xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file contains the actual instruction interpreter.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "Interpreter.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/IntrinsicLowering.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/GetElementPtrTypeIterator.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <cmath>
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "interpreter"
31 
32 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
33 
34 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
35           cl::desc("make the interpreter print every volatile load and store"));
36 
37 //===----------------------------------------------------------------------===//
38 //                     Various Helper Functions
39 //===----------------------------------------------------------------------===//
40 
41 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
42   SF.Values[V] = Val;
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //                    Unary Instruction Implementations
47 //===----------------------------------------------------------------------===//
48 
49 static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) {
50   switch (Ty->getTypeID()) {
51   case Type::FloatTyID:
52     Dest.FloatVal = -Src.FloatVal;
53     break;
54   case Type::DoubleTyID:
55     Dest.DoubleVal = -Src.DoubleVal;
56     break;
57   default:
58     llvm_unreachable("Unhandled type for FNeg instruction");
59   }
60 }
61 
62 void Interpreter::visitUnaryOperator(UnaryOperator &I) {
63   ExecutionContext &SF = ECStack.back();
64   Type *Ty = I.getOperand(0)->getType();
65   GenericValue Src = getOperandValue(I.getOperand(0), SF);
66   GenericValue R; // Result
67 
68   // First process vector operation
69   if (Ty->isVectorTy()) {
70     R.AggregateVal.resize(Src.AggregateVal.size());
71 
72     switch(I.getOpcode()) {
73     default:
74       llvm_unreachable("Don't know how to handle this unary operator");
75       break;
76     case Instruction::FNeg:
77       if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
78         for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
79           R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal;
80       } else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) {
81         for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
82           R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal;
83       } else {
84         llvm_unreachable("Unhandled type for FNeg instruction");
85       }
86       break;
87     }
88   } else {
89     switch (I.getOpcode()) {
90     default:
91       llvm_unreachable("Don't know how to handle this unary operator");
92       break;
93     case Instruction::FNeg: executeFNegInst(R, Src, Ty); break;
94     }
95   }
96   SetValue(&I, R, SF);
97 }
98 
99 //===----------------------------------------------------------------------===//
100 //                    Binary Instruction Implementations
101 //===----------------------------------------------------------------------===//
102 
103 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
104    case Type::TY##TyID: \
105      Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
106      break
107 
108 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
109                             GenericValue Src2, Type *Ty) {
110   switch (Ty->getTypeID()) {
111     IMPLEMENT_BINARY_OPERATOR(+, Float);
112     IMPLEMENT_BINARY_OPERATOR(+, Double);
113   default:
114     dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
115     llvm_unreachable(nullptr);
116   }
117 }
118 
119 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
120                             GenericValue Src2, Type *Ty) {
121   switch (Ty->getTypeID()) {
122     IMPLEMENT_BINARY_OPERATOR(-, Float);
123     IMPLEMENT_BINARY_OPERATOR(-, Double);
124   default:
125     dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
126     llvm_unreachable(nullptr);
127   }
128 }
129 
130 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
131                             GenericValue Src2, Type *Ty) {
132   switch (Ty->getTypeID()) {
133     IMPLEMENT_BINARY_OPERATOR(*, Float);
134     IMPLEMENT_BINARY_OPERATOR(*, Double);
135   default:
136     dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
137     llvm_unreachable(nullptr);
138   }
139 }
140 
141 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
142                             GenericValue Src2, Type *Ty) {
143   switch (Ty->getTypeID()) {
144     IMPLEMENT_BINARY_OPERATOR(/, Float);
145     IMPLEMENT_BINARY_OPERATOR(/, Double);
146   default:
147     dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
148     llvm_unreachable(nullptr);
149   }
150 }
151 
152 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
153                             GenericValue Src2, Type *Ty) {
154   switch (Ty->getTypeID()) {
155   case Type::FloatTyID:
156     Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
157     break;
158   case Type::DoubleTyID:
159     Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
160     break;
161   default:
162     dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
163     llvm_unreachable(nullptr);
164   }
165 }
166 
167 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
168    case Type::IntegerTyID:  \
169       Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
170       break;
171 
172 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)                                  \
173   case Type::FixedVectorTyID:                                                  \
174   case Type::ScalableVectorTyID: {                                             \
175     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());              \
176     Dest.AggregateVal.resize(Src1.AggregateVal.size());                        \
177     for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++)                 \
178       Dest.AggregateVal[_i].IntVal = APInt(                                    \
179           1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));   \
180   } break;
181 
182 // Handle pointers specially because they must be compared with only as much
183 // width as the host has.  We _do not_ want to be comparing 64 bit values when
184 // running on a 32-bit target, otherwise the upper 32 bits might mess up
185 // comparisons if they contain garbage.
186 #define IMPLEMENT_POINTER_ICMP(OP) \
187    case Type::PointerTyID: \
188       Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
189                             (void*)(intptr_t)Src2.PointerVal); \
190       break;
191 
192 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
193                                    Type *Ty) {
194   GenericValue Dest;
195   switch (Ty->getTypeID()) {
196     IMPLEMENT_INTEGER_ICMP(eq,Ty);
197     IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
198     IMPLEMENT_POINTER_ICMP(==);
199   default:
200     dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
201     llvm_unreachable(nullptr);
202   }
203   return Dest;
204 }
205 
206 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
207                                    Type *Ty) {
208   GenericValue Dest;
209   switch (Ty->getTypeID()) {
210     IMPLEMENT_INTEGER_ICMP(ne,Ty);
211     IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
212     IMPLEMENT_POINTER_ICMP(!=);
213   default:
214     dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
215     llvm_unreachable(nullptr);
216   }
217   return Dest;
218 }
219 
220 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
221                                     Type *Ty) {
222   GenericValue Dest;
223   switch (Ty->getTypeID()) {
224     IMPLEMENT_INTEGER_ICMP(ult,Ty);
225     IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
226     IMPLEMENT_POINTER_ICMP(<);
227   default:
228     dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
229     llvm_unreachable(nullptr);
230   }
231   return Dest;
232 }
233 
234 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
235                                     Type *Ty) {
236   GenericValue Dest;
237   switch (Ty->getTypeID()) {
238     IMPLEMENT_INTEGER_ICMP(slt,Ty);
239     IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
240     IMPLEMENT_POINTER_ICMP(<);
241   default:
242     dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
243     llvm_unreachable(nullptr);
244   }
245   return Dest;
246 }
247 
248 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
249                                     Type *Ty) {
250   GenericValue Dest;
251   switch (Ty->getTypeID()) {
252     IMPLEMENT_INTEGER_ICMP(ugt,Ty);
253     IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
254     IMPLEMENT_POINTER_ICMP(>);
255   default:
256     dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
257     llvm_unreachable(nullptr);
258   }
259   return Dest;
260 }
261 
262 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
263                                     Type *Ty) {
264   GenericValue Dest;
265   switch (Ty->getTypeID()) {
266     IMPLEMENT_INTEGER_ICMP(sgt,Ty);
267     IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
268     IMPLEMENT_POINTER_ICMP(>);
269   default:
270     dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
271     llvm_unreachable(nullptr);
272   }
273   return Dest;
274 }
275 
276 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
277                                     Type *Ty) {
278   GenericValue Dest;
279   switch (Ty->getTypeID()) {
280     IMPLEMENT_INTEGER_ICMP(ule,Ty);
281     IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
282     IMPLEMENT_POINTER_ICMP(<=);
283   default:
284     dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
285     llvm_unreachable(nullptr);
286   }
287   return Dest;
288 }
289 
290 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
291                                     Type *Ty) {
292   GenericValue Dest;
293   switch (Ty->getTypeID()) {
294     IMPLEMENT_INTEGER_ICMP(sle,Ty);
295     IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
296     IMPLEMENT_POINTER_ICMP(<=);
297   default:
298     dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
299     llvm_unreachable(nullptr);
300   }
301   return Dest;
302 }
303 
304 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
305                                     Type *Ty) {
306   GenericValue Dest;
307   switch (Ty->getTypeID()) {
308     IMPLEMENT_INTEGER_ICMP(uge,Ty);
309     IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
310     IMPLEMENT_POINTER_ICMP(>=);
311   default:
312     dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
313     llvm_unreachable(nullptr);
314   }
315   return Dest;
316 }
317 
318 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
319                                     Type *Ty) {
320   GenericValue Dest;
321   switch (Ty->getTypeID()) {
322     IMPLEMENT_INTEGER_ICMP(sge,Ty);
323     IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
324     IMPLEMENT_POINTER_ICMP(>=);
325   default:
326     dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
327     llvm_unreachable(nullptr);
328   }
329   return Dest;
330 }
331 
332 void Interpreter::visitICmpInst(ICmpInst &I) {
333   ExecutionContext &SF = ECStack.back();
334   Type *Ty    = I.getOperand(0)->getType();
335   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
336   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
337   GenericValue R;   // Result
338 
339   switch (I.getPredicate()) {
340   case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break;
341   case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break;
342   case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
343   case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
344   case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
345   case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
346   case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
347   case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
348   case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
349   case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
350   default:
351     dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
352     llvm_unreachable(nullptr);
353   }
354 
355   SetValue(&I, R, SF);
