1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the common interface used by the various execution engine 10 // subclasses. 11 // 12 // FIXME: This file needs to be updated to support scalable vectors 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ExecutionEngine/GenericValue.h" 21 #include "llvm/ExecutionEngine/JITEventListener.h" 22 #include "llvm/ExecutionEngine/ObjectCache.h" 23 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Mangler.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Object/Archive.h" 32 #include "llvm/Object/ObjectFile.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DynamicLibrary.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Host.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include <cmath> 41 #include <cstring> 42 #include <mutex> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "jit" 46 47 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 48 STATISTIC(NumGlobals , "Number of global vars initialized"); 49 50 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 51 std::unique_ptr<Module> M, std::string *ErrorStr, 52 std::shared_ptr<MCJITMemoryManager> MemMgr, 53 std::shared_ptr<LegacyJITSymbolResolver> Resolver, 54 std::unique_ptr<TargetMachine> TM) = nullptr; 55 56 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 57 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 58 std::shared_ptr<LegacyJITSymbolResolver> Resolver, 59 std::unique_ptr<TargetMachine> TM) = nullptr; 60 61 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 62 std::string *ErrorStr) =nullptr; 63 64 void JITEventListener::anchor() {} 65 66 void ObjectCache::anchor() {} 67 68 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 69 CompilingLazily = false; 70 GVCompilationDisabled = false; 71 SymbolSearchingDisabled = false; 72 73 // IR module verification is enabled by default in debug builds, and disabled 74 // by default in release builds. 75 #ifndef NDEBUG 76 VerifyModules = true; 77 #else 78 VerifyModules = false; 79 #endif 80 81 assert(M && "Module is null?"); 82 Modules.push_back(std::move(M)); 83 } 84 85 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 86 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 87 Init(std::move(M)); 88 } 89 90 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 91 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 92 Init(std::move(M)); 93 } 94 95 ExecutionEngine::~ExecutionEngine() { 96 clearAllGlobalMappings(); 97 } 98 99 namespace { 100 /// Helper class which uses a value handler to automatically deletes the 101 /// memory block when the GlobalVariable is destroyed. 102 class GVMemoryBlock final : public CallbackVH { 103 GVMemoryBlock(const GlobalVariable *GV) 104 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 105 106 public: 107 /// Returns the address the GlobalVariable should be written into. The 108 /// GVMemoryBlock object prefixes that. 109 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 110 Type *ElTy = GV->getValueType(); 111 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 112 void *RawMemory = ::operator new( 113 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize); 114 new(RawMemory) GVMemoryBlock(GV); 115 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 116 } 117 118 void deleted() override { 119 // We allocated with operator new and with some extra memory hanging off the 120 // end, so don't just delete this. I'm not sure if this is actually 121 // required. 122 this->~GVMemoryBlock(); 123 ::operator delete(this); 124 } 125 }; 126 } // anonymous namespace 127 128 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 129 return GVMemoryBlock::Create(GV, getDataLayout()); 130 } 131 132 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 133 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 134 } 135 136 void 137 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 138 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 139 } 140 141 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 142 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 143 } 144 145 bool ExecutionEngine::removeModule(Module *M) { 146 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 147 Module *Found = I->get(); 148 if (Found == M) { 149 I->release(); 150 Modules.erase(I); 151 clearGlobalMappingsFromModule(M); 152 return true; 153 } 154 } 155 return false; 156 } 157 158 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { 159 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 160 Function *F = Modules[i]->getFunction(FnName); 161 if (F && !F->isDeclaration()) 162 return F; 163 } 164 return nullptr; 165 } 166 167 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { 168 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 169 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 170 if (GV && !GV->isDeclaration()) 171 return GV; 172 } 173 return nullptr; 174 } 175 176 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 177 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 178 uint64_t OldVal; 179 180 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 181 // GlobalAddressMap. 