xref: /freebsd/contrib/llvm-project/llvm/lib/ExecutionEngine/ExecutionEngine.cpp (revision 6966ac055c3b7a39266fb982493330df7a097997)
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the common interface used by the various execution engine
10 // subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ExecutionEngine/ExecutionEngine.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ExecutionEngine/GenericValue.h"
19 #include "llvm/ExecutionEngine/JITEventListener.h"
20 #include "llvm/ExecutionEngine/ObjectCache.h"
21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Mangler.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/Object/Archive.h"
30 #include "llvm/Object/ObjectFile.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DynamicLibrary.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/Host.h"
35 #include "llvm/Support/MutexGuard.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <cmath>
40 #include <cstring>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "jit"
44 
45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
46 STATISTIC(NumGlobals  , "Number of global vars initialized");
47 
48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
49     std::unique_ptr<Module> M, std::string *ErrorStr,
50     std::shared_ptr<MCJITMemoryManager> MemMgr,
51     std::shared_ptr<LegacyJITSymbolResolver> Resolver,
52     std::unique_ptr<TargetMachine> TM) = nullptr;
53 
54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)(
55     std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr,
56     std::shared_ptr<LegacyJITSymbolResolver> Resolver,
57     std::unique_ptr<TargetMachine> TM) = nullptr;
58 
59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
60                                                 std::string *ErrorStr) =nullptr;
61 
62 void JITEventListener::anchor() {}
63 
64 void ObjectCache::anchor() {}
65 
66 void ExecutionEngine::Init(std::unique_ptr<Module> M) {
67   CompilingLazily         = false;
68   GVCompilationDisabled   = false;
69   SymbolSearchingDisabled = false;
70 
71   // IR module verification is enabled by default in debug builds, and disabled
72   // by default in release builds.
73 #ifndef NDEBUG
74   VerifyModules = true;
75 #else
76   VerifyModules = false;
77 #endif
78 
79   assert(M && "Module is null?");
80   Modules.push_back(std::move(M));
81 }
82 
83 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
84     : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
85   Init(std::move(M));
86 }
87 
88 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
89     : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
90   Init(std::move(M));
91 }
92 
93 ExecutionEngine::~ExecutionEngine() {
94   clearAllGlobalMappings();
95 }
96 
97 namespace {
98 /// Helper class which uses a value handler to automatically deletes the
99 /// memory block when the GlobalVariable is destroyed.
100 class GVMemoryBlock final : public CallbackVH {
101   GVMemoryBlock(const GlobalVariable *GV)
102     : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
103 
104 public:
105   /// Returns the address the GlobalVariable should be written into.  The
106   /// GVMemoryBlock object prefixes that.
107   static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
108     Type *ElTy = GV->getValueType();
109     size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
110     void *RawMemory = ::operator new(
111         alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize);
112     new(RawMemory) GVMemoryBlock(GV);
113     return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
114   }
115 
116   void deleted() override {
117     // We allocated with operator new and with some extra memory hanging off the
118     // end, so don't just delete this.  I'm not sure if this is actually
119     // required.
120     this->~GVMemoryBlock();
121     ::operator delete(this);
122   }
123 };
124 }  // anonymous namespace
125 
126 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
127   return GVMemoryBlock::Create(GV, getDataLayout());
128 }
129 
130 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
131   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
132 }
133 
134 void
135 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
136   llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
137 }
138 
139 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
140   llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
141 }
142 
143 bool ExecutionEngine::removeModule(Module *M) {
144   for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
145     Module *Found = I->get();
146     if (Found == M) {
147       I->release();
148       Modules.erase(I);
149       clearGlobalMappingsFromModule(M);
150       return true;
151     }
152   }
153   return false;
154 }
155 
156 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
157   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
158     Function *F = Modules[i]->getFunction(FnName);
159     if (F && !F->isDeclaration())
160       return F;
161   }
162   return nullptr;
163 }
164 
165 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
166   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
167     GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
168     if (GV && !GV->isDeclaration())
169       return GV;
170   }
171   return nullptr;
172 }
173 
174 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
175   GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
176   uint64_t OldVal;
177 
178   // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
179   // GlobalAddressMap.
