xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/ExecutionEngine.cpp (revision 9729f076e4d93c5a37e78d427bfe0f1ab99bbcc6)
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the common interface used by the various execution engine
10 // subclasses.
11 //
12 // FIXME: This file needs to be updated to support scalable vectors
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ExecutionEngine/GenericValue.h"
21 #include "llvm/ExecutionEngine/JITEventListener.h"
22 #include "llvm/ExecutionEngine/ObjectCache.h"
23 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Mangler.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/MC/TargetRegistry.h"
32 #include "llvm/Object/Archive.h"
33 #include "llvm/Object/ObjectFile.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/DynamicLibrary.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/Host.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include <cmath>
41 #include <cstring>
42 #include <mutex>
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "jit"
46 
47 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
48 STATISTIC(NumGlobals  , "Number of global vars initialized");
49 
50 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
51     std::unique_ptr<Module> M, std::string *ErrorStr,
52     std::shared_ptr<MCJITMemoryManager> MemMgr,
53     std::shared_ptr<LegacyJITSymbolResolver> Resolver,
54     std::unique_ptr<TargetMachine> TM) = nullptr;
55 
56 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
57                                                 std::string *ErrorStr) =nullptr;
58 
59 void JITEventListener::anchor() {}
60 
61 void ObjectCache::anchor() {}
62 
63 void ExecutionEngine::Init(std::unique_ptr<Module> M) {
64   CompilingLazily         = false;
65   GVCompilationDisabled   = false;
66   SymbolSearchingDisabled = false;
67 
68   // IR module verification is enabled by default in debug builds, and disabled
69   // by default in release builds.
70 #ifndef NDEBUG
71   VerifyModules = true;
72 #else
73   VerifyModules = false;
74 #endif
75 
76   assert(M && "Module is null?");
77   Modules.push_back(std::move(M));
78 }
79 
80 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
81     : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
82   Init(std::move(M));
83 }
84 
85 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
86     : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
87   Init(std::move(M));
88 }
89 
90 ExecutionEngine::~ExecutionEngine() {
91   clearAllGlobalMappings();
92 }
93 
94 namespace {
95 /// Helper class which uses a value handler to automatically deletes the
96 /// memory block when the GlobalVariable is destroyed.
97 class GVMemoryBlock final : public CallbackVH {
98   GVMemoryBlock(const GlobalVariable *GV)
99     : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
100 
101 public:
102   /// Returns the address the GlobalVariable should be written into.  The
103   /// GVMemoryBlock object prefixes that.
104   static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
105     Type *ElTy = GV->getValueType();
106     size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
107     void *RawMemory = ::operator new(
108         alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize);
109     new(RawMemory) GVMemoryBlock(GV);
110     return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
111   }
112 
113   void deleted() override {
114     // We allocated with operator new and with some extra memory hanging off the
115     // end, so don't just delete this.  I'm not sure if this is actually
116     // required.
117     this->~GVMemoryBlock();
118     ::operator delete(this);
119   }
120 };
121 }  // anonymous namespace
122 
123 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
124   return GVMemoryBlock::Create(GV, getDataLayout());
125 }
126 
127 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
128   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
129 }
130 
131 void
132 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
133   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
134 }
135 
136 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
137   llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
138 }
139 
140 bool ExecutionEngine::removeModule(Module *M) {
141   for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
142     Module *Found = I->get();
143     if (Found == M) {
144       I->release();
145       Modules.erase(I);
146       clearGlobalMappingsFromModule(M);
147       return true;
148     }
149   }
150   return false;
151 }
152 
153 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
154   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
155     Function *F = Modules[i]->getFunction(FnName);
156     if (F && !F->isDeclaration())
157       return F;
158   }
159   return nullptr;
160 }
161 
162 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
163   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
164     GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
165     if (GV && !GV->isDeclaration())
166       return GV;
167   }
168   return nullptr;
169 }
170 
171 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
172   GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
173   uint64_t OldVal;
174 
175   // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
176   // GlobalAddressMap.
177   if (I == GlobalAddressMap.end())
178     OldVal = 0;
179   else {
180     GlobalAddressReverseMap.erase(I->second);
181     OldVal = I->second;
182     GlobalAddressMap.erase(I);
183   }
184 
185   return OldVal;
186 }
187 
188 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
189   assert(GV->hasName() && "Global must have name.");
190 
191   std::lock_guard<sys::Mutex> locked(lock);
192   SmallString<128> FullName;
193 
194   const DataLayout &DL =
195     GV->getParent()->getDataLayout().isDefault()
196       ? getDataLayout()
197       : GV->getParent()->getDataLayout();
198 
199   Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
200   return std::string(FullName.str());
201 }
202 
203 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
204   std::lock_guard<sys::Mutex> locked(lock);
205   addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
206 }
207 
208 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
209   std::lock_guard<sys::Mutex> locked(lock);
210 
211   assert(!Name.empty() && "Empty GlobalMapping symbol name!");
212 
213   LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
214   uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
215   assert((!CurVal || !Addr) && "GlobalMapping already established!");
216   CurVal = Addr;
217 
218   // If we are using the reverse mapping, add it too.
