xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/ExecutionEngine.cpp (revision fc55c20355d889bf3d3f81d94b3614a0c4253fa0)
1  //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file defines the common interface used by the various execution engine
10  // subclasses.
11  //
12  // FIXME: This file needs to be updated to support scalable vectors
13  //
14  //===----------------------------------------------------------------------===//
15  
16  #include "llvm/ExecutionEngine/ExecutionEngine.h"
17  #include "llvm/ADT/STLExtras.h"
18  #include "llvm/ADT/SmallString.h"
19  #include "llvm/ADT/Statistic.h"
20  #include "llvm/ExecutionEngine/GenericValue.h"
21  #include "llvm/ExecutionEngine/JITEventListener.h"
22  #include "llvm/ExecutionEngine/ObjectCache.h"
23  #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
24  #include "llvm/IR/Constants.h"
25  #include "llvm/IR/DataLayout.h"
26  #include "llvm/IR/DerivedTypes.h"
27  #include "llvm/IR/Mangler.h"
28  #include "llvm/IR/Module.h"
29  #include "llvm/IR/Operator.h"
30  #include "llvm/IR/ValueHandle.h"
31  #include "llvm/MC/TargetRegistry.h"
32  #include "llvm/Object/Archive.h"
33  #include "llvm/Object/ObjectFile.h"
34  #include "llvm/Support/Debug.h"
35  #include "llvm/Support/DynamicLibrary.h"
36  #include "llvm/Support/ErrorHandling.h"
37  #include "llvm/Support/raw_ostream.h"
38  #include "llvm/Target/TargetMachine.h"
39  #include "llvm/TargetParser/Host.h"
40  #include <cmath>
41  #include <cstring>
42  #include <mutex>
43  using namespace llvm;
44  
45  #define DEBUG_TYPE "jit"
46  
47  STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
48  STATISTIC(NumGlobals  , "Number of global vars initialized");
49  
50  ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
51      std::unique_ptr<Module> M, std::string *ErrorStr,
52      std::shared_ptr<MCJITMemoryManager> MemMgr,
53      std::shared_ptr<LegacyJITSymbolResolver> Resolver,
54      std::unique_ptr<TargetMachine> TM) = nullptr;
55  
56  ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
57                                                  std::string *ErrorStr) =nullptr;
58  
59  void JITEventListener::anchor() {}
60  
61  void ObjectCache::anchor() {}
62  
63  void ExecutionEngine::Init(std::unique_ptr<Module> M) {
64    CompilingLazily         = false;
65    GVCompilationDisabled   = false;
66    SymbolSearchingDisabled = false;
67  
68    // IR module verification is enabled by default in debug builds, and disabled
69    // by default in release builds.
70  #ifndef NDEBUG
71    VerifyModules = true;
72  #else
73    VerifyModules = false;
74  #endif
75  
76    assert(M && "Module is null?");
77    Modules.push_back(std::move(M));
78  }
79  
80  ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
81      : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
82    Init(std::move(M));
83  }
84  
85  ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
86      : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
87    Init(std::move(M));
88  }
89  
90  ExecutionEngine::~ExecutionEngine() {
91    clearAllGlobalMappings();
92  }
93  
94  namespace {
95  /// Helper class which uses a value handler to automatically deletes the
96  /// memory block when the GlobalVariable is destroyed.
97  class GVMemoryBlock final : public CallbackVH {
98    GVMemoryBlock(const GlobalVariable *GV)
99      : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
100  
101  public:
102    /// Returns the address the GlobalVariable should be written into.  The
103    /// GVMemoryBlock object prefixes that.
104    static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
105      Type *ElTy = GV->getValueType();
106      size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
107      void *RawMemory = ::operator new(
108          alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize);
109      new(RawMemory) GVMemoryBlock(GV);
110      return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
111    }
112  
113    void deleted() override {
114      // We allocated with operator new and with some extra memory hanging off the
115      // end, so don't just delete this.  I'm not sure if this is actually
116      // required.
117      this->~GVMemoryBlock();
118      ::operator delete(this);
119    }
120  };
121  }  // anonymous namespace
122  
123  char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
124    return GVMemoryBlock::Create(GV, getDataLayout());
125  }
126  
127  void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
128    llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
129  }
130  
131  void
132  ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
133    llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
134  }
135  
136  void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
137    llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
138  }
139  
140  bool ExecutionEngine::removeModule(Module *M) {
141    for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
142      Module *Found = I->get();
143      if (Found == M) {
144        I->release();
145        Modules.erase(I);
146        clearGlobalMappingsFromModule(M);
147        return true;
148      }
149    }
150    return false;
151  }
152  
153  Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
154    for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
155      Function *F = Modules[i]->getFunction(FnName);
156      if (F && !F->isDeclaration())
157        return F;
158    }
159    return nullptr;
160  }
161  
162  GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
163    for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
164      GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
165      if (GV && !GV->isDeclaration())
166        return GV;
167    }
168    return nullptr;
169  }
170  
171  uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
172    GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
173    uint64_t OldVal;
174  
175    // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
176    // GlobalAddressMap.