180   if (I == GlobalAddressMap.end())
181     OldVal = 0;
182   else {
183     GlobalAddressReverseMap.erase(I->second);
184     OldVal = I->second;
185     GlobalAddressMap.erase(I);
186   }
187 
188   return OldVal;
189 }
190 
191 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
192   assert(GV->hasName() && "Global must have name.");
193 
194   MutexGuard locked(lock);
195   SmallString<128> FullName;
196 
197   const DataLayout &DL =
198     GV->getParent()->getDataLayout().isDefault()
199       ? getDataLayout()
200       : GV->getParent()->getDataLayout();
201 
202   Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
203   return FullName.str();
204 }
205 
206 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
207   MutexGuard locked(lock);
208   addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
209 }
210 
211 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
212   MutexGuard locked(lock);
213 
214   assert(!Name.empty() && "Empty GlobalMapping symbol name!");
215 
216   LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
217   uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
218   assert((!CurVal || !Addr) && "GlobalMapping already established!");
219   CurVal = Addr;
220 
221   // If we are using the reverse mapping, add it too.
222   if (!EEState.getGlobalAddressReverseMap().empty()) {
223     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
224     assert((!V.empty() || !Name.empty()) &&
225            "GlobalMapping already established!");
226     V = Name;
227   }
228 }
229 
230 void ExecutionEngine::clearAllGlobalMappings() {
231   MutexGuard locked(lock);
232 
233   EEState.getGlobalAddressMap().clear();
234   EEState.getGlobalAddressReverseMap().clear();
235 }
236 
237 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
238   MutexGuard locked(lock);
239 
240   for (GlobalObject &GO : M->global_objects())
241     EEState.RemoveMapping(getMangledName(&GO));
242 }
243 
244 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
245                                               void *Addr) {
246   MutexGuard locked(lock);
247   return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
248 }
249 
250 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
251   MutexGuard locked(lock);
252 
253   ExecutionEngineState::GlobalAddressMapTy &Map =
254     EEState.getGlobalAddressMap();
255 
256   // Deleting from the mapping?
257   if (!Addr)
258     return EEState.RemoveMapping(Name);
259 
260   uint64_t &CurVal = Map[Name];
261   uint64_t OldVal = CurVal;
262 
263   if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
264     EEState.getGlobalAddressReverseMap().erase(CurVal);
265   CurVal = Addr;
266 
267   // If we are using the reverse mapping, add it too.
268   if (!EEState.getGlobalAddressReverseMap().empty()) {
269     std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
270     assert((!V.empty() || !Name.empty()) &&
271            "GlobalMapping already established!");
272     V = Name;
273   }
274   return OldVal;
275 }
276 
277 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
278   MutexGuard locked(lock);
279   uint64_t Address = 0;
280   ExecutionEngineState::GlobalAddressMapTy::iterator I =
281     EEState.getGlobalAddressMap().find(S);
282   if (I != EEState.getGlobalAddressMap().end())
283     Address = I->second;
284   return Address;
285 }
286 
287 
288 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
289   MutexGuard locked(lock);
290   if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
291     return Address;
292   return nullptr;
293 }
294 
295 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
296   MutexGuard locked(lock);
297   return getPointerToGlobalIfAvailable(getMangledName(GV));
298 }
299 
300 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
301   MutexGuard locked(lock);
302 
303   // If we haven't computed the reverse mapping yet, do so first.
304   if (EEState.getGlobalAddressReverseMap().empty()) {
305     for (ExecutionEngineState::GlobalAddressMapTy::iterator
306            I = EEState.getGlobalAddressMap().begin(),
307            E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
308       StringRef Name = I->first();
309       uint64_t Addr = I->second;
310       EEState.getGlobalAddressReverseMap().insert(std::make_pair(
311                                                           Addr, Name));
312     }
313   }
314 
315   std::map<uint64_t, std::string>::iterator I =
316     EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
317 
318   if (I != EEState.getGlobalAddressReverseMap().end()) {
319     StringRef Name = I->second;
320     for (unsigned i = 0, e = Modules.size(); i != e; ++i)
321       if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
322         return GV;
323   }
324   return nullptr;
325 }
326 
327 namespace {
328 class ArgvArray {
329   std::unique_ptr<char[]> Array;
330   std::vector<std::unique_ptr<char[]>> Values;
331 public:
332   /// Turn a vector of strings into a nice argv style array of pointers to null
333   /// terminated strings.