356 }
357 
358 #define IMPLEMENT_FCMP(OP, TY) \
359    case Type::TY##TyID: \
360      Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
361      break
362 
363 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY)                             \
364   assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());     \
365   Dest.AggregateVal.resize( Src1.AggregateVal.size() );             \
366   for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)              \
367     Dest.AggregateVal[_i].IntVal = APInt(1,                         \
368     Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
369   break;
370 
371 #define IMPLEMENT_VECTOR_FCMP(OP)                                              \
372   case Type::FixedVectorTyID:                                                  \
373   case Type::ScalableVectorTyID:                                               \
374     if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {                 \
375       IMPLEMENT_VECTOR_FCMP_T(OP, Float);                                      \
376     } else {                                                                   \
377       IMPLEMENT_VECTOR_FCMP_T(OP, Double);                                     \
378     }
379 
380 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
381                                    Type *Ty) {
382   GenericValue Dest;
383   switch (Ty->getTypeID()) {
384     IMPLEMENT_FCMP(==, Float);
385     IMPLEMENT_FCMP(==, Double);
386     IMPLEMENT_VECTOR_FCMP(==);
387   default:
388     dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
389     llvm_unreachable(nullptr);
390   }
391   return Dest;
392 }
393 
394 #define IMPLEMENT_SCALAR_NANS(TY, X,Y)                                      \
395   if (TY->isFloatTy()) {                                                    \
396     if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {             \
397       Dest.IntVal = APInt(1,false);                                         \
398       return Dest;                                                          \
399     }                                                                       \
400   } else {                                                                  \
401     if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) {         \
402       Dest.IntVal = APInt(1,false);                                         \
403       return Dest;                                                          \
404     }                                                                       \
405   }
406 
407 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG)                                   \
408   assert(X.AggregateVal.size() == Y.AggregateVal.size());                   \
409   Dest.AggregateVal.resize( X.AggregateVal.size() );                        \
410   for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) {                       \
411     if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val ||         \
412         Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val)           \
413       Dest.AggregateVal[_i].IntVal = APInt(1,FLAG);                         \
414     else  {                                                                 \
415       Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG);                        \
416     }                                                                       \
417   }
418 
419 #define MASK_VECTOR_NANS(TY, X,Y, FLAG)                                     \
420   if (TY->isVectorTy()) {                                                   \
421     if (cast<VectorType>(TY)->getElementType()->isFloatTy()) {              \
422       MASK_VECTOR_NANS_T(X, Y, Float, FLAG)                                 \
423     } else {                                                                \
424       MASK_VECTOR_NANS_T(X, Y, Double, FLAG)                                \
425     }                                                                       \
426   }                                                                         \
427 
428 
429 
430 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
431                                     Type *Ty)
432 {
433   GenericValue Dest;
434   // if input is scalar value and Src1 or Src2 is NaN return false
435   IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
436   // if vector input detect NaNs and fill mask
437   MASK_VECTOR_NANS(Ty, Src1, Src2, false)
438   GenericValue DestMask = Dest;
439   switch (Ty->getTypeID()) {
440     IMPLEMENT_FCMP(!=, Float);
441     IMPLEMENT_FCMP(!=, Double);
442     IMPLEMENT_VECTOR_FCMP(!=);
443     default:
444       dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
445       llvm_unreachable(nullptr);
446   }
447   // in vector case mask out NaN elements
448   if (Ty->isVectorTy())
449     for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
450       if (DestMask.AggregateVal[_i].IntVal == false)
451         Dest.AggregateVal[_i].IntVal = APInt(1,false);
452 
453   return Dest;
454 }
455 
456 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
457                                    Type *Ty) {
458   GenericValue Dest;
459   switch (Ty->getTypeID()) {
460     IMPLEMENT_FCMP(<=, Float);
461     IMPLEMENT_FCMP(<=, Double);
462     IMPLEMENT_VECTOR_FCMP(<=);
463   default:
464     dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
465     llvm_unreachable(nullptr);
466   }
467   return Dest;
468 }
469 
470 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
471                                    Type *Ty) {
472   GenericValue Dest;
473   switch (Ty->getTypeID()) {
474     IMPLEMENT_FCMP(>=, Float);
475     IMPLEMENT_FCMP(>=, Double);
476     IMPLEMENT_VECTOR_FCMP(>=);
477   default:
478     dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
479     llvm_unreachable(nullptr);
480   }
481   return Dest;
482 }
483 
484 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
485                                    Type *Ty) {
486   GenericValue Dest;
487   switch (Ty->getTypeID()) {
488     IMPLEMENT_FCMP(<, Float);
489     IMPLEMENT_FCMP(<, Double);
490     IMPLEMENT_VECTOR_FCMP(<);
491   default:
492     dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
493     llvm_unreachable(nullptr);
494   }
495   return Dest;
496 }
497 
498 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
499                                      Type *Ty) {
500   GenericValue Dest;
501   switch (Ty->getTypeID()) {
502     IMPLEMENT_FCMP(>, Float);
503     IMPLEMENT_FCMP(>, Double);
504     IMPLEMENT_VECTOR_FCMP(>);
505   default:
506     dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
507     llvm_unreachable(nullptr);
508   }
509   return Dest;
510 }
511 
512 #define IMPLEMENT_UNORDERED(TY, X,Y)                                     \
513   if (TY->isFloatTy()) {                                                 \
514     if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \
515       Dest.IntVal = APInt(1,true);                                       \
516       return Dest;                                                       \
517     }                                                                    \
518   } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
519     Dest.IntVal = APInt(1,true);                                         \
520     return Dest;                                                         \
521   }
522 
523 #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC)                             \
524   if (TY->isVectorTy()) {                                                      \
525     GenericValue DestMask = Dest;                                              \
526     Dest = FUNC(Src1, Src2, Ty);                                               \
527     for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++)                   \
528       if (DestMask.AggregateVal[_i].IntVal == true)                            \
529         Dest.AggregateVal[_i].IntVal = APInt(1, true);                         \
530     return Dest;                                                               \
531   }
532 
533 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
534                                    Type *Ty) {
535   GenericValue Dest;
536   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
537   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
538   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
539   return executeFCMP_OEQ(Src1, Src2, Ty);
540 
541 }
542 
543 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
544                                    Type *Ty) {
545   GenericValue Dest;
546   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
547   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
548   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
549   return executeFCMP_ONE(Src1, Src2, Ty);
550 }
551 
552 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
553                                    Type *Ty) {
554   GenericValue Dest;
555   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
556   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
557   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
558   return executeFCMP_OLE(Src1, Src2, Ty);
559 }
560 
561 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
562                                    Type *Ty) {
563   GenericValue Dest;
564   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
565   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
566   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
567   return executeFCMP_OGE(Src1, Src2, Ty);
568 }
569 
570 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
571                                    Type *Ty) {
572   GenericValue Dest;
573   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
574   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
575   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
576   return executeFCMP_OLT(Src1, Src2, Ty);
577 }
578 
579 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
580                                      Type *Ty) {
581   GenericValue Dest;
582   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
583   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
584   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
585   return executeFCMP_OGT(Src1, Src2, Ty);
586 }
587 
588 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
589                                      Type *Ty) {
590   GenericValue Dest;
591   if(Ty->isVectorTy()) {
592     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
593     Dest.AggregateVal.resize( Src1.AggregateVal.size() );
594     if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
595       for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
596         Dest.AggregateVal[_i].IntVal = APInt(1,
597         ( (Src1.AggregateVal[_i].FloatVal ==
598         Src1.AggregateVal[_i].FloatVal) &&
599         (Src2.AggregateVal[_i].FloatVal ==
600         Src2.AggregateVal[_i].FloatVal)));
601     } else {
602       for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
603         Dest.AggregateVal[_i].IntVal = APInt(1,
604         ( (Src1.AggregateVal[_i].DoubleVal ==
605         Src1.AggregateVal[_i].DoubleVal) &&
606         (Src2.AggregateVal[_i].DoubleVal ==
607         Src2.AggregateVal[_i].DoubleVal)));
608     }
609   } else if (Ty->isFloatTy())
610     Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
611                            Src2.FloatVal == Src2.FloatVal));
612   else {
613     Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
614                            Src2.DoubleVal == Src2.DoubleVal));
615   }
616   return Dest;
617 }
618 
619 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
620                                      Type *Ty) {
621   GenericValue Dest;
622   if(Ty->isVectorTy()) {
623     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
624     Dest.AggregateVal.resize( Src1.AggregateVal.size() );
625     if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
626       for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
627         Dest.AggregateVal[_i].IntVal = APInt(1,
628         ( (Src1.AggregateVal[_i].FloatVal !=
629            Src1.AggregateVal[_i].FloatVal) ||
630           (Src2.AggregateVal[_i].FloatVal !=