219   if (!EEState.getGlobalAddressReverseMap().empty()) {
220     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
221     assert((!V.empty() || !Name.empty()) &&
222            "GlobalMapping already established!");
223     V = std::string(Name);
224   }
225 }
226 
227 void ExecutionEngine::clearAllGlobalMappings() {
228   std::lock_guard<sys::Mutex> locked(lock);
229 
230   EEState.getGlobalAddressMap().clear();
231   EEState.getGlobalAddressReverseMap().clear();
232 }
233 
234 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
235   std::lock_guard<sys::Mutex> locked(lock);
236 
237   for (GlobalObject &GO : M->global_objects())
238     EEState.RemoveMapping(getMangledName(&GO));
239 }
240 
241 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
242                                               void *Addr) {
243   std::lock_guard<sys::Mutex> locked(lock);
244   return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
245 }
246 
247 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
248   std::lock_guard<sys::Mutex> locked(lock);
249 
250   ExecutionEngineState::GlobalAddressMapTy &Map =
251     EEState.getGlobalAddressMap();
252 
253   // Deleting from the mapping?
254   if (!Addr)
255     return EEState.RemoveMapping(Name);
256 
257   uint64_t &CurVal = Map[Name];
258   uint64_t OldVal = CurVal;
259 
260   if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
261     EEState.getGlobalAddressReverseMap().erase(CurVal);
262   CurVal = Addr;
263 
264   // If we are using the reverse mapping, add it too.
265   if (!EEState.getGlobalAddressReverseMap().empty()) {
266     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
267     assert((!V.empty() || !Name.empty()) &&
268            "GlobalMapping already established!");
269     V = std::string(Name);
270   }
271   return OldVal;
272 }
273 
274 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
275   std::lock_guard<sys::Mutex> locked(lock);
276   uint64_t Address = 0;
277   ExecutionEngineState::GlobalAddressMapTy::iterator I =
278     EEState.getGlobalAddressMap().find(S);
279   if (I != EEState.getGlobalAddressMap().end())
280     Address = I->second;
281   return Address;
282 }
283 
284 
285 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
286   std::lock_guard<sys::Mutex> locked(lock);
287   if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
288     return Address;
289   return nullptr;
290 }
291 
292 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
293   std::lock_guard<sys::Mutex> locked(lock);
294   return getPointerToGlobalIfAvailable(getMangledName(GV));
295 }
296 
297 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
298   std::lock_guard<sys::Mutex> locked(lock);
299 
300   // If we haven't computed the reverse mapping yet, do so first.
301   if (EEState.getGlobalAddressReverseMap().empty()) {
302     for (ExecutionEngineState::GlobalAddressMapTy::iterator
303            I = EEState.getGlobalAddressMap().begin(),
304            E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
305       StringRef Name = I->first();
306       uint64_t Addr = I->second;
307       EEState.getGlobalAddressReverseMap().insert(
308           std::make_pair(Addr, std::string(Name)));
309     }
310   }
311 
312   std::map<uint64_t, std::string>::iterator I =
313     EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
314 
315   if (I != EEState.getGlobalAddressReverseMap().end()) {
316     StringRef Name = I->second;
317     for (unsigned i = 0, e = Modules.size(); i != e; ++i)
318       if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
319         return GV;
320   }
321   return nullptr;
322 }
323 
324 namespace {
325 class ArgvArray {
326   std::unique_ptr<char[]> Array;
327   std::vector<std::unique_ptr<char[]>> Values;
328 public:
329   /// Turn a vector of strings into a nice argv style array of pointers to null
330   /// terminated strings.
331   void *reset(LLVMContext &C, ExecutionEngine *EE,
332               const std::vector<std::string> &InputArgv);
333 };
334 }  // anonymous namespace
335 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
336                        const std::vector<std::string> &InputArgv) {
337   Values.clear();  // Free the old contents.
338   Values.reserve(InputArgv.size());
339   unsigned PtrSize = EE->getDataLayout().getPointerSize();
340   Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
341 
342   LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
343   Type *SBytePtr = Type::getInt8PtrTy(C);
344 
345   for (unsigned i = 0; i != InputArgv.size(); ++i) {
346     unsigned Size = InputArgv[i].size()+1;
347     auto Dest = std::make_unique<char[]>(Size);
348     LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
349                       << "\n");
350 
351     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
352     Dest[Size-1] = 0;
353 
354     // Endian safe: Array[i] = (PointerTy)Dest;
355     EE->StoreValueToMemory(PTOGV(Dest.get()),
356                            (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
357     Values.push_back(std::move(Dest));
358   }
359 
360   // Null terminate it
361   EE->StoreValueToMemory(PTOGV(nullptr),
362                          (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
363                          SBytePtr);
364   return Array.get();
365 }
366 
367 void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
368                                                        bool isDtors) {
369   StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
370   GlobalVariable *GV = module.getNamedGlobal(Name);
371 
372   // If this global has internal linkage, or if it has a use, then it must be
373   // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
374   // this is the case, don't execute any of the global ctors, __main will do
375   // it.