182 if (I == GlobalAddressMap.end()) 183 OldVal = 0; 184 else { 185 GlobalAddressReverseMap.erase(I->second); 186 OldVal = I->second; 187 GlobalAddressMap.erase(I); 188 } 189 190 return OldVal; 191 } 192 193 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 194 assert(GV->hasName() && "Global must have name."); 195 196 std::lock_guard<sys::Mutex> locked(lock); 197 SmallString<128> FullName; 198 199 const DataLayout &DL = 200 GV->getParent()->getDataLayout().isDefault() 201 ? getDataLayout() 202 : GV->getParent()->getDataLayout(); 203 204 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 205 return std::string(FullName.str()); 206 } 207 208 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 209 std::lock_guard<sys::Mutex> locked(lock); 210 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 211 } 212 213 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 214 std::lock_guard<sys::Mutex> locked(lock); 215 216 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 217 218 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 219 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 220 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 221 CurVal = Addr; 222 223 // If we are using the reverse mapping, add it too. 224 if (!EEState.getGlobalAddressReverseMap().empty()) { 225 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 226 assert((!V.empty() || !Name.empty()) && 227 "GlobalMapping already established!"); 228 V = std::string(Name); 229 } 230 } 231 232 void ExecutionEngine::clearAllGlobalMappings() { 233 std::lock_guard<sys::Mutex> locked(lock); 234 235 EEState.getGlobalAddressMap().clear(); 236 EEState.getGlobalAddressReverseMap().clear(); 237 } 238 239 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 240 std::lock_guard<sys::Mutex> locked(lock); 241 242 for (GlobalObject &GO : M->global_objects()) 243 EEState.RemoveMapping(getMangledName(&GO)); 244 } 245 246 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 247 void *Addr) { 248 std::lock_guard<sys::Mutex> locked(lock); 249 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 250 } 251 252 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 253 std::lock_guard<sys::Mutex> locked(lock); 254 255 ExecutionEngineState::GlobalAddressMapTy &Map = 256 EEState.getGlobalAddressMap(); 257 258 // Deleting from the mapping? 259 if (!Addr) 260 return EEState.RemoveMapping(Name); 261 262 uint64_t &CurVal = Map[Name]; 263 uint64_t OldVal = CurVal; 264 265 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 266 EEState.getGlobalAddressReverseMap().erase(CurVal); 267 CurVal = Addr; 268 269 // If we are using the reverse mapping, add it too. 270 if (!EEState.getGlobalAddressReverseMap().empty()) { 271 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 272 assert((!V.empty() || !Name.empty()) && 273 "GlobalMapping already established!"); 274 V = std::string(Name); 275 } 276 return OldVal; 277 } 278 279 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 280 std::lock_guard<sys::Mutex> locked(lock); 281 uint64_t Address = 0; 282 ExecutionEngineState::GlobalAddressMapTy::iterator I = 283 EEState.getGlobalAddressMap().find(S); 284 if (I != EEState.getGlobalAddressMap().end()) 285 Address = I->second; 286 return Address; 287 } 288 289 290 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 291 std::lock_guard<sys::Mutex> locked(lock); 292 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 293 return Address; 294 return nullptr; 295 } 296 297 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 298 std::lock_guard<sys::Mutex> locked(lock); 299 return getPointerToGlobalIfAvailable(getMangledName(GV)); 300 } 301 302 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 303 std::lock_guard<sys::Mutex> locked(lock); 304 305 // If we haven't computed the reverse mapping yet, do so first. 306 if (EEState.getGlobalAddressReverseMap().empty()) { 307 for (ExecutionEngineState::GlobalAddressMapTy::iterator 308 I = EEState.getGlobalAddressMap().begin(), 309 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 310 StringRef Name = I->first(); 311 uint64_t Addr = I->second; 312 EEState.getGlobalAddressReverseMap().insert( 313 std::make_pair(Addr, std::string(Name))); 314 } 315 } 316 317 std::map<uint64_t, std::string>::iterator I = 318 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 319 320 if (I != EEState.getGlobalAddressReverseMap().end()) { 321 StringRef Name = I->second; 322 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 323 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 324 return GV; 325 } 326 return nullptr; 327 } 328 329 namespace { 330 class ArgvArray { 331 std::unique_ptr<char[]> Array; 332 std::vector<std::unique_ptr<char[]>> Values; 333 public: 334 /// Turn a vector of strings into a nice argv style array of pointers to null 335 /// terminated strings. 336 void *reset(LLVMContext &C, ExecutionEngine *EE, 337 const std::vector<std::string> &InputArgv); 338 }; 339 } // anonymous namespace 340 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 341 const std::vector<std::string> &InputArgv) { 342 Values.clear(); // Free the old contents. 