631            Src2.AggregateVal[_i].FloatVal)));
632       } else {
633         for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
634           Dest.AggregateVal[_i].IntVal = APInt(1,
635           ( (Src1.AggregateVal[_i].DoubleVal !=
636              Src1.AggregateVal[_i].DoubleVal) ||
637             (Src2.AggregateVal[_i].DoubleVal !=
638              Src2.AggregateVal[_i].DoubleVal)));
639       }
640   } else if (Ty->isFloatTy())
641     Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
642                            Src2.FloatVal != Src2.FloatVal));
643   else {
644     Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
645                            Src2.DoubleVal != Src2.DoubleVal));
646   }
647   return Dest;
648 }
649 
650 static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
651                                      Type *Ty, const bool val) {
652   GenericValue Dest;
653     if(Ty->isVectorTy()) {
654       assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
655       Dest.AggregateVal.resize( Src1.AggregateVal.size() );
656       for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
657         Dest.AggregateVal[_i].IntVal = APInt(1,val);
658     } else {
659       Dest.IntVal = APInt(1, val);
660     }
661 
662     return Dest;
663 }
664 
665 void Interpreter::visitFCmpInst(FCmpInst &I) {
666   ExecutionContext &SF = ECStack.back();
667   Type *Ty    = I.getOperand(0)->getType();
668   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
669   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
670   GenericValue R;   // Result
671 
672   switch (I.getPredicate()) {
673   default:
674     dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
675     llvm_unreachable(nullptr);
676   break;
677   case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
678   break;
679   case FCmpInst::FCMP_TRUE:  R = executeFCMP_BOOL(Src1, Src2, Ty, true);
680   break;
681   case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break;
682   case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break;
683   case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break;
684   case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break;
685   case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break;
686   case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break;
687   case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break;
688   case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break;
689   case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break;
690   case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break;
691   case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break;
692   case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break;
693   case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break;
694   case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break;
695   }
696 
697   SetValue(&I, R, SF);
698 }
699 
700 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
701                                    GenericValue Src2, Type *Ty) {
702   GenericValue Result;
703   switch (predicate) {
704   case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty);
705   case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty);
706   case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty);
707   case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty);
708   case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty);
709   case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty);
710   case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty);
711   case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty);
712   case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty);
713   case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty);
714   case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty);
715   case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty);
716   case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty);
717   case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty);
718   case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty);
719   case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty);
720   case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty);
721   case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty);
722   case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty);
723   case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty);
724   case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty);
725   case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty);
726   case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty);
727   case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty);
728   case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
729   case FCmpInst::FCMP_TRUE:  return executeFCMP_BOOL(Src1, Src2, Ty, true);
730   default:
731     dbgs() << "Unhandled Cmp predicate\n";
732     llvm_unreachable(nullptr);
733   }
734 }
735 
736 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
737   ExecutionContext &SF = ECStack.back();
738   Type *Ty    = I.getOperand(0)->getType();
739   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
740   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
741   GenericValue R;   // Result
742 
743   // First process vector operation
744   if (Ty->isVectorTy()) {
745     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
746     R.AggregateVal.resize(Src1.AggregateVal.size());
747 
748     // Macros to execute binary operation 'OP' over integer vectors
749 #define INTEGER_VECTOR_OPERATION(OP)                               \
750     for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
751       R.AggregateVal[i].IntVal =                                   \
752       Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
753 
754     // Additional macros to execute binary operations udiv/sdiv/urem/srem since
755     // they have different notation.
756 #define INTEGER_VECTOR_FUNCTION(OP)                                \
757     for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
758       R.AggregateVal[i].IntVal =                                   \
759       Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
760 
761     // Macros to execute binary operation 'OP' over floating point type TY
762     // (float or double) vectors
763 #define FLOAT_VECTOR_FUNCTION(OP, TY)                               \
764       for (unsigned i = 0; i < R.AggregateVal.size(); ++i)          \
765         R.AggregateVal[i].TY =                                      \
766         Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
767 
768     // Macros to choose appropriate TY: float or double and run operation
769     // execution
770 #define FLOAT_VECTOR_OP(OP) {                                         \
771   if (cast<VectorType>(Ty)->getElementType()->isFloatTy())            \
772     FLOAT_VECTOR_FUNCTION(OP, FloatVal)                               \
773   else {                                                              \
774     if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())         \
775       FLOAT_VECTOR_FUNCTION(OP, DoubleVal)                            \
776     else {                                                            \
777       dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
778       llvm_unreachable(0);                                            \
779     }                                                                 \
780   }                                                                   \
781 }
782 
783     switch(I.getOpcode()){
784     default:
785       dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
786       llvm_unreachable(nullptr);
787       break;
788     case Instruction::Add:   INTEGER_VECTOR_OPERATION(+) break;
789     case Instruction::Sub:   INTEGER_VECTOR_OPERATION(-) break;
790     case Instruction::Mul:   INTEGER_VECTOR_OPERATION(*) break;
791     case Instruction::UDiv:  INTEGER_VECTOR_FUNCTION(udiv) break;
792     case Instruction::SDiv:  INTEGER_VECTOR_FUNCTION(sdiv) break;
793     case Instruction::URem:  INTEGER_VECTOR_FUNCTION(urem) break;
794     case Instruction::SRem:  INTEGER_VECTOR_FUNCTION(srem) break;
795     case Instruction::And:   INTEGER_VECTOR_OPERATION(&) break;
796     case Instruction::Or:    INTEGER_VECTOR_OPERATION(|) break;
797     case Instruction::Xor:   INTEGER_VECTOR_OPERATION(^) break;
798     case Instruction::FAdd:  FLOAT_VECTOR_OP(+) break;
799     case Instruction::FSub:  FLOAT_VECTOR_OP(-) break;
800     case Instruction::FMul:  FLOAT_VECTOR_OP(*) break;
801     case Instruction::FDiv:  FLOAT_VECTOR_OP(/) break;
802     case Instruction::FRem:
803       if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
804         for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
805           R.AggregateVal[i].FloatVal =
806           fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
807       else {
808         if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
809           for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
810             R.AggregateVal[i].DoubleVal =
811             fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
812         else {
813           dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
814           llvm_unreachable(nullptr);
815         }
816       }
817       break;
818     }
819   } else {
820     switch (I.getOpcode()) {
821     default:
822       dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
823       llvm_unreachable(nullptr);
824       break;
825     case Instruction::Add:   R.IntVal = Src1.IntVal + Src2.IntVal; break;
826     case Instruction::Sub:   R.IntVal = Src1.IntVal - Src2.IntVal; break;
827     case Instruction::Mul:   R.IntVal = Src1.IntVal * Src2.IntVal; break;
828     case Instruction::FAdd:  executeFAddInst(R, Src1, Src2, Ty); break;
829     case Instruction::FSub:  executeFSubInst(R, Src1, Src2, Ty); break;
830     case Instruction::FMul:  executeFMulInst(R, Src1, Src2, Ty); break;
831     case Instruction::FDiv:  executeFDivInst(R, Src1, Src2, Ty); break;
832     case Instruction::FRem:  executeFRemInst(R, Src1, Src2, Ty); break;
833     case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
834     case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
835     case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
836     case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
837     case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break;
838     case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break;
839     case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
840     }
841   }
842   SetValue(&I, R, SF);
843 }
844 
845 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
846                                       GenericValue Src3, Type *Ty) {
847     GenericValue Dest;
848     if(Ty->isVectorTy()) {
849       assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
850       assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
851       Dest.AggregateVal.resize( Src1.AggregateVal.size() );
852       for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
853         Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
854           Src3.AggregateVal[i] : Src2.AggregateVal[i];
855     } else {
856       Dest = (Src1.IntVal == 0) ? Src3 : Src2;
857     }
858     return Dest;
859 }
860 
861 void Interpreter::visitSelectInst(SelectInst &I) {
862   ExecutionContext &SF = ECStack.back();
863   Type * Ty = I.getOperand(0)->getType();
864   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
865   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
866   GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
867   GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
868   SetValue(&I, R, SF);
869 }
870 
871 //===----------------------------------------------------------------------===//
872 //                     Terminator Instruction Implementations
873 //===----------------------------------------------------------------------===//
874 
875 void Interpreter::exitCalled(GenericValue GV) {
876   // runAtExitHandlers() assumes there are no stack frames, but
877   // if exit() was called, then it had a stack frame. Blow away
878   // the stack before interpreting atexit handlers.
