1 //===-- Execution.cpp - Implement code to simulate the program ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the actual instruction interpreter. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "Interpreter.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/CodeGen/IntrinsicLowering.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DerivedTypes.h" 19 #include "llvm/IR/GetElementPtrTypeIterator.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/Support/CommandLine.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <cmath> 28 using namespace llvm; 29 30 #define DEBUG_TYPE "interpreter" 31 32 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); 33 34 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, 35 cl::desc("make the interpreter print every volatile load and store")); 36 37 //===----------------------------------------------------------------------===// 38 // Various Helper Functions 39 //===----------------------------------------------------------------------===// 40 41 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { 42 SF.Values[V] = Val; 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Unary Instruction Implementations 47 //===----------------------------------------------------------------------===// 48 49 static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) { 50 switch (Ty->getTypeID()) { 51 case Type::FloatTyID: 52 Dest.FloatVal = -Src.FloatVal; 53 break; 54 case Type::DoubleTyID: 55 Dest.DoubleVal = -Src.DoubleVal; 56 break; 57 default: 58 llvm_unreachable("Unhandled type for FNeg instruction"); 59 } 60 } 61 62 void Interpreter::visitUnaryOperator(UnaryOperator &I) { 63 ExecutionContext &SF = ECStack.back(); 64 Type *Ty = I.getOperand(0)->getType(); 65 GenericValue Src = getOperandValue(I.getOperand(0), SF); 66 GenericValue R; // Result 67 68 // First process vector operation 69 if (Ty->isVectorTy()) { 70 R.AggregateVal.resize(Src.AggregateVal.size()); 71 72 switch(I.getOpcode()) { 73 default: 74 llvm_unreachable("Don't know how to handle this unary operator"); 75 break; 76 case Instruction::FNeg: 77 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { 78 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) 79 R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal; 80 } else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) { 81 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) 82 R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal; 83 } else { 84 llvm_unreachable("Unhandled type for FNeg instruction"); 85 } 86 break; 87 } 88 } else { 89 switch (I.getOpcode()) { 90 default: 91 llvm_unreachable("Don't know how to handle this unary operator"); 92 break; 93 case Instruction::FNeg: executeFNegInst(R, Src, Ty); break; 94 } 95 } 96 SetValue(&I, R, SF); 97 } 98 99 //===----------------------------------------------------------------------===// 100 // Binary Instruction Implementations 101 //===----------------------------------------------------------------------===// 102 103 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ 104 case Type::TY##TyID: \ 105 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ 106 break 107 108 static void executeFAddInst(GenericValue &Dest, GenericValue Src1, 109 GenericValue Src2, Type *Ty) { 110 switch (Ty->getTypeID()) { 111 IMPLEMENT_BINARY_OPERATOR(+, Float); 112 IMPLEMENT_BINARY_OPERATOR(+, Double); 113 default: 114 dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; 115 llvm_unreachable(nullptr); 116 } 117 } 118 119 static void executeFSubInst(GenericValue &Dest, GenericValue Src1, 120 GenericValue Src2, Type *Ty) { 121 switch (Ty->getTypeID()) { 122 IMPLEMENT_BINARY_OPERATOR(-, Float); 123 IMPLEMENT_BINARY_OPERATOR(-, Double); 124 default: 125 dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; 126 llvm_unreachable(nullptr); 127 } 128 } 129 130 static void executeFMulInst(GenericValue &Dest, GenericValue Src1, 131 GenericValue Src2, Type *Ty) { 132 switch (Ty->getTypeID()) { 133 IMPLEMENT_BINARY_OPERATOR(*, Float); 134 IMPLEMENT_BINARY_OPERATOR(*, Double); 135 default: 136 dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; 137 llvm_unreachable(nullptr); 138 } 139 } 140 141 static void executeFDivInst(GenericValue &Dest, GenericValue Src1, 142 GenericValue Src2, Type *Ty) { 143 switch (Ty->getTypeID()) { 144 IMPLEMENT_BINARY_OPERATOR(/, Float); 145 IMPLEMENT_BINARY_OPERATOR(/, Double); 146 default: 147 dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; 148 llvm_unreachable(nullptr); 149 } 150 } 151 152 static void executeFRemInst(GenericValue &Dest, GenericValue Src1, 153 GenericValue Src2, Type *Ty) { 154 switch (Ty->getTypeID()) { 155 case Type::FloatTyID: 156 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); 157 break; 158 case Type::DoubleTyID: 159 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); 160 break; 161 default: 162 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; 163 llvm_unreachable(nullptr); 164 } 165 } 166 167 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ 168 case Type::IntegerTyID: \ 169 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ 170 break; 171 172 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \ 173 case Type::FixedVectorTyID: \ 174 case Type::ScalableVectorTyID: { \ 175 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ 176 Dest.AggregateVal.resize(Src1.AggregateVal.size()); \ 177 for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \ 178 Dest.AggregateVal[_i].IntVal = APInt( \ 179 1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal)); \ 180 } break; 181 182 // Handle pointers specially because they must be compared with only as much 183 // width as the host has. We _do not_ want to be comparing 64 bit values when 184 // running on a 32-bit target, otherwise the upper 32 bits might mess up 185 // comparisons if they contain garbage. 186 #define IMPLEMENT_POINTER_ICMP(OP) \ 187 case Type::PointerTyID: \ 188 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ 189 (void*)(intptr_t)Src2.PointerVal); \ 190 break; 191 192 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, 193 Type *Ty) { 194 GenericValue Dest; 195 switch (Ty->getTypeID()) { 196 IMPLEMENT_INTEGER_ICMP(eq,Ty); 197 IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty); 198 IMPLEMENT_POINTER_ICMP(==); 199 default: 200 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; 201 llvm_unreachable(nullptr); 202 } 203 return Dest; 204 } 205 206 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, 207 Type *Ty) { 208 GenericValue Dest; 209 switch (Ty->getTypeID()) { 210 IMPLEMENT_INTEGER_ICMP(ne,Ty); 211 IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty); 212 IMPLEMENT_POINTER_ICMP(!=); 213 default: 214 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; 215 llvm_unreachable(nullptr); 216 } 217 return Dest; 218 } 219 220 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, 221 Type *Ty) { 222 GenericValue Dest; 223 switch (Ty->getTypeID()) { 224 IMPLEMENT_INTEGER_ICMP(ult,Ty); 225 IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty); 226 IMPLEMENT_POINTER_ICMP(<); 227 default: 228 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; 229 llvm_unreachable(nullptr); 230 } 231 return Dest; 232 } 233 234 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, 235 Type *Ty) { 236 GenericValue Dest; 237 switch (Ty->getTypeID()) { 238 IMPLEMENT_INTEGER_ICMP(slt,Ty); 239 IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty); 240 IMPLEMENT_POINTER_ICMP(<); 241 default: 242 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; 243 llvm_unreachable(nullptr); 244 } 245 return Dest; 246 } 247 248 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, 249 Type *Ty) { 250 GenericValue Dest; 251 switch (Ty->getTypeID()) { 252 IMPLEMENT_INTEGER_ICMP(ugt,Ty); 253 IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty); 254 IMPLEMENT_POINTER_ICMP(>); 255 default: 256 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; 257 llvm_unreachable(nullptr); 258 } 259 return Dest; 260 } 261 262 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, 263 Type *Ty) { 264 GenericValue Dest; 265 switch (Ty->getTypeID()) { 266 IMPLEMENT_INTEGER_ICMP(sgt,Ty); 267 IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty); 268 IMPLEMENT_POINTER_ICMP(>); 269 default: 270 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; 271 llvm_unreachable(nullptr); 272 } 273 return Dest; 274 } 275 276 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, 277 Type *Ty) { 278 GenericValue Dest; 279 switch (Ty->getTypeID()) { 280 IMPLEMENT_INTEGER_ICMP(ule,Ty); 281 IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty); 282 IMPLEMENT_POINTER_ICMP(<=); 283 default: 284 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; 285 llvm_unreachable(nullptr); 286 } 287 return Dest; 288 } 289 290 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, 291 Type *Ty) { 292 GenericValue Dest; 293 switch (Ty->getTypeID()) { 294 IMPLEMENT_INTEGER_ICMP(sle,Ty); 295 IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty); 296 IMPLEMENT_POINTER_ICMP(<=); 297 default: 298 