334   void *reset(LLVMContext &C, ExecutionEngine *EE,
335               const std::vector<std::string> &InputArgv);
336 };
337 }  // anonymous namespace
338 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
339                        const std::vector<std::string> &InputArgv) {
340   Values.clear();  // Free the old contents.
341   Values.reserve(InputArgv.size());
342   unsigned PtrSize = EE->getDataLayout().getPointerSize();
343   Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize);
344 
345   LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
346   Type *SBytePtr = Type::getInt8PtrTy(C);
347 
348   for (unsigned i = 0; i != InputArgv.size(); ++i) {
349     unsigned Size = InputArgv[i].size()+1;
350     auto Dest = make_unique<char[]>(Size);
351     LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
352                       << "\n");
353 
354     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
355     Dest[Size-1] = 0;
356 
357     // Endian safe: Array[i] = (PointerTy)Dest;
358     EE->StoreValueToMemory(PTOGV(Dest.get()),
359                            (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
360     Values.push_back(std::move(Dest));
361   }
362 
363   // Null terminate it
364   EE->StoreValueToMemory(PTOGV(nullptr),
365                          (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
366                          SBytePtr);
367   return Array.get();
368 }
369 
370 void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
371                                                        bool isDtors) {
372   StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
373   GlobalVariable *GV = module.getNamedGlobal(Name);
374 
375   // If this global has internal linkage, or if it has a use, then it must be
376   // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
377   // this is the case, don't execute any of the global ctors, __main will do
378   // it.
379   if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
380 
381   // Should be an array of '{ i32, void ()* }' structs.  The first value is
382   // the init priority, which we ignore.
383   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
384   if (!InitList)
385     return;
386   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
387     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
388     if (!CS) continue;
389 
390     Constant *FP = CS->getOperand(1);
391     if (FP->isNullValue())
392       continue;  // Found a sentinal value, ignore.
393 
394     // Strip off constant expression casts.
395     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
396       if (CE->isCast())
397         FP = CE->getOperand(0);
398 
399     // Execute the ctor/dtor function!
400     if (Function *F = dyn_cast<Function>(FP))
401       runFunction(F, None);
402 
403     // FIXME: It is marginally lame that we just do nothing here if we see an
404     // entry we don't recognize. It might not be unreasonable for the verifier
405     // to not even allow this and just assert here.
406   }
407 }
408 
409 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
410   // Execute global ctors/dtors for each module in the program.
411   for (std::unique_ptr<Module> &M : Modules)
412     runStaticConstructorsDestructors(*M, isDtors);
413 }
414 
415 #ifndef NDEBUG
416 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
417 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
418   unsigned PtrSize = EE->getDataLayout().getPointerSize();
419   for (unsigned i = 0; i < PtrSize; ++i)
420     if (*(i + (uint8_t*)Loc))
421       return false;
422   return true;
423 }
424 #endif
425 
426 int ExecutionEngine::runFunctionAsMain(Function *Fn,
427                                        const std::vector<std::string> &argv,
428                                        const char * const * envp) {
429   std::vector<GenericValue> GVArgs;
430   GenericValue GVArgc;
431   GVArgc.IntVal = APInt(32, argv.size());
432 
433   // Check main() type
434   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
435   FunctionType *FTy = Fn->getFunctionType();
436   Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
437 
438   // Check the argument types.
439   if (NumArgs > 3)
440     report_fatal_error("Invalid number of arguments of main() supplied");
441   if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
442     report_fatal_error("Invalid type for third argument of main() supplied");
443   if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
444     report_fatal_error("Invalid type for second argument of main() supplied");
445   if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
446     report_fatal_error("Invalid type for first argument of main() supplied");
447   if (!FTy->getReturnType()->isIntegerTy() &&
448       !FTy->getReturnType()->isVoidTy())
449     report_fatal_error("Invalid return type of main() supplied");
450 
451   ArgvArray CArgv;
452   ArgvArray CEnv;
453   if (NumArgs) {
454     GVArgs.push_back(GVArgc); // Arg #0 = argc.
455     if (NumArgs > 1) {
456       // Arg #1 = argv.
457       GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
458       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
459              "argv[0] was null after CreateArgv");
460       if (NumArgs > 2) {
461         std::vector<std::string> EnvVars;
462         for (unsigned i = 0; envp[i]; ++i)
463           EnvVars.emplace_back(envp[i]);
464         // Arg #2 = envp.
465         GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
466       }
467     }
468   }
469 
470   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
471 }
472 
473 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
474 
475 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
476     : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
477       OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr),
478       UseOrcMCJITReplacement(false) {
479 // IR module verification is enabled by default in debug builds, and disabled
480 // by default in release builds.
481 #ifndef NDEBUG
482   VerifyModules = true;
483 #else
484   VerifyModules = false;
485 #endif
486 }
487 
488 EngineBuilder::~EngineBuilder() = default;
489 
490 EngineBuilder &EngineBuilder::setMCJITMemoryManager(
491                                    std::unique_ptr<RTDyldMemoryManager> mcjmm) {
492   auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
493   MemMgr = SharedMM;
494   Resolver = SharedMM;
495   return *this;
496 }
497 
498 EngineBuilder&
499 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
500   MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
501   return *this;
502 }
503 
504 EngineBuilder &
505 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
506   Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
507   return *this;
508 }
509 
510 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
511   std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
512 
513   // Make sure we can resolve symbols in the program as well. The zero arg
514   // to the function tells DynamicLibrary to load the program, not a library.