879   ECStack.clear();
880   runAtExitHandlers();
881   exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
882 }
883 
884 /// Pop the last stack frame off of ECStack and then copy the result
885 /// back into the result variable if we are not returning void. The
886 /// result variable may be the ExitValue, or the Value of the calling
887 /// CallInst if there was a previous stack frame. This method may
888 /// invalidate any ECStack iterators you have. This method also takes
889 /// care of switching to the normal destination BB, if we are returning
890 /// from an invoke.
891 ///
892 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
893                                                  GenericValue Result) {
894   // Pop the current stack frame.
895   ECStack.pop_back();
896 
897   if (ECStack.empty()) {  // Finished main.  Put result into exit code...
898     if (RetTy && !RetTy->isVoidTy()) {          // Nonvoid return type?
899       ExitValue = Result;   // Capture the exit value of the program
900     } else {
901       memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
902     }
903   } else {
904     // If we have a previous stack frame, and we have a previous call,
905     // fill in the return value...
906     ExecutionContext &CallingSF = ECStack.back();
907     if (CallingSF.Caller) {
908       // Save result...
909       if (!CallingSF.Caller->getType()->isVoidTy())
910         SetValue(CallingSF.Caller, Result, CallingSF);
911       if (InvokeInst *II = dyn_cast<InvokeInst>(CallingSF.Caller))
912         SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
913       CallingSF.Caller = nullptr;             // We returned from the call...
914     }
915   }
916 }
917 
918 void Interpreter::visitReturnInst(ReturnInst &I) {
919   ExecutionContext &SF = ECStack.back();
920   Type *RetTy = Type::getVoidTy(I.getContext());
921   GenericValue Result;
922 
923   // Save away the return value... (if we are not 'ret void')
924   if (I.getNumOperands()) {
925     RetTy  = I.getReturnValue()->getType();
926     Result = getOperandValue(I.getReturnValue(), SF);
927   }
928 
929   popStackAndReturnValueToCaller(RetTy, Result);
930 }
931 
932 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
933   report_fatal_error("Program executed an 'unreachable' instruction!");
934 }
935 
936 void Interpreter::visitBranchInst(BranchInst &I) {
937   ExecutionContext &SF = ECStack.back();
938   BasicBlock *Dest;
939 
940   Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest...
941   if (!I.isUnconditional()) {
942     Value *Cond = I.getCondition();
943     if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
944       Dest = I.getSuccessor(1);
945   }
946   SwitchToNewBasicBlock(Dest, SF);
947 }
948 
949 void Interpreter::visitSwitchInst(SwitchInst &I) {
950   ExecutionContext &SF = ECStack.back();
951   Value* Cond = I.getCondition();
952   Type *ElTy = Cond->getType();
953   GenericValue CondVal = getOperandValue(Cond, SF);
954 
955   // Check to see if any of the cases match...
956   BasicBlock *Dest = nullptr;
957   for (auto Case : I.cases()) {
958     GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
959     if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
960       Dest = cast<BasicBlock>(Case.getCaseSuccessor());
961       break;
962     }
963   }
964   if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default
965   SwitchToNewBasicBlock(Dest, SF);
966 }
967 
968 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
969   ExecutionContext &SF = ECStack.back();
970   void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
971   SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
972 }
973 
974 
975 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
976 // This function handles the actual updating of block and instruction iterators
977 // as well as execution of all of the PHI nodes in the destination block.
978 //
979 // This method does this because all of the PHI nodes must be executed
980 // atomically, reading their inputs before any of the results are updated.  Not
981 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
982 // their inputs.  If the input PHI node is updated before it is read, incorrect
983 // results can happen.  Thus we use a two phase approach.
984 //
985 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
986   BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from...
987   SF.CurBB   = Dest;                  // Update CurBB to branch destination
988   SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr...
989 
990   if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do
991 
992   // Loop over all of the PHI nodes in the current block, reading their inputs.
993   std::vector<GenericValue> ResultValues;
994 
995   for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
996     // Search for the value corresponding to this previous bb...
997     int i = PN->getBasicBlockIndex(PrevBB);
998     assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
999     Value *IncomingValue = PN->getIncomingValue(i);
1000 
1001     // Save the incoming value for this PHI node...
1002     ResultValues.push_back(getOperandValue(IncomingValue, SF));
1003   }
1004 
1005   // Now loop over all of the PHI nodes setting their values...
1006   SF.CurInst = SF.CurBB->begin();
1007   for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
1008     PHINode *PN = cast<PHINode>(SF.CurInst);
1009     SetValue(PN, ResultValues[i], SF);
1010   }
1011 }
1012 
1013 //===----------------------------------------------------------------------===//
1014 //                     Memory Instruction Implementations
1015 //===----------------------------------------------------------------------===//
1016 
1017 void Interpreter::visitAllocaInst(AllocaInst &I) {
1018   ExecutionContext &SF = ECStack.back();
1019 
1020   Type *Ty = I.getType()->getElementType();  // Type to be allocated
1021 
1022   // Get the number of elements being allocated by the array...
1023   unsigned NumElements =
1024     getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
1025 
1026   unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
1027 
1028   // Avoid malloc-ing zero bytes, use max()...
1029   unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
1030 
1031   // Allocate enough memory to hold the type...
1032   void *Memory = safe_malloc(MemToAlloc);
1033 
1034   LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize
1035                     << " bytes) x " << NumElements << " (Total: " << MemToAlloc
1036                     << ") at " << uintptr_t(Memory) << '\n');
1037 
1038   GenericValue Result = PTOGV(Memory);
1039   assert(Result.PointerVal && "Null pointer returned by malloc!");
1040   SetValue(&I, Result, SF);
1041 
1042   if (I.getOpcode() == Instruction::Alloca)
1043     ECStack.back().Allocas.add(Memory);
1044 }
1045 
1046 // getElementOffset - The workhorse for getelementptr.
1047 //
1048 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
1049                                               gep_type_iterator E,
1050                                               ExecutionContext &SF) {
1051   assert(Ptr->getType()->isPointerTy() &&
1052          "Cannot getElementOffset of a nonpointer type!");
1053 
1054   uint64_t Total = 0;
1055 
1056   for (; I != E; ++I) {
1057     if (StructType *STy = I.getStructTypeOrNull()) {
1058       const StructLayout *SLO = getDataLayout().getStructLayout(STy);
1059 
1060       const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1061       unsigned Index = unsigned(CPU->getZExtValue());
1062 
1063       Total += SLO->getElementOffset(Index);
1064     } else {
1065       // Get the index number for the array... which must be long type...
1066       GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1067 
1068       int64_t Idx;
1069       unsigned BitWidth =
1070         cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1071       if (BitWidth == 32)
1072         Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1073       else {
1074         assert(BitWidth == 64 && "Invalid index type for getelementptr");
1075         Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1076       }
1077       Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx;
1078     }
1079   }
1080 
1081   GenericValue Result;
1082   Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1083   LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1084   return Result;
1085 }
1086 
1087 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
1088   ExecutionContext &SF = ECStack.back();
1089   SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1090                                    gep_type_begin(I), gep_type_end(I), SF), SF);
1091 }
1092 
1093 void Interpreter::visitLoadInst(LoadInst &I) {
1094   ExecutionContext &SF = ECStack.back();
1095   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1096   GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1097   GenericValue Result;
1098   LoadValueFromMemory(Result, Ptr, I.getType());
1099   SetValue(&I, Result, SF);
1100   if (I.isVolatile() && PrintVolatile)
1101     dbgs() << "Volatile load " << I;
1102 }
1103 
1104 void Interpreter::visitStoreInst(StoreInst &I) {
1105   ExecutionContext &SF = ECStack.back();
1106   GenericValue Val = getOperandValue(I.getOperand(0), SF);
1107   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1108   StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1109                      I.getOperand(0)->getType());
1110   if (I.isVolatile() && PrintVolatile)
1111     dbgs() << "Volatile store: " << I;
1112 }
1113 
1114 //===----------------------------------------------------------------------===//
1115 //                 Miscellaneous Instruction Implementations
1116 //===----------------------------------------------------------------------===//
1117 
1118 void Interpreter::visitVAStartInst(VAStartInst &I) {
1119   ExecutionContext &SF = ECStack.back();
1120   GenericValue ArgIndex;
1121   ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1122   ArgIndex.UIntPairVal.second = 0;
1123   SetValue(&I, ArgIndex, SF);
1124 }
1125 
1126 void Interpreter::visitVAEndInst(VAEndInst &I) {
1127   // va_end is a noop for the interpreter
1128 }
1129 
1130 void Interpreter::visitVACopyInst(VACopyInst &I) {
1131   ExecutionContext &SF = ECStack.back();
1132   SetValue(&I, getOperandValue(*I.arg_begin(), SF), SF);
1133 }
1134 
1135 void Interpreter::visitIntrinsicInst(IntrinsicInst &I) {
1136   ExecutionContext &SF = ECStack.back();
1137 
1138   // If it is an unknown intrinsic function, use the intrinsic lowering
1139   // class to transform it into hopefully tasty LLVM code.