177    if (I == GlobalAddressMap.end())
178      OldVal = 0;
179    else {
180      GlobalAddressReverseMap.erase(I->second);
181      OldVal = I->second;
182      GlobalAddressMap.erase(I);
183    }
184  
185    return OldVal;
186  }
187  
188  std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
189    assert(GV->hasName() && "Global must have name.");
190  
191    std::lock_guard<sys::Mutex> locked(lock);
192    SmallString<128> FullName;
193  
194    const DataLayout &DL =
195      GV->getParent()->getDataLayout().isDefault()
196        ? getDataLayout()
197        : GV->getParent()->getDataLayout();
198  
199    Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
200    return std::string(FullName.str());
201  }
202  
203  void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
204    std::lock_guard<sys::Mutex> locked(lock);
205    addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
206  }
207  
208  void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
209    std::lock_guard<sys::Mutex> locked(lock);
210  
211    assert(!Name.empty() && "Empty GlobalMapping symbol name!");
212  
213    LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
214    uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
215    assert((!CurVal || !Addr) && "GlobalMapping already established!");
216    CurVal = Addr;
217  
218    // If we are using the reverse mapping, add it too.
219    if (!EEState.getGlobalAddressReverseMap().empty()) {
220      std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
221      assert((!V.empty() || !Name.empty()) &&
222             "GlobalMapping already established!");
223      V = std::string(Name);
224    }
225  }
226  
227  void ExecutionEngine::clearAllGlobalMappings() {
228    std::lock_guard<sys::Mutex> locked(lock);
229  
230    EEState.getGlobalAddressMap().clear();
231    EEState.getGlobalAddressReverseMap().clear();
232  }
233  
234  void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
235    std::lock_guard<sys::Mutex> locked(lock);
236  
237    for (GlobalObject &GO : M->global_objects())
238      EEState.RemoveMapping(getMangledName(&GO));
239  }
240  
241  uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
242                                                void *Addr) {
243    std::lock_guard<sys::Mutex> locked(lock);
244    return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
245  }
246  
247  uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
248    std::lock_guard<sys::Mutex> locked(lock);
249  
250    ExecutionEngineState::GlobalAddressMapTy &Map =
251      EEState.getGlobalAddressMap();
252  
253    // Deleting from the mapping?
254    if (!Addr)
255      return EEState.RemoveMapping(Name);
256  
257    uint64_t &CurVal = Map[Name];
258    uint64_t OldVal = CurVal;
259  
260    if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
261      EEState.getGlobalAddressReverseMap().erase(CurVal);
262    CurVal = Addr;
263  
264    // If we are using the reverse mapping, add it too.
265    if (!EEState.getGlobalAddressReverseMap().empty()) {
266      std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
267      assert((!V.empty() || !Name.empty()) &&
268             "GlobalMapping already established!");
269      V = std::string(Name);
270    }
271    return OldVal;
272  }
273  
274  uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
275    std::lock_guard<sys::Mutex> locked(lock);
276    uint64_t Address = 0;
277    ExecutionEngineState::GlobalAddressMapTy::iterator I =
278      EEState.getGlobalAddressMap().find(S);
279    if (I != EEState.getGlobalAddressMap().end())
280      Address = I->second;
281    return Address;
282  }
283  
284  
285  void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
286    std::lock_guard<sys::Mutex> locked(lock);
287    if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
288      return Address;
289    return nullptr;
290  }
291  
292  void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
293    std::lock_guard<sys::Mutex> locked(lock);
294    return getPointerToGlobalIfAvailable(getMangledName(GV));
295  }
296  
297  const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
298    std::lock_guard<sys::Mutex> locked(lock);
299  
300    // If we haven't computed the reverse mapping yet, do so first.
301    if (EEState.getGlobalAddressReverseMap().empty()) {
302      for (ExecutionEngineState::GlobalAddressMapTy::iterator
303             I = EEState.getGlobalAddressMap().begin(),
304             E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
305        StringRef Name = I->first();
306        uint64_t Addr = I->second;
307        EEState.getGlobalAddressReverseMap().insert(
308            std::make_pair(Addr, std::string(Name)));
309      }
310    }
311  
312    std::map<uint64_t, std::string>::iterator I =
313      EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
314  
315    if (I != EEState.getGlobalAddressReverseMap().end()) {
316      StringRef Name = I->second;
317      for (unsigned i = 0, e = Modules.size(); i != e; ++i)
318        if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
319          return GV;
320    }
321    return nullptr;
322  }
323  
324  namespace {
325  class ArgvArray {
326    std::unique_ptr<char[]> Array;
327    std::vector<std::unique_ptr<char[]>> Values;
328  public:
329    /// Turn a vector of strings into a nice argv style array of pointers to null
330    /// terminated strings.
331    void *reset(LLVMContext &C, ExecutionEngine *EE,
332                const std::vector<std::string> &InputArgv);
333  };
334  }  // anonymous namespace
335  void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
336                         const std::vector<std::string> &InputArgv) {
337    Values.clear();  // Free the old contents.
338    Values.reserve(InputArgv.size());
339    unsigned PtrSize = EE->getDataLayout().getPointerSize();
340    Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
341  
342    LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
343    Type *SBytePtr = Type::getInt8PtrTy(C);
344  
345    for (unsigned i = 0; i != InputArgv.size(); ++i) {
346      unsigned Size = InputArgv[i].size()+1;
347      auto Dest = std::make_unique<char[]>(Size);
348      LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
349                        << "\n");
350  
351      std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
352      Dest[Size-1] = 0;
353  
354      // Endian safe: Array[i] = (PointerTy)Dest;
355      EE->StoreValueToMemory(PTOGV(Dest.get()),
356                             (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
357      Values.push_back(std::move(Dest));
358    }
359  
360    // Null terminate it
361    EE->StoreValueToMemory(PTOGV(nullptr),
362                           (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
363                           SBytePtr);
364    return Array.get();
365  }
366  
367  void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
368                                                         bool isDtors) {
369    StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
370    GlobalVariable *GV = module.getNamedGlobal(Name);
371  
372    // If this global has internal linkage, or if it has a use, then it must be
373    // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
374    // this is the case, don't execute any of the global ctors, __main will do
375    // it.