343 Values.reserve(InputArgv.size()); 344 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 345 Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize); 346 347 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n"); 348 Type *SBytePtr = Type::getInt8PtrTy(C); 349 350 for (unsigned i = 0; i != InputArgv.size(); ++i) { 351 unsigned Size = InputArgv[i].size()+1; 352 auto Dest = std::make_unique<char[]>(Size); 353 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() 354 << "\n"); 355 356 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 357 Dest[Size-1] = 0; 358 359 // Endian safe: Array[i] = (PointerTy)Dest; 360 EE->StoreValueToMemory(PTOGV(Dest.get()), 361 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 362 Values.push_back(std::move(Dest)); 363 } 364 365 // Null terminate it 366 EE->StoreValueToMemory(PTOGV(nullptr), 367 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 368 SBytePtr); 369 return Array.get(); 370 } 371 372 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 373 bool isDtors) { 374 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors"); 375 GlobalVariable *GV = module.getNamedGlobal(Name); 376 377 // If this global has internal linkage, or if it has a use, then it must be 378 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 379 // this is the case, don't execute any of the global ctors, __main will do 380 // it. 381 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 382 383 // Should be an array of '{ i32, void ()* }' structs. The first value is 384 // the init priority, which we ignore. 385 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 386 if (!InitList) 387 return; 388 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 389 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 390 if (!CS) continue; 391 392 Constant *FP = CS->getOperand(1); 393 if (FP->isNullValue()) 394 continue; // Found a sentinal value, ignore. 395 396 // Strip off constant expression casts. 397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 398 if (CE->isCast()) 399 FP = CE->getOperand(0); 400 401 // Execute the ctor/dtor function! 402 if (Function *F = dyn_cast<Function>(FP)) 403 runFunction(F, None); 404 405 // FIXME: It is marginally lame that we just do nothing here if we see an 406 // entry we don't recognize. It might not be unreasonable for the verifier 407 // to not even allow this and just assert here. 408 } 409 } 410 411 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 412 // Execute global ctors/dtors for each module in the program. 413 for (std::unique_ptr<Module> &M : Modules) 414 runStaticConstructorsDestructors(*M, isDtors); 415 } 416 417 #ifndef NDEBUG 418 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 419 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 420 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 421 for (unsigned i = 0; i < PtrSize; ++i) 422 if (*(i + (uint8_t*)Loc)) 423 return false; 424 return true; 425 } 426 #endif 427 428 int ExecutionEngine::runFunctionAsMain(Function *Fn, 429 const std::vector<std::string> &argv, 430 const char * const * envp) { 431 std::vector<GenericValue> GVArgs; 432 GenericValue GVArgc; 433 GVArgc.IntVal = APInt(32, argv.size()); 434 435 // Check main() type 436 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 437 FunctionType *FTy = Fn->getFunctionType(); 438 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 439 440 // Check the argument types. 441 if (NumArgs > 3) 442 report_fatal_error("Invalid number of arguments of main() supplied"); 443 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 444 report_fatal_error("Invalid type for third argument of main() supplied"); 445 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 446 report_fatal_error("Invalid type for second argument of main() supplied"); 447 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 448 report_fatal_error("Invalid type for first argument of main() supplied"); 449 if (!FTy->getReturnType()->isIntegerTy() && 450 !FTy->getReturnType()->isVoidTy()) 451 report_fatal_error("Invalid return type of main() supplied"); 452 453 ArgvArray CArgv; 454 ArgvArray CEnv; 455 if (NumArgs) { 456 GVArgs.push_back(GVArgc); // Arg #0 = argc. 457 if (NumArgs > 1) { 458 // Arg #1 = argv. 459 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 460 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 461 "argv[0] was null after CreateArgv"); 462 if (NumArgs > 2) { 463 std::vector<std::string> EnvVars; 464 for (unsigned i = 0; envp[i]; ++i) 465 EnvVars.emplace_back(envp[i]); 466 // Arg #2 = envp. 467 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 468 } 469 } 470 } 471 472 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 473 } 474 475 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 476 477 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 478 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 479 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 480 UseOrcMCJITReplacement(false) { 481 // IR module verification is enabled by default in debug builds, and disabled 482 // by default in release builds. 483 #ifndef NDEBUG 484 VerifyModules = true; 485 #else 486 VerifyModules = false; 487 #endif 488 } 489 490 EngineBuilder::~EngineBuilder() = default; 491 492 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 493 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 494 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 495 MemMgr = SharedMM; 496 Resolver = SharedMM; 497 return *this; 498 } 499 500 EngineBuilder& 501 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 502 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 503 return *this; 504 } 505 506 EngineBuilder & 507 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { 508 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); 509 return *this; 510 } 511 512 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 513 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 514 515 // Make sure we can resolve symbols in the program as well. The zero arg 516 // to the function tells DynamicLibrary to load the program, not a library. 