1140   //
1141   BasicBlock::iterator Me(&I);
1142   BasicBlock *Parent = I.getParent();
1143   bool atBegin(Parent->begin() == Me);
1144   if (!atBegin)
1145     --Me;
1146   IL->LowerIntrinsicCall(&I);
1147 
1148   // Restore the CurInst pointer to the first instruction newly inserted, if
1149   // any.
1150   if (atBegin) {
1151     SF.CurInst = Parent->begin();
1152   } else {
1153     SF.CurInst = Me;
1154     ++SF.CurInst;
1155   }
1156 }
1157 
1158 void Interpreter::visitCallBase(CallBase &I) {
1159   ExecutionContext &SF = ECStack.back();
1160 
1161   SF.Caller = &I;
1162   std::vector<GenericValue> ArgVals;
1163   const unsigned NumArgs = SF.Caller->arg_size();
1164   ArgVals.reserve(NumArgs);
1165   for (Value *V : SF.Caller->args())
1166     ArgVals.push_back(getOperandValue(V, SF));
1167 
1168   // To handle indirect calls, we must get the pointer value from the argument
1169   // and treat it as a function pointer.
1170   GenericValue SRC = getOperandValue(SF.Caller->getCalledOperand(), SF);
1171   callFunction((Function*)GVTOP(SRC), ArgVals);
1172 }
1173 
1174 // auxiliary function for shift operations
1175 static unsigned getShiftAmount(uint64_t orgShiftAmount,
1176                                llvm::APInt valueToShift) {
1177   unsigned valueWidth = valueToShift.getBitWidth();
1178   if (orgShiftAmount < (uint64_t)valueWidth)
1179     return orgShiftAmount;
1180   // according to the llvm documentation, if orgShiftAmount > valueWidth,
1181   // the result is undfeined. but we do shift by this rule:
1182   return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1183 }
1184 
1185 
1186 void Interpreter::visitShl(BinaryOperator &I) {
1187   ExecutionContext &SF = ECStack.back();
1188   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1189   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1190   GenericValue Dest;
1191   Type *Ty = I.getType();
1192 
1193   if (Ty->isVectorTy()) {
1194     uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1195     assert(src1Size == Src2.AggregateVal.size());
1196     for (unsigned i = 0; i < src1Size; i++) {
1197       GenericValue Result;
1198       uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1199       llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1200       Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1201       Dest.AggregateVal.push_back(Result);
1202     }
1203   } else {
1204     // scalar
1205     uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1206     llvm::APInt valueToShift = Src1.IntVal;
1207     Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1208   }
1209 
1210   SetValue(&I, Dest, SF);
1211 }
1212 
1213 void Interpreter::visitLShr(BinaryOperator &I) {
1214   ExecutionContext &SF = ECStack.back();
1215   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1216   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1217   GenericValue Dest;
1218   Type *Ty = I.getType();
1219 
1220   if (Ty->isVectorTy()) {
1221     uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1222     assert(src1Size == Src2.AggregateVal.size());
1223     for (unsigned i = 0; i < src1Size; i++) {
1224       GenericValue Result;
1225       uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1226       llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1227       Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1228       Dest.AggregateVal.push_back(Result);
1229     }
1230   } else {
1231     // scalar
1232     uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1233     llvm::APInt valueToShift = Src1.IntVal;
1234     Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1235   }
1236 
1237   SetValue(&I, Dest, SF);
1238 }
1239 
1240 void Interpreter::visitAShr(BinaryOperator &I) {
1241   ExecutionContext &SF = ECStack.back();
1242   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1243   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1244   GenericValue Dest;
1245   Type *Ty = I.getType();
1246 
1247   if (Ty->isVectorTy()) {
1248     size_t src1Size = Src1.AggregateVal.size();
1249     assert(src1Size == Src2.AggregateVal.size());
1250     for (unsigned i = 0; i < src1Size; i++) {
1251       GenericValue Result;
1252       uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1253       llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1254       Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1255       Dest.AggregateVal.push_back(Result);
1256     }
1257   } else {
1258     // scalar
1259     uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1260     llvm::APInt valueToShift = Src1.IntVal;
1261     Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1262   }
1263 
1264   SetValue(&I, Dest, SF);
1265 }
1266 
1267 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1268                                            ExecutionContext &SF) {
1269   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1270   Type *SrcTy = SrcVal->getType();
1271   if (SrcTy->isVectorTy()) {
1272     Type *DstVecTy = DstTy->getScalarType();
1273     unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1274     unsigned NumElts = Src.AggregateVal.size();
1275     // the sizes of src and dst vectors must be equal
1276     Dest.AggregateVal.resize(NumElts);
1277     for (unsigned i = 0; i < NumElts; i++)
1278       Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1279   } else {
1280     IntegerType *DITy = cast<IntegerType>(DstTy);
1281     unsigned DBitWidth = DITy->getBitWidth();
1282     Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1283   }
1284   return Dest;
1285 }
1286 
1287 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1288                                           ExecutionContext &SF) {
1289   Type *SrcTy = SrcVal->getType();
1290   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1291   if (SrcTy->isVectorTy()) {
1292     Type *DstVecTy = DstTy->getScalarType();
1293     unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1294     unsigned size = Src.AggregateVal.size();
1295     // the sizes of src and dst vectors must be equal.
1296     Dest.AggregateVal.resize(size);
1297     for (unsigned i = 0; i < size; i++)
1298       Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1299   } else {
1300     auto *DITy = cast<IntegerType>(DstTy);
1301     unsigned DBitWidth = DITy->getBitWidth();
1302     Dest.IntVal = Src.IntVal.sext(DBitWidth);
1303   }
1304   return Dest;
1305 }
1306 
1307 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1308                                           ExecutionContext &SF) {
1309   Type *SrcTy = SrcVal->getType();
1310   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1311   if (SrcTy->isVectorTy()) {
1312     Type *DstVecTy = DstTy->getScalarType();
1313     unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1314 
1315     unsigned size = Src.AggregateVal.size();
1316     // the sizes of src and dst vectors must be equal.
1317     Dest.AggregateVal.resize(size);
1318     for (unsigned i = 0; i < size; i++)
1319       Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1320   } else {
1321     auto *DITy = cast<IntegerType>(DstTy);
1322     unsigned DBitWidth = DITy->getBitWidth();
1323     Dest.IntVal = Src.IntVal.zext(DBitWidth);
1324   }
1325   return Dest;
1326 }
1327 
1328 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1329                                              ExecutionContext &SF) {
1330   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1331 
1332   if (isa<VectorType>(SrcVal->getType())) {
1333     assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1334            DstTy->getScalarType()->isFloatTy() &&
1335            "Invalid FPTrunc instruction");
1336 
1337     unsigned size = Src.AggregateVal.size();
1338     // the sizes of src and dst vectors must be equal.
1339     Dest.AggregateVal.resize(size);
1340     for (unsigned i = 0; i < size; i++)
1341       Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1342   } else {
1343     assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1344            "Invalid FPTrunc instruction");
1345     Dest.FloatVal = (float)Src.DoubleVal;
1346   }
1347 
1348   return Dest;
1349 }
1350 
1351 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1352                                            ExecutionContext &SF) {
1353   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1354 
1355   if (isa<VectorType>(SrcVal->getType())) {
1356     assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1357            DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1358 
1359     unsigned size = Src.AggregateVal.size();
1360     // the sizes of src and dst vectors must be equal.
