1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the common interface used by the various execution engine 10 // subclasses. 11 // 12 // FIXME: This file needs to be updated to support scalable vectors 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ExecutionEngine/GenericValue.h" 21 #include "llvm/ExecutionEngine/JITEventListener.h" 22 #include "llvm/ExecutionEngine/ObjectCache.h" 23 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Mangler.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/MC/TargetRegistry.h" 32 #include "llvm/Object/Archive.h" 33 #include "llvm/Object/ObjectFile.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/DynamicLibrary.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/TargetParser/Host.h" 40 #include <cmath> 41 #include <cstring> 42 #include <mutex> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "jit" 46 47 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 48 STATISTIC(NumGlobals , "Number of global vars initialized"); 49 50 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 51 std::unique_ptr<Module> M, std::string *ErrorStr, 52 std::shared_ptr<MCJITMemoryManager> MemMgr, 53 std::shared_ptr<LegacyJITSymbolResolver> Resolver, 54 std::unique_ptr<TargetMachine> TM) = nullptr; 55 56 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 57 std::string *ErrorStr) =nullptr; 58 59 void JITEventListener::anchor() {} 60 61 void ObjectCache::anchor() {} 62 63 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 64 CompilingLazily = false; 65 GVCompilationDisabled = false; 66 SymbolSearchingDisabled = false; 67 68 // IR module verification is enabled by default in debug builds, and disabled 69 // by default in release builds. 70 #ifndef NDEBUG 71 VerifyModules = true; 72 #else 73 VerifyModules = false; 74 #endif 75 76 assert(M && "Module is null?"); 77 Modules.push_back(std::move(M)); 78 } 79 80 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 81 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 82 Init(std::move(M)); 83 } 84 85 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 86 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 87 Init(std::move(M)); 88 } 89 90 ExecutionEngine::~ExecutionEngine() { 91 clearAllGlobalMappings(); 92 } 93 94 namespace { 95 /// Helper class which uses a value handler to automatically deletes the 96 /// memory block when the GlobalVariable is destroyed. 97 class GVMemoryBlock final : public CallbackVH { 98 GVMemoryBlock(const GlobalVariable *GV) 99 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 100 101 public: 102 /// Returns the address the GlobalVariable should be written into. The 103 /// GVMemoryBlock object prefixes that. 104 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 105 Type *ElTy = GV->getValueType(); 106 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 107 void *RawMemory = ::operator new( 108 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize); 109 new(RawMemory) GVMemoryBlock(GV); 110 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 111 } 112 113 void deleted() override { 114 // We allocated with operator new and with some extra memory hanging off the 115 // end, so don't just delete this. I'm not sure if this is actually 116 // required. 117 this->~GVMemoryBlock(); 118 ::operator delete(this); 119 } 120 }; 121 } // anonymous namespace 122 123 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 124 return GVMemoryBlock::Create(GV, getDataLayout()); 125 } 126 127 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 128 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 129 } 130 131 void 132 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 133 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 134 } 135 136 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 137 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 138 } 139 140 bool ExecutionEngine::removeModule(Module *M) { 141 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 142 Module *Found = I->get(); 143 if (Found == M) { 144 I->release(); 145 Modules.erase(I); 146 clearGlobalMappingsFromModule(M); 147 return true; 148 } 149 } 150 return false; 151 } 152 153 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { 154 for (const auto &M : Modules) { 155 Function *F = M->getFunction(FnName); 156 if (F && !F->isDeclaration()) 157 return F; 158 } 159 return nullptr; 160 } 161 162 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { 163 for (const auto &M : Modules) { 164 GlobalVariable *GV = M->getGlobalVariable(Name, AllowInternal); 165 if (GV && !GV->isDeclaration()) 166 return GV; 167 } 168 return nullptr; 169 } 170 171 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 172 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 173 uint64_t OldVal; 174 175 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 176 // GlobalAddressMap. 