, because 198 // this information is never passed into ExecutionEngine::runFunction(). 199 if (ArgVals.size() > NumArgs && F->isVarArg()) { 200 report_fatal_error("Calling external var arg function '" + F->getName() 201 + "' is not supported by the Interpreter."); 202 } 203 204 unsigned ArgBytes = 0; 205 206 std::vector<ffi_type*> args(NumArgs); 207 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 208 A != E; ++A) { 209 const unsigned ArgNo = A->getArgNo(); 210 Type *ArgTy = FTy->getParamType(ArgNo); 211 args[ArgNo] = ffiTypeFor(ArgTy); 212 ArgBytes += TD.getTypeStoreSize(ArgTy); 213 } 214 215 SmallVector<uint8_t, 128> ArgData; 216 ArgData.resize(ArgBytes); 217 uint8_t *ArgDataPtr = ArgData.data(); 218 SmallVector<void*, 16> values(NumArgs); 219 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 220 A != E; ++A) { 221 const unsigned ArgNo = A->getArgNo(); 222 Type *ArgTy = FTy->getParamType(ArgNo); 223 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); 224 ArgDataPtr += TD.getTypeStoreSize(ArgTy); 225 } 226 227 Type *RetTy = FTy->getReturnType(); 228 ffi_type *rtype = ffiTypeFor(RetTy); 229 230 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) == 231 FFI_OK) { 232 SmallVector<uint8_t, 128> ret; 233 if (RetTy->getTypeID() != Type::VoidTyID) 234 ret.resize(TD.getTypeStoreSize(RetTy)); 235 ffi_call(&cif, Fn, ret.data(), values.data()); 236 switch (RetTy->getTypeID()) { 237 case Type::IntegerTyID: 238 switch (cast<IntegerType>(RetTy)->getBitWidth()) { 239 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; 240 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; 241 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; 242 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; 243 } 244 break; 245 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; 246 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; 247 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; 248 default: break; 249 } 250 return true; 251 } 252 253 return false; 254 } 255 #endif // USE_LIBFFI 256 257 GenericValue Interpreter::callExternalFunction(Function *F, 258 ArrayRef<GenericValue> ArgVals) { 259 TheInterpreter = this; 260 261 std::unique_lock<sys::Mutex> Guard(*FunctionsLock); 262 263 // Do a lookup to see if the function is in our cache... this should just be a 264 // deferred annotation! 265 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); 266 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) 267 : FI->second) { 268 Guard.unlock(); 269 return Fn(F->getFunctionType(), ArgVals); 270 } 271 272 #ifdef USE_LIBFFI 273 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); 274 RawFunc RawFn; 275 if (RF == RawFunctions->end()) { 276 RawFn = (RawFunc)(intptr_t) 277 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); 278 if (!RawFn) 279 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); 280 if (RawFn != 0) 281 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later 282 } else { 283 RawFn = RF->second; 284 } 285 286 Guard.unlock(); 287 288 GenericValue Result; 289 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) 290 return Result; 291 #endif // USE_LIBFFI 292 293 if (F->getName() == "__main") 294 errs() << "Tried to execute an unknown external function: " 295 << *F->getType() << " __main\n"; 296 else 297 report_fatal_error("Tried to execute an unknown external function: " + 298 F->getName()); 299 #ifndef USE_LIBFFI 300 errs() << "Recompiling LLVM with --enable-libffi might help.\n"; 301 #endif 302 return GenericValue(); 303 } 304 305 //===----------------------------------------------------------------------===// 306 // Functions "exported" to the running application... 307 // 308 309 // void atexit(Function*) 310 static GenericValue lle_X_atexit(FunctionType *FT, 311 ArrayRef<GenericValue> Args) { 312 assert(Args.size() == 1); 313 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); 314 GenericValue GV; 315 GV.IntVal = 0; 316 return GV; 317 } 318 319 // void exit(int) 320 static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) { 321 TheInterpreter->exitCalled(Args[0]); 322 return GenericValue(); 323 } 324 325 // void abort(void) 326 static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) { 327 //FIXME: should we report or raise here? 328 //report_fatal_error("Interpreted program raised SIGABRT"); 329 raise (SIGABRT); 330 return GenericValue(); 331 } 332 333 // int sprintf(char *, const char *, ...) - a very rough implementation to make 334 // output useful. 335 static GenericValue lle_X_sprintf(FunctionType *FT, 336 ArrayRef<GenericValue> Args) { 337 char *OutputBuffer = (char *)GVTOP(Args[0]); 338 const char *FmtStr = (const char *)GVTOP(Args[1]); 339 unsigned ArgNo = 2; 340 341 // printf should return # chars printed. This is completely incorrect, but 342 // close enough for now. 343 GenericValue GV; 344 GV.IntVal = APInt(32, strlen(FmtStr)); 345 while (true) { 346 switch (*FmtStr) { 347 case 0: return GV; // Null terminator... 