515   if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
516     return nullptr;
517 
518   // If the user specified a memory manager but didn't specify which engine to
519   // create, we assume they only want the JIT, and we fail if they only want
520   // the interpreter.
521   if (MemMgr) {
522     if (WhichEngine & EngineKind::JIT)
523       WhichEngine = EngineKind::JIT;
524     else {
525       if (ErrorStr)
526         *ErrorStr = "Cannot create an interpreter with a memory manager.";
527       return nullptr;
528     }
529   }
530 
531   // Unless the interpreter was explicitly selected or the JIT is not linked,
532   // try making a JIT.
533   if ((WhichEngine & EngineKind::JIT) && TheTM) {
534     if (!TM->getTarget().hasJIT()) {
535       errs() << "WARNING: This target JIT is not designed for the host"
536              << " you are running.  If bad things happen, please choose"
537              << " a different -march switch.\n";
538     }
539 
540     ExecutionEngine *EE = nullptr;
541     if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) {
542       EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr),
543                                                     std::move(Resolver),
544                                                     std::move(TheTM));
545       EE->addModule(std::move(M));
546     } else if (ExecutionEngine::MCJITCtor)
547       EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
548                                       std::move(Resolver), std::move(TheTM));
549 
550     if (EE) {
551       EE->setVerifyModules(VerifyModules);
552       return EE;
553     }
554   }
555 
556   // If we can't make a JIT and we didn't request one specifically, try making
557   // an interpreter instead.
558   if (WhichEngine & EngineKind::Interpreter) {
559     if (ExecutionEngine::InterpCtor)
560       return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
561     if (ErrorStr)
562       *ErrorStr = "Interpreter has not been linked in.";
563     return nullptr;
564   }
565 
566   if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
567     if (ErrorStr)
568       *ErrorStr = "JIT has not been linked in.";
569   }
570 
571   return nullptr;
572 }
573 
574 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
575   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
576     return getPointerToFunction(F);
577 
578   MutexGuard locked(lock);
579   if (void* P = getPointerToGlobalIfAvailable(GV))
580     return P;
581 
582   // Global variable might have been added since interpreter started.
583   if (GlobalVariable *GVar =
584           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
585     EmitGlobalVariable(GVar);
586   else
587     llvm_unreachable("Global hasn't had an address allocated yet!");
588 
589   return getPointerToGlobalIfAvailable(GV);
590 }
591 
592 /// Converts a Constant* into a GenericValue, including handling of
593 /// ConstantExpr values.
594 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
595   // If its undefined, return the garbage.
596   if (isa<UndefValue>(C)) {
597     GenericValue Result;
598     switch (C->getType()->getTypeID()) {
599     default:
600       break;
601     case Type::IntegerTyID:
602     case Type::X86_FP80TyID:
603     case Type::FP128TyID:
604     case Type::PPC_FP128TyID:
605       // Although the value is undefined, we still have to construct an APInt
606       // with the correct bit width.
607       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
608       break;
609     case Type::StructTyID: {
610       // if the whole struct is 'undef' just reserve memory for the value.
611       if(StructType *STy = dyn_cast<StructType>(C->getType())) {
612         unsigned int elemNum = STy->getNumElements();
613         Result.AggregateVal.resize(elemNum);
614         for (unsigned int i = 0; i < elemNum; ++i) {
615           Type *ElemTy = STy->getElementType(i);
616           if (ElemTy->isIntegerTy())
617             Result.AggregateVal[i].IntVal =
618               APInt(ElemTy->getPrimitiveSizeInBits(), 0);
619           else if (ElemTy->isAggregateType()) {
620               const Constant *ElemUndef = UndefValue::get(ElemTy);
621               Result.AggregateVal[i] = getConstantValue(ElemUndef);
622             }
623           }
624         }
625       }
626       break;
627     case Type::VectorTyID:
628       // if the whole vector is 'undef' just reserve memory for the value.
629       auto* VTy = dyn_cast<VectorType>(C->getType());
630       Type *ElemTy = VTy->getElementType();
631       unsigned int elemNum = VTy->getNumElements();
632       Result.AggregateVal.resize(elemNum);
633       if (ElemTy->isIntegerTy())
634         for (unsigned int i = 0; i < elemNum; ++i)
635           Result.AggregateVal[i].IntVal =
636             APInt(ElemTy->getPrimitiveSizeInBits(), 0);
637       break;
638     }
639     return Result;
640   }
641 
642   // Otherwise, if the value is a ConstantExpr...