376   if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
377 
378   // Should be an array of '{ i32, void ()* }' structs.  The first value is
379   // the init priority, which we ignore.
380   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
381   if (!InitList)
382     return;
383   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
384     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
385     if (!CS) continue;
386 
387     Constant *FP = CS->getOperand(1);
388     if (FP->isNullValue())
389       continue;  // Found a sentinal value, ignore.
390 
391     // Strip off constant expression casts.
392     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
393       if (CE->isCast())
394         FP = CE->getOperand(0);
395 
396     // Execute the ctor/dtor function!
397     if (Function *F = dyn_cast<Function>(FP))
398       runFunction(F, None);
399 
400     // FIXME: It is marginally lame that we just do nothing here if we see an
401     // entry we don't recognize. It might not be unreasonable for the verifier
402     // to not even allow this and just assert here.
403   }
404 }
405 
406 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
407   // Execute global ctors/dtors for each module in the program.
408   for (std::unique_ptr<Module> &M : Modules)
409     runStaticConstructorsDestructors(*M, isDtors);
410 }
411 
412 #ifndef NDEBUG
413 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
414 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
415   unsigned PtrSize = EE->getDataLayout().getPointerSize();
416   for (unsigned i = 0; i < PtrSize; ++i)
417     if (*(i + (uint8_t*)Loc))
418       return false;
419   return true;
420 }
421 #endif
422 
423 int ExecutionEngine::runFunctionAsMain(Function *Fn,
424                                        const std::vector<std::string> &argv,
425                                        const char * const * envp) {
426   std::vector<GenericValue> GVArgs;
427   GenericValue GVArgc;
428   GVArgc.IntVal = APInt(32, argv.size());
429 
430   // Check main() type
431   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
432   FunctionType *FTy = Fn->getFunctionType();
433   Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
434 
435   // Check the argument types.
436   if (NumArgs > 3)
437     report_fatal_error("Invalid number of arguments of main() supplied");
438   if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
439     report_fatal_error("Invalid type for third argument of main() supplied");
440   if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
441     report_fatal_error("Invalid type for second argument of main() supplied");
442   if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
443     report_fatal_error("Invalid type for first argument of main() supplied");
444   if (!FTy->getReturnType()->isIntegerTy() &&
445       !FTy->getReturnType()->isVoidTy())
446     report_fatal_error("Invalid return type of main() supplied");
447 
448   ArgvArray CArgv;
449   ArgvArray CEnv;
450   if (NumArgs) {
451     GVArgs.push_back(GVArgc); // Arg #0 = argc.
452     if (NumArgs > 1) {
453       // Arg #1 = argv.
454       GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
455       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
456              "argv[0] was null after CreateArgv");
457       if (NumArgs > 2) {
458         std::vector<std::string> EnvVars;
459         for (unsigned i = 0; envp[i]; ++i)
460           EnvVars.emplace_back(envp[i]);
461         // Arg #2 = envp.
462         GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
463       }
464     }
465   }
466 
467   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
468 }
469 
470 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
471 
472 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
473     : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
474       OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr) {
475 // IR module verification is enabled by default in debug builds, and disabled
476 // by default in release builds.
477 #ifndef NDEBUG
478   VerifyModules = true;
479 #else
480   VerifyModules = false;
481 #endif
482 }
483 
484 EngineBuilder::~EngineBuilder() = default;
485 
486 EngineBuilder &EngineBuilder::setMCJITMemoryManager(
487                                    std::unique_ptr<RTDyldMemoryManager> mcjmm) {
488   auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
489   MemMgr = SharedMM;
490   Resolver = SharedMM;
491   return *this;
492 }
493 
494 EngineBuilder&
495 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
496   MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
497   return *this;
498 }
499 
500 EngineBuilder &
501 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
502   Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
503   return *this;
504 }
505 
506 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
507   std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
508 
509   // Make sure we can resolve symbols in the program as well. The zero arg
510   // to the function tells DynamicLibrary to load the program, not a library.
511   if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
512     return nullptr;
513 
514   // If the user specified a memory manager but didn't specify which engine to
515   // create, we assume they only want the JIT, and we fail if they only want
516   // the interpreter.
517   if (MemMgr) {
518     if (WhichEngine & EngineKind::JIT)
519       WhichEngine = EngineKind::JIT;
520     else {
521       if (ErrorStr)
522         *ErrorStr = "Cannot create an interpreter with a memory manager.";
523       return nullptr;
524     }
525   }
526 
527   // Unless the interpreter was explicitly selected or the JIT is not linked,
528   // try making a JIT.
529   if ((WhichEngine & EngineKind::JIT) && TheTM) {
530     if (!TM->getTarget().hasJIT()) {
531       errs() << "WARNING: This target JIT is not designed for the host"
532              << " you are running.  If bad things happen, please choose"
533              << " a different -march switch.\n";
534     }
535 
536     ExecutionEngine *EE = nullptr;
537     if (ExecutionEngine::MCJITCtor)
538       EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
539                                       std::move(Resolver), std::move(TheTM));
540 
541     if (EE) {
542       EE->setVerifyModules(VerifyModules);
543       return EE;
544     }
545   }
546 
547   // If we can't make a JIT and we didn't request one specifically, try making
548   // an interpreter instead.