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; 299 llvm_unreachable(nullptr); 300 } 301 return Dest; 302 } 303 304 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, 305 Type *Ty) { 306 GenericValue Dest; 307 switch (Ty->getTypeID()) { 308 IMPLEMENT_INTEGER_ICMP(uge,Ty); 309 IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty); 310 IMPLEMENT_POINTER_ICMP(>=); 311 default: 312 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; 313 llvm_unreachable(nullptr); 314 } 315 return Dest; 316 } 317 318 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, 319 Type *Ty) { 320 GenericValue Dest; 321 switch (Ty->getTypeID()) { 322 IMPLEMENT_INTEGER_ICMP(sge,Ty); 323 IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty); 324 IMPLEMENT_POINTER_ICMP(>=); 325 default: 326 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; 327 llvm_unreachable(nullptr); 328 } 329 return Dest; 330 } 331 332 void Interpreter::visitICmpInst(ICmpInst &I) { 333 ExecutionContext &SF = ECStack.back(); 334 Type *Ty = I.getOperand(0)->getType(); 335 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 336 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 337 GenericValue R; // Result 338 339 switch (I.getPredicate()) { 340 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; 341 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; 342 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; 343 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; 344 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; 345 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; 346 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; 347 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; 348 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; 349 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; 350 default: 351 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; 352 llvm_unreachable(nullptr); 353 } 354 355 SetValue(&I, R, SF); 356 } 357 358 #define IMPLEMENT_FCMP(OP, TY) \ 359 case Type::TY##TyID: \ 360 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ 361 break 362 363 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \ 364 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ 365 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ 366 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ 367 Dest.AggregateVal[_i].IntVal = APInt(1, \ 368 Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\ 369 break; 370 371 #define IMPLEMENT_VECTOR_FCMP(OP) \ 372 case Type::FixedVectorTyID: \ 373 case Type::ScalableVectorTyID: \ 374 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \ 375 IMPLEMENT_VECTOR_FCMP_T(OP, Float); \ 376 } else { \ 377 IMPLEMENT_VECTOR_FCMP_T(OP, Double); \ 378 } 379 380 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, 381 Type *Ty) { 382 GenericValue Dest; 383 switch (Ty->getTypeID()) { 384 IMPLEMENT_FCMP(==, Float); 385 IMPLEMENT_FCMP(==, Double); 386 IMPLEMENT_VECTOR_FCMP(==); 387 default: 388 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; 389 llvm_unreachable(nullptr); 390 } 391 return Dest; 392 } 393 394 #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \ 395 if (TY->isFloatTy()) { \ 396 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ 397 Dest.IntVal = APInt(1,false); \ 398 return Dest; \ 399 } \ 400 } else { \ 401 if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ 402 Dest.IntVal = APInt(1,false); \ 403 return Dest; \ 404 } \ 405 } 406 407 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \ 408 assert(X.AggregateVal.size() == Y.AggregateVal.size()); \ 409 Dest.AggregateVal.resize( X.AggregateVal.size() ); \ 410 for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \ 411 if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \ 412 Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \ 413 Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \ 414 else { \ 415 Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \ 416 } \ 417 } 418 419 #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \ 420 if (TY->isVectorTy()) { \ 421 if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \ 422 MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \ 423 } else { \ 424 MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \ 425 } \ 426 } \ 427 428 429 430 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, 431 Type *Ty) 432 { 433 GenericValue Dest; 434 // if input is scalar value and Src1 or Src2 is NaN return false 435 IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2) 436 // if vector input detect NaNs and fill mask 437 MASK_VECTOR_NANS(Ty, Src1, Src2, false) 438 GenericValue DestMask = Dest; 439 switch (Ty->getTypeID()) { 440 IMPLEMENT_FCMP(!=, Float); 441 IMPLEMENT_FCMP(!=, Double); 442 IMPLEMENT_VECTOR_FCMP(!=); 443 default: 444 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; 445 llvm_unreachable(nullptr); 446 } 447 // in vector case mask out NaN elements 448 if (Ty->isVectorTy()) 449 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) 450 if (DestMask.AggregateVal[_i].IntVal == false) 451 Dest.AggregateVal[_i].IntVal = APInt(1,false); 452 453 return Dest; 454 } 455 456 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, 457 Type *Ty) { 458 GenericValue Dest; 459 switch (Ty->getTypeID()) { 460 IMPLEMENT_FCMP(<=, Float); 461 IMPLEMENT_FCMP(<=, Double); 462 IMPLEMENT_VECTOR_FCMP(<=); 463 default: 464 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; 465 llvm_unreachable(nullptr); 466 } 467 return Dest; 468 } 469 470 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, 471 Type *Ty) { 472 GenericValue Dest; 473 switch (Ty->getTypeID()) { 474 IMPLEMENT_FCMP(>=, Float); 475 IMPLEMENT_FCMP(>=, Double); 476 IMPLEMENT_VECTOR_FCMP(>=); 477 default: 478 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; 479 llvm_unreachable(nullptr); 480 } 481 return Dest; 482 } 483 484 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, 485 Type *Ty) { 486 GenericValue Dest; 487 switch (Ty->getTypeID()) { 488 IMPLEMENT_FCMP(<, Float); 489 IMPLEMENT_FCMP(<, Double); 490 IMPLEMENT_VECTOR_FCMP(<); 491 default: 492 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; 493 llvm_unreachable(nullptr); 494 } 495 return Dest; 496 } 497 498 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, 499 Type *Ty) { 500 GenericValue Dest; 501 switch (Ty->getTypeID()) { 502 IMPLEMENT_FCMP(>, Float); 503 IMPLEMENT_FCMP(>, Double); 504 IMPLEMENT_VECTOR_FCMP(>); 505 default: 506 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; 507 llvm_unreachable(nullptr); 508 } 509 return Dest; 510 } 511 512 #define IMPLEMENT_UNORDERED(TY, X,Y) \ 513 if (TY->isFloatTy()) { \ 514 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ 515 Dest.IntVal = APInt(1,true); \ 516 return Dest; \ 517 } \ 518 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ 519 Dest.IntVal = APInt(1,true); \ 520 return Dest; \ 521 } 522 523 #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \ 524 if (TY->isVectorTy()) { \ 525 GenericValue DestMask = Dest; \ 526 Dest = FUNC(Src1, Src2, Ty); \ 527 for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \ 528 if (DestMask.AggregateVal[_i].IntVal == true) \ 529 Dest.AggregateVal[_i].IntVal = APInt(1, true); \ 530 return Dest; \ 531 } 532 533 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, 534 Type *Ty) { 535 GenericValue Dest; 536 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 537 MASK_VECTOR_NANS(Ty, Src1, Src2, true) 538 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ) 539 return executeFCMP_OEQ(Src1, Src2, Ty); 540 541 } 542 543 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, 544 Type *Ty) { 545 GenericValue Dest; 546 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 547 MASK_VECTOR_NANS(Ty, Src1, Src2, true) 548 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE) 549 return executeFCMP_ONE(Src1, Src2, Ty); 550 } 551 552 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, 553 Type *Ty) { 554 GenericValue Dest; 555 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 556 MASK_VECTOR_NANS(Ty, Src1, Src2, true) 557 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE) 558 return executeFCMP_OLE(Src1, Src2, Ty); 559 } 560 561 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, 562 Type *Ty) { 563 GenericValue Dest; 564 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 565 MASK_VECTOR_NANS(Ty, Src1, Src2, true) 566 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE) 567 return executeFCMP_OGE(Src1, Src2, Ty); 568 } 569 570 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, 571 Type *Ty) { 572 GenericValue Dest; 573 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 574 MASK_VECTOR_NANS(Ty, Src1, Src2, true) 575 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT) 576 return executeFCMP_OLT(Src1, Src2, Ty); 577 } 578 579 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, 580 Type *Ty) { 581 GenericValue Dest; 582 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 583 MASK_VECTOR_NANS(Ty, Src1, Src2, true) 584 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT) 585 return executeFCMP_OGT(Src1, Src2, Ty); 