376    if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
377  
378    // Should be an array of '{ i32, void ()* }' structs.  The first value is
379    // the init priority, which we ignore.
380    ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
381    if (!InitList)
382      return;
383    for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
384      ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
385      if (!CS) continue;
386  
387      Constant *FP = CS->getOperand(1);
388      if (FP->isNullValue())
389        continue;  // Found a sentinal value, ignore.
390  
391      // Strip off constant expression casts.
392      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
393        if (CE->isCast())
394          FP = CE->getOperand(0);
395  
396      // Execute the ctor/dtor function!
397      if (Function *F = dyn_cast<Function>(FP))
398        runFunction(F, std::nullopt);
399  
400      // FIXME: It is marginally lame that we just do nothing here if we see an
401      // entry we don't recognize. It might not be unreasonable for the verifier
402      // to not even allow this and just assert here.
403    }
404  }
405  
406  void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
407    // Execute global ctors/dtors for each module in the program.
408    for (std::unique_ptr<Module> &M : Modules)
409      runStaticConstructorsDestructors(*M, isDtors);
410  }
411  
412  #ifndef NDEBUG
413  /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
414  static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
415    unsigned PtrSize = EE->getDataLayout().getPointerSize();
416    for (unsigned i = 0; i < PtrSize; ++i)
417      if (*(i + (uint8_t*)Loc))
418        return false;
419    return true;
420  }
421  #endif
422  
423  int ExecutionEngine::runFunctionAsMain(Function *Fn,
424                                         const std::vector<std::string> &argv,
425                                         const char * const * envp) {
426    std::vector<GenericValue> GVArgs;
427    GenericValue GVArgc;
428    GVArgc.IntVal = APInt(32, argv.size());
429  
430    // Check main() type
431    unsigned NumArgs = Fn->getFunctionType()->getNumParams();
432    FunctionType *FTy = Fn->getFunctionType();
433    Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
434  
435    // Check the argument types.
436    if (NumArgs > 3)
437      report_fatal_error("Invalid number of arguments of main() supplied");
438    if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
439      report_fatal_error("Invalid type for third argument of main() supplied");
440    if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
441      report_fatal_error("Invalid type for second argument of main() supplied");
442    if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
443      report_fatal_error("Invalid type for first argument of main() supplied");
444    if (!FTy->getReturnType()->isIntegerTy() &&
445        !FTy->getReturnType()->isVoidTy())
446      report_fatal_error("Invalid return type of main() supplied");
447  
448    ArgvArray CArgv;
449    ArgvArray CEnv;
450    if (NumArgs) {
451      GVArgs.push_back(GVArgc); // Arg #0 = argc.
452      if (NumArgs > 1) {
453        // Arg #1 = argv.
454        GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
455        assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
456               "argv[0] was null after CreateArgv");
457        if (NumArgs > 2) {
458          std::vector<std::string> EnvVars;
459          for (unsigned i = 0; envp[i]; ++i)
460            EnvVars.emplace_back(envp[i]);
461          // Arg #2 = envp.
462          GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
463        }
464      }
465    }
466  
467    return runFunction(Fn, GVArgs).IntVal.getZExtValue();
468  }
469  
470  EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
471  
472  EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
473      : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
474        OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr) {
475  // IR module verification is enabled by default in debug builds, and disabled
476  // by default in release builds.
477  #ifndef NDEBUG
478    VerifyModules = true;
479  #else
480    VerifyModules = false;
481  #endif
482  }
483  
484  EngineBuilder::~EngineBuilder() = default;
485  
486  EngineBuilder &EngineBuilder::setMCJITMemoryManager(
487                                     std::unique_ptr<RTDyldMemoryManager> mcjmm) {
488    auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
489    MemMgr = SharedMM;
490    Resolver = SharedMM;
491    return *this;
492  }
493  
494  EngineBuilder&
495  EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
496    MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
497    return *this;
498  }
499  
500  EngineBuilder &
501  EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
502    Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
503    return *this;
504  }
505  
506  ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
507    std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
508  
509    // Make sure we can resolve symbols in the program as well. The zero arg
510    // to the function tells DynamicLibrary to load the program, not a library.
511    if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
512      return nullptr;
513  
514    // If the user specified a memory manager but didn't specify which engine to
515    // create, we assume they only want the JIT, and we fail if they only want
516    // the interpreter.
517    if (MemMgr) {
518      if (WhichEngine & EngineKind::JIT)
519        WhichEngine = EngineKind::JIT;
520      else {
521        if (ErrorStr)
522          *ErrorStr = "Cannot create an interpreter with a memory manager.";
523        return nullptr;
524      }
525    }
526  
527    // Unless the interpreter was explicitly selected or the JIT is not linked,
528    // try making a JIT.