177 if (I == GlobalAddressMap.end()) 178 OldVal = 0; 179 else { 180 GlobalAddressReverseMap.erase(I->second); 181 OldVal = I->second; 182 GlobalAddressMap.erase(I); 183 } 184 185 return OldVal; 186 } 187 188 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 189 assert(GV->hasName() && "Global must have name."); 190 191 std::lock_guard<sys::Mutex> locked(lock); 192 SmallString<128> FullName; 193 194 const DataLayout &DL = 195 GV->getDataLayout().isDefault() 196 ? getDataLayout() 197 : GV->getDataLayout(); 198 199 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 200 return std::string(FullName); 201 } 202 203 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 204 std::lock_guard<sys::Mutex> locked(lock); 205 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 206 } 207 208 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 209 std::lock_guard<sys::Mutex> locked(lock); 210 211 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 212 213 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 214 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 215 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 216 CurVal = Addr; 217 218 // If we are using the reverse mapping, add it too. 219 if (!EEState.getGlobalAddressReverseMap().empty()) { 220 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 221 assert((!V.empty() || !Name.empty()) && 222 "GlobalMapping already established!"); 223 V = std::string(Name); 224 } 225 } 226 227 void ExecutionEngine::clearAllGlobalMappings() { 228 std::lock_guard<sys::Mutex> locked(lock); 229 230 EEState.getGlobalAddressMap().clear(); 231 EEState.getGlobalAddressReverseMap().clear(); 232 } 233 234 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 235 std::lock_guard<sys::Mutex> locked(lock); 236 237 for (GlobalObject &GO : M->global_objects()) 238 EEState.RemoveMapping(getMangledName(&GO)); 239 } 240 241 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 242 void *Addr) { 243 std::lock_guard<sys::Mutex> locked(lock); 244 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 245 } 246 247 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 248 std::lock_guard<sys::Mutex> locked(lock); 249 250 ExecutionEngineState::GlobalAddressMapTy &Map = 251 EEState.getGlobalAddressMap(); 252 253 // Deleting from the mapping? 254 if (!Addr) 255 return EEState.RemoveMapping(Name); 256 257 uint64_t &CurVal = Map[Name]; 258 uint64_t OldVal = CurVal; 259 260 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 261 EEState.getGlobalAddressReverseMap().erase(CurVal); 262 CurVal = Addr; 263 264 // If we are using the reverse mapping, add it too. 265 if (!EEState.getGlobalAddressReverseMap().empty()) { 266 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 267 assert((!V.empty() || !Name.empty()) && 268 "GlobalMapping already established!"); 269 V = std::string(Name); 270 } 271 return OldVal; 272 } 273 274 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 275 std::lock_guard<sys::Mutex> locked(lock); 276 uint64_t Address = 0; 277 ExecutionEngineState::GlobalAddressMapTy::iterator I = 278 EEState.getGlobalAddressMap().find(S); 279 if (I != EEState.getGlobalAddressMap().end()) 280 Address = I->second; 281 return Address; 282 } 283 284 285 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 286 std::lock_guard<sys::Mutex> locked(lock); 287 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 288 return Address; 289 return nullptr; 290 } 291 292 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 293 std::lock_guard<sys::Mutex> locked(lock); 294 return getPointerToGlobalIfAvailable(getMangledName(GV)); 295 } 296 297 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 298 std::lock_guard<sys::Mutex> locked(lock); 299 300 // If we haven't computed the reverse mapping yet, do so first. 301 if (EEState.getGlobalAddressReverseMap().empty()) { 302 for (ExecutionEngineState::GlobalAddressMapTy::iterator 303 I = EEState.getGlobalAddressMap().begin(), 304 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 305 StringRef Name = I->first(); 306 uint64_t Addr = I->second; 307 EEState.getGlobalAddressReverseMap().insert( 308 std::make_pair(Addr, std::string(Name))); 309 } 310 } 311 312 std::map<uint64_t, std::string>::iterator I = 313 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 314 315 if (I != EEState.getGlobalAddressReverseMap().end()) { 316 StringRef Name = I->second; 317 for (const auto &M : Modules) 318 if (GlobalValue *GV = M->getNamedValue(Name)) 319 return GV; 320 } 321 return nullptr; 322 } 323 324 namespace { 325 class ArgvArray { 326 std::unique_ptr<char[]> Array; 327 std::vector<std::unique_ptr<char[]>> Values; 328 public: 329 /// Turn a vector of strings into a nice argv style array of pointers to null 330 /// terminated strings. 331 void *reset(LLVMContext &C, ExecutionEngine *EE, 332 const std::vector<std::string> &InputArgv); 333 }; 334 } // anonymous namespace 335 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 336 const std::vector<std::string> &InputArgv) { 337 Values.clear(); // Free the old contents. 338 Values.reserve(InputArgv.size()); 339 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 340 Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize); 341 342 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n"); 343 Type *SBytePtr = PointerType::getUnqual(C); 344 345 for (unsigned i = 0; i != InputArgv.size(); ++i) { 346 unsigned Size = InputArgv[i].size()+1; 347 auto Dest = std::make_unique<char[]>(Size); 348 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() 349 << "\n"); 350 351 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 352 Dest[Size-1] = 0; 353 354 // Endian safe: Array[i] = (PointerTy)Dest; 355 EE->StoreValueToMemory(PTOGV(Dest.get()), 356 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 357 Values.push_back(std::move(Dest)); 358 } 359 360 // Null terminate it 361 EE->StoreValueToMemory(PTOGV(nullptr), 362 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 363 SBytePtr); 364 return Array.get(); 365 } 366 367 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 368 bool isDtors) { 369 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors"); 370 GlobalVariable *GV = module.getNamedGlobal(Name); 371 372 // If this global has internal linkage, or if it has a use, then it must be 373 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 374 // this is the case, don't execute any of the global ctors, __main will do 375 // it. 376 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 377 378 // Should be an array of '{ i32, void ()* }' structs. The first value is 379 // the init priority, which we ignore. 