643   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
644     Constant *Op0 = CE->getOperand(0);
645     switch (CE->getOpcode()) {
646     case Instruction::GetElementPtr: {
647       // Compute the index
648       GenericValue Result = getConstantValue(Op0);
649       APInt Offset(DL.getPointerSizeInBits(), 0);
650       cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
651 
652       char* tmp = (char*) Result.PointerVal;
653       Result = PTOGV(tmp + Offset.getSExtValue());
654       return Result;
655     }
656     case Instruction::Trunc: {
657       GenericValue GV = getConstantValue(Op0);
658       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
659       GV.IntVal = GV.IntVal.trunc(BitWidth);
660       return GV;
661     }
662     case Instruction::ZExt: {
663       GenericValue GV = getConstantValue(Op0);
664       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
665       GV.IntVal = GV.IntVal.zext(BitWidth);
666       return GV;
667     }
668     case Instruction::SExt: {
669       GenericValue GV = getConstantValue(Op0);
670       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
671       GV.IntVal = GV.IntVal.sext(BitWidth);
672       return GV;
673     }
674     case Instruction::FPTrunc: {
675       // FIXME long double
676       GenericValue GV = getConstantValue(Op0);
677       GV.FloatVal = float(GV.DoubleVal);
678       return GV;
679     }
680     case Instruction::FPExt:{
681       // FIXME long double
682       GenericValue GV = getConstantValue(Op0);
683       GV.DoubleVal = double(GV.FloatVal);
684       return GV;
685     }
686     case Instruction::UIToFP: {
687       GenericValue GV = getConstantValue(Op0);
688       if (CE->getType()->isFloatTy())
689         GV.FloatVal = float(GV.IntVal.roundToDouble());
690       else if (CE->getType()->isDoubleTy())
691         GV.DoubleVal = GV.IntVal.roundToDouble();
692       else if (CE->getType()->isX86_FP80Ty()) {
693         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
694         (void)apf.convertFromAPInt(GV.IntVal,
695                                    false,
696                                    APFloat::rmNearestTiesToEven);
697         GV.IntVal = apf.bitcastToAPInt();
698       }
699       return GV;
700     }
701     case Instruction::SIToFP: {
702       GenericValue GV = getConstantValue(Op0);
703       if (CE->getType()->isFloatTy())
704         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
705       else if (CE->getType()->isDoubleTy())
706         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
707       else if (CE->getType()->isX86_FP80Ty()) {
708         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
709         (void)apf.convertFromAPInt(GV.IntVal,
710                                    true,
711                                    APFloat::rmNearestTiesToEven);
712         GV.IntVal = apf.bitcastToAPInt();
713       }
714       return GV;
715     }
716     case Instruction::FPToUI: // double->APInt conversion handles sign
717     case Instruction::FPToSI: {
718       GenericValue GV = getConstantValue(Op0);
719       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
720       if (Op0->getType()->isFloatTy())
721         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
722       else if (Op0->getType()->isDoubleTy())
723         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
724       else if (Op0->getType()->isX86_FP80Ty()) {
725         APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
726         uint64_t v;
727         bool ignored;