529    if ((WhichEngine & EngineKind::JIT) && TheTM) {
530      if (!TM->getTarget().hasJIT()) {
531        errs() << "WARNING: This target JIT is not designed for the host"
532               << " you are running.  If bad things happen, please choose"
533               << " a different -march switch.\n";
534      }
535  
536      ExecutionEngine *EE = nullptr;
537      if (ExecutionEngine::MCJITCtor)
538        EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
539                                        std::move(Resolver), std::move(TheTM));
540  
541      if (EE) {
542        EE->setVerifyModules(VerifyModules);
543        return EE;
544      }
545    }
546  
547    // If we can't make a JIT and we didn't request one specifically, try making
548    // an interpreter instead.
549    if (WhichEngine & EngineKind::Interpreter) {
550      if (ExecutionEngine::InterpCtor)
551        return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
552      if (ErrorStr)
553        *ErrorStr = "Interpreter has not been linked in.";
554      return nullptr;
555    }
556  
557    if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
558      if (ErrorStr)
559        *ErrorStr = "JIT has not been linked in.";
560    }
561  
562    return nullptr;
563  }
564  
565  void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
566    if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
567      return getPointerToFunction(F);
568  
569    std::lock_guard<sys::Mutex> locked(lock);
570    if (void* P = getPointerToGlobalIfAvailable(GV))
571      return P;
572  
573    // Global variable might have been added since interpreter started.
574    if (GlobalVariable *GVar =
575            const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
576      emitGlobalVariable(GVar);
577    else
578      llvm_unreachable("Global hasn't had an address allocated yet!");
579  
580    return getPointerToGlobalIfAvailable(GV);
581  }
582  
583  /// Converts a Constant* into a GenericValue, including handling of
584  /// ConstantExpr values.
585  GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
586    // If its undefined, return the garbage.
587    if (isa<UndefValue>(C)) {
588      GenericValue Result;
589      switch (C->getType()->getTypeID()) {
590      default:
591        break;
592      case Type::IntegerTyID:
593      case Type::X86_FP80TyID:
594      case Type::FP128TyID:
595      case Type::PPC_FP128TyID:
596        // Although the value is undefined, we still have to construct an APInt
597        // with the correct bit width.
598        Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
599        break;
600      case Type::StructTyID: {
601        // if the whole struct is 'undef' just reserve memory for the value.
602        if(StructType *STy = dyn_cast<StructType>(C->getType())) {
603          unsigned int elemNum = STy->getNumElements();
604          Result.AggregateVal.resize(elemNum);
605          for (unsigned int i = 0; i < elemNum; ++i) {
606            Type *ElemTy = STy->getElementType(i);
607            if (ElemTy->isIntegerTy())
608              Result.AggregateVal[i].IntVal =
609                APInt(ElemTy->getPrimitiveSizeInBits(), 0);
610            else if (ElemTy->isAggregateType()) {
611                const Constant *ElemUndef = UndefValue::get(ElemTy);
612                Result.AggregateVal[i] = getConstantValue(ElemUndef);
613              }
614            }
615          }
616        }
617        break;
618        case Type::ScalableVectorTyID:
619          report_fatal_error(
620              "Scalable vector support not yet implemented in ExecutionEngine");
621        case Type::FixedVectorTyID:
622          // if the whole vector is 'undef' just reserve memory for the value.
623          auto *VTy = cast<FixedVectorType>(C->getType());
624          Type *ElemTy = VTy->getElementType();
625          unsigned int elemNum = VTy->getNumElements();
626          Result.AggregateVal.resize(elemNum);
627          if (ElemTy->isIntegerTy())
628            for (unsigned int i = 0; i < elemNum; ++i)
629              Result.AggregateVal[i].IntVal =
630                  APInt(ElemTy->getPrimitiveSizeInBits(), 0);
631          break;
632      }
633      return Result;
634    }
635  
636    // Otherwise, if the value is a ConstantExpr...