380 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 381 if (!InitList) 382 return; 383 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 384 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 385 if (!CS) continue; 386 387 Constant *FP = CS->getOperand(1); 388 if (FP->isNullValue()) 389 continue; // Found a sentinel value, ignore. 390 391 // Strip off constant expression casts. 392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 393 if (CE->isCast()) 394 FP = CE->getOperand(0); 395 396 // Execute the ctor/dtor function! 397 if (Function *F = dyn_cast<Function>(FP)) 398 runFunction(F, std::nullopt); 399 400 // FIXME: It is marginally lame that we just do nothing here if we see an 401 // entry we don't recognize. It might not be unreasonable for the verifier 402 // to not even allow this and just assert here. 403 } 404 } 405 406 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 407 // Execute global ctors/dtors for each module in the program. 408 for (std::unique_ptr<Module> &M : Modules) 409 runStaticConstructorsDestructors(*M, isDtors); 410 } 411 412 #ifndef NDEBUG 413 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 414 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 415 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 416 for (unsigned i = 0; i < PtrSize; ++i) 417 if (*(i + (uint8_t*)Loc)) 418 return false; 419 return true; 420 } 421 #endif 422 423 int ExecutionEngine::runFunctionAsMain(Function *Fn, 424 const std::vector<std::string> &argv, 425 const char * const * envp) { 426 std::vector<GenericValue> GVArgs; 427 GenericValue GVArgc; 428 GVArgc.IntVal = APInt(32, argv.size()); 429 430 // Check main() type 431 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 432 FunctionType *FTy = Fn->getFunctionType(); 433 Type *PPInt8Ty = PointerType::get(Fn->getContext(), 0); 434 435 // Check the argument types. 436 if (NumArgs > 3) 437 report_fatal_error("Invalid number of arguments of main() supplied"); 438 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 439 report_fatal_error("Invalid type for third argument of main() supplied"); 440 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 441 report_fatal_error("Invalid type for second argument of main() supplied"); 442 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 443 report_fatal_error("Invalid type for first argument of main() supplied"); 444 if (!FTy->getReturnType()->isIntegerTy() && 445 !FTy->getReturnType()->isVoidTy()) 446 report_fatal_error("Invalid return type of main() supplied"); 447 448 ArgvArray CArgv; 449 ArgvArray CEnv; 450 if (NumArgs) { 451 GVArgs.push_back(GVArgc); // Arg #0 = argc. 452 if (NumArgs > 1) { 453 // Arg #1 = argv. 454 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 455 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 456 "argv[0] was null after CreateArgv"); 457 if (NumArgs > 2) { 458 std::vector<std::string> EnvVars; 459 for (unsigned i = 0; envp[i]; ++i) 460 EnvVars.emplace_back(envp[i]); 461 // Arg #2 = envp. 462 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 463 } 464 } 465 } 466 467 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 468 } 469 470 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 471 472 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 473 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 474 OptLevel(CodeGenOptLevel::Default), MemMgr(nullptr), Resolver(nullptr) { 475 // IR module verification is enabled by default in debug builds, and disabled 476 // by default in release builds. 477 #ifndef NDEBUG 478 VerifyModules = true; 479 #else 480 VerifyModules = false; 481 #endif 482 } 483 484 EngineBuilder::~EngineBuilder() = default; 485 486 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 487 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 488 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 489 MemMgr = SharedMM; 490 Resolver = SharedMM; 491 return *this; 492 } 493 494 EngineBuilder& 495 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 496 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 497 return *this; 498 } 499 500 EngineBuilder & 501 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { 502 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); 503 return *this; 504 } 505 506 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 507 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 508 509 // Make sure we can resolve symbols in the program as well. The zero arg 510 // to the function tells DynamicLibrary to load the program, not a library. 511 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 512 return nullptr; 513 514 // If the user specified a memory manager but didn't specify which engine to 515 // create, we assume they only want the JIT, and we fail if they only want 516 // the interpreter. 