1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains both code to deal with invoking "external" functions, but 10 // also contains code that implements "exported" external functions. 11 // 12 // There are currently two mechanisms for handling external functions in the 13 // Interpreter. The first is to implement lle_* wrapper functions that are 14 // specific to well-known library functions which manually translate the 15 // arguments from GenericValues and make the call. If such a wrapper does 16 // not exist, and libffi is available, then the Interpreter will attempt to 17 // invoke the function using libffi, after finding its address. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "Interpreter.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/Config/config.h" // Detect libffi 25 #include "llvm/ExecutionEngine/GenericValue.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/DynamicLibrary.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/Mutex.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <cmath> 38 #include <csignal> 39 #include <cstdint> 40 #include <cstdio> 41 #include <cstring> 42 #include <map> 43 #include <mutex> 44 #include <string> 45 #include <utility> 46 #include <vector> 47 48 #ifdef HAVE_FFI_CALL 49 #ifdef HAVE_FFI_H 50 #include <ffi.h> 51 #define USE_LIBFFI 52 #elif HAVE_FFI_FFI_H 53 #include <ffi/ffi.h> 54 #define USE_LIBFFI 55 #endif 56 #endif 57 58 using namespace llvm; 59 60 static ManagedStatic<sys::Mutex> FunctionsLock; 61 62 typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>); 63 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; 64 static ManagedStatic<std::map<std::string, ExFunc> > FuncNames; 65 66 #ifdef USE_LIBFFI 67 typedef void (*RawFunc)(); 68 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; 69 #endif 70 71 static Interpreter *TheInterpreter; 72 73 static char getTypeID(Type *Ty) { 74 switch (Ty->getTypeID()) { 75 case Type::VoidTyID: return 'V'; 76 case Type::IntegerTyID: 77 switch (cast<IntegerType>(Ty)->getBitWidth()) { 78 case 1: return 'o'; 79 case 8: return 'B'; 80 case 16: return 'S'; 81 case 32: return 'I'; 82 case 64: return 'L'; 83 default: return 'N'; 84 } 85 case Type::FloatTyID: return 'F'; 86 case Type::DoubleTyID: return 'D'; 87 case Type::PointerTyID: return 'P'; 88 case Type::FunctionTyID:return 'M'; 89 case Type::StructTyID: return 'T'; 90 case Type::ArrayTyID: return 'A'; 91 default: return 'U'; 92 } 93 } 94 95 // Try to find address of external function given a Function object. 96 // Please note, that interpreter doesn't know how to assemble a 97 // real call in general case (this is JIT job), that's why it assumes, 98 // that all external functions has the same (and pretty "general") signature. 99 // The typical example of such functions are "lle_X_" ones. 100 static ExFunc lookupFunction(const Function *F) { 101 // Function not found, look it up... start by figuring out what the 102 // composite function name should be. 103 std::string ExtName = "lle_"; 104 FunctionType *FT = F->getFunctionType(); 105 ExtName += getTypeID(FT->getReturnType()); 106 for (Type *T : FT->params()) 107 ExtName += getTypeID(T); 108 ExtName += ("_" + F->getName()).str(); 109 110 sys::ScopedLock Writer(*FunctionsLock); 111 ExFunc FnPtr = (*FuncNames)[ExtName]; 112 if (!FnPtr) 113 FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()]; 114 if (!FnPtr) // Try calling a generic function... if it exists... 115 FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( 116 ("lle_X_" + F->getName()).str()); 117 if (FnPtr) 118 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later 119 return FnPtr; 120 } 121 122 #ifdef USE_LIBFFI 123 static ffi_type *ffiTypeFor(Type *Ty) { 124 switch (Ty->getTypeID()) { 125 case Type::VoidTyID: return &ffi_type_void; 126 case Type::IntegerTyID: 127 switch (cast<IntegerType>(Ty)->getBitWidth()) { 128 case 8: return &ffi_type_sint8; 129 case 16: return &ffi_type_sint16; 130 case 32: return &ffi_type_sint32; 131 case 64: return &ffi_type_sint64; 132 } 133 llvm_unreachable("Unhandled integer type bitwidth"); 134 case Type::FloatTyID: return &ffi_type_float; 135 case Type::DoubleTyID: return &ffi_type_double; 136 case Type::PointerTyID: return &ffi_type_pointer; 137 default: break; 138 } 139 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 140 report_fatal_error("Type could not be mapped for use with libffi."); 141 return NULL; 142 } 143 144 static void *ffiValueFor(Type *Ty, const GenericValue &AV, 145 void *ArgDataPtr) { 146 switch (Ty->getTypeID()) { 147 case Type::IntegerTyID: 148 switch (cast<IntegerType>(Ty)->getBitWidth()) { 149 case 8: { 150 int8_t *I8Ptr = (int8_t *) ArgDataPtr; 151 *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); 152 return ArgDataPtr; 153 } 154 case 16: { 155 int16_t *I16Ptr = (int16_t *) ArgDataPtr; 156 *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); 157 return ArgDataPtr; 158 } 159 case 32: { 160 int32_t *I32Ptr = (int32_t *) ArgDataPtr; 161 *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); 162 return ArgDataPtr; 163 } 164 case 64: { 165 int64_t *I64Ptr = (int64_t *) ArgDataPtr; 166 *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); 167 return ArgDataPtr; 168 } 169 } 170 llvm_unreachable("Unhandled integer type bitwidth"); 171 case Type::FloatTyID: { 172 float *FloatPtr = (float *) ArgDataPtr; 173 *FloatPtr = AV.FloatVal; 174 return ArgDataPtr; 175 } 176 case Type::DoubleTyID: { 177 double *DoublePtr = (double *) ArgDataPtr; 178 *DoublePtr = AV.DoubleVal; 179 return ArgDataPtr; 180 } 181 case Type::PointerTyID: { 182 void **PtrPtr = (void **) ArgDataPtr; 183 *PtrPtr = GVTOP(AV); 184 return ArgDataPtr; 185 } 186 default: break; 187 } 188 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 189 report_fatal_error("Type value could not be mapped for use with libffi."); 190 return NULL; 191 } 192 193 static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals, 194 const DataLayout &TD, GenericValue &Result) { 195 ffi_cif cif; 196 FunctionType *FTy = F->getFunctionType(); 197 const unsigned NumArgs = F->arg_size(); 198 199 // TODO: We don't have type information about the remaining arguments, because 200 // this information is never passed into ExecutionEngine::runFunction(). 201 if (ArgVals.size() > NumArgs && F->isVarArg()) { 202 report_fatal_error("Calling external var arg function '" + F->getName() 203 + "' is not supported by the Interpreter."); 204 } 205 206 unsigned ArgBytes = 0; 207 208 std::vector<ffi_type*> args(NumArgs); 209 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 210 A != E; ++A) { 211 const unsigned ArgNo = A->getArgNo(); 212 Type *ArgTy = FTy->getParamType(ArgNo); 213 args[ArgNo] = ffiTypeFor(ArgTy); 214 ArgBytes += TD.getTypeStoreSize(ArgTy); 215 } 216 217 SmallVector<uint8_t, 128> ArgData; 218 ArgData.resize(ArgBytes); 219 uint8_t *ArgDataPtr = ArgData.data(); 220 SmallVector<void*, 16> values(NumArgs); 221 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 222 A != E; ++A) { 223 const unsigned ArgNo = A->getArgNo(); 224 Type *ArgTy = FTy->getParamType(ArgNo); 225 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); 226 ArgDataPtr += TD.getTypeStoreSize(ArgTy); 227 } 228 229 Type *RetTy = FTy->getReturnType(); 230 ffi_type *rtype = ffiTypeFor(RetTy); 231 232 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) == 233 FFI_OK) { 234 SmallVector<uint8_t, 128> ret; 235 if (RetTy->getTypeID() != Type::VoidTyID) 236 ret.resize(TD.getTypeStoreSize(RetTy)); 237 ffi_call(&cif, Fn, ret.data(), values.data()); 238 switch (RetTy->getTypeID()) { 239 case Type::IntegerTyID: 240 switch (cast<IntegerType>(RetTy)->getBitWidth()) { 241 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; 242 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; 243 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; 244 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; 245 } 246 break; 247 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; 248 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; 249 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; 250 default: break; 251 } 252 return true; 253 } 254 255 return false; 256 } 257 #endif // USE_LIBFFI 258 259 GenericValue Interpreter::callExternalFunction(Function *F, 260 ArrayRef<GenericValue> ArgVals) { 261 TheInterpreter = this; 262 263 std::unique_lock<sys::Mutex> Guard(*FunctionsLock); 264 265 // Do a lookup to see if the function is in our cache... this should just be a 266 // deferred annotation! 