586 } 587 588 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, 589 Type *Ty) { 590 GenericValue Dest; 591 if(Ty->isVectorTy()) { 592 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); 593 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); 594 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { 595 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) 596 Dest.AggregateVal[_i].IntVal = APInt(1, 597 ( (Src1.AggregateVal[_i].FloatVal == 598 Src1.AggregateVal[_i].FloatVal) && 599 (Src2.AggregateVal[_i].FloatVal == 600 Src2.AggregateVal[_i].FloatVal))); 601 } else { 602 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) 603 Dest.AggregateVal[_i].IntVal = APInt(1, 604 ( (Src1.AggregateVal[_i].DoubleVal == 605 Src1.AggregateVal[_i].DoubleVal) && 606 (Src2.AggregateVal[_i].DoubleVal == 607 Src2.AggregateVal[_i].DoubleVal))); 608 } 609 } else if (Ty->isFloatTy()) 610 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && 611 Src2.FloatVal == Src2.FloatVal)); 612 else { 613 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && 614 Src2.DoubleVal == Src2.DoubleVal)); 615 } 616 return Dest; 617 } 618 619 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, 620 Type *Ty) { 621 GenericValue Dest; 622 if(Ty->isVectorTy()) { 623 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); 624 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); 625 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { 626 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) 627 Dest.AggregateVal[_i].IntVal = APInt(1, 628 ( (Src1.AggregateVal[_i].FloatVal != 629 Src1.AggregateVal[_i].FloatVal) || 630 (Src2.AggregateVal[_i].FloatVal != 631 Src2.AggregateVal[_i].FloatVal))); 632 } else { 633 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) 634 Dest.AggregateVal[_i].IntVal = APInt(1, 635 ( (Src1.AggregateVal[_i].DoubleVal != 636 Src1.AggregateVal[_i].DoubleVal) || 637 (Src2.AggregateVal[_i].DoubleVal != 638 Src2.AggregateVal[_i].DoubleVal))); 639 } 640 } else if (Ty->isFloatTy()) 641 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || 642 Src2.FloatVal != Src2.FloatVal)); 643 else { 644 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || 645 Src2.DoubleVal != Src2.DoubleVal)); 646 } 647 return Dest; 648 } 649 650 static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, 651 Type *Ty, const bool val) { 652 GenericValue Dest; 653 if(Ty->isVectorTy()) { 654 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); 655 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); 656 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) 657 Dest.AggregateVal[_i].IntVal = APInt(1,val); 658 } else { 659 Dest.IntVal = APInt(1, val); 660 } 661 662 return Dest; 663 } 664 665 void Interpreter::visitFCmpInst(FCmpInst &I) { 666 ExecutionContext &SF = ECStack.back(); 667 Type *Ty = I.getOperand(0)->getType(); 668 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 669 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 670 GenericValue R; // Result 671 672 switch (I.getPredicate()) { 673 default: 674 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; 675 llvm_unreachable(nullptr); 676 break; 677 case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); 678 break; 679 case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true); 680 break; 681 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; 682 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; 683 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; 684 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; 685 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; 686 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; 687 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; 688 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; 689 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; 690 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; 691 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; 692 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; 693 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; 694 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; 695 } 696 697 SetValue(&I, R, SF); 698 } 699 700 void Interpreter::visitBinaryOperator(BinaryOperator &I) { 701 ExecutionContext &SF = ECStack.back(); 702 Type *Ty = I.getOperand(0)->getType(); 703 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 704 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 705 GenericValue R; // Result 706 707 // First process vector operation 708 if (Ty->isVectorTy()) { 709 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); 710 R.AggregateVal.resize(Src1.AggregateVal.size()); 711 712 // Macros to execute binary operation 'OP' over integer vectors 713 #define INTEGER_VECTOR_OPERATION(OP) \ 714 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ 715 R.AggregateVal[i].IntVal = \ 716 Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal; 717 718 // Additional macros to execute binary operations udiv/sdiv/urem/srem since 719 // they have different notation. 720 #define INTEGER_VECTOR_FUNCTION(OP) \ 721 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ 722 R.AggregateVal[i].IntVal = \ 723 Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal); 724 725 // Macros to execute binary operation 'OP' over floating point type TY 726 // (float or double) vectors 727 #define FLOAT_VECTOR_FUNCTION(OP, TY) \ 728 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ 729 R.AggregateVal[i].TY = \ 730 Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY; 731 732 // Macros to choose appropriate TY: float or double and run operation 733 // execution 734 #define FLOAT_VECTOR_OP(OP) { \ 735 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \ 736 FLOAT_VECTOR_FUNCTION(OP, FloatVal) \ 737 else { \ 738 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \ 739 FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \ 740 else { \ 741 dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \ 742 llvm_unreachable(0); \ 743 } \ 744 } \ 745 } 746 747 switch(I.getOpcode()){ 748 default: 749 dbgs() << "Don't know how to handle this binary operator!\n-->" << I; 750 llvm_unreachable(nullptr); 751 break; 752 case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break; 753 case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break; 754 case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break; 755 case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break; 756 case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break; 757 case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break; 758 case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break; 759 case Instruction::And: INTEGER_VECTOR_OPERATION(&) break; 760 case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break; 761 case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break; 762 case Instruction::FAdd: FLOAT_VECTOR_OP(+) break; 763 case Instruction::FSub: FLOAT_VECTOR_OP(-) break; 764 case Instruction::FMul: FLOAT_VECTOR_OP(*) break; 765 case Instruction::FDiv: FLOAT_VECTOR_OP(/) break; 766 case Instruction::FRem: 767 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 768 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) 769 R.AggregateVal[i].FloatVal = 770 fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal); 771 else { 772 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 773 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) 774 R.AggregateVal[i].DoubleVal = 775 fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal); 776 else { 777 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; 778 llvm_unreachable(nullptr); 779 } 780 } 781 break; 782 } 783 } else { 784 switch (I.getOpcode()) { 785 default: 786 dbgs() << "Don't know how to handle this binary operator!\n-->" << I; 787 llvm_unreachable(nullptr); 788 break; 789 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; 790 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; 791 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break; 792 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break; 793 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break; 794 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break; 795 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break; 796 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break; 797 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; 798 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; 799 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; 800 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; 801 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; 802 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; 803 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; 804 } 805 } 806 SetValue(&I, R, SF); 807 } 808 809 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, 810 GenericValue Src3, Type *Ty) { 811 GenericValue Dest; 812 if(Ty->isVectorTy()) { 813 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); 814 assert(Src2.AggregateVal.size() == Src3.AggregateVal.size()); 815 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); 816 for (size_t i = 0; i < Src1.AggregateVal.size(); ++i) 817 Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ? 