517 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 518 return nullptr; 519 520 // If the user specified a memory manager but didn't specify which engine to 521 // create, we assume they only want the JIT, and we fail if they only want 522 // the interpreter. 523 if (MemMgr) { 524 if (WhichEngine & EngineKind::JIT) 525 WhichEngine = EngineKind::JIT; 526 else { 527 if (ErrorStr) 528 *ErrorStr = "Cannot create an interpreter with a memory manager."; 529 return nullptr; 530 } 531 } 532 533 // Unless the interpreter was explicitly selected or the JIT is not linked, 534 // try making a JIT. 535 if ((WhichEngine & EngineKind::JIT) && TheTM) { 536 if (!TM->getTarget().hasJIT()) { 537 errs() << "WARNING: This target JIT is not designed for the host" 538 << " you are running. If bad things happen, please choose" 539 << " a different -march switch.\n"; 540 } 541 542 ExecutionEngine *EE = nullptr; 543 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 544 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 545 std::move(Resolver), 546 std::move(TheTM)); 547 EE->addModule(std::move(M)); 548 } else if (ExecutionEngine::MCJITCtor) 549 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 550 std::move(Resolver), std::move(TheTM)); 551 552 if (EE) { 553 EE->setVerifyModules(VerifyModules); 554 return EE; 555 } 556 } 557 558 // If we can't make a JIT and we didn't request one specifically, try making 559 // an interpreter instead. 560 if (WhichEngine & EngineKind::Interpreter) { 561 if (ExecutionEngine::InterpCtor) 562 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 563 if (ErrorStr) 564 *ErrorStr = "Interpreter has not been linked in."; 565 return nullptr; 566 } 567 568 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 569 if (ErrorStr) 570 *ErrorStr = "JIT has not been linked in."; 571 } 572 573 return nullptr; 574 } 575 576 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 577 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 578 return getPointerToFunction(F); 579 580 std::lock_guard<sys::Mutex> locked(lock); 581 if (void* P = getPointerToGlobalIfAvailable(GV)) 582 return P; 583 584 // Global variable might have been added since interpreter started. 585 if (GlobalVariable *GVar = 586 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 587 emitGlobalVariable(GVar); 588 else 589 llvm_unreachable("Global hasn't had an address allocated yet!"); 590 591 return getPointerToGlobalIfAvailable(GV); 592 } 593 594 /// Converts a Constant* into a GenericValue, including handling of 595 /// ConstantExpr values. 596 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 597 // If its undefined, return the garbage. 598 if (isa<UndefValue>(C)) { 599 GenericValue Result; 600 switch (C->getType()->getTypeID()) { 601 default: 602 break; 603 case Type::IntegerTyID: 604 case Type::X86_FP80TyID: 605 case Type::FP128TyID: 606 case Type::PPC_FP128TyID: 607 // Although the value is undefined, we still have to construct an APInt 608 // with the correct bit width. 609 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 610 break; 611 case Type::StructTyID: { 612 // if the whole struct is 'undef' just reserve memory for the value. 613 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 614 unsigned int elemNum = STy->getNumElements(); 615 Result.AggregateVal.resize(elemNum); 616 for (unsigned int i = 0; i < elemNum; ++i) { 617 Type *ElemTy = STy->getElementType(i); 618 if (ElemTy->isIntegerTy()) 619 Result.AggregateVal[i].IntVal = 620 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 621 else if (ElemTy->isAggregateType()) { 622 const Constant *ElemUndef = UndefValue::get(ElemTy); 623 Result.AggregateVal[i] = getConstantValue(ElemUndef); 624 } 625 } 626 } 627 } 628 break; 629 case Type::ScalableVectorTyID: 630 report_fatal_error( 631 "Scalable vector support not yet implemented in ExecutionEngine"); 632 case Type::FixedVectorTyID: 633 // if the whole vector is 'undef' just reserve memory for the value. 634 auto *VTy = cast<FixedVectorType>(C->getType()); 635 Type *ElemTy = VTy->getElementType(); 636 unsigned int elemNum = VTy->getNumElements(); 637 Result.AggregateVal.resize(elemNum); 638 if (ElemTy->isIntegerTy()) 639 for (unsigned int i = 0; i < elemNum; ++i) 640 Result.AggregateVal[i].IntVal = 641 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 642 break; 643 } 644 return Result; 645 } 646 647 // Otherwise, if the value is a ConstantExpr... 648 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 649 Constant *Op0 = CE->getOperand(0); 650 switch (CE->getOpcode()) { 651 case Instruction::GetElementPtr: { 652 // Compute the index 653 GenericValue Result = getConstantValue(Op0); 654 APInt Offset(DL.getPointerSizeInBits(), 0); 655 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 656 657 char* tmp = (char*) Result.PointerVal; 658 Result = PTOGV(tmp + Offset.getSExtValue()); 659 return Result; 660 } 661 case Instruction::Trunc: { 662 GenericValue GV = getConstantValue(Op0); 663 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 664 GV.IntVal = GV.IntVal.trunc(BitWidth); 665 return GV; 666 } 667 case Instruction::ZExt: { 668 GenericValue GV = getConstantValue(Op0); 669 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 670 GV.IntVal = GV.IntVal.zext(BitWidth); 671 return GV; 672 } 673 case Instruction::SExt: { 674 GenericValue GV = getConstantValue(Op0); 675 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 676 