267 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); 268 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) 269 : FI->second) { 270 Guard.unlock(); 271 return Fn(F->getFunctionType(), ArgVals); 272 } 273 274 #ifdef USE_LIBFFI 275 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); 276 RawFunc RawFn; 277 if (RF == RawFunctions->end()) { 278 RawFn = (RawFunc)(intptr_t) 279 sys::DynamicLibrary::SearchForAddressOfSymbol(std::string(F->getName())); 280 if (!RawFn) 281 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); 282 if (RawFn != 0) 283 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later 284 } else { 285 RawFn = RF->second; 286 } 287 288 Guard.unlock(); 289 290 GenericValue Result; 291 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) 292 return Result; 293 #endif // USE_LIBFFI 294 295 if (F->getName() == "__main") 296 errs() << "Tried to execute an unknown external function: " 297 << *F->getType() << " __main\n"; 298 else 299 report_fatal_error("Tried to execute an unknown external function: " + 300 F->getName()); 301 #ifndef USE_LIBFFI 302 errs() << "Recompiling LLVM with --enable-libffi might help.\n"; 303 #endif 304 return GenericValue(); 305 } 306 307 //===----------------------------------------------------------------------===// 308 // Functions "exported" to the running application... 309 // 310 311 // void atexit(Function*) 312 static GenericValue lle_X_atexit(FunctionType *FT, 313 ArrayRef<GenericValue> Args) { 314 assert(Args.size() == 1); 315 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); 316 GenericValue GV; 317 GV.IntVal = 0; 318 return GV; 319 } 320 321 // void exit(int) 322 static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) { 323 TheInterpreter->exitCalled(Args[0]); 324 return GenericValue(); 325 } 326 327 // void abort(void) 328 static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) { 329 //FIXME: should we report or raise here? 330 //report_fatal_error("Interpreted program raised SIGABRT"); 331 raise (SIGABRT); 332 return GenericValue(); 333 } 334 335 // int sprintf(char *, const char *, ...) - a very rough implementation to make 336 // output useful. 337 static GenericValue lle_X_sprintf(FunctionType *FT, 338 ArrayRef<GenericValue> Args) { 339 char *OutputBuffer = (char *)GVTOP(Args[0]); 340 const char *FmtStr = (const char *)GVTOP(Args[1]); 341 unsigned ArgNo = 2; 342 343 // printf should return # chars printed. This is completely incorrect, but 344 // close enough for now. 345 GenericValue GV; 346 GV.IntVal = APInt(32, strlen(FmtStr)); 347 while (true) { 348 switch (*FmtStr) { 349 case 0: return GV; // Null terminator... 350 default: // Normal nonspecial character 351 sprintf(OutputBuffer++, "%c", *FmtStr++); 352 break; 353 case '\\': { // Handle escape codes 354 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); 355 FmtStr += 2; OutputBuffer += 2; 356 break; 357 } 358 case '%': { // Handle format specifiers 359 char FmtBuf[100] = "", Buffer[1000] = ""; 360 char *FB = FmtBuf; 361 *FB++ = *FmtStr++; 362 char Last = *FB++ = *FmtStr++; 363 unsigned HowLong = 0; 364 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && 365 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && 366 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && 367 Last != 'p' && Last != 's' && Last != '%') { 368 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's 369 Last = *FB++ = *FmtStr++; 370 } 371 *FB = 0; 372 373 switch (Last) { 374 case '%': 375 memcpy(Buffer, "%", 2); break; 376 case 'c': 377 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 378 break; 379 case 'd': case 'i': 380 case 'u': case 'o': 381 case 'x': case 'X': 382 if (HowLong >= 1) { 383 if (HowLong == 1 && 384 TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 && 385 sizeof(long) < sizeof(int64_t)) { 386 // Make sure we use %lld with a 64 bit argument because we might be 387 // compiling LLI on a 32 bit compiler. 