818 Src3.AggregateVal[i] : Src2.AggregateVal[i]; 819 } else { 820 Dest = (Src1.IntVal == 0) ? Src3 : Src2; 821 } 822 return Dest; 823 } 824 825 void Interpreter::visitSelectInst(SelectInst &I) { 826 ExecutionContext &SF = ECStack.back(); 827 Type * Ty = I.getOperand(0)->getType(); 828 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 829 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 830 GenericValue Src3 = getOperandValue(I.getOperand(2), SF); 831 GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty); 832 SetValue(&I, R, SF); 833 } 834 835 //===----------------------------------------------------------------------===// 836 // Terminator Instruction Implementations 837 //===----------------------------------------------------------------------===// 838 839 void Interpreter::exitCalled(GenericValue GV) { 840 // runAtExitHandlers() assumes there are no stack frames, but 841 // if exit() was called, then it had a stack frame. Blow away 842 // the stack before interpreting atexit handlers. 843 ECStack.clear(); 844 runAtExitHandlers(); 845 exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); 846 } 847 848 /// Pop the last stack frame off of ECStack and then copy the result 849 /// back into the result variable if we are not returning void. The 850 /// result variable may be the ExitValue, or the Value of the calling 851 /// CallInst if there was a previous stack frame. This method may 852 /// invalidate any ECStack iterators you have. This method also takes 853 /// care of switching to the normal destination BB, if we are returning 854 /// from an invoke. 855 /// 856 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, 857 GenericValue Result) { 858 // Pop the current stack frame. 859 ECStack.pop_back(); 860 861 if (ECStack.empty()) { // Finished main. Put result into exit code... 862 if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type? 863 ExitValue = Result; // Capture the exit value of the program 864 } else { 865 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); 866 } 867 } else { 868 // If we have a previous stack frame, and we have a previous call, 869 // fill in the return value... 870 ExecutionContext &CallingSF = ECStack.back(); 871 if (CallingSF.Caller) { 872 // Save result... 873 if (!CallingSF.Caller->getType()->isVoidTy()) 874 SetValue(CallingSF.Caller, Result, CallingSF); 875 if (InvokeInst *II = dyn_cast<InvokeInst>(CallingSF.Caller)) 876 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); 877 CallingSF.Caller = nullptr; // We returned from the call... 878 } 879 } 880 } 881 882 void Interpreter::visitReturnInst(ReturnInst &I) { 883 ExecutionContext &SF = ECStack.back(); 884 Type *RetTy = Type::getVoidTy(I.getContext()); 885 GenericValue Result; 886 887 // Save away the return value... (if we are not 'ret void') 888 if (I.getNumOperands()) { 889 RetTy = I.getReturnValue()->getType(); 890 Result = getOperandValue(I.getReturnValue(), SF); 891 } 892 893 popStackAndReturnValueToCaller(RetTy, Result); 894 } 895 896 void Interpreter::visitUnreachableInst(UnreachableInst &I) { 897 report_fatal_error("Program executed an 'unreachable' instruction!"); 898 } 899 900 void Interpreter::visitBranchInst(BranchInst &I) { 901 ExecutionContext &SF = ECStack.back(); 902 BasicBlock *Dest; 903 904 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... 905 if (!I.isUnconditional()) { 906 Value *Cond = I.getCondition(); 907 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... 908 Dest = I.getSuccessor(1); 909 } 910 SwitchToNewBasicBlock(Dest, SF); 911 } 912 913 void Interpreter::visitSwitchInst(SwitchInst &I) { 914 ExecutionContext &SF = ECStack.back(); 915 Value* Cond = I.getCondition(); 916 Type *ElTy = Cond->getType(); 917 GenericValue CondVal = getOperandValue(Cond, SF); 918 919 // Check to see if any of the cases match... 920 BasicBlock *Dest = nullptr; 921 for (auto Case : I.cases()) { 922 GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF); 923 if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { 924 Dest = cast<BasicBlock>(Case.getCaseSuccessor()); 925 break; 926 } 927 } 928 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default 929 SwitchToNewBasicBlock(Dest, SF); 930 } 931 932 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { 933 ExecutionContext &SF = ECStack.back(); 934 void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); 935 SwitchToNewBasicBlock((BasicBlock*)Dest, SF); 936 } 937 938 939 // SwitchToNewBasicBlock - This method is used to jump to a new basic block. 940 // This function handles the actual updating of block and instruction iterators 941 // as well as execution of all of the PHI nodes in the destination block. 942 // 943 // This method does this because all of the PHI nodes must be executed 944 // atomically, reading their inputs before any of the results are updated. Not 945 // doing this can cause problems if the PHI nodes depend on other PHI nodes for 946 // their inputs. If the input PHI node is updated before it is read, incorrect 947 // results can happen. Thus we use a two phase approach. 948 // 949 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ 950 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... 951 SF.CurBB = Dest; // Update CurBB to branch destination 952 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... 953 954 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do 955 956 // Loop over all of the PHI nodes in the current block, reading their inputs. 957 std::vector<GenericValue> ResultValues; 958 959 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { 960 // Search for the value corresponding to this previous bb... 961 int i = PN->getBasicBlockIndex(PrevBB); 962 assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); 963 Value *IncomingValue = PN->getIncomingValue(i); 964 965 // Save the incoming value for this PHI node... 966 ResultValues.push_back(getOperandValue(IncomingValue, SF)); 967 } 968 969 // Now loop over all of the PHI nodes setting their values... 970 SF.CurInst = SF.CurBB->begin(); 971 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { 972 PHINode *PN = cast<PHINode>(SF.CurInst); 973 SetValue(PN, ResultValues[i], SF); 974 } 975 } 976 977 //===----------------------------------------------------------------------===// 978 // Memory Instruction Implementations 979 //===----------------------------------------------------------------------===// 980 981 void Interpreter::visitAllocaInst(AllocaInst &I) { 982 ExecutionContext &SF = ECStack.back(); 983 984 Type *Ty = I.getAllocatedType(); // Type to be allocated 985 986 // Get the number of elements being allocated by the array... 987 unsigned NumElements = 988 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); 989 990 unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty); 991 992 // Avoid malloc-ing zero bytes, use max()... 993 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); 994 995 // Allocate enough memory to hold the type... 996 void *Memory = safe_malloc(MemToAlloc); 997 998 LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize 999 << " bytes) x " << NumElements << " (Total: " << MemToAlloc 1000 << ") at " << uintptr_t(Memory) << '\n'); 1001 1002 GenericValue Result = PTOGV(Memory); 1003 assert(Result.PointerVal && "Null pointer returned by malloc!"); 1004 SetValue(&I, Result, SF); 1005 1006 if (I.getOpcode() == Instruction::Alloca) 1007 ECStack.back().Allocas.add(Memory); 1008 } 1009 1010 // getElementOffset - The workhorse for getelementptr. 1011 // 1012 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, 1013 gep_type_iterator E, 1014 ExecutionContext &SF) { 1015 assert(Ptr->getType()->isPointerTy() && 1016 "Cannot getElementOffset of a nonpointer type!"); 1017 1018 uint64_t Total = 0; 1019 1020 for (; I != E; ++I) { 1021 if (StructType *STy = I.getStructTypeOrNull()) { 1022 const StructLayout *SLO = getDataLayout().getStructLayout(STy); 1023 1024 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); 1025 unsigned Index = unsigned(CPU->getZExtValue()); 1026 1027 Total += SLO->getElementOffset(Index); 1028 } else { 1029 // Get the index number for the array... which must be long type... 1030 GenericValue IdxGV = getOperandValue(I.getOperand(), SF); 1031 1032 int64_t Idx; 1033 unsigned BitWidth = 1034 cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); 1035 if (BitWidth == 32) 1036 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); 1037 else { 1038 assert(BitWidth == 64 && "Invalid index type for getelementptr"); 1039 Idx = (int64_t)IdxGV.IntVal.getZExtValue(); 1040 } 1041 Total += I.getSequentialElementStride(getDataLayout()) * Idx; 1042 } 1043 } 1044 1045 GenericValue Result; 1046 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; 1047 LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); 1048 return Result; 1049 } 1050 1051 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { 1052 ExecutionContext &SF = ECStack.back(); 1053 SetValue(&I, executeGEPOperation(I.getPointerOperand(), 1054 gep_type_begin(I), gep_type_end(I), SF), SF); 1055 } 1056 1057 void Interpreter::visitLoadInst(LoadInst &I) { 1058 ExecutionContext &SF = ECStack.back(); 1059 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); 1060 GenericValue *Ptr = (GenericValue*)GVTOP(SRC); 1061 GenericValue Result; 1062 LoadValueFromMemory(Result, Ptr, I.getType()); 1063 SetValue(&I, Result, SF); 1064 if (I.isVolatile() && PrintVolatile) 1065 dbgs() << "Volatile load " << I; 1066 } 1067 1068 void Interpreter::visitStoreInst(StoreInst &I) { 1069 ExecutionContext &SF = ECStack.back(); 1070 GenericValue Val = getOperandValue(I.getOperand(0), SF); 1071 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); 1072 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), 1073 I.getOperand(0)->getType()); 1074 if (I.isVolatile() && PrintVolatile) 1075 dbgs() << "Volatile store: " << I; 1076 } 1077 1078 //===----------------------------------------------------------------------===// 1079 // Miscellaneous Instruction Implementations 1080 //===----------------------------------------------------------------------===// 1081 1082 void Interpreter::visitVAStartInst(VAStartInst &I) { 1083 ExecutionContext &SF = ECStack.back(); 1084 GenericValue ArgIndex; 1085 ArgIndex.UIntPairVal.first = ECStack.size() - 1; 1086 ArgIndex.UIntPairVal.second = 0; 1087 SetValue(&I, ArgIndex, SF); 1088 } 1089 1090 void Interpreter::visitVAEndInst(VAEndInst &I) { 1091 // va_end is a noop for the interpreter 1092 } 1093 1094 void Interpreter::visitVACopyInst(VACopyInst &I) { 1095 ExecutionContext &SF = ECStack.back(); 1096 SetValue(&I, getOperandValue(*I.arg_begin(), SF), SF); 1097 } 1098 1099 void Interpreter::visitIntrinsicInst(IntrinsicInst &I) { 1100 ExecutionContext &SF = ECStack.back(); 1101 1102 // If it is an unknown intrinsic function, use the intrinsic lowering 1103 // class to transform it into hopefully tasty LLVM code. 1104 // 1105 BasicBlock::iterator Me(&I); 1106 BasicBlock *Parent = I.getParent(); 1107 bool atBegin(Parent->begin() == Me); 1108 if (!atBegin) 1109 --Me; 1110 IL->LowerIntrinsicCall(&I); 1111 1112 // Restore the CurInst pointer to the first instruction newly inserted, if 1113 // any. 1114 if (atBegin) { 1115 SF.CurInst = Parent->begin(); 1116 } else { 1117 SF.CurInst = Me; 1118 ++SF.CurInst; 1119 } 1120 } 1121 1122 void Interpreter::visitCallBase(CallBase &I) { 1123 ExecutionContext &SF = ECStack.back(); 1124 1125 SF.Caller = &I; 1126 std::vector<GenericValue> ArgVals; 1127 const unsigned NumArgs = SF.Caller->arg_size(); 1128 ArgVals.reserve(NumArgs); 1129 for (Value *V : SF.Caller->args()) 1130 ArgVals.push_back(getOperandValue(V, SF)); 1131 1132 // To handle indirect calls, we must get the pointer value from the argument 1133 // and treat it as a function pointer. 1134 GenericValue SRC = getOperandValue(SF.Caller->getCalledOperand(), SF); 1135 callFunction((Function*)GVTOP(SRC), ArgVals); 1136 } 1137 1138 // auxiliary function for shift operations 1139 static unsigned getShiftAmount(uint64_t orgShiftAmount, 1140 llvm::APInt valueToShift) { 1141 unsigned valueWidth = valueToShift.getBitWidth(); 1142 if (orgShiftAmount < (uint64_t)valueWidth) 1143 return orgShiftAmount; 1144 // according to the llvm documentation, if orgShiftAmount > valueWidth, 1145 // the result is undfeined. but we do shift by this rule: 1146 return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount; 1147 } 1148 1149 1150 void Interpreter::visitShl(BinaryOperator &I) { 1151 ExecutionContext &SF = ECStack.back(); 1152 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 1153 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 1154 GenericValue Dest; 1155 Type *Ty = I.getType(); 1156 1157 if (Ty->isVectorTy()) { 1158 uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); 1159 assert(src1Size == Src2.AggregateVal.size()); 1160 for (unsigned i = 0; i < src1Size; i++) { 1161 GenericValue Result; 1162 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); 1163 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; 1164 Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); 1165 Dest.AggregateVal.push_back(Result); 1166 } 1167 } else { 1168 // scalar 1169 uint64_t shiftAmount = Src2.IntVal.getZExtValue(); 1170 llvm::APInt valueToShift = Src1.IntVal; 1171 Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); 1172 } 1173 1174 SetValue(&I, Dest, SF); 1175 } 1176 1177 void Interpreter::visitLShr(BinaryOperator &I) { 1178 ExecutionContext &SF = ECStack.back(); 1179 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 1180 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 1181 GenericValue Dest; 1182 Type *Ty = I.getType(); 1183 1184 if (Ty->isVectorTy()) { 1185 uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); 1186 assert(src1Size == Src2.AggregateVal.size()); 1187 for (unsigned i = 0; i < src1Size; i++) { 1188 GenericValue Result; 1189 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); 1190 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; 1191 Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); 1192 Dest.AggregateVal.push_back(Result); 1193 } 1194 } else { 1195 // scalar 1196 uint64_t shiftAmount = Src2.IntVal.getZExtValue(); 1197 llvm::APInt valueToShift = Src1.IntVal; 1198 Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); 1199 } 1200 1201 SetValue(&I, Dest, SF); 1202 } 1203 1204 void Interpreter::visitAShr(BinaryOperator &I) { 1205 ExecutionContext &SF = ECStack.back(); 1206 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 1207 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 1208 GenericValue Dest; 1209 Type *Ty = I.getType(); 1210 1211 if (Ty->isVectorTy()) { 1212 size_t src1Size = Src1.AggregateVal.size(); 1213 assert(src1Size == Src2.AggregateVal.size()); 1214 for (unsigned i = 0; i < src1Size; i++) { 1215 GenericValue Result; 1216 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); 1217 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; 1218 Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); 1219 Dest.AggregateVal.push_back(Result); 1220 } 1221 } else { 1222 // scalar 1223 uint64_t shiftAmount = Src2.IntVal.getZExtValue(); 1224 llvm::APInt valueToShift = Src1.IntVal; 1225 Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); 1226 } 1227 1228 SetValue(&I, Dest, SF); 1229 } 1230 1231 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, 1232 ExecutionContext &SF) { 1233 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1234 Type *SrcTy = SrcVal->getType(); 1235 if (SrcTy->isVectorTy()) { 1236 Type *DstVecTy = DstTy->getScalarType(); 1237 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); 1238 unsigned NumElts = Src.AggregateVal.size(); 1239 // the sizes of src and dst vectors must be equal 1240 Dest.AggregateVal.resize(NumElts); 1241 for (unsigned i = 0; i < NumElts; i++) 1242 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth); 1243 } else { 1244 IntegerType *DITy = cast<IntegerType>(DstTy); 1245 unsigned DBitWidth = DITy->getBitWidth(); 1246 Dest.IntVal = Src.IntVal.trunc(DBitWidth); 1247 } 1248 return Dest; 1249 } 1250 1251 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, 1252 ExecutionContext &SF) { 1253 Type *SrcTy = SrcVal->getType(); 1254 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1255 if (SrcTy->isVectorTy()) { 1256 Type *DstVecTy = DstTy->getScalarType(); 1257 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); 1258 unsigned size = Src.AggregateVal.size(); 1259 // the sizes of src and dst vectors must be equal. 1260 Dest.AggregateVal.resize(size); 1261 for (unsigned i = 0; i < size; i++) 1262 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth); 1263 } else { 1264 auto *DITy = cast<IntegerType>(DstTy); 1265 unsigned DBitWidth = DITy->getBitWidth(); 1266 Dest.IntVal = Src.IntVal.sext(DBitWidth); 1267 } 1268 return Dest; 1269 } 1270 1271 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, 1272 ExecutionContext &SF) { 1273 Type *SrcTy = SrcVal->getType(); 1274 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1275 if (SrcTy->isVectorTy()) { 1276 Type *DstVecTy = DstTy->getScalarType(); 1277 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); 1278 1279 unsigned size = Src.AggregateVal.size(); 1280 // the sizes of src and dst vectors must be equal. 1281 Dest.AggregateVal.resize(size); 1282 for (unsigned i = 0; i < size; i++) 1283 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth); 1284 } else { 1285 auto *DITy = cast<IntegerType>(DstTy); 1286 unsigned DBitWidth = DITy->getBitWidth(); 1287 Dest.IntVal = Src.IntVal.zext(DBitWidth); 1288 } 1289 return Dest; 1290 } 1291 1292 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, 1293 ExecutionContext &SF) { 1294 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1295 1296 if (isa<VectorType>(SrcVal->getType())) { 1297 assert(SrcVal->getType()->getScalarType()->isDoubleTy() && 1298 DstTy->getScalarType()->isFloatTy() && 1299 "Invalid FPTrunc instruction"); 1300 1301 unsigned size = Src.AggregateVal.size(); 1302 // the sizes of src and dst vectors must be equal. 