1361     Dest.AggregateVal.resize(size);
1362     for (unsigned i = 0; i < size; i++)
1363       Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1364   } else {
1365     assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1366            "Invalid FPExt instruction");
1367     Dest.DoubleVal = (double)Src.FloatVal;
1368   }
1369 
1370   return Dest;
1371 }
1372 
1373 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1374                                             ExecutionContext &SF) {
1375   Type *SrcTy = SrcVal->getType();
1376   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1377 
1378   if (isa<VectorType>(SrcTy)) {
1379     Type *DstVecTy = DstTy->getScalarType();
1380     Type *SrcVecTy = SrcTy->getScalarType();
1381     uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1382     unsigned size = Src.AggregateVal.size();
1383     // the sizes of src and dst vectors must be equal.
1384     Dest.AggregateVal.resize(size);
1385 
1386     if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1387       assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1388       for (unsigned i = 0; i < size; i++)
1389         Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1390             Src.AggregateVal[i].FloatVal, DBitWidth);
1391     } else {
1392       for (unsigned i = 0; i < size; i++)
1393         Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1394             Src.AggregateVal[i].DoubleVal, DBitWidth);
1395     }
1396   } else {
1397     // scalar
1398     uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1399     assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1400 
1401     if (SrcTy->getTypeID() == Type::FloatTyID)
1402       Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1403     else {
1404       Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1405     }
1406   }
1407 
1408   return Dest;
1409 }
1410 
1411 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1412                                             ExecutionContext &SF) {
1413   Type *SrcTy = SrcVal->getType();
1414   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1415 
1416   if (isa<VectorType>(SrcTy)) {
1417     Type *DstVecTy = DstTy->getScalarType();
1418     Type *SrcVecTy = SrcTy->getScalarType();
1419     uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1420     unsigned size = Src.AggregateVal.size();
1421     // the sizes of src and dst vectors must be equal
1422     Dest.AggregateVal.resize(size);
1423 
1424     if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1425       assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1426       for (unsigned i = 0; i < size; i++)
1427         Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1428             Src.AggregateVal[i].FloatVal, DBitWidth);
1429     } else {
1430       for (unsigned i = 0; i < size; i++)
1431         Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1432             Src.AggregateVal[i].DoubleVal, DBitWidth);
1433     }
1434   } else {
1435     // scalar
1436     unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1437     assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1438 
1439     if (SrcTy->getTypeID() == Type::FloatTyID)
1440       Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1441     else {
1442       Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1443     }
1444   }
1445   return Dest;
1446 }
1447 
1448 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1449                                             ExecutionContext &SF) {
1450   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1451 
1452   if (isa<VectorType>(SrcVal->getType())) {
1453     Type *DstVecTy = DstTy->getScalarType();
1454     unsigned size = Src.AggregateVal.size();
1455     // the sizes of src and dst vectors must be equal
1456     Dest.AggregateVal.resize(size);
1457 
1458     if (DstVecTy->getTypeID() == Type::FloatTyID) {
1459       assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1460       for (unsigned i = 0; i < size; i++)
1461         Dest.AggregateVal[i].FloatVal =
1462             APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
1463     } else {
1464       for (unsigned i = 0; i < size; i++)
1465         Dest.AggregateVal[i].DoubleVal =
1466             APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
1467     }
1468   } else {
1469     // scalar
1470     assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1471     if (DstTy->getTypeID() == Type::FloatTyID)
1472       Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1473     else {
1474       Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1475     }
1476   }
1477   return Dest;
1478 }
1479 
1480 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1481                                             ExecutionContext &SF) {
1482   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1483 
1484   if (isa<VectorType>(SrcVal->getType())) {
1485     Type *DstVecTy = DstTy->getScalarType();
1486     unsigned size = Src.AggregateVal.size();
1487     // the sizes of src and dst vectors must be equal
1488     Dest.AggregateVal.resize(size);
1489 
1490     if (DstVecTy->getTypeID() == Type::FloatTyID) {
1491       assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1492       for (unsigned i = 0; i < size; i++)
1493         Dest.AggregateVal[i].FloatVal =
1494             APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
1495     } else {
1496       for (unsigned i = 0; i < size; i++)
1497         Dest.AggregateVal[i].DoubleVal =
1498             APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
1499     }
1500   } else {
1501     // scalar
1502     assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1503 
1504     if (DstTy->getTypeID() == Type::FloatTyID)
1505       Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1506     else {
1507       Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1508     }
1509   }
1510 
1511   return Dest;
1512 }
1513 
1514 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1515                                               ExecutionContext &SF) {
1516   uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1517   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1518   assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1519 
1520   Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1521   return Dest;
1522 }
1523 
1524 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1525                                               ExecutionContext &SF) {
1526   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1527   assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1528 
1529   uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
1530   if (PtrSize != Src.IntVal.getBitWidth())
1531     Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1532 
1533   Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1534   return Dest;
1535 }
1536 
1537 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1538                                              ExecutionContext &SF) {
1539 
1540   // This instruction supports bitwise conversion of vectors to integers and
1541   // to vectors of other types (as long as they have the same size)
1542   Type *SrcTy = SrcVal->getType();
1543   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1544 
1545   if (isa<VectorType>(SrcTy) || isa<VectorType>(DstTy)) {
1546     // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1547     // scalar src bitcast to vector dst
1548     bool isLittleEndian = getDataLayout().isLittleEndian();
1549     GenericValue TempDst, TempSrc, SrcVec;
1550     Type *SrcElemTy;
1551     Type *DstElemTy;
1552     unsigned SrcBitSize;
1553     unsigned DstBitSize;
1554     unsigned SrcNum;
1555     unsigned DstNum;
1556 
1557     if (isa<VectorType>(SrcTy)) {
1558       SrcElemTy = SrcTy->getScalarType();
1559       SrcBitSize = SrcTy->getScalarSizeInBits();
1560       SrcNum = Src.AggregateVal.size();
1561       SrcVec = Src;
1562     } else {
1563       // if src is scalar value, make it vector <1 x type>
1564       SrcElemTy = SrcTy;
1565       SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1566       SrcNum = 1;
1567       SrcVec.AggregateVal.push_back(Src);
1568     }
1569 
1570     if (isa<VectorType>(DstTy)) {
1571       DstElemTy = DstTy->getScalarType();
1572       DstBitSize = DstTy->getScalarSizeInBits();
1573       DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1574     } else {
1575       DstElemTy = DstTy;
1576       DstBitSize = DstTy->getPrimitiveSizeInBits();
1577       DstNum = 1;
1578     }
1579 
1580     if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1581       llvm_unreachable("Invalid BitCast");
1582 
1583     // If src is floating point, cast to integer first.
1584     TempSrc.AggregateVal.resize(SrcNum);
1585     if (SrcElemTy->isFloatTy()) {
1586       for (unsigned i = 0; i < SrcNum; i++)
1587         TempSrc.AggregateVal[i].IntVal =
1588             APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1589 
1590     } else if (SrcElemTy->isDoubleTy()) {
1591       for (unsigned i = 0; i < SrcNum; i++)
1592         TempSrc.AggregateVal[i].IntVal =
1593             APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1594     } else if (SrcElemTy->isIntegerTy()) {
1595       for (unsigned i = 0; i < SrcNum; i++)
1596         TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1597     } else {
1598       // Pointers are not allowed as the element type of vector.