388 unsigned Size = strlen(FmtBuf); 389 FmtBuf[Size] = FmtBuf[Size-1]; 390 FmtBuf[Size+1] = 0; 391 FmtBuf[Size-1] = 'l'; 392 } 393 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); 394 } else 395 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 396 break; 397 case 'e': case 'E': case 'g': case 'G': case 'f': 398 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; 399 case 'p': 400 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; 401 case 's': 402 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; 403 default: 404 errs() << "<unknown printf code '" << *FmtStr << "'!>"; 405 ArgNo++; break; 406 } 407 size_t Len = strlen(Buffer); 408 memcpy(OutputBuffer, Buffer, Len + 1); 409 OutputBuffer += Len; 410 } 411 break; 412 } 413 } 414 return GV; 415 } 416 417 // int printf(const char *, ...) - a very rough implementation to make output 418 // useful. 419 static GenericValue lle_X_printf(FunctionType *FT, 420 ArrayRef<GenericValue> Args) { 421 char Buffer[10000]; 422 std::vector<GenericValue> NewArgs; 423 NewArgs.push_back(PTOGV((void*)&Buffer[0])); 424 llvm::append_range(NewArgs, Args); 425 GenericValue GV = lle_X_sprintf(FT, NewArgs); 426 outs() << Buffer; 427 return GV; 428 } 429 430 // int sscanf(const char *format, ...); 431 static GenericValue lle_X_sscanf(FunctionType *FT, 432 ArrayRef<GenericValue> args) { 433 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); 434 435 char *Args[10]; 436 for (unsigned i = 0; i < args.size(); ++i) 437 Args[i] = (char*)GVTOP(args[i]); 438 439 GenericValue GV; 440 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], 441 Args[5], Args[6], Args[7], Args[8], Args[9])); 442 return GV; 443 } 444 445 // int scanf(const char *format, ...); 446 static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) { 447 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); 448 449 char *Args[10]; 450 for (unsigned i = 0; i < args.size(); ++i) 451 Args[i] = (char*)GVTOP(args[i]); 452 453 GenericValue GV; 454 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], 455 Args[5], Args[6], Args[7], Args[8], Args[9])); 456 return GV; 457 } 458 459 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make 460 // output useful. 461 static GenericValue lle_X_fprintf(FunctionType *FT, 462 ArrayRef<GenericValue> Args) { 463 assert(Args.size() >= 2); 464 char Buffer[10000]; 465 std::vector<GenericValue> NewArgs; 466 NewArgs.push_back(PTOGV(Buffer)); 467 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); 468 GenericValue GV = lle_X_sprintf(FT, NewArgs); 469 470 fputs(Buffer, (FILE *) GVTOP(Args[0])); 471 return GV; 472 } 473 474 static GenericValue lle_X_memset(FunctionType *FT, 475 ArrayRef<GenericValue> Args) { 476 int val = (int)Args[1].IntVal.getSExtValue(); 477 size_t len = (size_t)Args[2].IntVal.getZExtValue(); 478 memset((void *)GVTOP(Args[0]), val, len); 479 // llvm.memset.* returns void, lle_X_* returns GenericValue, 480 // so here we return GenericValue with IntVal set to zero 481 GenericValue GV; 482 GV.IntVal = 0; 483 return GV; 484 } 485 486 static GenericValue lle_X_memcpy(FunctionType *FT, 487 ArrayRef<GenericValue> Args) { 488 memcpy(GVTOP(Args[0]), GVTOP(Args[1]), 489 (size_t)(Args[2].IntVal.getLimitedValue())); 490 491 // llvm.memcpy* returns void, lle_X_* returns GenericValue, 492 // so here we return GenericValue with IntVal set to zero 493 GenericValue GV; 494 GV.IntVal = 0; 495 return GV; 496 } 497 498 void Interpreter::initializeExternalFunctions() { 499 sys::ScopedLock Writer(*FunctionsLock); 500 (*FuncNames)["lle_X_atexit"] = lle_X_atexit; 501 (*FuncNames)["lle_X_exit"] = lle_X_exit; 502 (*FuncNames)["lle_X_abort"] = lle_X_abort; 503 504 (*FuncNames)["lle_X_printf"] = lle_X_printf; 505 (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf; 506 (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf; 507 (*FuncNames)["lle_X_scanf"] = lle_X_scanf; 508 (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf; 509 (*FuncNames)["lle_X_memset"] = lle_X_memset; 510 (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy; 511 } 512