517 if (MemMgr) { 518 if (WhichEngine & EngineKind::JIT) 519 WhichEngine = EngineKind::JIT; 520 else { 521 if (ErrorStr) 522 *ErrorStr = "Cannot create an interpreter with a memory manager."; 523 return nullptr; 524 } 525 } 526 527 // Unless the interpreter was explicitly selected or the JIT is not linked, 528 // try making a JIT. 529 if ((WhichEngine & EngineKind::JIT) && TheTM) { 530 if (!TM->getTarget().hasJIT()) { 531 errs() << "WARNING: This target JIT is not designed for the host" 532 << " you are running. If bad things happen, please choose" 533 << " a different -march switch.\n"; 534 } 535 536 ExecutionEngine *EE = nullptr; 537 if (ExecutionEngine::MCJITCtor) 538 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 539 std::move(Resolver), std::move(TheTM)); 540 541 if (EE) { 542 EE->setVerifyModules(VerifyModules); 543 return EE; 544 } 545 } 546 547 // If we can't make a JIT and we didn't request one specifically, try making 548 // an interpreter instead. 549 if (WhichEngine & EngineKind::Interpreter) { 550 if (ExecutionEngine::InterpCtor) 551 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 552 if (ErrorStr) 553 *ErrorStr = "Interpreter has not been linked in."; 554 return nullptr; 555 } 556 557 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 558 if (ErrorStr) 559 *ErrorStr = "JIT has not been linked in."; 560 } 561 562 return nullptr; 563 } 564 565 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 566 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 567 return getPointerToFunction(F); 568 569 std::lock_guard<sys::Mutex> locked(lock); 570 if (void* P = getPointerToGlobalIfAvailable(GV)) 571 return P; 572 573 // Global variable might have been added since interpreter started. 574 if (GlobalVariable *GVar = 575 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 576 emitGlobalVariable(GVar); 577 else 578 llvm_unreachable("Global hasn't had an address allocated yet!"); 579 580 return getPointerToGlobalIfAvailable(GV); 581 } 582 583 /// Converts a Constant* into a GenericValue, including handling of 584 /// ConstantExpr values. 585 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 586 // If its undefined, return the garbage. 587 if (isa<UndefValue>(C)) { 588 GenericValue Result; 589 switch (C->getType()->getTypeID()) { 590 default: 591 break; 592 case Type::IntegerTyID: 593 case Type::X86_FP80TyID: 594 case Type::FP128TyID: 595 case Type::PPC_FP128TyID: 596 // Although the value is undefined, we still have to construct an APInt 597 // with the correct bit width. 598 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 599 break; 600 case Type::StructTyID: { 601 // if the whole struct is 'undef' just reserve memory for the value. 602 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 603 unsigned int elemNum = STy->getNumElements(); 604 Result.AggregateVal.resize(elemNum); 605 for (unsigned int i = 0; i < elemNum; ++i) { 606 Type *ElemTy = STy->getElementType(i); 607 if (ElemTy->isIntegerTy()) 608 Result.AggregateVal[i].IntVal = 609 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 610 else if (ElemTy->isAggregateType()) { 611 const Constant *ElemUndef = UndefValue::get(ElemTy); 612 Result.AggregateVal[i] = getConstantValue(ElemUndef); 613 } 614 } 615 } 616 } 617 break; 618 case Type::ScalableVectorTyID: 619 report_fatal_error( 620 "Scalable vector support not yet implemented in ExecutionEngine"); 621 case Type::ArrayTyID: { 622 auto *ArrTy = cast<ArrayType>(C->getType()); 623 Type *ElemTy = ArrTy->getElementType(); 624 unsigned int elemNum = ArrTy->getNumElements(); 625 Result.AggregateVal.resize(elemNum); 626 if (ElemTy->isIntegerTy()) 627 for (unsigned int i = 0; i < elemNum; ++i) 628 Result.AggregateVal[i].IntVal = 629 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 630 break; 631 } 632 case Type::FixedVectorTyID: { 633 // if the whole vector is 'undef' just reserve memory for the value. 634 auto *VTy = cast<FixedVectorType>(C->getType()); 635 Type *ElemTy = VTy->getElementType(); 636 unsigned int elemNum = VTy->getNumElements(); 637 Result.AggregateVal.resize(elemNum); 638 if (ElemTy->isIntegerTy()) 639 for (unsigned int i = 0; i < elemNum; ++i) 640 Result.AggregateVal[i].IntVal = 641 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 642 break; 643 } 644 } 645 return Result; 646 } 647 648 // Otherwise, if the value is a ConstantExpr... 649 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 650 Constant *Op0 = CE->getOperand(0); 651 switch (CE->getOpcode()) { 652 case Instruction::GetElementPtr: { 653 // Compute the index 654 GenericValue Result = getConstantValue(Op0); 655 APInt Offset(DL.getPointerSizeInBits(), 0); 656 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 657 658 char* tmp = (char*) Result.PointerVal; 659 Result = PTOGV(tmp + Offset.getSExtValue()); 660 return Result; 661 } 662 case Instruction::Trunc: { 663 GenericValue GV = getConstantValue(Op0); 664 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 665 GV.IntVal = GV.IntVal.trunc(BitWidth); 666 return GV; 667 } 668 case Instruction::ZExt: { 669 GenericValue GV = getConstantValue(Op0); 670 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 671 GV.IntVal = GV.IntVal.zext(BitWidth); 672 return GV; 673 } 674 case Instruction::SExt: { 675 GenericValue GV = getConstantValue(Op0); 676 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 677 GV.IntVal = GV.IntVal.sext(BitWidth); 678 return GV; 679 } 680 case Instruction::FPTrunc: { 681 // FIXME long double 682 GenericValue GV = getConstantValue(Op0); 683 GV.FloatVal = float(GV.DoubleVal); 684 return GV; 685 } 686 case Instruction::FPExt:{ 687 // FIXME