1599       llvm_unreachable("Invalid Bitcast");
1600     }
1601 
1602     // now TempSrc is integer type vector
1603     if (DstNum < SrcNum) {
1604       // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1605       unsigned Ratio = SrcNum / DstNum;
1606       unsigned SrcElt = 0;
1607       for (unsigned i = 0; i < DstNum; i++) {
1608         GenericValue Elt;
1609         Elt.IntVal = 0;
1610         Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1611         unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1612         for (unsigned j = 0; j < Ratio; j++) {
1613           APInt Tmp;
1614           Tmp = Tmp.zext(SrcBitSize);
1615           Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1616           Tmp = Tmp.zext(DstBitSize);
1617           Tmp <<= ShiftAmt;
1618           ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1619           Elt.IntVal |= Tmp;
1620         }
1621         TempDst.AggregateVal.push_back(Elt);
1622       }
1623     } else {
1624       // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1625       unsigned Ratio = DstNum / SrcNum;
1626       for (unsigned i = 0; i < SrcNum; i++) {
1627         unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1628         for (unsigned j = 0; j < Ratio; j++) {
1629           GenericValue Elt;
1630           Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1631           Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1632           Elt.IntVal.lshrInPlace(ShiftAmt);
1633           // it could be DstBitSize == SrcBitSize, so check it
1634           if (DstBitSize < SrcBitSize)
1635             Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1636           ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1637           TempDst.AggregateVal.push_back(Elt);
1638         }
1639       }
1640     }
1641 
1642     // convert result from integer to specified type
1643     if (isa<VectorType>(DstTy)) {
1644       if (DstElemTy->isDoubleTy()) {
1645         Dest.AggregateVal.resize(DstNum);
1646         for (unsigned i = 0; i < DstNum; i++)
1647           Dest.AggregateVal[i].DoubleVal =
1648               TempDst.AggregateVal[i].IntVal.bitsToDouble();
1649       } else if (DstElemTy->isFloatTy()) {
1650         Dest.AggregateVal.resize(DstNum);
1651         for (unsigned i = 0; i < DstNum; i++)
1652           Dest.AggregateVal[i].FloatVal =
1653               TempDst.AggregateVal[i].IntVal.bitsToFloat();
1654       } else {
1655         Dest = TempDst;
1656       }
1657     } else {
1658       if (DstElemTy->isDoubleTy())
1659         Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1660       else if (DstElemTy->isFloatTy()) {
1661         Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1662       } else {
1663         Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1664       }
1665     }
1666   } else { //  if (isa<VectorType>(SrcTy)) || isa<VectorType>(DstTy))
1667 
1668     // scalar src bitcast to scalar dst
1669     if (DstTy->isPointerTy()) {
1670       assert(SrcTy->isPointerTy() && "Invalid BitCast");
1671       Dest.PointerVal = Src.PointerVal;
1672     } else if (DstTy->isIntegerTy()) {
1673       if (SrcTy->isFloatTy())
1674         Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1675       else if (SrcTy->isDoubleTy()) {
1676         Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1677       } else if (SrcTy->isIntegerTy()) {
1678         Dest.IntVal = Src.IntVal;
1679       } else {
1680         llvm_unreachable("Invalid BitCast");
1681       }
1682     } else if (DstTy->isFloatTy()) {
1683       if (SrcTy->isIntegerTy())
1684         Dest.FloatVal = Src.IntVal.bitsToFloat();
1685       else {
1686         Dest.FloatVal = Src.FloatVal;
1687       }
1688     } else if (DstTy->isDoubleTy()) {
1689       if (SrcTy->isIntegerTy())
1690         Dest.DoubleVal = Src.IntVal.bitsToDouble();
1691       else {
1692         Dest.DoubleVal = Src.DoubleVal;
1693       }
1694     } else {
1695       llvm_unreachable("Invalid Bitcast");
1696     }
1697   }
1698 
1699   return Dest;
1700 }
1701 
1702 void Interpreter::visitTruncInst(TruncInst &I) {
1703   ExecutionContext &SF = ECStack.back();
1704   SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1705 }
1706 
1707 void Interpreter::visitSExtInst(SExtInst &I) {
1708   ExecutionContext &SF = ECStack.back();
1709   SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1710 }
1711 
1712 void Interpreter::visitZExtInst(ZExtInst &I) {
1713   ExecutionContext &SF = ECStack.back();
1714   SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1715 }
1716 
1717 void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1718   ExecutionContext &SF = ECStack.back();
1719   SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1720 }
1721 
1722 void Interpreter::visitFPExtInst(FPExtInst &I) {
1723   ExecutionContext &SF = ECStack.back();
1724   SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1725 }
1726 
1727 void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1728   ExecutionContext &SF = ECStack.back();
1729   SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1730 }
1731 
1732 void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1733   ExecutionContext &SF = ECStack.back();
1734   SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1735 }
1736 
1737 void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1738   ExecutionContext &SF = ECStack.back();
1739   SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1740 }
1741 
1742 void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1743   ExecutionContext &SF = ECStack.back();
1744   SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1745 }
1746 
1747 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1748   ExecutionContext &SF = ECStack.back();
1749   SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1750 }
1751 
1752 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1753   ExecutionContext &SF = ECStack.back();
1754   SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1755 }
1756 
1757 void Interpreter::visitBitCastInst(BitCastInst &I) {
1758   ExecutionContext &SF = ECStack.back();
1759   SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1760 }
1761 
1762 #define IMPLEMENT_VAARG(TY) \
1763    case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1764 
1765 void Interpreter::visitVAArgInst(VAArgInst &I) {
1766   ExecutionContext &SF = ECStack.back();
1767 
1768   // Get the incoming valist parameter.  LLI treats the valist as a
1769   // (ec-stack-depth var-arg-index) pair.
1770   GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1771   GenericValue Dest;
1772   GenericValue Src = ECStack[VAList.UIntPairVal.first]
1773                       .VarArgs[VAList.UIntPairVal.second];
1774   Type *Ty = I.getType();
1775   switch (Ty->getTypeID()) {
1776   case Type::IntegerTyID:
1777     Dest.IntVal = Src.IntVal;
1778     break;
1779   IMPLEMENT_VAARG(Pointer);
1780   IMPLEMENT_VAARG(Float);
1781   IMPLEMENT_VAARG(Double);
1782   default:
1783     dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1784     llvm_unreachable(nullptr);
1785   }
1786 
1787   // Set the Value of this Instruction.
1788   SetValue(&I, Dest, SF);
1789 
1790   // Move the pointer to the next vararg.
1791   ++VAList.UIntPairVal.second;
1792 }
1793 
1794 void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
1795   ExecutionContext &SF = ECStack.back();
1796   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1797   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1798   GenericValue Dest;
1799 
1800   Type *Ty = I.getType();
1801   const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1802 
1803   if(Src1.AggregateVal.size() > indx) {
1804     switch (Ty->getTypeID()) {
1805     default:
1806       dbgs() << "Unhandled destination type for extractelement instruction: "
1807       << *Ty << "\n";
1808       llvm_unreachable(nullptr);
1809       break;
1810     case Type::IntegerTyID:
1811       Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1812       break;
1813     case Type::FloatTyID:
1814       Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1815       break;
1816     case Type::DoubleTyID:
1817       Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1818       break;
1819     }
1820   } else {
1821     dbgs() << "Invalid index in extractelement instruction\n";
1822   }
1823 
1824   SetValue(&I, Dest, SF);
1825 }
1826 
1827 void Interpreter::visitInsertElementInst(InsertElementInst &I) {
1828   ExecutionContext &SF = ECStack.back();
1829   VectorType *Ty = cast<VectorType>(I.getType());
1830 
1831   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1832   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1833   GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1834   GenericValue Dest;
1835 
1836   Type *TyContained = Ty->getElementType();
1837 
1838   const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1839   Dest.AggregateVal = Src1.AggregateVal;
1840 
1841   if(Src1.AggregateVal.size() <= indx)
1842       llvm_unreachable("Invalid index in insertelement instruction");
1843   switch (TyContained->getTypeID()) {
1844     default:
1845       llvm_unreachable("Unhandled dest type for insertelement instruction");
1846     case Type::IntegerTyID:
1847       Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1848       break;
1849     case Type::FloatTyID:
1850       Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1851       break;
1852     case Type::DoubleTyID:
1853       Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1854       break;
1855   }
1856   SetValue(&I, Dest, SF);
1857 }
1858 
1859 void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
1860   ExecutionContext &SF = ECStack.back();
1861 
1862   VectorType *Ty = cast<VectorType>(I.getType());
1863 
1864   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1865   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1866   GenericValue Dest;
1867 
1868   // There is no need to check types of src1 and src2, because the compiled
1869   // bytecode can't contain different types for src1 and src2 for a
1870   // shufflevector instruction.