1303 Dest.AggregateVal.resize(size); 1304 for (unsigned i = 0; i < size; i++) 1305 Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal; 1306 } else { 1307 assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && 1308 "Invalid FPTrunc instruction"); 1309 Dest.FloatVal = (float)Src.DoubleVal; 1310 } 1311 1312 return Dest; 1313 } 1314 1315 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, 1316 ExecutionContext &SF) { 1317 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1318 1319 if (isa<VectorType>(SrcVal->getType())) { 1320 assert(SrcVal->getType()->getScalarType()->isFloatTy() && 1321 DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction"); 1322 1323 unsigned size = Src.AggregateVal.size(); 1324 // the sizes of src and dst vectors must be equal. 1325 Dest.AggregateVal.resize(size); 1326 for (unsigned i = 0; i < size; i++) 1327 Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal; 1328 } else { 1329 assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && 1330 "Invalid FPExt instruction"); 1331 Dest.DoubleVal = (double)Src.FloatVal; 1332 } 1333 1334 return Dest; 1335 } 1336 1337 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, 1338 ExecutionContext &SF) { 1339 Type *SrcTy = SrcVal->getType(); 1340 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1341 1342 if (isa<VectorType>(SrcTy)) { 1343 Type *DstVecTy = DstTy->getScalarType(); 1344 Type *SrcVecTy = SrcTy->getScalarType(); 1345 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); 1346 unsigned size = Src.AggregateVal.size(); 1347 // the sizes of src and dst vectors must be equal. 1348 Dest.AggregateVal.resize(size); 1349 1350 if (SrcVecTy->getTypeID() == Type::FloatTyID) { 1351 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction"); 1352 for (unsigned i = 0; i < size; i++) 1353 Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( 1354 Src.AggregateVal[i].FloatVal, DBitWidth); 1355 } else { 1356 for (unsigned i = 0; i < size; i++) 1357 Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( 1358 Src.AggregateVal[i].DoubleVal, DBitWidth); 1359 } 1360 } else { 1361 // scalar 1362 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); 1363 assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); 1364 1365 if (SrcTy->getTypeID() == Type::FloatTyID) 1366 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); 1367 else { 1368 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); 1369 } 1370 } 1371 1372 return Dest; 1373 } 1374 1375 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, 1376 ExecutionContext &SF) { 1377 Type *SrcTy = SrcVal->getType(); 1378 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1379 1380 if (isa<VectorType>(SrcTy)) { 1381 Type *DstVecTy = DstTy->getScalarType(); 1382 Type *SrcVecTy = SrcTy->getScalarType(); 1383 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); 1384 unsigned size = Src.AggregateVal.size(); 1385 // the sizes of src and dst vectors must be equal 1386 Dest.AggregateVal.resize(size); 1387 1388 if (SrcVecTy->getTypeID() == Type::FloatTyID) { 1389 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction"); 1390 for (unsigned i = 0; i < size; i++) 1391 Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( 1392 Src.AggregateVal[i].FloatVal, DBitWidth); 1393 } else { 1394 for (unsigned i = 0; i < size; i++) 1395 Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( 1396 Src.AggregateVal[i].DoubleVal, DBitWidth); 1397 } 1398 } else { 1399 // scalar 1400 unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); 1401 assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); 1402 1403 if (SrcTy->getTypeID() == Type::FloatTyID) 1404 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); 1405 else { 1406 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); 1407 } 1408 } 1409 return Dest; 1410 } 1411 1412 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, 1413 ExecutionContext &SF) { 1414 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1415 1416 if (isa<VectorType>(SrcVal->getType())) { 1417 Type *DstVecTy = DstTy->getScalarType(); 1418 unsigned size = Src.AggregateVal.size(); 1419 // the sizes of src and dst vectors must be equal 1420 Dest.AggregateVal.resize(size); 1421 1422 if (DstVecTy->getTypeID() == Type::FloatTyID) { 1423 assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction"); 1424 for (unsigned i = 0; i < size; i++) 1425 Dest.AggregateVal[i].FloatVal = 1426 APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal); 1427 } else { 1428 for (unsigned i = 0; i < size; i++) 1429 Dest.AggregateVal[i].DoubleVal = 1430 APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal); 1431 } 1432 } else { 1433 // scalar 1434 assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); 1435 if (DstTy->getTypeID() == Type::FloatTyID) 1436 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); 1437 else { 1438 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); 1439 } 1440 } 1441 return Dest; 1442 } 1443 1444 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, 1445 ExecutionContext &SF) { 1446 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1447 1448 if (isa<VectorType>(SrcVal->getType())) { 1449 Type *DstVecTy = DstTy->getScalarType(); 1450 unsigned size = Src.AggregateVal.size(); 1451 // the sizes of src and dst vectors must be equal 1452 Dest.AggregateVal.resize(size); 1453 1454 if (DstVecTy->getTypeID() == Type::FloatTyID) { 1455 assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction"); 1456 for (unsigned i = 0; i < size; i++) 1457 Dest.AggregateVal[i].FloatVal = 1458 APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal); 1459 } else { 1460 for (unsigned i = 0; i < size; i++) 1461 Dest.AggregateVal[i].DoubleVal = 1462 APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal); 1463 } 1464 } else { 1465 // scalar 1466 assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); 1467 1468 if (DstTy->getTypeID() == Type::FloatTyID) 1469 Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); 1470 else { 1471 Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); 1472 } 1473 } 1474 1475 return Dest; 1476 } 1477 1478 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, 1479 ExecutionContext &SF) { 1480 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); 1481 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1482 assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); 1483 1484 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); 1485 return Dest; 1486 } 1487 1488 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, 1489 ExecutionContext &SF) { 1490 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1491 assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); 1492 1493 uint32_t PtrSize = getDataLayout().getPointerSizeInBits(); 1494 if (PtrSize != Src.IntVal.getBitWidth()) 1495 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); 1496 1497 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); 1498 return Dest; 1499 } 1500 1501 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, 1502 ExecutionContext &SF) { 1503 1504 // This instruction supports bitwise conversion of vectors to integers and 1505 // to vectors of other types (as long as they have the same size) 1506 Type *SrcTy = SrcVal->getType(); 1507 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1508 1509 if (isa<VectorType>(SrcTy) || isa<VectorType>(DstTy)) { 1510 // vector src bitcast to vector dst or vector src bitcast to scalar dst or 1511 // scalar src bitcast to vector dst 1512 bool isLittleEndian = getDataLayout().isLittleEndian(); 1513 GenericValue TempDst, TempSrc, SrcVec; 1514 Type *SrcElemTy; 1515 Type *DstElemTy; 1516 unsigned SrcBitSize; 1517 unsigned DstBitSize; 1518 unsigned SrcNum; 1519 unsigned DstNum; 1520 1521 if (isa<VectorType>(SrcTy)) { 1522 SrcElemTy = SrcTy->getScalarType(); 1523 SrcBitSize = SrcTy->getScalarSizeInBits(); 1524 SrcNum = Src.AggregateVal.size(); 1525 SrcVec = Src; 1526 } else { 1527 // if src is scalar value, make it vector <1 x type> 1528 SrcElemTy = SrcTy; 1529 SrcBitSize = SrcTy->getPrimitiveSizeInBits(); 1530 SrcNum = 1; 1531 SrcVec.AggregateVal.push_back(Src); 1532 } 1533 1534 if (isa<VectorType>(DstTy)) { 1535 DstElemTy = DstTy->getScalarType(); 1536 DstBitSize = DstTy->getScalarSizeInBits(); 1537 DstNum = (SrcNum * SrcBitSize) / DstBitSize; 1538 } else { 1539 DstElemTy = DstTy; 1540 DstBitSize = DstTy->getPrimitiveSizeInBits(); 1541 DstNum = 1; 1542 } 1543 1544 if (SrcNum * SrcBitSize != DstNum * DstBitSize) 1545 llvm_unreachable("Invalid BitCast"); 1546 1547 // If src is floating point, cast to integer first. 1548 TempSrc.AggregateVal.resize(SrcNum); 1549 if (SrcElemTy->isFloatTy()) { 1550 for (unsigned i = 0; i < SrcNum; i++) 1551 TempSrc.AggregateVal[i].IntVal = 1552 APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal); 1553 1554 } else if (SrcElemTy->isDoubleTy()) { 1555 for (unsigned i = 0; i < SrcNum; i++) 1556 TempSrc.AggregateVal[i].IntVal = 1557 APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal); 1558 } else if (SrcElemTy->isIntegerTy()) { 1559 for (unsigned i = 0; i < SrcNum; i++) 1560 TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal; 1561 } else { 1562 // Pointers are not allowed as the element type of vector. 