long double 688 GenericValue GV = getConstantValue(Op0); 689 GV.DoubleVal = double(GV.FloatVal); 690 return GV; 691 } 692 case Instruction::UIToFP: { 693 GenericValue GV = getConstantValue(Op0); 694 if (CE->getType()->isFloatTy()) 695 GV.FloatVal = float(GV.IntVal.roundToDouble()); 696 else if (CE->getType()->isDoubleTy()) 697 GV.DoubleVal = GV.IntVal.roundToDouble(); 698 else if (CE->getType()->isX86_FP80Ty()) { 699 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 700 (void)apf.convertFromAPInt(GV.IntVal, 701 false, 702 APFloat::rmNearestTiesToEven); 703 GV.IntVal = apf.bitcastToAPInt(); 704 } 705 return GV; 706 } 707 case Instruction::SIToFP: { 708 GenericValue GV = getConstantValue(Op0); 709 if (CE->getType()->isFloatTy()) 710 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 711 else if (CE->getType()->isDoubleTy()) 712 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 713 else if (CE->getType()->isX86_FP80Ty()) { 714 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 715 (void)apf.convertFromAPInt(GV.IntVal, 716 true, 717 APFloat::rmNearestTiesToEven); 718 GV.IntVal = apf.bitcastToAPInt(); 719 } 720 return GV; 721 } 722 case Instruction::FPToUI: // double->APInt conversion handles sign 723 case Instruction::FPToSI: { 724 GenericValue GV = getConstantValue(Op0); 725 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 726 if (Op0->getType()->isFloatTy()) 727 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 728 else if (Op0->getType()->isDoubleTy()) 729 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 730 else if (Op0->getType()->isX86_FP80Ty()) { 731 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); 732 uint64_t v; 733 bool ignored; 734 (void)apf.convertToInteger(MutableArrayRef(v), BitWidth, 735 CE->getOpcode()==Instruction::FPToSI, 736 APFloat::rmTowardZero, &ignored); 737 GV.IntVal = v; // endian? 738 } 739 return GV; 740 } 741 case Instruction::PtrToInt: { 742 GenericValue GV = getConstantValue(Op0); 743 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 744 assert(PtrWidth <= 64 && "Bad pointer width"); 745 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 746 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 747 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 748 return GV; 749 } 750 case Instruction::IntToPtr: { 751 GenericValue GV = getConstantValue(Op0); 752 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 753 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 754 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 755 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 756 return GV; 757 } 758 case Instruction::BitCast: { 759 GenericValue GV = getConstantValue(Op0); 760 Type* DestTy = CE->getType(); 761 switch (Op0->getType()->getTypeID()) { 762 default: llvm_unreachable("Invalid bitcast operand"); 763 case Type::IntegerTyID: 764 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 765 if (DestTy->isFloatTy()) 766 GV.FloatVal = GV.IntVal.bitsToFloat(); 767 else if (DestTy->isDoubleTy()) 768 GV.DoubleVal = GV.IntVal.bitsToDouble(); 769 break; 770 case Type::FloatTyID: 771 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 772 GV.IntVal = APInt::floatToBits(GV.FloatVal); 773 break; 774 case Type::DoubleTyID: 775 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 776 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 777 break; 778 case Type::PointerTyID: 779 assert(DestTy->isPointerTy() && "Invalid bitcast"); 780 break; // getConstantValue(Op0) above already converted it 781 } 782 return GV; 783 } 784 case Instruction::Add: 785 case Instruction::FAdd: 786 case Instruction::Sub: 787 case Instruction::FSub: 788 case Instruction::Mul: 789 case Instruction::FMul: 790 case Instruction::UDiv: 791 case Instruction::SDiv: 792 case Instruction::URem: 793 case Instruction::SRem: 794 case Instruction::And: 795 case Instruction::Or: 796 case Instruction::Xor: { 797 GenericValue LHS = getConstantValue(Op0); 798 GenericValue RHS = getConstantValue(CE->getOperand(1)); 799 GenericValue GV; 800 switch (CE->getOperand(0)->getType()->getTypeID()) { 801 default: llvm_unreachable("Bad add type!"); 802 case Type::IntegerTyID: 803 switch (CE->getOpcode()) { 804 default: llvm_unreachable("Invalid integer opcode"); 805 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 806 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 807 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 808 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 809 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 810 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 811 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 812 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 813 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 814 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 815 } 816 break; 817 case Type::FloatTyID: 818 switch (CE->getOpcode()) { 819 default: llvm_unreachable("Invalid float opcode"); 820 case Instruction::FAdd: 821 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 822 case Instruction::FSub: 823 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 824 case Instruction::FMul: 825 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 826 case Instruction::FDiv: 827 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 828 case Instruction::FRem: 829 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 830 } 831 break; 832 case Type::DoubleTyID: 833 switch (CE->getOpcode()) { 834 default: llvm_unreachable("Invalid double opcode"); 835 case Instruction::FAdd: 836 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 837 case Instruction::FSub: 838 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 839 case Instruction::FMul: 840 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 841 case Instruction::FDiv: 842 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 843 case Instruction::FRem: 844 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 845 } 846 break; 847 case Type::X86_FP80TyID: 848 case Type::PPC_FP128TyID: 849 case Type::FP128TyID: { 850 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 851 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 852 switch (CE->getOpcode()) { 853 default: llvm_unreachable("Invalid long double opcode"); 854 case Instruction::FAdd: 855 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 856 GV.IntVal = apfLHS.bitcastToAPInt(); 857 break; 858 case Instruction::FSub: 859 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 860 APFloat::rmNearestTiesToEven); 861 GV.IntVal = apfLHS.bitcastToAPInt(); 862 break; 863 case Instruction::FMul: 864 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 865 APFloat::rmNearestTiesToEven); 866 GV.IntVal = apfLHS.bitcastToAPInt(); 867 break; 868 case Instruction::FDiv: 869 apfLHS.divide(APFloat(Sem, RHS.IntVal), 870 APFloat::rmNearestTiesToEven); 871 GV.IntVal = apfLHS.bitcastToAPInt(); 872 break; 873 case Instruction::FRem: 874 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 875 GV.IntVal = apfLHS.bitcastToAPInt(); 876 break; 877 } 878 } 879 break; 880 } 881 return GV; 882 } 883 default: 884 break; 885 } 886 887 SmallString<256> Msg; 888 raw_svector_ostream OS(Msg); 889 OS << "ConstantExpr not handled: " << *CE; 890 report_fatal_error(OS.str()); 891 } 892 893 if (auto *TETy = dyn_cast<TargetExtType>(C->getType())) { 894 assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() && 895 "TargetExtType only supports null constant value"); 896 C = Constant::getNullValue(TETy->getLayoutType()); 897 } 898 899 // Otherwise, we have a simple constant. 900 GenericValue Result; 901 switch (C->getType()->getTypeID()) { 902 case Type::FloatTyID: 903 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 904 break; 905 case Type::DoubleTyID: 906 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 907 break; 908 case Type::X86_FP80TyID: 909 case Type::FP128TyID: 910 case Type::PPC_FP128TyID: 911 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 912 break; 913 case Type::IntegerTyID: 914 Result.IntVal = cast<ConstantInt>(C)->getValue(); 915 break; 916 case Type::PointerTyID: 917 while (auto *A = dyn_cast<GlobalAlias>(C)) { 918 C = A->getAliasee(); 919 } 920 if (isa<ConstantPointerNull>(C)) 921 Result.PointerVal = nullptr; 922 else if (const Function *F = dyn_cast<Function>(C)) 923 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 924 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 925 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 926 else 927 llvm_unreachable("Unknown constant pointer type!"); 928 break; 929 case Type::ScalableVectorTyID: 930 report_fatal_error( 931 "Scalable vector support not yet implemented in ExecutionEngine"); 932 case Type::FixedVectorTyID: { 933 unsigned elemNum; 934 Type* ElemTy; 935 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 936 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 937 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 938 939 if (CDV) { 940 elemNum = CDV->getNumElements(); 941 ElemTy = CDV->getElementType(); 942 } else if (CV || CAZ) { 943 auto *VTy = cast<FixedVectorType>(C->getType()); 944 elemNum = VTy->getNumElements(); 945 ElemTy = VTy->getElementType(); 946 } else { 947 llvm_unreachable("Unknown constant vector type!"); 948 } 949 950 Result.AggregateVal.resize(elemNum); 951 // Check if vector holds floats. 952 if(ElemTy->isFloatTy()) { 953 if (CAZ) { 954 GenericValue floatZero; 955 floatZero.FloatVal = 0.f; 956 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 957 floatZero); 958 break; 959 } 960 if(CV) { 961 for (unsigned i = 0; i < elemNum; ++i) 962 if (!isa<UndefValue>(CV->getOperand(i))) 963 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 964 CV->getOperand(i))->getValueAPF().convertToFloat(); 965 break; 966 } 967 if(CDV) 968 for (unsigned i = 0; i < elemNum; ++i) 969 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 970 971 break; 972 } 973 // Check if vector holds doubles. 974 if (ElemTy->isDoubleTy()) { 975 if (CAZ) { 976 GenericValue doubleZero; 977 doubleZero.DoubleVal = 0.0; 978 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 979 doubleZero); 980 break; 981 } 982 if(CV) { 983 for (unsigned i = 0; i < elemNum; ++i) 984 if (!isa<UndefValue>(CV->getOperand(i))) 985 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 986 CV->getOperand(i))->getValueAPF().convertToDouble(); 987 break; 988 } 989 if(CDV) 990 for (unsigned i = 0; i < elemNum; ++i) 991 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 992 993 break; 994 } 995 // Check if vector holds integers. 