1871 
1872   Type *TyContained = Ty->getElementType();
1873   unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1874   unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1875   unsigned src3Size = I.getShuffleMask().size();
1876 
1877   Dest.AggregateVal.resize(src3Size);
1878 
1879   switch (TyContained->getTypeID()) {
1880     default:
1881       llvm_unreachable("Unhandled dest type for insertelement instruction");
1882       break;
1883     case Type::IntegerTyID:
1884       for( unsigned i=0; i<src3Size; i++) {
1885         unsigned j = std::max(0, I.getMaskValue(i));
1886         if(j < src1Size)
1887           Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1888         else if(j < src1Size + src2Size)
1889           Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1890         else
1891           // The selector may not be greater than sum of lengths of first and
1892           // second operands and llasm should not allow situation like
1893           // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1894           //                      <2 x i32> < i32 0, i32 5 >,
1895           // where i32 5 is invalid, but let it be additional check here:
1896           llvm_unreachable("Invalid mask in shufflevector instruction");
1897       }
1898       break;
1899     case Type::FloatTyID:
1900       for( unsigned i=0; i<src3Size; i++) {
1901         unsigned j = std::max(0, I.getMaskValue(i));
1902         if(j < src1Size)
1903           Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1904         else if(j < src1Size + src2Size)
1905           Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1906         else
1907           llvm_unreachable("Invalid mask in shufflevector instruction");
1908         }
1909       break;
1910     case Type::DoubleTyID:
1911       for( unsigned i=0; i<src3Size; i++) {
1912         unsigned j = std::max(0, I.getMaskValue(i));
1913         if(j < src1Size)
1914           Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1915         else if(j < src1Size + src2Size)
1916           Dest.AggregateVal[i].DoubleVal =
1917             Src2.AggregateVal[j-src1Size].DoubleVal;
1918         else
1919           llvm_unreachable("Invalid mask in shufflevector instruction");
1920       }
1921       break;
1922   }
1923   SetValue(&I, Dest, SF);
1924 }
1925 
1926 void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
1927   ExecutionContext &SF = ECStack.back();
1928   Value *Agg = I.getAggregateOperand();
1929   GenericValue Dest;
1930   GenericValue Src = getOperandValue(Agg, SF);
1931 
1932   ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1933   unsigned Num = I.getNumIndices();
1934   GenericValue *pSrc = &Src;
1935 
1936   for (unsigned i = 0 ; i < Num; ++i) {
1937     pSrc = &pSrc->AggregateVal[*IdxBegin];
1938     ++IdxBegin;
1939   }
1940 
1941   Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1942   switch (IndexedType->getTypeID()) {
1943     default:
1944       llvm_unreachable("Unhandled dest type for extractelement instruction");
1945     break;
1946     case Type::IntegerTyID:
1947       Dest.IntVal = pSrc->IntVal;
1948     break;
1949     case Type::FloatTyID:
1950       Dest.FloatVal = pSrc->FloatVal;
1951     break;
1952     case Type::DoubleTyID:
1953       Dest.DoubleVal = pSrc->DoubleVal;
1954     break;
1955     case Type::ArrayTyID:
1956     case Type::StructTyID:
1957     case Type::FixedVectorTyID:
1958     case Type::ScalableVectorTyID:
1959       Dest.AggregateVal = pSrc->AggregateVal;
1960     break;
1961     case Type::PointerTyID:
1962       Dest.PointerVal = pSrc->PointerVal;
1963     break;
1964   }
1965 
1966   SetValue(&I, Dest, SF);
1967 }
1968 
1969 void Interpreter::visitInsertValueInst(InsertValueInst &I) {
1970 
1971   ExecutionContext &SF = ECStack.back();
1972   Value *Agg = I.getAggregateOperand();
1973 
1974   GenericValue Src1 = getOperandValue(Agg, SF);
1975   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1976   GenericValue Dest = Src1; // Dest is a slightly changed Src1
1977 
1978   ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1979   unsigned Num = I.getNumIndices();
1980 
1981   GenericValue *pDest = &Dest;
1982   for (unsigned i = 0 ; i < Num; ++i) {
1983     pDest = &pDest->AggregateVal[*IdxBegin];
1984     ++IdxBegin;
1985   }
1986   // pDest points to the target value in the Dest now
1987 
1988   Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1989 
1990   switch (IndexedType->getTypeID()) {
1991     default:
1992       llvm_unreachable("Unhandled dest type for insertelement instruction");
1993     break;
1994     case Type::IntegerTyID:
1995       pDest->IntVal = Src2.IntVal;
1996     break;
1997     case Type::FloatTyID:
1998       pDest->FloatVal = Src2.FloatVal;
1999     break;
2000     case Type::DoubleTyID:
2001       pDest->DoubleVal = Src2.DoubleVal;
2002     break;
2003     case Type::ArrayTyID:
2004     case Type::StructTyID:
2005     case Type::FixedVectorTyID:
2006     case Type::ScalableVectorTyID:
2007       pDest->AggregateVal = Src2.AggregateVal;
2008     break;
2009     case Type::PointerTyID:
2010       pDest->PointerVal = Src2.PointerVal;
2011     break;
2012   }
2013 
2014   SetValue(&I, Dest, SF);
2015 }
2016 
2017 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
2018                                                 ExecutionContext &SF) {
2019   switch (CE->getOpcode()) {
2020   case Instruction::Trunc:
2021       return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
2022   case Instruction::ZExt:
2023       return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
2024   case Instruction::SExt:
2025       return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
2026   case Instruction::FPTrunc:
2027       return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
2028   case Instruction::FPExt:
2029       return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
2030   case Instruction::UIToFP:
2031       return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
2032   case Instruction::SIToFP:
2033       return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
2034   case Instruction::FPToUI:
2035       return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
2036   case Instruction::FPToSI:
2037       return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
2038   case Instruction::PtrToInt:
2039       return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
2040   case Instruction::IntToPtr:
2041       return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
2042   case Instruction::BitCast:
2043       return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
2044   case Instruction::GetElementPtr:
2045     return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
2046                                gep_type_end(CE), SF);
2047   case Instruction::FCmp:
2048   case Instruction::ICmp:
2049     return executeCmpInst(CE->getPredicate(),
2050                           getOperandValue(CE->getOperand(0), SF),
2051                           getOperandValue(CE->getOperand(1), SF),
2052                           CE->getOperand(0)->getType());
2053   case Instruction::Select:
2054     return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
2055                              getOperandValue(CE->getOperand(1), SF),
2056                              getOperandValue(CE->getOperand(2), SF),
2057                              CE->getOperand(0)->getType());
2058   default :
2059     break;
2060   }
2061 
2062   // The cases below here require a GenericValue parameter for the result
2063   // so we initialize one, compute it and then return it.
2064   GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2065   GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2066   GenericValue Dest;
2067   Type * Ty = CE->getOperand(0)->getType();
2068   switch (CE->getOpcode()) {
2069   case Instruction::Add:  Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2070   case Instruction::Sub:  Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2071   case Instruction::Mul:  Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2072   case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
2073   case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
2074   case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
2075   case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
2076   case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
2077   case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
2078   case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
2079   case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
2080   case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
2081   case Instruction::And:  Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
2082   case Instruction::Or:   Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
2083   case Instruction::Xor:  Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2084   case Instruction::Shl:
2085     Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2086     break;
2087   case Instruction::LShr:
2088     Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
2089     break;
2090   case Instruction::AShr:
2091     Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
2092     break;
2093   default:
2094     dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2095     llvm_unreachable("Unhandled ConstantExpr");
2096   }
2097   return Dest;
2098 }
2099 
2100 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2101   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2102     return getConstantExprValue(CE, SF);
2103   } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2104     return getConstantValue(CPV);
2105   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2106     return PTOGV(getPointerToGlobal(GV));
2107   } else {
2108     return SF.Values[V];
2109   }
2110 }
2111 
2112 //===----------------------------------------------------------------------===//
2113 //                        Dispatch and Execution Code
2114 //===----------------------------------------------------------------------===//
2115 
2116 //===----------------------------------------------------------------------===//
2117 // callFunction - Execute the specified function...
2118 //
2119 void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
2120   assert((ECStack.empty() || !ECStack.back().Caller ||
2121           ECStack.back().Caller->arg_size() == ArgVals.size()) &&
2122          "Incorrect number of arguments passed into function call!");
2123   // Make a new stack frame... and fill it in.
2124   ECStack.emplace_back();
2125   ExecutionContext &StackFrame = ECStack.back();
2126   StackFrame.CurFunction = F;
2127 
2128   // Special handling for external functions.
2129   if (F->isDeclaration()) {
2130     GenericValue Result = callExternalFunction (F, ArgVals);
2131     // Simulate a 'ret' instruction of the appropriate type.
2132     popStackAndReturnValueToCaller (F->getReturnType (), Result);
2133     return;
2134   }
2135 
2136   // Get pointers to first LLVM BB & Instruction in function.
2137   StackFrame.CurBB     = &F->front();
2138   StackFrame.CurInst   = StackFrame.CurBB->begin();
2139 
2140   // Run through the function arguments and initialize their values...
2141   assert((ArgVals.size() == F->arg_size() ||
2142          (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2143          "Invalid number of values passed to function invocation!");
2144 
2145   // Handle non-varargs arguments...
2146   unsigned i = 0;
2147   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2148        AI != E; ++AI, ++i)
2149     SetValue(&*AI, ArgVals[i], StackFrame);
2150 
2151   // Handle varargs arguments...
2152   StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2153 }
2154 
2155 
2156 void Interpreter::run() {
2157   while (!ECStack.empty()) {
2158     // Interpret a single instruction & increment the "PC".
2159     ExecutionContext &SF = ECStack.back();  // Current stack frame
2160     Instruction &I = *SF.CurInst++;         // Increment before execute
2161 
2162     // Track the number of dynamic instructions executed.
2163     ++NumDynamicInsts;
2164 
2165     LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n");
2166     visit(I);   // Dispatch to one of the visit* methods...
2167   }
2168 }
2169