728         (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth,
729                                    CE->getOpcode()==Instruction::FPToSI,
730                                    APFloat::rmTowardZero, &ignored);
731         GV.IntVal = v; // endian?
732       }
733       return GV;
734     }
735     case Instruction::PtrToInt: {
736       GenericValue GV = getConstantValue(Op0);
737       uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
738       assert(PtrWidth <= 64 && "Bad pointer width");
739       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
740       uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
741       GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
742       return GV;
743     }
744     case Instruction::IntToPtr: {
745       GenericValue GV = getConstantValue(Op0);
746       uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
747       GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
748       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
749       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
750       return GV;
751     }
752     case Instruction::BitCast: {
753       GenericValue GV = getConstantValue(Op0);
754       Type* DestTy = CE->getType();
755       switch (Op0->getType()->getTypeID()) {
756         default: llvm_unreachable("Invalid bitcast operand");
757         case Type::IntegerTyID:
758           assert(DestTy->isFloatingPointTy() && "invalid bitcast");
759           if (DestTy->isFloatTy())
760             GV.FloatVal = GV.IntVal.bitsToFloat();
761           else if (DestTy->isDoubleTy())
762             GV.DoubleVal = GV.IntVal.bitsToDouble();
763           break;
764         case Type::FloatTyID:
765           assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
766           GV.IntVal = APInt::floatToBits(GV.FloatVal);
767           break;
768         case Type::DoubleTyID:
769           assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
770           GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
771           break;
772         case Type::PointerTyID:
773           assert(DestTy->isPointerTy() && "Invalid bitcast");
774           break; // getConstantValue(Op0)  above already converted it
775       }
776       return GV;
777     }
778     case Instruction::Add:
779     case Instruction::FAdd:
780     case Instruction::Sub:
781     case Instruction::FSub:
782     case Instruction::Mul:
783     case Instruction::FMul:
784     case Instruction::UDiv:
785     case Instruction::SDiv:
786     case Instruction::URem:
787     case Instruction::SRem:
788     case Instruction::And:
789     case Instruction::Or:
790     case Instruction::Xor: {
791       GenericValue LHS = getConstantValue(Op0);
792       GenericValue RHS = getConstantValue(CE->getOperand(1));
793       GenericValue GV;
794       switch (CE->getOperand(0)->getType()->getTypeID()) {
795       default: llvm_unreachable("Bad add type!");
796       case Type::IntegerTyID:
797         switch (CE->getOpcode()) {
798           default: llvm_unreachable("Invalid integer opcode");
799           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
800           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
801           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
802           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
803           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
804           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
805           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
806           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
807           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
808           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
809         }
810         break;
811       case Type::FloatTyID:
812         switch (CE->getOpcode()) {
813           default: llvm_unreachable("Invalid float opcode");
814           case Instruction::FAdd:
815             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
816           case Instruction::FSub:
817             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
818           case Instruction::FMul:
819             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
820           case Instruction::FDiv:
821             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
822           case Instruction::FRem:
823             GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
824         }
825         break;
826       case Type::DoubleTyID:
827         switch (CE->getOpcode()) {
828           default: llvm_unreachable("Invalid double opcode");
829           case Instruction::FAdd:
830             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
831           case Instruction::FSub:
832             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
833           case Instruction::FMul:
834             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
835           case Instruction::FDiv:
836             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
837           case Instruction::FRem:
838             GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
839         }
840         break;
841       case Type::X86_FP80TyID:
842       case Type::PPC_FP128TyID:
843       case Type::FP128TyID: {
844         const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
845         APFloat apfLHS = APFloat(Sem, LHS.IntVal);
846         switch (CE->getOpcode()) {
847           default: llvm_unreachable("Invalid long double opcode");
848           case Instruction::FAdd:
849             apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
850             GV.IntVal = apfLHS.bitcastToAPInt();
851             break;
852           case Instruction::FSub:
853             apfLHS.subtract(APFloat(Sem, RHS.IntVal),
854                             APFloat::rmNearestTiesToEven);
855             GV.IntVal = apfLHS.bitcastToAPInt();
856             break;
857           case Instruction::FMul:
858             apfLHS.multiply(APFloat(Sem, RHS.IntVal),
859                             APFloat::rmNearestTiesToEven);
860             GV.IntVal = apfLHS.bitcastToAPInt();
861             break;
862           case Instruction::FDiv:
863             apfLHS.divide(APFloat(Sem, RHS.IntVal),
864                           APFloat::rmNearestTiesToEven);
865             GV.IntVal = apfLHS.bitcastToAPInt();
866             break;
867           case Instruction::FRem:
868             apfLHS.mod(APFloat(Sem, RHS.IntVal));
869             GV.IntVal = apfLHS.bitcastToAPInt();
870             break;
871           }
872         }
873         break;
874       }
875       return GV;
876     }
877     default:
878       break;
879     }
880 
881     SmallString<256> Msg;
882     raw_svector_ostream OS(Msg);
883     OS << "ConstantExpr not handled: " << *CE;
884     report_fatal_error(OS.str());
885   }
886 
887   // Otherwise, we have a simple constant.