GV.IntVal = GV.IntVal.sext(BitWidth); 677 return GV; 678 } 679 case Instruction::FPTrunc: { 680 // FIXME long double 681 GenericValue GV = getConstantValue(Op0); 682 GV.FloatVal = float(GV.DoubleVal); 683 return GV; 684 } 685 case Instruction::FPExt:{ 686 // FIXME long double 687 GenericValue GV = getConstantValue(Op0); 688 GV.DoubleVal = double(GV.FloatVal); 689 return GV; 690 } 691 case Instruction::UIToFP: { 692 GenericValue GV = getConstantValue(Op0); 693 if (CE->getType()->isFloatTy()) 694 GV.FloatVal = float(GV.IntVal.roundToDouble()); 695 else if (CE->getType()->isDoubleTy()) 696 GV.DoubleVal = GV.IntVal.roundToDouble(); 697 else if (CE->getType()->isX86_FP80Ty()) { 698 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 699 (void)apf.convertFromAPInt(GV.IntVal, 700 false, 701 APFloat::rmNearestTiesToEven); 702 GV.IntVal = apf.bitcastToAPInt(); 703 } 704 return GV; 705 } 706 case Instruction::SIToFP: { 707 GenericValue GV = getConstantValue(Op0); 708 if (CE->getType()->isFloatTy()) 709 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 710 else if (CE->getType()->isDoubleTy()) 711 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 712 else if (CE->getType()->isX86_FP80Ty()) { 713 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 714 (void)apf.convertFromAPInt(GV.IntVal, 715 true, 716 APFloat::rmNearestTiesToEven); 717 GV.IntVal = apf.bitcastToAPInt(); 718 } 719 return GV; 720 } 721 case Instruction::FPToUI: // double->APInt conversion handles sign 722 case Instruction::FPToSI: { 723 GenericValue GV = getConstantValue(Op0); 724 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 725 if (Op0->getType()->isFloatTy()) 726 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 727 else if (Op0->getType()->isDoubleTy()) 728 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 729 else if (Op0->getType()->isX86_FP80Ty()) { 730 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); 731 uint64_t v; 732 bool ignored; 733 (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth, 734 CE->getOpcode()==Instruction::FPToSI, 735 APFloat::rmTowardZero, &ignored); 736 GV.IntVal = v; // endian? 737 } 738 return GV; 739 } 740 case Instruction::PtrToInt: { 741 GenericValue GV = getConstantValue(Op0); 742 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 743 assert(PtrWidth <= 64 && "Bad pointer width"); 744 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 745 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 746 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 747 return GV; 748 } 749 case Instruction::IntToPtr: { 750 GenericValue GV = getConstantValue(Op0); 751 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 752 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 753 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 754 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 755 return GV; 756 } 757 case Instruction::BitCast: { 758 GenericValue GV = getConstantValue(Op0); 759 Type* DestTy = CE->getType(); 760 switch (Op0->getType()->getTypeID()) { 761 default: llvm_unreachable("Invalid bitcast operand"); 762 case Type::IntegerTyID: 763 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 764 if (DestTy->isFloatTy()) 765 GV.FloatVal = GV.IntVal.bitsToFloat(); 766 else if (DestTy->isDoubleTy()) 767 GV.DoubleVal = GV.IntVal.bitsToDouble(); 768 break; 769 case Type::FloatTyID: 770 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 771 GV.IntVal = APInt::floatToBits(GV.FloatVal); 772 break; 773 case Type::DoubleTyID: 774 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 775 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 776 break; 777 case Type::PointerTyID: 778 assert(DestTy->isPointerTy() && "Invalid bitcast"); 779 break; // getConstantValue(Op0) above already converted it 780 } 781 return GV; 782 } 783 case Instruction::Add: 784 case Instruction::FAdd: 785 case Instruction::Sub: 786 case Instruction::FSub: 787 case Instruction::Mul: 788 case Instruction::FMul: 789 case Instruction::UDiv: 790 case Instruction::SDiv: 791 case Instruction::URem: 792 case Instruction::SRem: 793 case Instruction::And: 794 case Instruction::Or: 795 case Instruction::Xor: { 796 GenericValue LHS = getConstantValue(Op0); 797 GenericValue RHS = getConstantValue(CE->getOperand(1)); 798 GenericValue GV; 799 switch (CE->getOperand(0)->getType()->getTypeID()) { 800 default: llvm_unreachable("Bad add type!"); 801 case Type::IntegerTyID: 802 switch (CE->getOpcode()) { 803 default: llvm_unreachable("Invalid integer opcode"); 804 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 805 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 806 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 807 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 808 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 809 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 810 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 811 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 812 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 813 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 814 } 815 break; 816 case Type::FloatTyID: 817 switch (CE->getOpcode()) { 818 default: llvm_unreachable("Invalid float opcode"); 819 case Instruction::FAdd: 820 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 821 case Instruction::FSub: 822 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 823 case Instruction::FMul: 824 