637    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
638      Constant *Op0 = CE->getOperand(0);
639      switch (CE->getOpcode()) {
640      case Instruction::GetElementPtr: {
641        // Compute the index
642        GenericValue Result = getConstantValue(Op0);
643        APInt Offset(DL.getPointerSizeInBits(), 0);
644        cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
645  
646        char* tmp = (char*) Result.PointerVal;
647        Result = PTOGV(tmp + Offset.getSExtValue());
648        return Result;
649      }
650      case Instruction::Trunc: {
651        GenericValue GV = getConstantValue(Op0);
652        uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
653        GV.IntVal = GV.IntVal.trunc(BitWidth);
654        return GV;
655      }
656      case Instruction::ZExt: {
657        GenericValue GV = getConstantValue(Op0);
658        uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
659        GV.IntVal = GV.IntVal.zext(BitWidth);
660        return GV;
661      }
662      case Instruction::SExt: {
663        GenericValue GV = getConstantValue(Op0);
664        uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
665        GV.IntVal = GV.IntVal.sext(BitWidth);
666        return GV;
667      }
668      case Instruction::FPTrunc: {
669        // FIXME long double
670        GenericValue GV = getConstantValue(Op0);
671        GV.FloatVal = float(GV.DoubleVal);
672        return GV;
673      }
674      case Instruction::FPExt:{
675        // FIXME long double
676        GenericValue GV = getConstantValue(Op0);
677        GV.DoubleVal = double(GV.FloatVal);
678        return GV;
679      }
680      case Instruction::UIToFP: {
681        GenericValue GV = getConstantValue(Op0);
682        if (CE->getType()->isFloatTy())
683          GV.FloatVal = float(GV.IntVal.roundToDouble());
684        else if (CE->getType()->isDoubleTy())
685          GV.DoubleVal = GV.IntVal.roundToDouble();
686        else if (CE->getType()->isX86_FP80Ty()) {
687          APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
688          (void)apf.convertFromAPInt(GV.IntVal,
689                                     false,
690                                     APFloat::rmNearestTiesToEven);
691          GV.IntVal = apf.bitcastToAPInt();
692        }
693        return GV;
694      }
695      case Instruction::SIToFP: {
696        GenericValue GV = getConstantValue(Op0);
697        if (CE->getType()->isFloatTy())
698          GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
699        else if (CE->getType()->isDoubleTy())
700          GV.DoubleVal = GV.IntVal.signedRoundToDouble();
701        else if (CE->getType()->isX86_FP80Ty()) {
702          APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
703          (void)apf.convertFromAPInt(GV.IntVal,
704                                     true,
705                                     APFloat::rmNearestTiesToEven);
706          GV.IntVal = apf.bitcastToAPInt();
707        }
708        return GV;
709      }
710      case Instruction::FPToUI: // double->APInt conversion handles sign
711      case Instruction::FPToSI: {
712        GenericValue GV = getConstantValue(Op0);
713        uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
714        if (Op0->getType()->isFloatTy())
715          GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
716        else if (Op0->getType()->isDoubleTy())
717          GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
718        else if (Op0->getType()->isX86_FP80Ty()) {
719          APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
720          uint64_t v;
721          bool ignored;
722          (void)apf.convertToInteger(MutableArrayRef(v), BitWidth,
723                                     CE->getOpcode()==Instruction::FPToSI,
724                                     APFloat::rmTowardZero, &ignored);
725          GV.IntVal = v; // endian?
726        }
727        return GV;
728      }
729      case Instruction::PtrToInt: {
730        GenericValue GV = getConstantValue(Op0);
731        uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
732        assert(PtrWidth <= 64 && "Bad pointer width");
733        GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
734        uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
735        GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
736        return GV;
737      }
738      case Instruction::IntToPtr: {
739        GenericValue GV = getConstantValue(Op0);
740        uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
741        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
742        assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
743        GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
744        return GV;
745      }
746      case Instruction::BitCast: {
747        GenericValue GV = getConstantValue(Op0);
748        Type* DestTy = CE->getType();
749        switch (Op0->getType()->getTypeID()) {
750          default: llvm_unreachable("Invalid bitcast operand");
751          case Type::IntegerTyID:
752            assert(DestTy->isFloatingPointTy() && "invalid bitcast");
753            if (DestTy->isFloatTy())
754              GV.FloatVal = GV.IntVal.bitsToFloat();
755            else if (DestTy->isDoubleTy())
756              GV.DoubleVal = GV.IntVal.bitsToDouble();
757            break;
758          case Type::FloatTyID:
759            assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
760            GV.IntVal = APInt::floatToBits(GV.FloatVal);
761            break;
762          case Type::DoubleTyID:
763            assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
764            GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
765            break;
766          case Type::PointerTyID:
767            assert(DestTy->isPointerTy() && "Invalid bitcast");
768            break; // getConstantValue(Op0)  above already converted it
769        }
770        return GV;
771      }
772      case Instruction::Add:
773      case Instruction::FAdd:
774      case Instruction::Sub:
775      case Instruction::FSub:
776      case Instruction::Mul:
777      case Instruction::FMul:
778      case Instruction::UDiv:
779      case Instruction::SDiv:
780      case Instruction::URem:
781      case Instruction::SRem:
782      case Instruction::And:
783      case Instruction::Or:
784      case Instruction::Xor: {
785        GenericValue LHS = getConstantValue(Op0);
786        GenericValue RHS = getConstantValue(CE->getOperand(1));
787        GenericValue GV;
788        switch (CE->getOperand(0)->getType()->getTypeID()) {
789        default: llvm_unreachable("Bad add type!");
790        case Type::IntegerTyID:
791          switch (CE->getOpcode()) {
792            default: llvm_unreachable("Invalid integer opcode");
793            case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
794            case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
795            case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
796            case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
797            case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
798            case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
799            case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
800            case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