549   if (WhichEngine & EngineKind::Interpreter) {
550     if (ExecutionEngine::InterpCtor)
551       return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
552     if (ErrorStr)
553       *ErrorStr = "Interpreter has not been linked in.";
554     return nullptr;
555   }
556 
557   if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
558     if (ErrorStr)
559       *ErrorStr = "JIT has not been linked in.";
560   }
561 
562   return nullptr;
563 }
564 
565 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
566   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
567     return getPointerToFunction(F);
568 
569   std::lock_guard<sys::Mutex> locked(lock);
570   if (void* P = getPointerToGlobalIfAvailable(GV))
571     return P;
572 
573   // Global variable might have been added since interpreter started.
574   if (GlobalVariable *GVar =
575           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
576     emitGlobalVariable(GVar);
577   else
578     llvm_unreachable("Global hasn't had an address allocated yet!");
579 
580   return getPointerToGlobalIfAvailable(GV);
581 }
582 
583 /// Converts a Constant* into a GenericValue, including handling of
584 /// ConstantExpr values.
585 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
586   // If its undefined, return the garbage.
587   if (isa<UndefValue>(C)) {
588     GenericValue Result;
589     switch (C->getType()->getTypeID()) {
590     default:
591       break;
592     case Type::IntegerTyID:
593     case Type::X86_FP80TyID:
594     case Type::FP128TyID:
595     case Type::PPC_FP128TyID:
596       // Although the value is undefined, we still have to construct an APInt
597       // with the correct bit width.
598       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
599       break;
600     case Type::StructTyID: {
601       // if the whole struct is 'undef' just reserve memory for the value.
602       if(StructType *STy = dyn_cast<StructType>(C->getType())) {
603         unsigned int elemNum = STy->getNumElements();
604         Result.AggregateVal.resize(elemNum);
605         for (unsigned int i = 0; i < elemNum; ++i) {
606           Type *ElemTy = STy->getElementType(i);
607           if (ElemTy->isIntegerTy())
608             Result.AggregateVal[i].IntVal =
609               APInt(ElemTy->getPrimitiveSizeInBits(), 0);
610           else if (ElemTy->isAggregateType()) {
611               const Constant *ElemUndef = UndefValue::get(ElemTy);
612               Result.AggregateVal[i] = getConstantValue(ElemUndef);
613             }
614           }
615         }
616       }
617       break;
618       case Type::ScalableVectorTyID:
619         report_fatal_error(
620             "Scalable vector support not yet implemented in ExecutionEngine");
621       case Type::FixedVectorTyID:
622         // if the whole vector is 'undef' just reserve memory for the value.
623         auto *VTy = cast<FixedVectorType>(C->getType());
624         Type *ElemTy = VTy->getElementType();
625         unsigned int elemNum = VTy->getNumElements();
626         Result.AggregateVal.resize(elemNum);
627         if (ElemTy->isIntegerTy())
628           for (unsigned int i = 0; i < elemNum; ++i)
629             Result.AggregateVal[i].IntVal =
630                 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
631         break;
632     }
633     return Result;
634   }
635 
636   // Otherwise, if the value is a ConstantExpr...
637   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
638     Constant *Op0 = CE->getOperand(0);
639     switch (CE->getOpcode()) {
640     case Instruction::GetElementPtr: {
641       // Compute the index
642       GenericValue Result = getConstantValue(Op0);
643       APInt Offset(DL.getPointerSizeInBits(), 0);
644       cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
645 
646       char* tmp = (char*) Result.PointerVal;
647       Result = PTOGV(tmp + Offset.getSExtValue());
648       return Result;
649     }
650     case Instruction::Trunc: {
651       GenericValue GV = getConstantValue(Op0);
652       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
653       GV.IntVal = GV.IntVal.trunc(BitWidth);
654       return GV;
655     }
656     case Instruction::ZExt: {
657       GenericValue GV = getConstantValue(Op0);
658       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
659       GV.IntVal = GV.IntVal.zext(BitWidth);
660       return GV;
661     }
662     case Instruction::SExt: {
663       GenericValue GV = getConstantValue(Op0);
664       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
665       GV.IntVal = GV.IntVal.sext(BitWidth);
666       return GV;
667     }
668     case Instruction::FPTrunc: {
669       // FIXME long double
670       GenericValue GV = getConstantValue(Op0);
671       GV.FloatVal = float(GV.DoubleVal);
672       return GV;
673     }
674     case Instruction::FPExt:{
675       // FIXME long double
676       GenericValue GV = getConstantValue(Op0);
677       GV.DoubleVal = double(GV.FloatVal);
678       return GV;
679     }
680     case Instruction::UIToFP: {
681       GenericValue GV = getConstantValue(Op0);
682       if (CE->getType()->isFloatTy())
683         GV.FloatVal = float(GV.IntVal.roundToDouble());
684       else if (CE->getType()->isDoubleTy())
685         GV.DoubleVal = GV.IntVal.roundToDouble();
686       else if (CE->getType()->isX86_FP80Ty()) {
687         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
688         (void)apf.convertFromAPInt(GV.IntVal,
689                                    false,
690                                    APFloat::rmNearestTiesToEven);
691         GV.IntVal = apf.bitcastToAPInt();
692       }
693       return GV;
694     }
695     case Instruction::SIToFP: {
696       GenericValue GV = getConstantValue(Op0);
697       if (CE->getType()->isFloatTy())