1563 llvm_unreachable("Invalid Bitcast"); 1564 } 1565 1566 // now TempSrc is integer type vector 1567 if (DstNum < SrcNum) { 1568 // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64> 1569 unsigned Ratio = SrcNum / DstNum; 1570 unsigned SrcElt = 0; 1571 for (unsigned i = 0; i < DstNum; i++) { 1572 GenericValue Elt; 1573 Elt.IntVal = 0; 1574 Elt.IntVal = Elt.IntVal.zext(DstBitSize); 1575 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1); 1576 for (unsigned j = 0; j < Ratio; j++) { 1577 APInt Tmp; 1578 Tmp = Tmp.zext(SrcBitSize); 1579 Tmp = TempSrc.AggregateVal[SrcElt++].IntVal; 1580 Tmp = Tmp.zext(DstBitSize); 1581 Tmp <<= ShiftAmt; 1582 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 1583 Elt.IntVal |= Tmp; 1584 } 1585 TempDst.AggregateVal.push_back(Elt); 1586 } 1587 } else { 1588 // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32> 1589 unsigned Ratio = DstNum / SrcNum; 1590 for (unsigned i = 0; i < SrcNum; i++) { 1591 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1); 1592 for (unsigned j = 0; j < Ratio; j++) { 1593 GenericValue Elt; 1594 Elt.IntVal = Elt.IntVal.zext(SrcBitSize); 1595 Elt.IntVal = TempSrc.AggregateVal[i].IntVal; 1596 Elt.IntVal.lshrInPlace(ShiftAmt); 1597 // it could be DstBitSize == SrcBitSize, so check it 1598 if (DstBitSize < SrcBitSize) 1599 Elt.IntVal = Elt.IntVal.trunc(DstBitSize); 1600 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 1601 TempDst.AggregateVal.push_back(Elt); 1602 } 1603 } 1604 } 1605 1606 // convert result from integer to specified type 1607 if (isa<VectorType>(DstTy)) { 1608 if (DstElemTy->isDoubleTy()) { 1609 Dest.AggregateVal.resize(DstNum); 1610 for (unsigned i = 0; i < DstNum; i++) 1611 Dest.AggregateVal[i].DoubleVal = 1612 TempDst.AggregateVal[i].IntVal.bitsToDouble(); 1613 } else if (DstElemTy->isFloatTy()) { 1614 Dest.AggregateVal.resize(DstNum); 1615 for (unsigned i = 0; i < DstNum; i++) 1616 Dest.AggregateVal[i].FloatVal = 1617 TempDst.AggregateVal[i].IntVal.bitsToFloat(); 1618 } else { 1619 Dest = TempDst; 1620 } 1621 } else { 1622 if (DstElemTy->isDoubleTy()) 1623 Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble(); 1624 else if (DstElemTy->isFloatTy()) { 1625 Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat(); 1626 } else { 1627 Dest.IntVal = TempDst.AggregateVal[0].IntVal; 1628 } 1629 } 1630 } else { // if (isa<VectorType>(SrcTy)) || isa<VectorType>(DstTy)) 1631 1632 // scalar src bitcast to scalar dst 1633 if (DstTy->isPointerTy()) { 1634 assert(SrcTy->isPointerTy() && "Invalid BitCast"); 1635 Dest.PointerVal = Src.PointerVal; 1636 } else if (DstTy->isIntegerTy()) { 1637 if (SrcTy->isFloatTy()) 1638 Dest.IntVal = APInt::floatToBits(Src.FloatVal); 1639 else if (SrcTy->isDoubleTy()) { 1640 Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); 1641 } else if (SrcTy->isIntegerTy()) { 1642 Dest.IntVal = Src.IntVal; 1643 } else { 1644 llvm_unreachable("Invalid BitCast"); 1645 } 1646 } else if (DstTy->isFloatTy()) { 1647 if (SrcTy->isIntegerTy()) 1648 Dest.FloatVal = Src.IntVal.bitsToFloat(); 1649 else { 1650 Dest.FloatVal = Src.FloatVal; 1651 } 1652 } else if (DstTy->isDoubleTy()) { 1653 if (SrcTy->isIntegerTy()) 1654 Dest.DoubleVal = Src.IntVal.bitsToDouble(); 1655 else { 1656 Dest.DoubleVal = Src.DoubleVal; 1657 } 1658 } else { 1659 llvm_unreachable("Invalid Bitcast"); 1660 } 1661 } 1662 1663 return Dest; 1664 } 1665 1666 void Interpreter::visitTruncInst(TruncInst &I) { 1667 ExecutionContext &SF = ECStack.back(); 1668 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); 1669 } 1670 1671 void Interpreter::visitSExtInst(SExtInst &I) { 1672 ExecutionContext &SF = ECStack.back(); 1673 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); 1674 } 1675 1676 void Interpreter::visitZExtInst(ZExtInst &I) { 1677 ExecutionContext &SF = ECStack.back(); 1678 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); 1679 } 1680 1681 void Interpreter::visitFPTruncInst(FPTruncInst &I) { 1682 ExecutionContext &SF = ECStack.back(); 1683 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); 1684 } 1685 1686 void Interpreter::visitFPExtInst(FPExtInst &I) { 1687 ExecutionContext &SF = ECStack.back(); 1688 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); 1689 } 1690 1691 void Interpreter::visitUIToFPInst(UIToFPInst &I) { 1692 ExecutionContext &SF = ECStack.back(); 1693 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); 1694 } 1695 1696 void Interpreter::visitSIToFPInst(SIToFPInst &I) { 1697 ExecutionContext &SF = ECStack.back(); 1698 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); 1699 } 1700 1701 void Interpreter::visitFPToUIInst(FPToUIInst &I) { 1702 ExecutionContext &SF = ECStack.back(); 1703 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); 1704 } 1705 1706 void Interpreter::visitFPToSIInst(FPToSIInst &I) { 1707 ExecutionContext &SF = ECStack.back(); 1708 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); 1709 } 1710 1711 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { 1712 ExecutionContext &SF = ECStack.back(); 1713 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); 1714 } 1715 1716 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { 1717 ExecutionContext &SF = ECStack.back(); 1718 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); 1719 } 1720 1721 void Interpreter::visitBitCastInst(BitCastInst &I) { 1722 ExecutionContext &SF = ECStack.back(); 1723 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); 1724 } 1725 1726 #define IMPLEMENT_VAARG(TY) \ 1727 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break 1728 1729 void Interpreter::visitVAArgInst(VAArgInst &I) { 1730 ExecutionContext &SF = ECStack.back(); 1731 1732 // Get the incoming valist parameter. LLI treats the valist as a 1733 // (ec-stack-depth var-arg-index) pair. 1734 GenericValue VAList = getOperandValue(I.getOperand(0), SF); 1735 GenericValue Dest; 1736 GenericValue Src = ECStack[VAList.UIntPairVal.first] 1737 .VarArgs[VAList.UIntPairVal.second]; 1738 Type *Ty = I.getType(); 1739 switch (Ty->getTypeID()) { 1740 case Type::IntegerTyID: 1741 Dest.IntVal = Src.IntVal; 1742 break; 1743 IMPLEMENT_VAARG(Pointer); 1744 IMPLEMENT_VAARG(Float); 1745 IMPLEMENT_VAARG(Double); 1746 default: 1747 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; 1748 llvm_unreachable(nullptr); 1749 } 1750 1751 // Set the Value of this Instruction. 1752 SetValue(&I, Dest, SF); 1753 1754 // Move the pointer to the next vararg. 1755 ++VAList.UIntPairVal.second; 1756 } 1757 1758 void Interpreter::visitExtractElementInst(ExtractElementInst &I) { 1759 ExecutionContext &SF = ECStack.back(); 1760 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 1761 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 1762 GenericValue Dest; 1763 1764 Type *Ty = I.getType(); 1765 const unsigned indx = unsigned(Src2.IntVal.getZExtValue()); 1766 1767 if(Src1.AggregateVal.size() > indx) { 1768 switch (Ty->getTypeID()) { 1769 default: 1770 dbgs() << "Unhandled destination type for extractelement instruction: " 1771 << *Ty << "\n"; 1772 llvm_unreachable(nullptr); 1773 break; 1774 case Type::IntegerTyID: 1775 Dest.IntVal = Src1.AggregateVal[indx].IntVal; 1776 break; 1777 case Type::FloatTyID: 1778 Dest.FloatVal = Src1.AggregateVal[indx].FloatVal; 1779 break; 1780 case Type::DoubleTyID: 1781 Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal; 1782 break; 1783 } 1784 } else { 1785 dbgs() << "Invalid index in extractelement instruction\n"; 1786 } 1787 1788 SetValue(&I, Dest, SF); 1789 } 1790 1791 void Interpreter::visitInsertElementInst(InsertElementInst &I) { 1792 ExecutionContext &SF = ECStack.back(); 1793 VectorType *Ty = cast<VectorType>(I.getType()); 1794 1795 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 1796 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 1797 GenericValue Src3 = getOperandValue(I.getOperand(2), SF); 1798 GenericValue Dest; 1799 1800 Type *TyContained = Ty->getElementType(); 1801 1802 const unsigned indx = unsigned(Src3.IntVal.getZExtValue()); 1803 Dest.AggregateVal = Src1.AggregateVal; 1804 1805 if(Src1.AggregateVal.size() <= indx) 1806 llvm_unreachable("Invalid index in insertelement instruction"); 1807 switch (TyContained->getTypeID()) { 1808 default: 1809 llvm_unreachable("Unhandled dest type for insertelement instruction"); 1810 case Type::IntegerTyID: 1811 Dest.AggregateVal[indx].IntVal = Src2.IntVal; 1812 break; 1813 case Type::FloatTyID: 1814 Dest.AggregateVal[indx].FloatVal = Src2.FloatVal; 1815 break; 1816 case Type::DoubleTyID: 1817 Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal; 1818 break; 1819 } 1820 SetValue(&I, Dest, SF); 1821 } 1822 1823 void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){ 1824 ExecutionContext &SF = ECStack.back(); 1825 1826 VectorType *Ty = cast<VectorType>(I.getType()); 1827 1828 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 1829 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 1830 GenericValue Dest; 1831 1832 // There is no need to check types of src1 and src2, because the compiled 1833 // bytecode can't contain different types for src1 and src2 for a 1834 // shufflevector instruction. 