888   GenericValue Result;
889   switch (C->getType()->getTypeID()) {
890   case Type::FloatTyID:
891     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
892     break;
893   case Type::DoubleTyID:
894     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
895     break;
896   case Type::X86_FP80TyID:
897   case Type::FP128TyID:
898   case Type::PPC_FP128TyID:
899     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
900     break;
901   case Type::IntegerTyID:
902     Result.IntVal = cast<ConstantInt>(C)->getValue();
903     break;
904   case Type::PointerTyID:
905     while (auto *A = dyn_cast<GlobalAlias>(C)) {
906       C = A->getAliasee();
907     }
908     if (isa<ConstantPointerNull>(C))
909       Result.PointerVal = nullptr;
910     else if (const Function *F = dyn_cast<Function>(C))
911       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
912     else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
913       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
914     else
915       llvm_unreachable("Unknown constant pointer type!");
916     break;
917   case Type::VectorTyID: {
918     unsigned elemNum;
919     Type* ElemTy;
920     const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
921     const ConstantVector *CV = dyn_cast<ConstantVector>(C);
922     const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
923 
924     if (CDV) {
925         elemNum = CDV->getNumElements();
926         ElemTy = CDV->getElementType();
927     } else if (CV || CAZ) {
928         VectorType* VTy = dyn_cast<VectorType>(C->getType());
929         elemNum = VTy->getNumElements();
930         ElemTy = VTy->getElementType();
931     } else {
932         llvm_unreachable("Unknown constant vector type!");
933     }
934 
935     Result.AggregateVal.resize(elemNum);
936     // Check if vector holds floats.
937     if(ElemTy->isFloatTy()) {
938       if (CAZ) {
939         GenericValue floatZero;
940         floatZero.FloatVal = 0.f;
941         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
942                   floatZero);
943         break;
944       }
945       if(CV) {
946         for (unsigned i = 0; i < elemNum; ++i)
947           if (!isa<UndefValue>(CV->getOperand(i)))
948             Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
949               CV->getOperand(i))->getValueAPF().convertToFloat();
950         break;
951       }
952       if(CDV)
953         for (unsigned i = 0; i < elemNum; ++i)
954           Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
955 
956       break;
957     }
958     // Check if vector holds doubles.
959     if (ElemTy->isDoubleTy()) {
960       if (CAZ) {
961         GenericValue doubleZero;
962         doubleZero.DoubleVal = 0.0;
963         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
964                   doubleZero);
965         break;
966       }
967       if(CV) {
968         for (unsigned i = 0; i < elemNum; ++i)
969           if (!isa<UndefValue>(CV->getOperand(i)))
970             Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
971               CV->getOperand(i))->getValueAPF().convertToDouble();
972         break;
973       }
974       if(CDV)
975         for (unsigned i = 0; i < elemNum; ++i)
976           Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
977 
978       break;
979     }
980     // Check if vector holds integers.
981     if (ElemTy->isIntegerTy()) {
982       if (CAZ) {
983         GenericValue intZero;
984         intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
985         std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
986                   intZero);
987         break;
988       }
989       if(CV) {
990         for (unsigned i = 0; i < elemNum; ++i)
991           if (!isa<UndefValue>(CV->getOperand(i)))
992             Result.AggregateVal[i].IntVal = cast<ConstantInt>(
993                                             CV->getOperand(i))->getValue();
994           else {
995             Result.AggregateVal[i].IntVal =
996               APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
997           }
998         break;
999       }
1000       if(CDV)
1001         for (unsigned i = 0; i < elemNum; ++i)
1002           Result.AggregateVal[i].IntVal = APInt(
1003             CDV->getElementType()->getPrimitiveSizeInBits(),
1004             CDV->getElementAsInteger(i));
1005 
1006       break;
1007     }
1008     llvm_unreachable("Unknown constant pointer type!");
1009   }
1010   break;
1011 
1012   default:
1013     SmallString<256> Msg;
1014     raw_svector_ostream OS(Msg);
1015     OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1016     report_fatal_error(OS.str());
1017   }
1018 
1019   return Result;
1020 }
1021 
1022 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1023                                          GenericValue *Ptr, Type *Ty) {
1024   const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1025 
1026   switch (Ty->getTypeID()) {
1027   default:
1028     dbgs() << "Cannot store value of type " << *Ty << "!\n";
1029     break;
1030   case Type::IntegerTyID:
1031     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1032     break;
1033   case Type::FloatTyID:
1034     *((float*)Ptr) = Val.FloatVal;
1035     break;
1036   case Type::DoubleTyID:
1037     *((double*)Ptr) = Val.DoubleVal;
1038     break;
1039   case Type::X86_FP80TyID:
1040     memcpy(Ptr, Val.IntVal.getRawData(), 10);
1041     break;
1042   case Type::PointerTyID:
1043     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1044     if (StoreBytes != sizeof(PointerTy))
1045       memset(&(Ptr->PointerVal), 0, StoreBytes);
1046 
1047     *((PointerTy*)Ptr) = Val.PointerVal;
1048     break;
1049   case Type::VectorTyID:
1050     for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1051       if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1052         *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1053       if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1054         *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1055       if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1056         unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1057         StoreIntToMemory(Val.AggregateVal[i].IntVal,
1058           (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1059       }
1060     }
1061     break;
1062   }
1063 
1064   if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1065     // Host and target are different endian - reverse the stored bytes.