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 825 case Instruction::FDiv: 826 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 827 case Instruction::FRem: 828 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 829 } 830 break; 831 case Type::DoubleTyID: 832 switch (CE->getOpcode()) { 833 default: llvm_unreachable("Invalid double opcode"); 834 case Instruction::FAdd: 835 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 836 case Instruction::FSub: 837 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 838 case Instruction::FMul: 839 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 840 case Instruction::FDiv: 841 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 842 case Instruction::FRem: 843 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 844 } 845 break; 846 case Type::X86_FP80TyID: 847 case Type::PPC_FP128TyID: 848 case Type::FP128TyID: { 849 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 850 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 851 switch (CE->getOpcode()) { 852 default: llvm_unreachable("Invalid long double opcode"); 853 case Instruction::FAdd: 854 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 855 GV.IntVal = apfLHS.bitcastToAPInt(); 856 break; 857 case Instruction::FSub: 858 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 859 APFloat::rmNearestTiesToEven); 860 GV.IntVal = apfLHS.bitcastToAPInt(); 861 break; 862 case Instruction::FMul: 863 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 864 APFloat::rmNearestTiesToEven); 865 GV.IntVal = apfLHS.bitcastToAPInt(); 866 break; 867 case Instruction::FDiv: 868 apfLHS.divide(APFloat(Sem, RHS.IntVal), 869 APFloat::rmNearestTiesToEven); 870 GV.IntVal = apfLHS.bitcastToAPInt(); 871 break; 872 case Instruction::FRem: 873 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 874 GV.IntVal = apfLHS.bitcastToAPInt(); 875 break; 876 } 877 } 878 break; 879 } 880 return GV; 881 } 882 default: 883 break; 884 } 885 886 SmallString<256> Msg; 887 raw_svector_ostream OS(Msg); 888 OS << "ConstantExpr not handled: " << *CE; 889 report_fatal_error(OS.str()); 890 } 891 892 // Otherwise, we have a simple constant. 893 GenericValue Result; 894 switch (C->getType()->getTypeID()) { 895 case Type::FloatTyID: 896 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 897 break; 898 case Type::DoubleTyID: 899 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 900 break; 901 case Type::X86_FP80TyID: 902 case Type::FP128TyID: 903 case Type::PPC_FP128TyID: 904 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 905 break; 906 case Type::IntegerTyID: 907 Result.IntVal = cast<ConstantInt>(C)->getValue(); 908 break; 909 case Type::PointerTyID: 910 while (auto *A = dyn_cast<GlobalAlias>(C)) { 911 C = A->getAliasee(); 912 } 913 if (isa<ConstantPointerNull>(C)) 914 Result.PointerVal = nullptr; 915 else if (const Function *F = dyn_cast<Function>(C)) 916 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 917 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 918 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 919 else 920 llvm_unreachable("Unknown constant pointer type!"); 921 break; 922 case Type::ScalableVectorTyID: 923 report_fatal_error( 924 "Scalable vector support not yet implemented in ExecutionEngine"); 925 case Type::FixedVectorTyID: { 926 unsigned elemNum; 927 Type* ElemTy; 928 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 929 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 930 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 931 932 if (CDV) { 933 elemNum = CDV->getNumElements(); 934 ElemTy = CDV->getElementType(); 935 } else if (CV || CAZ) { 936 auto *VTy = cast<FixedVectorType>(C->getType()); 937 elemNum = VTy->getNumElements(); 938 ElemTy = VTy->getElementType(); 939 } else { 940 llvm_unreachable("Unknown constant vector type!"); 941 } 942 943 Result.AggregateVal.resize(elemNum); 944 // Check if vector holds floats. 945 if(ElemTy->isFloatTy()) { 946 if (CAZ) { 947 GenericValue floatZero; 948 floatZero.FloatVal = 0.f; 949 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 950 floatZero); 951 break; 952 } 953 if(CV) { 954 for (unsigned i = 0; i < elemNum; ++i) 955 if (!isa<UndefValue>(CV->getOperand(i))) 956 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 957 CV->getOperand(i))->getValueAPF().convertToFloat(); 958 break; 959 } 960 if(CDV) 961 for (unsigned i = 0; i < elemNum; ++i) 962 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 963 964 break; 965 } 966 // Check if vector holds doubles. 967 if (ElemTy->isDoubleTy()) { 968 if (CAZ) { 969 GenericValue doubleZero; 970 doubleZero.DoubleVal = 0.0; 971 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 972 doubleZero); 973 break; 974 } 975 if(CV) { 976 for (unsigned i = 0; i < elemNum; ++i) 977 if (!isa<UndefValue>(CV->getOperand(i))) 978 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 979 CV->getOperand(i))->getValueAPF().convertToDouble(); 980 break; 981 } 982 if(CDV) 983 for (unsigned i = 0; i < elemNum; ++i) 984 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 985 986 break; 987 } 988 // Check if vector holds integers. 