698         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
699       else if (CE->getType()->isDoubleTy())
700         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
701       else if (CE->getType()->isX86_FP80Ty()) {
702         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
703         (void)apf.convertFromAPInt(GV.IntVal,
704                                    true,
705                                    APFloat::rmNearestTiesToEven);
706         GV.IntVal = apf.bitcastToAPInt();
707       }
708       return GV;
709     }
710     case Instruction::FPToUI: // double->APInt conversion handles sign
711     case Instruction::FPToSI: {
712       GenericValue GV = getConstantValue(Op0);
713       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
714       if (Op0->getType()->isFloatTy())
715         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
716       else if (Op0->getType()->isDoubleTy())
717         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
718       else if (Op0->getType()->isX86_FP80Ty()) {
719         APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
720         uint64_t v;
721         bool ignored;
722         (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth,
723                                    CE->getOpcode()==Instruction::FPToSI,
724                                    APFloat::rmTowardZero, &ignored);
725         GV.IntVal = v; // endian?
726       }
727       return GV;
728     }
729     case Instruction::PtrToInt: {
730       GenericValue GV = getConstantValue(Op0);
731       uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
732       assert(PtrWidth <= 64 && "Bad pointer width");
733       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
734       uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
735       GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
736       return GV;
737     }
738     case Instruction::IntToPtr: {
739       GenericValue GV = getConstantValue(Op0);
740       uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
741       GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
742       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
743       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
744       return GV;
745     }
746     case Instruction::BitCast: {
747       GenericValue GV = getConstantValue(Op0);
748       Type* DestTy = CE->getType();
749       switch (Op0->getType()->getTypeID()) {
750         default: llvm_unreachable("Invalid bitcast operand");
751         case Type::IntegerTyID:
752           assert(DestTy->isFloatingPointTy() && "invalid bitcast");
753           if (DestTy->isFloatTy())
754             GV.FloatVal = GV.IntVal.bitsToFloat();
755           else if (DestTy->isDoubleTy())
756             GV.DoubleVal = GV.IntVal.bitsToDouble();
757           break;
758         case Type::FloatTyID:
759           assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
760           GV.IntVal = APInt::floatToBits(GV.FloatVal);
761           break;
762         case Type::DoubleTyID:
763           assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
764           GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
765           break;
766         case Type::PointerTyID:
767           assert(DestTy->isPointerTy() && "Invalid bitcast");
768           break; // getConstantValue(Op0)  above already converted it
769       }
770       return GV;
771     }
772     case Instruction::Add:
773     case Instruction::FAdd:
774     case Instruction::Sub:
775     case Instruction::FSub:
776     case Instruction::Mul:
777     case Instruction::FMul:
778     case Instruction::UDiv:
779     case Instruction::SDiv:
780     case Instruction::URem:
781     case Instruction::SRem:
782     case Instruction::And:
783     case Instruction::Or:
784     case Instruction::Xor: {
785       GenericValue LHS = getConstantValue(Op0);
786       GenericValue RHS = getConstantValue(CE->getOperand(1));
787       GenericValue GV;
788       switch (CE->getOperand(0)->getType()->getTypeID()) {
789       default: llvm_unreachable("Bad add type!");
790       case Type::IntegerTyID:
791         switch (CE->getOpcode()) {
792           default: llvm_unreachable("Invalid integer opcode");
793           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
794           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
795           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
796           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
797           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
798           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
799           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
800           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
801           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
802           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
803         }
804         break;
805       case Type::FloatTyID:
806         switch (CE->getOpcode()) {
807           default: llvm_unreachable("Invalid float opcode");
808           case Instruction::FAdd:
809             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
810           case Instruction::FSub:
811             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
812           case Instruction::FMul:
813             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
814           case Instruction::FDiv:
815             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
816           case Instruction::FRem:
817             GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
818         }
819         break;
820       case Type::DoubleTyID:
821         switch (CE->getOpcode()) {
822           default: llvm_unreachable("Invalid double opcode");
823           case Instruction::FAdd:
824             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
825           case Instruction::FSub:
826             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
827           case Instruction::FMul:
828             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
829           case Instruction::FDiv:
830             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
831           case Instruction::FRem:
832             GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
833         }
834         break;
835       case Type::X86_FP80TyID:
836       case Type::PPC_FP128TyID:
837       case Type::FP128TyID: {
838         const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
839         APFloat apfLHS = APFloat(Sem, LHS.IntVal);
840         switch (CE->getOpcode()) {
841           default: llvm_unreachable("Invalid long double opcode");
842           case Instruction::FAdd:
843             apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
844             GV.IntVal = apfLHS.bitcastToAPInt();
845             break;
846           case Instruction::FSub:
847             apfLHS.subtract(APFloat(Sem, RHS.IntVal),
848                             APFloat::rmNearestTiesToEven);
849             GV.IntVal = apfLHS.bitcastToAPInt();
850             break;
851           case Instruction::FMul:
852             apfLHS.multiply(APFloat(Sem, RHS.IntVal),
853                             APFloat::rmNearestTiesToEven);
854             GV.IntVal = apfLHS.bitcastToAPInt();
855             break;
856           case Instruction::FDiv:
857             apfLHS.divide(APFloat(Sem, RHS.IntVal),
858                           APFloat::rmNearestTiesToEven);
859             GV.IntVal = apfLHS.bitcastToAPInt();
860             break;
861           case Instruction::FRem:
862             apfLHS.mod(APFloat(Sem, RHS.IntVal));
863             GV.IntVal = apfLHS.bitcastToAPInt();
864             break;
865           }
866         }
867         break;
868       }
869       return GV;
870     }
871     default:
872       break;
873     }
874 
875     SmallString<256> Msg;
876     raw_svector_ostream OS(Msg);
877     OS << "ConstantExpr not handled: " << *CE;
878     report_fatal_error(OS.str());
879   }
880 
881   // Otherwise, we have a simple constant.
882   GenericValue Result;
883   switch (C->getType()->getTypeID()) {
884   case Type::FloatTyID:
885     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
886     break;
887   case Type::DoubleTyID:
888     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
889     break;
890   case Type::X86_FP80TyID:
891   case Type::FP128TyID:
892   case Type::PPC_FP128TyID:
893     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
894     break;
895   case Type::IntegerTyID:
896     Result.IntVal = cast<ConstantInt>(C)->getValue();
897     break;
898   case Type::PointerTyID:
899     while (auto *A = dyn_cast<GlobalAlias>(C)) {
900       C = A->getAliasee();
901     }
902     if (isa<ConstantPointerNull>(C))
903       Result.PointerVal = nullptr;
904     else if (const Function *F = dyn_cast<Function>(C))
905       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
906     else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
907       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
908     else
909       llvm_unreachable("Unknown constant pointer type!");
910     break;
911   case Type::ScalableVectorTyID:
912     report_fatal_error(
913         "Scalable vector support not yet implemented in ExecutionEngine");
914   case Type::FixedVectorTyID: {
915     unsigned elemNum;
916     Type* ElemTy;
917     const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
918     const ConstantVector *CV = dyn_cast<ConstantVector>(C);
919     const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
920 
921     if (CDV) {
922         elemNum = CDV->getNumElements();
923         ElemTy = CDV->getElementType();
924     } else if (CV || CAZ) {
925       auto *VTy = cast<FixedVectorType>(C->getType());
926       elemNum = VTy->getNumElements();
927       ElemTy = VTy->getElementType();
928     } else {
929         llvm_unreachable("Unknown constant vector type!");
930     }
931 
932     Result.AggregateVal.resize(elemNum);
933     // Check if vector holds floats.
934     if(ElemTy->isFloatTy()) {
935       if (CAZ) {
936         GenericValue floatZero;
937         floatZero.FloatVal = 0.f;
938         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
939                   floatZero);
940         break;
941       }
942       if(CV) {
943         for (unsigned i = 0; i < elemNum; ++i)
944           if (!isa<UndefValue>(CV->getOperand(i)))
945             Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
946               CV->getOperand(i))->getValueAPF().convertToFloat();
947         break;
948       }
949       if(CDV)
950         for (unsigned i = 0; i < elemNum; ++i)
951           Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
952 
953       break;
954     }
955     // Check if vector holds doubles.
956     if (ElemTy->isDoubleTy()) {
957       if (CAZ) {
958         GenericValue doubleZero;
959         doubleZero.DoubleVal = 0.0;
960         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
961                   doubleZero);
962         break;
963       }
964       if(CV) {
965         for (unsigned i = 0; i < elemNum; ++i)
966           if (!isa<UndefValue>(CV->getOperand(i)))
967             Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
968               CV->getOperand(i))->getValueAPF().convertToDouble();
969         break;
970       }
971       if(CDV)
972         for (unsigned i = 0; i < elemNum; ++i)
973           Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
974 
975       break;
976     }
977     // Check if vector holds integers.