348 default: // Normal nonspecial character 349 sprintf(OutputBuffer++, "%c", *FmtStr++); 350 break; 351 case '\\': { // Handle escape codes 352 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); 353 FmtStr += 2; OutputBuffer += 2; 354 break; 355 } 356 case '%': { // Handle format specifiers 357 char FmtBuf[100] = "", Buffer[1000] = ""; 358 char *FB = FmtBuf; 359 *FB++ = *FmtStr++; 360 char Last = *FB++ = *FmtStr++; 361 unsigned HowLong = 0; 362 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && 363 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && 364 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && 365 Last != 'p' && Last != 's' && Last != '%') { 366 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's 367 Last = *FB++ = *FmtStr++; 368 } 369 *FB = 0; 370 371 switch (Last) { 372 case '%': 373 memcpy(Buffer, "%", 2); break; 374 case 'c': 375 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 376 break; 377 case 'd': case 'i': 378 case 'u': case 'o': 379 case 'x': case 'X': 380 if (HowLong >= 1) { 381 if (HowLong == 1 && 382 TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 && 383 sizeof(long) < sizeof(int64_t)) { 384 // Make sure we use %lld with a 64 bit argument because we might be 385 // compiling LLI on a 32 bit compiler. 386 unsigned Size = strlen(FmtBuf); 387 FmtBuf[Size] = FmtBuf[Size-1]; 388 FmtBuf[Size+1] = 0; 389 FmtBuf[Size-1] = 'l'; 390 } 391 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); 392 } else 393 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 394 break; 395 case 'e': case 'E': case 'g': case 'G': case 'f': 396 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; 397 case 'p': 398 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; 399 case 's': 400 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; 401 default: 402 errs() << "<unknown printf code '" << *FmtStr << "'!>"; 403 ArgNo++; break; 404 } 405 size_t Len = strlen(Buffer); 406 memcpy(OutputBuffer, Buffer, Len + 1); 407 OutputBuffer += Len; 408 } 409 break; 410 } 411 } 412 return GV; 413 } 414 415 // int printf(const char *, ...) - a very rough implementation to make output 416 // useful. 417 static GenericValue lle_X_printf(FunctionType *FT, 418 ArrayRef<GenericValue> Args) { 419 char Buffer[10000]; 420 std::vector<GenericValue> NewArgs; 421 NewArgs.push_back(PTOGV((void*)&Buffer[0])); 422 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); 423 GenericValue GV = lle_X_sprintf(FT, NewArgs); 424 outs() << Buffer; 425 return GV; 426 } 427 428 // int sscanf(const char *format, ...); 429 static GenericValue lle_X_sscanf(FunctionType *FT, 430 ArrayRef<GenericValue> args) { 431 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); 432 433 char *Args[10]; 434 for (unsigned i = 0; i < args.size(); ++i) 435 Args[i] = (char*)GVTOP(args[i]); 436 437 GenericValue GV; 438 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], 439 Args[5], Args[6], Args[7], Args[8], Args[9])); 440 return GV; 441 } 442 443 // int scanf(const char *format, ...); 444 static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) { 445 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); 446 447 char *Args[10]; 448 for (unsigned i = 0; i < args.size(); ++i) 449 Args[i] = (char*)GVTOP(args[i]); 450 451 GenericValue GV; 452 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], 453 Args[5], Args[6], Args[7], Args[8], Args[9])); 454 return GV; 455 } 456 457 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make 458 // output useful. 459 static GenericValue lle_X_fprintf(FunctionType *FT, 460 ArrayRef<GenericValue> Args) { 461 assert(Args.size() >= 2); 462 char Buffer[10000]; 463 std::vector<GenericValue> NewArgs; 464 NewArgs.push_back(PTOGV(Buffer)); 465 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); 466 GenericValue GV = lle_X_sprintf(FT, NewArgs); 467 468 fputs(Buffer, (FILE *) GVTOP(Args[0])); 469 return GV; 470 } 471 472 static GenericValue lle_X_memset(FunctionType *FT, 473 ArrayRef<GenericValue> Args) { 474 int val = (int)Args[1].IntVal.getSExtValue(); 475 size_t len = (size_t)Args[2].IntVal.getZExtValue(); 476 memset((void *)GVTOP(Args[0]), val, len); 477 // llvm.memset.* returns void, lle_X_* returns GenericValue, 478 // so here we return GenericValue with IntVal set to zero 479 GenericValue GV; 480 GV.IntVal = 0; 481 return GV; 482 } 483 484 static GenericValue lle_X_memcpy(FunctionType *FT, 485 ArrayRef<GenericValue> Args) { 486 memcpy(GVTOP(Args[0]), GVTOP(Args[1]), 487 (size_t)(Args[2].IntVal.getLimitedValue())); 488 489 // llvm.memcpy* returns void, lle_X_* returns GenericValue, 490 // so here we return GenericValue with IntVal set to zero 491 GenericValue GV; 492 GV.IntVal = 0; 493 return GV; 494 } 495 496 void Interpreter::initializeExternalFunctions() { 497 sys::ScopedLock Writer(*FunctionsLock); 498 (*FuncNames)["lle_X_atexit"] = lle_X_atexit; 499 (*FuncNames)["lle_X_exit"] = lle_X_exit; 500 (*FuncNames)["lle_X_abort"] = lle_X_abort; 501 502 (*FuncNames)["lle_X_printf"] = lle_X_printf; 503 (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf; 504 (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf; 505 (*FuncNames)["lle_X_scanf"] = lle_X_scanf; 506 (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf; 507 (*FuncNames)["lle_X_memset"] = lle_X_memset; 508 (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy; 509 } 510