989 if (ElemTy->isIntegerTy()) { 990 if (CAZ) { 991 GenericValue intZero; 992 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 993 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 994 intZero); 995 break; 996 } 997 if(CV) { 998 for (unsigned i = 0; i < elemNum; ++i) 999 if (!isa<UndefValue>(CV->getOperand(i))) 1000 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 1001 CV->getOperand(i))->getValue(); 1002 else { 1003 Result.AggregateVal[i].IntVal = 1004 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 1005 } 1006 break; 1007 } 1008 if(CDV) 1009 for (unsigned i = 0; i < elemNum; ++i) 1010 Result.AggregateVal[i].IntVal = APInt( 1011 CDV->getElementType()->getPrimitiveSizeInBits(), 1012 CDV->getElementAsInteger(i)); 1013 1014 break; 1015 } 1016 llvm_unreachable("Unknown constant pointer type!"); 1017 } break; 1018 1019 default: 1020 SmallString<256> Msg; 1021 raw_svector_ostream OS(Msg); 1022 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1023 report_fatal_error(OS.str()); 1024 } 1025 1026 return Result; 1027 } 1028 1029 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1030 GenericValue *Ptr, Type *Ty) { 1031 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1032 1033 switch (Ty->getTypeID()) { 1034 default: 1035 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1036 break; 1037 case Type::IntegerTyID: 1038 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1039 break; 1040 case Type::FloatTyID: 1041 *((float*)Ptr) = Val.FloatVal; 1042 break; 1043 case Type::DoubleTyID: 1044 *((double*)Ptr) = Val.DoubleVal; 1045 break; 1046 case Type::X86_FP80TyID: 1047 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1048 break; 1049 case Type::PointerTyID: 1050 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1051 if (StoreBytes != sizeof(PointerTy)) 1052 memset(&(Ptr->PointerVal), 0, StoreBytes); 1053 1054 *((PointerTy*)Ptr) = Val.PointerVal; 1055 break; 1056 case Type::FixedVectorTyID: 1057 case Type::ScalableVectorTyID: 1058 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1059 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1060 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1061 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1062 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1063 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1064 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1065 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1066 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1067 } 1068 } 1069 break; 1070 } 1071 1072 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1073 // Host and target are different endian - reverse the stored bytes. 1074 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1075 } 1076 1077 /// FIXME: document 1078 /// 1079 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1080 GenericValue *Ptr, 1081 Type *Ty) { 1082 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1083 1084 switch (Ty->getTypeID()) { 1085 case Type::IntegerTyID: 1086 // An APInt with all words initially zero. 1087 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1088 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1089 break; 1090 case Type::FloatTyID: 1091 Result.FloatVal = *((float*)Ptr); 1092 break; 1093 case Type::DoubleTyID: 1094 Result.DoubleVal = *((double*)Ptr); 1095 break; 1096 case Type::PointerTyID: 1097 Result.PointerVal = *((PointerTy*)Ptr); 1098 break; 1099 case Type::X86_FP80TyID: { 1100 // This is endian dependent, but it will only work on x86 anyway. 1101 // FIXME: Will not trap if loading a signaling NaN. 1102 uint64_t y[2]; 1103 memcpy(y, Ptr, 10); 1104 Result.IntVal = APInt(80, y); 1105 break; 1106 } 1107 case Type::ScalableVectorTyID: 1108 report_fatal_error( 1109 "Scalable vector support not yet implemented in ExecutionEngine"); 1110 case Type::FixedVectorTyID: { 1111 auto *VT = cast<FixedVectorType>(Ty); 1112 Type *ElemT = VT->getElementType(); 1113 const unsigned numElems = VT->getNumElements(); 1114 if (ElemT->isFloatTy()) { 1115 Result.AggregateVal.resize(numElems); 1116 for (unsigned i = 0; i < numElems; ++i) 1117 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1118 } 1119 if (ElemT->isDoubleTy()) { 1120 Result.AggregateVal.resize(numElems); 1121 for (unsigned i = 0; i < numElems; ++i) 1122 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1123 } 1124 if (ElemT->isIntegerTy()) { 1125 GenericValue intZero; 1126 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1127 intZero.IntVal = APInt(elemBitWidth, 0); 1128 Result.AggregateVal.resize(numElems, intZero); 1129 for (unsigned i = 0; i < numElems; ++i) 1130 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1131 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1132 } 1133 break; 1134 } 1135 default: 1136 SmallString<256> Msg; 1137 raw_svector_ostream OS(Msg); 1138 OS << "Cannot load value of type " << *Ty << "!"; 1139 report_fatal_error(OS.str()); 1140 } 1141 } 1142 1143 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1144 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1145 LLVM_DEBUG(Init->dump()); 1146 if (isa<UndefValue>(Init)) 1147 return; 1148 1149 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1150 unsigned ElementSize = 1151 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1152 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1153 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1154 return; 1155 } 1156 1157 if (isa<ConstantAggregateZero>(Init)) { 1158 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1159 return; 1160 } 1161 1162 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1163 unsigned ElementSize = 1164 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1165 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1166 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1167 return; 1168 } 1169 1170 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1171 const StructLayout *SL = 1172 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1173 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1174 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1175 return; 1176 } 1177 1178 if (const ConstantDataSequential *CDS = 1179 dyn_cast<ConstantDataSequential>(Init)) { 1180 // CDS is already laid out in host memory order. 