978     if (ElemTy->isIntegerTy()) {
979       if (CAZ) {
980         GenericValue intZero;
981         intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
982         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
983                   intZero);
984         break;
985       }
986       if(CV) {
987         for (unsigned i = 0; i < elemNum; ++i)
988           if (!isa<UndefValue>(CV->getOperand(i)))
989             Result.AggregateVal[i].IntVal = cast<ConstantInt>(
990                                             CV->getOperand(i))->getValue();
991           else {
992             Result.AggregateVal[i].IntVal =
993               APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
994           }
995         break;
996       }
997       if(CDV)
998         for (unsigned i = 0; i < elemNum; ++i)
999           Result.AggregateVal[i].IntVal = APInt(
1000             CDV->getElementType()->getPrimitiveSizeInBits(),
1001             CDV->getElementAsInteger(i));
1002 
1003       break;
1004     }
1005     llvm_unreachable("Unknown constant pointer type!");
1006   } break;
1007 
1008   default:
1009     SmallString<256> Msg;
1010     raw_svector_ostream OS(Msg);
1011     OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1012     report_fatal_error(OS.str());
1013   }
1014 
1015   return Result;
1016 }
1017 
1018 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1019                                          GenericValue *Ptr, Type *Ty) {
1020   const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1021 
1022   switch (Ty->getTypeID()) {
1023   default:
1024     dbgs() << "Cannot store value of type " << *Ty << "!\n";
1025     break;
1026   case Type::IntegerTyID:
1027     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1028     break;
1029   case Type::FloatTyID:
1030     *((float*)Ptr) = Val.FloatVal;
1031     break;
1032   case Type::DoubleTyID:
1033     *((double*)Ptr) = Val.DoubleVal;
1034     break;
1035   case Type::X86_FP80TyID:
1036     memcpy(Ptr, Val.IntVal.getRawData(), 10);
1037     break;
1038   case Type::PointerTyID:
1039     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1040     if (StoreBytes != sizeof(PointerTy))
1041       memset(&(Ptr->PointerVal), 0, StoreBytes);
1042 
1043     *((PointerTy*)Ptr) = Val.PointerVal;
1044     break;
1045   case Type::FixedVectorTyID:
1046   case Type::ScalableVectorTyID:
1047     for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1048       if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1049         *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1050       if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1051         *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1052       if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1053         unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1054         StoreIntToMemory(Val.AggregateVal[i].IntVal,
1055           (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1056       }
1057     }
1058     break;
1059   }
1060 
1061   if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1062     // Host and target are different endian - reverse the stored bytes.
1063     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1064 }
1065 
1066 /// FIXME: document
1067 ///
1068 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1069                                           GenericValue *Ptr,
1070                                           Type *Ty) {
1071   const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1072 
1073   switch (Ty->getTypeID()) {
1074   case Type::IntegerTyID:
1075     // An APInt with all words initially zero.
1076     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1077     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1078     break;
1079   case Type::FloatTyID:
1080     Result.FloatVal = *((float*)Ptr);
1081     break;
1082   case Type::DoubleTyID:
1083     Result.DoubleVal = *((double*)Ptr);
1084     break;
1085   case Type::PointerTyID:
1086     Result.PointerVal = *((PointerTy*)Ptr);
1087     break;
1088   case Type::X86_FP80TyID: {
1089     // This is endian dependent, but it will only work on x86 anyway.
1090     // FIXME: Will not trap if loading a signaling NaN.
1091     uint64_t y[2];
1092     memcpy(y, Ptr, 10);
1093     Result.IntVal = APInt(80, y);
1094     break;
1095   }
1096   case Type::ScalableVectorTyID:
1097     report_fatal_error(
1098         "Scalable vector support not yet implemented in ExecutionEngine");
1099   case Type::FixedVectorTyID: {
1100     auto *VT = cast<FixedVectorType>(Ty);
1101     Type *ElemT = VT->getElementType();
1102     const unsigned numElems = VT->getNumElements();
1103     if (ElemT->isFloatTy()) {
1104       Result.AggregateVal.resize(numElems);
1105       for (unsigned i = 0; i < numElems; ++i)
1106         Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1107     }
1108     if (ElemT->isDoubleTy()) {
1109       Result.AggregateVal.resize(numElems);
1110       for (unsigned i = 0; i < numElems; ++i)
1111         Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1112     }
1113     if (ElemT->isIntegerTy()) {
1114       GenericValue intZero;
1115       const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1116       intZero.IntVal = APInt(elemBitWidth, 0);
1117       Result.AggregateVal.resize(numElems, intZero);
1118       for (unsigned i = 0; i < numElems; ++i)
1119         LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1120           (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1121     }
1122   break;
1123   }
1124   default:
1125     SmallString<256> Msg;
1126     raw_svector_ostream OS(Msg);
1127     OS << "Cannot load value of type " << *Ty << "!";
1128     report_fatal_error(OS.str());
1129   }
1130 }
1131 
1132 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1133   LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1134   LLVM_DEBUG(Init->dump());
1135   if (isa<UndefValue>(Init))
1136     return;
1137 
1138   if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1139     unsigned ElementSize =
1140         getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1141     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1142       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1143     return;
1144   }
1145 
1146   if (isa<ConstantAggregateZero>(Init)) {
1147     memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1148     return;
1149   }
1150 
1151   if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1152     unsigned ElementSize =
1153         getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1154     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1155       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1156     return;
1157   }
1158 
1159   if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1160     const StructLayout *SL =
1161         getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1162     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1163       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1164     return;
1165   }
1166 
1167   if (const ConstantDataSequential *CDS =
1168                dyn_cast<ConstantDataSequential>(Init)) {
1169     // CDS is already laid out in host memory order.