996 if (ElemTy->isIntegerTy()) { 997 if (CAZ) { 998 GenericValue intZero; 999 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 1000 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 1001 intZero); 1002 break; 1003 } 1004 if(CV) { 1005 for (unsigned i = 0; i < elemNum; ++i) 1006 if (!isa<UndefValue>(CV->getOperand(i))) 1007 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 1008 CV->getOperand(i))->getValue(); 1009 else { 1010 Result.AggregateVal[i].IntVal = 1011 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 1012 } 1013 break; 1014 } 1015 if(CDV) 1016 for (unsigned i = 0; i < elemNum; ++i) 1017 Result.AggregateVal[i].IntVal = APInt( 1018 CDV->getElementType()->getPrimitiveSizeInBits(), 1019 CDV->getElementAsInteger(i)); 1020 1021 break; 1022 } 1023 llvm_unreachable("Unknown constant pointer type!"); 1024 } break; 1025 1026 default: 1027 SmallString<256> Msg; 1028 raw_svector_ostream OS(Msg); 1029 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1030 report_fatal_error(OS.str()); 1031 } 1032 1033 return Result; 1034 } 1035 1036 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1037 GenericValue *Ptr, Type *Ty) { 1038 // It is safe to treat TargetExtType as its layout type since the underlying 1039 // bits are only copied and are not inspected. 1040 if (auto *TETy = dyn_cast<TargetExtType>(Ty)) 1041 Ty = TETy->getLayoutType(); 1042 1043 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1044 1045 switch (Ty->getTypeID()) { 1046 default: 1047 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1048 break; 1049 case Type::IntegerTyID: 1050 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1051 break; 1052 case Type::FloatTyID: 1053 *((float*)Ptr) = Val.FloatVal; 1054 break; 1055 case Type::DoubleTyID: 1056 *((double*)Ptr) = Val.DoubleVal; 1057 break; 1058 case Type::X86_FP80TyID: 1059 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1060 break; 1061 case Type::PointerTyID: 1062 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1063 if (StoreBytes != sizeof(PointerTy)) 1064 memset(&(Ptr->PointerVal), 0, StoreBytes); 1065 1066 *((PointerTy*)Ptr) = Val.PointerVal; 1067 break; 1068 case Type::FixedVectorTyID: 1069 case Type::ScalableVectorTyID: 1070 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1071 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1072 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1073 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1074 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1075 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1076 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1077 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1078 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1079 } 1080 } 1081 break; 1082 } 1083 1084 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1085 // Host and target are different endian - reverse the stored bytes. 1086 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1087 } 1088 1089 /// FIXME: document 1090 /// 1091 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1092 GenericValue *Ptr, 1093 Type *Ty) { 1094 if (auto *TETy = dyn_cast<TargetExtType>(Ty)) 1095 Ty = TETy->getLayoutType(); 1096 1097 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1098 1099 switch (Ty->getTypeID()) { 1100 case Type::IntegerTyID: 1101 // An APInt with all words initially zero. 1102 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1103 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1104 break; 1105 case Type::FloatTyID: 1106 Result.FloatVal = *((float*)Ptr); 1107 break; 1108 case Type::DoubleTyID: 1109 Result.DoubleVal = *((double*)Ptr); 1110 break; 1111 case Type::PointerTyID: 1112 Result.PointerVal = *((PointerTy*)Ptr); 1113 break; 1114 case Type::X86_FP80TyID: { 1115 // This is endian dependent, but it will only work on x86 anyway. 1116 // FIXME: Will not trap if loading a signaling NaN. 1117 uint64_t y[2]; 1118 memcpy(y, Ptr, 10); 1119 Result.IntVal = APInt(80, y); 1120 break; 1121 } 1122 case Type::ScalableVectorTyID: 1123 report_fatal_error( 1124 "Scalable vector support not yet implemented in ExecutionEngine"); 1125 case Type::FixedVectorTyID: { 1126 auto *VT = cast<FixedVectorType>(Ty); 1127 Type *ElemT = VT->getElementType(); 1128 const unsigned numElems = VT->getNumElements(); 1129 if (ElemT->isFloatTy()) { 1130 Result.AggregateVal.resize(numElems); 1131 for (unsigned i = 0; i < numElems; ++i) 1132 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1133 } 1134 if (ElemT->isDoubleTy()) { 1135 Result.AggregateVal.resize(numElems); 1136 for (unsigned i = 0; i < numElems; ++i) 1137 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1138 } 1139 if (ElemT->isIntegerTy()) { 1140 GenericValue intZero; 1141 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1142 intZero.IntVal = APInt(elemBitWidth, 0); 1143 Result.AggregateVal.resize(numElems, intZero); 1144 for (unsigned i = 0; i < numElems; ++i) 1145 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1146 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1147 } 1148 break; 1149 } 1150 default: 1151 SmallString<256> Msg; 1152 raw_svector_ostream OS(Msg); 1153 OS << "Cannot load value of type " << *Ty << "!"; 1154 report_fatal_error(OS.str()); 1155 } 1156 } 1157 1158 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1159 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1160 LLVM_DEBUG(Init->dump()); 1161 if (isa<UndefValue>(Init)) 1162 return; 1163 1164 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1165 unsigned ElementSize = 1166 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1167 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1168 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1169 return; 1170 } 1171 1172 if (isa<ConstantAggregateZero>(Init)) { 1173 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1174 return; 1175 } 1176 1177 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1178 unsigned ElementSize = 1179 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1180 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1181 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1182 return; 1183 } 1184 1185 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1186 const StructLayout *SL = 1187 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1188 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1189 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1190 return; 1191 } 1192 1193 if (const ConstantDataSequential *CDS = 1194 dyn_cast<ConstantDataSequential>(Init)) { 1195 // CDS is already laid out in host memory order. 