1181 StringRef Data = CDS->getRawDataValues(); 1182 memcpy(Addr, Data.data(), Data.size()); 1183 return; 1184 } 1185 1186 if (Init->getType()->isFirstClassType()) { 1187 GenericValue Val = getConstantValue(Init); 1188 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1189 return; 1190 } 1191 1192 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1193 llvm_unreachable("Unknown constant type to initialize memory with!"); 1194 } 1195 1196 /// EmitGlobals - Emit all of the global variables to memory, storing their 1197 /// addresses into GlobalAddress. This must make sure to copy the contents of 1198 /// their initializers into the memory. 1199 void ExecutionEngine::emitGlobals() { 1200 // Loop over all of the global variables in the program, allocating the memory 1201 // to hold them. If there is more than one module, do a prepass over globals 1202 // to figure out how the different modules should link together. 1203 std::map<std::pair<std::string, Type*>, 1204 const GlobalValue*> LinkedGlobalsMap; 1205 1206 if (Modules.size() != 1) { 1207 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1208 Module &M = *Modules[m]; 1209 for (const auto &GV : M.globals()) { 1210 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1211 GV.hasAppendingLinkage() || !GV.hasName()) 1212 continue;// Ignore external globals and globals with internal linkage. 1213 1214 const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair( 1215 std::string(GV.getName()), GV.getType())]; 1216 1217 // If this is the first time we've seen this global, it is the canonical 1218 // version. 1219 if (!GVEntry) { 1220 GVEntry = &GV; 1221 continue; 1222 } 1223 1224 // If the existing global is strong, never replace it. 1225 if (GVEntry->hasExternalLinkage()) 1226 continue; 1227 1228 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1229 // symbol. FIXME is this right for common? 1230 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1231 GVEntry = &GV; 1232 } 1233 } 1234 } 1235 1236 std::vector<const GlobalValue*> NonCanonicalGlobals; 1237 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1238 Module &M = *Modules[m]; 1239 for (const auto &GV : M.globals()) { 1240 // In the multi-module case, see what this global maps to. 1241 if (!LinkedGlobalsMap.empty()) { 1242 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( 1243 std::string(GV.getName()), GV.getType())]) { 1244 // If something else is the canonical global, ignore this one. 1245 if (GVEntry != &GV) { 1246 NonCanonicalGlobals.push_back(&GV); 1247 continue; 1248 } 1249 } 1250 } 1251 1252 if (!GV.isDeclaration()) { 1253 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1254 } else { 1255 // External variable reference. Try to use the dynamic loader to 1256 // get a pointer to it. 1257 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( 1258 std::string(GV.getName()))) 1259 addGlobalMapping(&GV, SymAddr); 1260 else { 1261 report_fatal_error("Could not resolve external global address: " 1262 +GV.getName()); 1263 } 1264 } 1265 } 1266 1267 // If there are multiple modules, map the non-canonical globals to their 1268 // canonical location. 1269 if (!NonCanonicalGlobals.empty()) { 1270 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1271 const GlobalValue *GV = NonCanonicalGlobals[i]; 1272 const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair( 1273 std::string(GV->getName()), GV->getType())]; 1274 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1275 assert(Ptr && "Canonical global wasn't codegen'd!"); 1276 addGlobalMapping(GV, Ptr); 1277 } 1278 } 1279 1280 // Now that all of the globals are set up in memory, loop through them all 1281 // and initialize their contents. 1282 for (const auto &GV : M.globals()) { 1283 if (!GV.isDeclaration()) { 1284 if (!LinkedGlobalsMap.empty()) { 1285 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( 1286 std::string(GV.getName()), GV.getType())]) 1287 if (GVEntry != &GV) // Not the canonical variable. 1288 continue; 1289 } 1290 emitGlobalVariable(&GV); 1291 } 1292 } 1293 } 1294 } 1295 1296 // EmitGlobalVariable - This method emits the specified global variable to the 1297 // address specified in GlobalAddresses, or allocates new memory if it's not 1298 // already in the map. 1299 void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) { 1300 void *GA = getPointerToGlobalIfAvailable(GV); 1301 1302 if (!GA) { 1303 // If it's not already specified, allocate memory for the global. 1304 GA = getMemoryForGV(GV); 1305 1306 // If we failed to allocate memory for this global, return. 1307 if (!GA) return; 1308 1309 addGlobalMapping(GV, GA); 1310 } 1311 1312 // Don't initialize if it's thread local, let the client do it. 1313 if (!GV->isThreadLocal()) 1314 InitializeMemory(GV->getInitializer(), GA); 1315 1316 Type *ElTy = GV->getValueType(); 1317 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1318 NumInitBytes += (unsigned)GVSize; 1319 ++NumGlobals; 1320 } 1321