801            case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
802            case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
803          }
804          break;
805        case Type::FloatTyID:
806          switch (CE->getOpcode()) {
807            default: llvm_unreachable("Invalid float opcode");
808            case Instruction::FAdd:
809              GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
810            case Instruction::FSub:
811              GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
812            case Instruction::FMul:
813              GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
814            case Instruction::FDiv:
815              GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
816            case Instruction::FRem:
817              GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
818          }
819          break;
820        case Type::DoubleTyID:
821          switch (CE->getOpcode()) {
822            default: llvm_unreachable("Invalid double opcode");
823            case Instruction::FAdd:
824              GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
825            case Instruction::FSub:
826              GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
827            case Instruction::FMul:
828              GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
829            case Instruction::FDiv:
830              GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
831            case Instruction::FRem:
832              GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
833          }
834          break;
835        case Type::X86_FP80TyID:
836        case Type::PPC_FP128TyID:
837        case Type::FP128TyID: {
838          const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
839          APFloat apfLHS = APFloat(Sem, LHS.IntVal);
840          switch (CE->getOpcode()) {
841            default: llvm_unreachable("Invalid long double opcode");
842            case Instruction::FAdd:
843              apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
844              GV.IntVal = apfLHS.bitcastToAPInt();
845              break;
846            case Instruction::FSub:
847              apfLHS.subtract(APFloat(Sem, RHS.IntVal),
848                              APFloat::rmNearestTiesToEven);
849              GV.IntVal = apfLHS.bitcastToAPInt();
850              break;
851            case Instruction::FMul:
852              apfLHS.multiply(APFloat(Sem, RHS.IntVal),
853                              APFloat::rmNearestTiesToEven);
854              GV.IntVal = apfLHS.bitcastToAPInt();
855              break;
856            case Instruction::FDiv:
857              apfLHS.divide(APFloat(Sem, RHS.IntVal),
858                            APFloat::rmNearestTiesToEven);
859              GV.IntVal = apfLHS.bitcastToAPInt();
860              break;
861            case Instruction::FRem:
862              apfLHS.mod(APFloat(Sem, RHS.IntVal));
863              GV.IntVal = apfLHS.bitcastToAPInt();
864              break;
865            }
866          }
867          break;
868        }
869        return GV;
870      }
871      default:
872        break;
873      }
874  
875      SmallString<256> Msg;
876      raw_svector_ostream OS(Msg);
877      OS << "ConstantExpr not handled: " << *CE;
878      report_fatal_error(OS.str());
879    }
880  
881    if (auto *TETy = dyn_cast<TargetExtType>(C->getType())) {
882      assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() &&
883             "TargetExtType only supports null constant value");
884      C = Constant::getNullValue(TETy->getLayoutType());
885    }
886  
887    // Otherwise, we have a simple constant.
888    GenericValue Result;
889    switch (C->getType()->getTypeID()) {
890    case Type::FloatTyID:
891      Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
892      break;
893    case Type::DoubleTyID:
894      Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
895      break;
896    case Type::X86_FP80TyID:
897    case Type::FP128TyID:
898    case Type::PPC_FP128TyID:
899      Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
900      break;
901    case Type::IntegerTyID:
902      Result.IntVal = cast<ConstantInt>(C)->getValue();
903      break;
904    case Type::PointerTyID:
905      while (auto *A = dyn_cast<GlobalAlias>(C)) {
906        C = A->getAliasee();
907      }
908      if (isa<ConstantPointerNull>(C))
909        Result.PointerVal = nullptr;
910      else if (const Function *F = dyn_cast<Function>(C))
911        Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
912      else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
913        Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
914      else
915        llvm_unreachable("Unknown constant pointer type!");
916      break;
917    case Type::ScalableVectorTyID:
918      report_fatal_error(
919          "Scalable vector support not yet implemented in ExecutionEngine");
920    case Type::FixedVectorTyID: {
921      unsigned elemNum;
922      Type* ElemTy;
923      const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
924      const ConstantVector *CV = dyn_cast<ConstantVector>(C);
925      const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
926  
927      if (CDV) {
928          elemNum = CDV->getNumElements();
929          ElemTy = CDV->getElementType();
930      } else if (CV || CAZ) {
931        auto *VTy = cast<FixedVectorType>(C->getType());
932        elemNum = VTy->getNumElements();
933        ElemTy = VTy->getElementType();
934      } else {
935          llvm_unreachable("Unknown constant vector type!");
936      }
937  
938      Result.AggregateVal.resize(elemNum);
939      // Check if vector holds floats.
940      if(ElemTy->isFloatTy()) {
941        if (CAZ) {
942          GenericValue floatZero;
943          floatZero.FloatVal = 0.f;
944          std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
945                    floatZero);
946          break;
947        }
948        if(CV) {
949          for (unsigned i = 0; i < elemNum; ++i)
950            if (!isa<UndefValue>(CV->getOperand(i)))
951              Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
952                CV->getOperand(i))->getValueAPF().convertToFloat();
953          break;
954        }
955        if(CDV)
956          for (unsigned i = 0; i < elemNum; ++i)
957            Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
958  
959        break;
960      }
961      // Check if vector holds doubles.
962      if (ElemTy->isDoubleTy()) {
963        if (CAZ) {
964          GenericValue doubleZero;
965          doubleZero.DoubleVal = 0.0;
966          std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
967                    doubleZero);
968          break;
969        }
970        if(CV) {
971          for (unsigned i = 0; i < elemNum; ++i)
972            if (!isa<UndefValue>(CV->getOperand(i)))
973              Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
974                CV->getOperand(i))->getValueAPF().convertToDouble();
975          break;
976        }
977        if(CDV)
978          for (unsigned i = 0; i < elemNum; ++i)
979            Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
980  
981        break;
982      }
983      // Check if vector holds integers.