1170     StringRef Data = CDS->getRawDataValues();
1171     memcpy(Addr, Data.data(), Data.size());
1172     return;
1173   }
1174 
1175   if (Init->getType()->isFirstClassType()) {
1176     GenericValue Val = getConstantValue(Init);
1177     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1178     return;
1179   }
1180 
1181   LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1182   llvm_unreachable("Unknown constant type to initialize memory with!");
1183 }
1184 
1185 /// EmitGlobals - Emit all of the global variables to memory, storing their
1186 /// addresses into GlobalAddress.  This must make sure to copy the contents of
1187 /// their initializers into the memory.
1188 void ExecutionEngine::emitGlobals() {
1189   // Loop over all of the global variables in the program, allocating the memory
1190   // to hold them.  If there is more than one module, do a prepass over globals
1191   // to figure out how the different modules should link together.
1192   std::map<std::pair<std::string, Type*>,
1193            const GlobalValue*> LinkedGlobalsMap;
1194 
1195   if (Modules.size() != 1) {
1196     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1197       Module &M = *Modules[m];
1198       for (const auto &GV : M.globals()) {
1199         if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1200             GV.hasAppendingLinkage() || !GV.hasName())
1201           continue;// Ignore external globals and globals with internal linkage.
1202 
1203         const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
1204             std::string(GV.getName()), GV.getType())];
1205 
1206         // If this is the first time we've seen this global, it is the canonical
1207         // version.
1208         if (!GVEntry) {
1209           GVEntry = &GV;
1210           continue;
1211         }
1212 
1213         // If the existing global is strong, never replace it.
1214         if (GVEntry->hasExternalLinkage())
1215           continue;
1216 
1217         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1218         // symbol.  FIXME is this right for common?
1219         if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1220           GVEntry = &GV;
1221       }
1222     }
1223   }
1224 
1225   std::vector<const GlobalValue*> NonCanonicalGlobals;
1226   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1227     Module &M = *Modules[m];
1228     for (const auto &GV : M.globals()) {
1229       // In the multi-module case, see what this global maps to.
1230       if (!LinkedGlobalsMap.empty()) {
1231         if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1232                 std::string(GV.getName()), GV.getType())]) {
1233           // If something else is the canonical global, ignore this one.
1234           if (GVEntry != &GV) {
1235             NonCanonicalGlobals.push_back(&GV);
1236             continue;
1237           }
1238         }
1239       }
1240 
1241       if (!GV.isDeclaration()) {
1242         addGlobalMapping(&GV, getMemoryForGV(&GV));
1243       } else {
1244         // External variable reference. Try to use the dynamic loader to
1245         // get a pointer to it.
1246         if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
1247                 std::string(GV.getName())))
1248           addGlobalMapping(&GV, SymAddr);
1249         else {
1250           report_fatal_error("Could not resolve external global address: "
1251                             +GV.getName());
1252         }
1253       }
1254     }
1255 
1256     // If there are multiple modules, map the non-canonical globals to their
1257     // canonical location.
1258     if (!NonCanonicalGlobals.empty()) {
1259       for (const GlobalValue *GV : NonCanonicalGlobals) {
1260         const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
1261             std::string(GV->getName()), GV->getType())];
1262         void *Ptr = getPointerToGlobalIfAvailable(CGV);
1263         assert(Ptr && "Canonical global wasn't codegen'd!");
1264         addGlobalMapping(GV, Ptr);
1265       }
1266     }
1267 
1268     // Now that all of the globals are set up in memory, loop through them all
1269     // and initialize their contents.
1270     for (const auto &GV : M.globals()) {
1271       if (!GV.isDeclaration()) {
1272         if (!LinkedGlobalsMap.empty()) {
1273           if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1274                   std::string(GV.getName()), GV.getType())])
1275             if (GVEntry != &GV)  // Not the canonical variable.
1276               continue;
1277         }
1278         emitGlobalVariable(&GV);
1279       }
1280     }
1281   }
1282 }
1283 
1284 // EmitGlobalVariable - This method emits the specified global variable to the
1285 // address specified in GlobalAddresses, or allocates new memory if it's not
1286 // already in the map.
1287 void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) {
1288   void *GA = getPointerToGlobalIfAvailable(GV);
1289 
1290   if (!GA) {
1291     // If it's not already specified, allocate memory for the global.
1292     GA = getMemoryForGV(GV);
1293 
1294     // If we failed to allocate memory for this global, return.
1295     if (!GA) return;
1296 
1297     addGlobalMapping(GV, GA);
1298   }
1299 
1300   // Don't initialize if it's thread local, let the client do it.
1301   if (!GV->isThreadLocal())
1302     InitializeMemory(GV->getInitializer(), GA);
1303 
1304   Type *ElTy = GV->getValueType();
1305   size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1306   NumInitBytes += (unsigned)GVSize;
1307   ++NumGlobals;
1308 }
1309