1835 1836 Type *TyContained = Ty->getElementType(); 1837 unsigned src1Size = (unsigned)Src1.AggregateVal.size(); 1838 unsigned src2Size = (unsigned)Src2.AggregateVal.size(); 1839 unsigned src3Size = I.getShuffleMask().size(); 1840 1841 Dest.AggregateVal.resize(src3Size); 1842 1843 switch (TyContained->getTypeID()) { 1844 default: 1845 llvm_unreachable("Unhandled dest type for insertelement instruction"); 1846 break; 1847 case Type::IntegerTyID: 1848 for( unsigned i=0; i<src3Size; i++) { 1849 unsigned j = std::max(0, I.getMaskValue(i)); 1850 if(j < src1Size) 1851 Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal; 1852 else if(j < src1Size + src2Size) 1853 Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal; 1854 else 1855 // The selector may not be greater than sum of lengths of first and 1856 // second operands and llasm should not allow situation like 1857 // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef, 1858 // <2 x i32> < i32 0, i32 5 >, 1859 // where i32 5 is invalid, but let it be additional check here: 1860 llvm_unreachable("Invalid mask in shufflevector instruction"); 1861 } 1862 break; 1863 case Type::FloatTyID: 1864 for( unsigned i=0; i<src3Size; i++) { 1865 unsigned j = std::max(0, I.getMaskValue(i)); 1866 if(j < src1Size) 1867 Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal; 1868 else if(j < src1Size + src2Size) 1869 Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal; 1870 else 1871 llvm_unreachable("Invalid mask in shufflevector instruction"); 1872 } 1873 break; 1874 case Type::DoubleTyID: 1875 for( unsigned i=0; i<src3Size; i++) { 1876 unsigned j = std::max(0, I.getMaskValue(i)); 1877 if(j < src1Size) 1878 Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal; 1879 else if(j < src1Size + src2Size) 1880 Dest.AggregateVal[i].DoubleVal = 1881 Src2.AggregateVal[j-src1Size].DoubleVal; 1882 else 1883 llvm_unreachable("Invalid mask in shufflevector instruction"); 1884 } 1885 break; 1886 } 1887 SetValue(&I, Dest, SF); 1888 } 1889 1890 void Interpreter::visitExtractValueInst(ExtractValueInst &I) { 1891 ExecutionContext &SF = ECStack.back(); 1892 Value *Agg = I.getAggregateOperand(); 1893 GenericValue Dest; 1894 GenericValue Src = getOperandValue(Agg, SF); 1895 1896 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); 1897 unsigned Num = I.getNumIndices(); 1898 GenericValue *pSrc = &Src; 1899 1900 for (unsigned i = 0 ; i < Num; ++i) { 1901 pSrc = &pSrc->AggregateVal[*IdxBegin]; 1902 ++IdxBegin; 1903 } 1904 1905 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); 1906 switch (IndexedType->getTypeID()) { 1907 default: 1908 llvm_unreachable("Unhandled dest type for extractelement instruction"); 1909 break; 1910 case Type::IntegerTyID: 1911 Dest.IntVal = pSrc->IntVal; 1912 break; 1913 case Type::FloatTyID: 1914 Dest.FloatVal = pSrc->FloatVal; 1915 break; 1916 case Type::DoubleTyID: 1917 Dest.DoubleVal = pSrc->DoubleVal; 1918 break; 1919 case Type::ArrayTyID: 1920 case Type::StructTyID: 1921 case Type::FixedVectorTyID: 1922 case Type::ScalableVectorTyID: 1923 Dest.AggregateVal = pSrc->AggregateVal; 1924 break; 1925 case Type::PointerTyID: 1926 Dest.PointerVal = pSrc->PointerVal; 1927 break; 1928 } 1929 1930 SetValue(&I, Dest, SF); 1931 } 1932 1933 void Interpreter::visitInsertValueInst(InsertValueInst &I) { 1934 1935 ExecutionContext &SF = ECStack.back(); 1936 Value *Agg = I.getAggregateOperand(); 1937 1938 GenericValue Src1 = getOperandValue(Agg, SF); 1939 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 1940 GenericValue Dest = Src1; // Dest is a slightly changed Src1 1941 1942 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); 1943 unsigned Num = I.getNumIndices(); 1944 1945 GenericValue *pDest = &Dest; 1946 for (unsigned i = 0 ; i < Num; ++i) { 1947 pDest = &pDest->AggregateVal[*IdxBegin]; 1948 ++IdxBegin; 1949 } 1950 // pDest points to the target value in the Dest now 1951 1952 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); 1953 1954 switch (IndexedType->getTypeID()) { 1955 default: 1956 llvm_unreachable("Unhandled dest type for insertelement instruction"); 1957 break; 1958 case Type::IntegerTyID: 1959 pDest->IntVal = Src2.IntVal; 1960 break; 1961 case Type::FloatTyID: 1962 pDest->FloatVal = Src2.FloatVal; 1963 break; 1964 case Type::DoubleTyID: 1965 pDest->DoubleVal = Src2.DoubleVal; 1966 break; 1967 case Type::ArrayTyID: 1968 case Type::StructTyID: 1969 case Type::FixedVectorTyID: 1970 case Type::ScalableVectorTyID: 1971 pDest->AggregateVal = Src2.AggregateVal; 1972 break; 1973 case Type::PointerTyID: 1974 pDest->PointerVal = Src2.PointerVal; 1975 break; 1976 } 1977 1978 SetValue(&I, Dest, SF); 1979 } 1980 1981 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, 1982 ExecutionContext &SF) { 1983 switch (CE->getOpcode()) { 1984 case Instruction::Trunc: 1985 return executeTruncInst(CE->getOperand(0), CE->getType(), SF); 1986 case Instruction::PtrToInt: 1987 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); 1988 case Instruction::IntToPtr: 1989 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); 1990 case Instruction::BitCast: 1991 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); 1992 case Instruction::GetElementPtr: 1993 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), 1994 gep_type_end(CE), SF); 1995 break; 1996 } 1997 1998 // The cases below here require a GenericValue parameter for the result 1999 // so we initialize one, compute it and then return it. 2000 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); 2001 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); 2002 GenericValue Dest; 2003 switch (CE->getOpcode()) { 2004 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break; 2005 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break; 2006 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break; 2007 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; 2008 case Instruction::Shl: 2009 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); 2010 break; 2011 default: 2012 dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; 2013 llvm_unreachable("Unhandled ConstantExpr"); 2014 } 2015 return Dest; 2016 } 2017 2018 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { 2019 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 2020 return getConstantExprValue(CE, SF); 2021 } else if (Constant *CPV = dyn_cast<Constant>(V)) { 2022 return getConstantValue(CPV); 2023 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2024 return PTOGV(getPointerToGlobal(GV)); 2025 } else { 2026 return SF.Values[V]; 2027 } 2028 } 2029 2030 //===----------------------------------------------------------------------===// 2031 // Dispatch and Execution Code 2032 //===----------------------------------------------------------------------===// 2033 2034 //===----------------------------------------------------------------------===// 2035 // callFunction - Execute the specified function... 2036 // 2037 void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) { 2038 assert((ECStack.empty() || !ECStack.back().Caller || 2039 ECStack.back().Caller->arg_size() == ArgVals.size()) && 2040 "Incorrect number of arguments passed into function call!"); 2041 // Make a new stack frame... and fill it in. 2042 ECStack.emplace_back(); 2043 ExecutionContext &StackFrame = ECStack.back(); 2044 StackFrame.CurFunction = F; 2045 2046 // Special handling for external functions. 2047 if (F->isDeclaration()) { 2048 GenericValue Result = callExternalFunction (F, ArgVals); 2049 // Simulate a 'ret' instruction of the appropriate type. 2050 popStackAndReturnValueToCaller (F->getReturnType (), Result); 2051 return; 2052 } 2053 2054 // Get pointers to first LLVM BB & Instruction in function. 2055 StackFrame.CurBB = &F->front(); 2056 StackFrame.CurInst = StackFrame.CurBB->begin(); 2057 2058 // Run through the function arguments and initialize their values... 2059 assert((ArgVals.size() == F->arg_size() || 2060 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& 2061 "Invalid number of values passed to function invocation!"); 2062 2063 // Handle non-varargs arguments... 2064 unsigned i = 0; 2065 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 2066 AI != E; ++AI, ++i) 2067 SetValue(&*AI, ArgVals[i], StackFrame); 2068 2069 // Handle varargs arguments... 2070 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); 2071 } 2072 2073 2074 void Interpreter::run() { 2075 while (!ECStack.empty()) { 2076 // Interpret a single instruction & increment the "PC". 2077 ExecutionContext &SF = ECStack.back(); // Current stack frame 2078 Instruction &I = *SF.CurInst++; // Increment before execute 2079 2080 // Track the number of dynamic instructions executed. 2081 ++NumDynamicInsts; 2082 2083 LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n"); 2084 visit(I); // Dispatch to one of the visit* methods... 2085 } 2086 } 2087