984      if (ElemTy->isIntegerTy()) {
985        if (CAZ) {
986          GenericValue intZero;
987          intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
988          std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
989                    intZero);
990          break;
991        }
992        if(CV) {
993          for (unsigned i = 0; i < elemNum; ++i)
994            if (!isa<UndefValue>(CV->getOperand(i)))
995              Result.AggregateVal[i].IntVal = cast<ConstantInt>(
996                                              CV->getOperand(i))->getValue();
997            else {
998              Result.AggregateVal[i].IntVal =
999                APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
1000            }
1001          break;
1002        }
1003        if(CDV)
1004          for (unsigned i = 0; i < elemNum; ++i)
1005            Result.AggregateVal[i].IntVal = APInt(
1006              CDV->getElementType()->getPrimitiveSizeInBits(),
1007              CDV->getElementAsInteger(i));
1008  
1009        break;
1010      }
1011      llvm_unreachable("Unknown constant pointer type!");
1012    } break;
1013  
1014    default:
1015      SmallString<256> Msg;
1016      raw_svector_ostream OS(Msg);
1017      OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1018      report_fatal_error(OS.str());
1019    }
1020  
1021    return Result;
1022  }
1023  
1024  void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1025                                           GenericValue *Ptr, Type *Ty) {
1026    // It is safe to treat TargetExtType as its layout type since the underlying
1027    // bits are only copied and are not inspected.
1028    if (auto *TETy = dyn_cast<TargetExtType>(Ty))
1029      Ty = TETy->getLayoutType();
1030  
1031    const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1032  
1033    switch (Ty->getTypeID()) {
1034    default:
1035      dbgs() << "Cannot store value of type " << *Ty << "!\n";
1036      break;
1037    case Type::IntegerTyID:
1038      StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1039      break;
1040    case Type::FloatTyID:
1041      *((float*)Ptr) = Val.FloatVal;
1042      break;
1043    case Type::DoubleTyID:
1044      *((double*)Ptr) = Val.DoubleVal;
1045      break;
1046    case Type::X86_FP80TyID:
1047      memcpy(Ptr, Val.IntVal.getRawData(), 10);
1048      break;
1049    case Type::PointerTyID:
1050      // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1051      if (StoreBytes != sizeof(PointerTy))
1052        memset(&(Ptr->PointerVal), 0, StoreBytes);
1053  
1054      *((PointerTy*)Ptr) = Val.PointerVal;
1055      break;
1056    case Type::FixedVectorTyID:
1057    case Type::ScalableVectorTyID:
1058      for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1059        if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1060          *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1061        if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1062          *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1063        if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1064          unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1065          StoreIntToMemory(Val.AggregateVal[i].IntVal,
1066            (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1067        }
1068      }
1069      break;
1070    }
1071  
1072    if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1073      // Host and target are different endian - reverse the stored bytes.
1074      std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1075  }
1076  
1077  /// FIXME: document
1078  ///
1079  void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1080                                            GenericValue *Ptr,
1081                                            Type *Ty) {
1082    if (auto *TETy = dyn_cast<TargetExtType>(Ty))
1083      Ty = TETy->getLayoutType();
1084  
1085    const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1086  
1087    switch (Ty->getTypeID()) {
1088    case Type::IntegerTyID:
1089      // An APInt with all words initially zero.
1090      Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1091      LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1092      break;
1093    case Type::FloatTyID:
1094      Result.FloatVal = *((float*)Ptr);
1095      break;
1096    case Type::DoubleTyID:
1097      Result.DoubleVal = *((double*)Ptr);
1098      break;
1099    case Type::PointerTyID:
1100      Result.PointerVal = *((PointerTy*)Ptr);
1101      break;
1102    case Type::X86_FP80TyID: {
1103      // This is endian dependent, but it will only work on x86 anyway.
1104      // FIXME: Will not trap if loading a signaling NaN.
1105      uint64_t y[2];
1106      memcpy(y, Ptr, 10);
1107      Result.IntVal = APInt(80, y);
1108      break;
1109    }
1110    case Type::ScalableVectorTyID:
1111      report_fatal_error(
1112          "Scalable vector support not yet implemented in ExecutionEngine");
1113    case Type::FixedVectorTyID: {
1114      auto *VT = cast<FixedVectorType>(Ty);
1115      Type *ElemT = VT->getElementType();
1116      const unsigned numElems = VT->getNumElements();
1117      if (ElemT->isFloatTy()) {
1118        Result.AggregateVal.resize(numElems);
1119        for (unsigned i = 0; i < numElems; ++i)
1120          Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1121      }
1122      if (ElemT->isDoubleTy()) {
1123        Result.AggregateVal.resize(numElems);
1124        for (unsigned i = 0; i < numElems; ++i)
1125          Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1126      }
1127      if (ElemT->isIntegerTy()) {
1128        GenericValue intZero;
1129        const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1130        intZero.IntVal = APInt(elemBitWidth, 0);
1131        Result.AggregateVal.resize(numElems, intZero);
1132        for (unsigned i = 0; i < numElems; ++i)
1133          LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1134            (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1135      }
1136    break;
1137    }
1138    default:
1139      SmallString<256> Msg;
1140      raw_svector_ostream OS(Msg);
1141      OS << "Cannot load value of type " << *Ty << "!";
1142      report_fatal_error(OS.str());
1143    }
1144  }
1145  
1146  void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1147    LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1148    LLVM_DEBUG(Init->dump());
1149    if (isa<UndefValue>(Init))
1150      return;
1151  
1152    if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1153      unsigned ElementSize =
1154          getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1155      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1156        InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1157      return;
1158    }
1159  
1160    if (isa<ConstantAggregateZero>(Init)) {
1161      memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1162      return;
1163    }
1164  
1165    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1166      unsigned ElementSize =
1167          getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1168      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1169        InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1170      return;
1171    }
1172  
1173    if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1174      const StructLayout *SL =
1175          getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1176      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1177        InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1178      return;
1179    }
1180  
1181    if (const ConstantDataSequential *CDS =
1182                 dyn_cast<ConstantDataSequential>(Init)) {
1183      // CDS is already laid out in host memory order.