1196 StringRef Data = CDS->getRawDataValues(); 1197 memcpy(Addr, Data.data(), Data.size()); 1198 return; 1199 } 1200 1201 if (Init->getType()->isFirstClassType()) { 1202 GenericValue Val = getConstantValue(Init); 1203 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1204 return; 1205 } 1206 1207 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1208 llvm_unreachable("Unknown constant type to initialize memory with!"); 1209 } 1210 1211 /// EmitGlobals - Emit all of the global variables to memory, storing their 1212 /// addresses into GlobalAddress. This must make sure to copy the contents of 1213 /// their initializers into the memory. 1214 void ExecutionEngine::emitGlobals() { 1215 // Loop over all of the global variables in the program, allocating the memory 1216 // to hold them. If there is more than one module, do a prepass over globals 1217 // to figure out how the different modules should link together. 1218 std::map<std::pair<std::string, Type*>, 1219 const GlobalValue*> LinkedGlobalsMap; 1220 1221 if (Modules.size() != 1) { 1222 for (const auto &M : Modules) { 1223 for (const auto &GV : M->globals()) { 1224 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1225 GV.hasAppendingLinkage() || !GV.hasName()) 1226 continue;// Ignore external globals and globals with internal linkage. 1227 1228 const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair( 1229 std::string(GV.getName()), GV.getType())]; 1230 1231 // If this is the first time we've seen this global, it is the canonical 1232 // version. 1233 if (!GVEntry) { 1234 GVEntry = &GV; 1235 continue; 1236 } 1237 1238 // If the existing global is strong, never replace it. 1239 if (GVEntry->hasExternalLinkage()) 1240 continue; 1241 1242 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1243 // symbol. FIXME is this right for common? 1244 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1245 GVEntry = &GV; 1246 } 1247 } 1248 } 1249 1250 std::vector<const GlobalValue*> NonCanonicalGlobals; 1251 for (const auto &M : Modules) { 1252 for (const auto &GV : M->globals()) { 1253 // In the multi-module case, see what this global maps to. 1254 if (!LinkedGlobalsMap.empty()) { 1255 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( 1256 std::string(GV.getName()), GV.getType())]) { 1257 // If something else is the canonical global, ignore this one. 1258 if (GVEntry != &GV) { 1259 NonCanonicalGlobals.push_back(&GV); 1260 continue; 1261 } 1262 } 1263 } 1264 1265 if (!GV.isDeclaration()) { 1266 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1267 } else { 1268 // External variable reference. Try to use the dynamic loader to 1269 // get a pointer to it. 1270 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( 1271 std::string(GV.getName()))) 1272 addGlobalMapping(&GV, SymAddr); 1273 else { 1274 report_fatal_error("Could not resolve external global address: " 1275 +GV.getName()); 1276 } 1277 } 1278 } 1279 1280 // If there are multiple modules, map the non-canonical globals to their 1281 // canonical location. 1282 if (!NonCanonicalGlobals.empty()) { 1283 for (const GlobalValue *GV : NonCanonicalGlobals) { 1284 const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair( 1285 std::string(GV->getName()), GV->getType())]; 1286 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1287 assert(Ptr && "Canonical global wasn't codegen'd!"); 1288 addGlobalMapping(GV, Ptr); 1289 } 1290 } 1291 1292 // Now that all of the globals are set up in memory, loop through them all 1293 // and initialize their contents. 1294 for (const auto &GV : M->globals()) { 1295 if (!GV.isDeclaration()) { 1296 if (!LinkedGlobalsMap.empty()) { 1297 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( 1298 std::string(GV.getName()), GV.getType())]) 1299 if (GVEntry != &GV) // Not the canonical variable. 1300 continue; 1301 } 1302 emitGlobalVariable(&GV); 1303 } 1304 } 1305 } 1306 } 1307 1308 // EmitGlobalVariable - This method emits the specified global variable to the 1309 // address specified in GlobalAddresses, or allocates new memory if it's not 1310 // already in the map. 1311 void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) { 1312 void *GA = getPointerToGlobalIfAvailable(GV); 1313 1314 if (!GA) { 1315 // If it's not already specified, allocate memory for the global. 1316 GA = getMemoryForGV(GV); 1317 1318 // If we failed to allocate memory for this global, return. 1319 if (!GA) return; 1320 1321 addGlobalMapping(GV, GA); 1322 } 1323 1324 // Don't initialize if it's thread local, let the client do it. 1325 if (!GV->isThreadLocal()) 1326 InitializeMemory(GV->getInitializer(), GA); 1327 1328 Type *ElTy = GV->getValueType(); 1329 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1330 NumInitBytes += (unsigned)GVSize; 1331 ++NumGlobals; 1332 } 1333