1184      StringRef Data = CDS->getRawDataValues();
1185      memcpy(Addr, Data.data(), Data.size());
1186      return;
1187    }
1188  
1189    if (Init->getType()->isFirstClassType()) {
1190      GenericValue Val = getConstantValue(Init);
1191      StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1192      return;
1193    }
1194  
1195    LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1196    llvm_unreachable("Unknown constant type to initialize memory with!");
1197  }
1198  
1199  /// EmitGlobals - Emit all of the global variables to memory, storing their
1200  /// addresses into GlobalAddress.  This must make sure to copy the contents of
1201  /// their initializers into the memory.
1202  void ExecutionEngine::emitGlobals() {
1203    // Loop over all of the global variables in the program, allocating the memory
1204    // to hold them.  If there is more than one module, do a prepass over globals
1205    // to figure out how the different modules should link together.
1206    std::map<std::pair<std::string, Type*>,
1207             const GlobalValue*> LinkedGlobalsMap;
1208  
1209    if (Modules.size() != 1) {
1210      for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1211        Module &M = *Modules[m];
1212        for (const auto &GV : M.globals()) {
1213          if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1214              GV.hasAppendingLinkage() || !GV.hasName())
1215            continue;// Ignore external globals and globals with internal linkage.
1216  
1217          const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
1218              std::string(GV.getName()), GV.getType())];
1219  
1220          // If this is the first time we've seen this global, it is the canonical
1221          // version.
1222          if (!GVEntry) {
1223            GVEntry = &GV;
1224            continue;
1225          }
1226  
1227          // If the existing global is strong, never replace it.
1228          if (GVEntry->hasExternalLinkage())
1229            continue;
1230  
1231          // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1232          // symbol.  FIXME is this right for common?
1233          if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1234            GVEntry = &GV;
1235        }
1236      }
1237    }
1238  
1239    std::vector<const GlobalValue*> NonCanonicalGlobals;
1240    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1241      Module &M = *Modules[m];
1242      for (const auto &GV : M.globals()) {
1243        // In the multi-module case, see what this global maps to.
1244        if (!LinkedGlobalsMap.empty()) {
1245          if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1246                  std::string(GV.getName()), GV.getType())]) {
1247            // If something else is the canonical global, ignore this one.
1248            if (GVEntry != &GV) {
1249              NonCanonicalGlobals.push_back(&GV);
1250              continue;
1251            }
1252          }
1253        }
1254  
1255        if (!GV.isDeclaration()) {
1256          addGlobalMapping(&GV, getMemoryForGV(&GV));
1257        } else {
1258          // External variable reference. Try to use the dynamic loader to
1259          // get a pointer to it.
1260          if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
1261                  std::string(GV.getName())))
1262            addGlobalMapping(&GV, SymAddr);
1263          else {
1264            report_fatal_error("Could not resolve external global address: "
1265                              +GV.getName());
1266          }
1267        }
1268      }
1269  
1270      // If there are multiple modules, map the non-canonical globals to their
1271      // canonical location.
1272      if (!NonCanonicalGlobals.empty()) {
1273        for (const GlobalValue *GV : NonCanonicalGlobals) {
1274          const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
1275              std::string(GV->getName()), GV->getType())];
1276          void *Ptr = getPointerToGlobalIfAvailable(CGV);
1277          assert(Ptr && "Canonical global wasn't codegen'd!");
1278          addGlobalMapping(GV, Ptr);
1279        }
1280      }
1281  
1282      // Now that all of the globals are set up in memory, loop through them all
1283      // and initialize their contents.
1284      for (const auto &GV : M.globals()) {
1285        if (!GV.isDeclaration()) {
1286          if (!LinkedGlobalsMap.empty()) {
1287            if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1288                    std::string(GV.getName()), GV.getType())])
1289              if (GVEntry != &GV)  // Not the canonical variable.
1290                continue;
1291          }
1292          emitGlobalVariable(&GV);
1293        }
1294      }
1295    }
1296  }
1297  
1298  // EmitGlobalVariable - This method emits the specified global variable to the
1299  // address specified in GlobalAddresses, or allocates new memory if it's not
1300  // already in the map.
1301  void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) {
1302    void *GA = getPointerToGlobalIfAvailable(GV);
1303  
1304    if (!GA) {
1305      // If it's not already specified, allocate memory for the global.
1306      GA = getMemoryForGV(GV);
1307  
1308      // If we failed to allocate memory for this global, return.
1309      if (!GA) return;
1310  
1311      addGlobalMapping(GV, GA);
1312    }
1313  
1314    // Don't initialize if it's thread local, let the client do it.
1315    if (!GV->isThreadLocal())
1316      InitializeMemory(GV->getInitializer(), GA);
1317  
1318    Type *ElTy = GV->getValueType();
1319    size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1320    NumInitBytes += (unsigned)GVSize;
1321    ++NumGlobals;
1322  }
1323