1066     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1067 }
1068 
1069 /// FIXME: document
1070 ///
1071 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1072                                           GenericValue *Ptr,
1073                                           Type *Ty) {
1074   const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1075 
1076   switch (Ty->getTypeID()) {
1077   case Type::IntegerTyID:
1078     // An APInt with all words initially zero.
1079     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1080     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1081     break;
1082   case Type::FloatTyID:
1083     Result.FloatVal = *((float*)Ptr);
1084     break;
1085   case Type::DoubleTyID:
1086     Result.DoubleVal = *((double*)Ptr);
1087     break;
1088   case Type::PointerTyID:
1089     Result.PointerVal = *((PointerTy*)Ptr);
1090     break;
1091   case Type::X86_FP80TyID: {
1092     // This is endian dependent, but it will only work on x86 anyway.
1093     // FIXME: Will not trap if loading a signaling NaN.
1094     uint64_t y[2];
1095     memcpy(y, Ptr, 10);
1096     Result.IntVal = APInt(80, y);
1097     break;
1098   }
1099   case Type::VectorTyID: {
1100     auto *VT = cast<VectorType>(Ty);
1101     Type *ElemT = VT->getElementType();
1102     const unsigned numElems = VT->getNumElements();
1103     if (ElemT->isFloatTy()) {
1104       Result.AggregateVal.resize(numElems);
1105       for (unsigned i = 0; i < numElems; ++i)
1106         Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1107     }
1108     if (ElemT->isDoubleTy()) {
1109       Result.AggregateVal.resize(numElems);
1110       for (unsigned i = 0; i < numElems; ++i)
1111         Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1112     }
1113     if (ElemT->isIntegerTy()) {
1114       GenericValue intZero;
1115       const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1116       intZero.IntVal = APInt(elemBitWidth, 0);
1117       Result.AggregateVal.resize(numElems, intZero);
1118       for (unsigned i = 0; i < numElems; ++i)
1119         LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1120           (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1121     }
1122   break;
1123   }
1124   default:
1125     SmallString<256> Msg;
1126     raw_svector_ostream OS(Msg);
1127     OS << "Cannot load value of type " << *Ty << "!";
1128     report_fatal_error(OS.str());
1129   }
1130 }
1131 
1132 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1133   LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1134   LLVM_DEBUG(Init->dump());
1135   if (isa<UndefValue>(Init))
1136     return;
1137 
1138   if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1139     unsigned ElementSize =
1140         getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1141     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1142       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1143     return;
1144   }
1145 
1146   if (isa<ConstantAggregateZero>(Init)) {
1147     memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1148     return;
1149   }
1150 
1151   if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1152     unsigned ElementSize =
1153         getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1154     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1155       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1156     return;
1157   }
1158 
1159   if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1160     const StructLayout *SL =
1161         getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1162     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1163       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1164     return;
1165   }
1166 
1167   if (const ConstantDataSequential *CDS =
1168                dyn_cast<ConstantDataSequential>(Init)) {
1169     // CDS is already laid out in host memory order.
1170     StringRef Data = CDS->getRawDataValues();
1171     memcpy(Addr, Data.data(), Data.size());
1172     return;
1173   }
1174 
1175   if (Init->getType()->isFirstClassType()) {
1176     GenericValue Val = getConstantValue(Init);
1177     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1178     return;
1179   }
1180 
1181   LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1182   llvm_unreachable("Unknown constant type to initialize memory with!");
1183 }
1184 
1185 /// EmitGlobals - Emit all of the global variables to memory, storing their
1186 /// addresses into GlobalAddress.  This must make sure to copy the contents of
1187 /// their initializers into the memory.
1188 void ExecutionEngine::emitGlobals() {
1189   // Loop over all of the global variables in the program, allocating the memory
1190   // to hold them.  If there is more than one module, do a prepass over globals
1191   // to figure out how the different modules should link together.
1192   std::map<std::pair<std::string, Type*>,
1193            const GlobalValue*> LinkedGlobalsMap;
1194 
1195   if (Modules.size() != 1) {
1196     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1197       Module &M = *Modules[m];
1198       for (const auto &GV : M.globals()) {
1199         if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1200             GV.hasAppendingLinkage() || !GV.hasName())
1201           continue;// Ignore external globals and globals with internal linkage.
1202 
1203         const GlobalValue *&GVEntry =
1204           LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())];
1205 
1206         // If this is the first time we've seen this global, it is the canonical
1207         // version.
1208         if (!GVEntry) {
1209           GVEntry = &GV;
1210           continue;
1211         }
1212 
1213         // If the existing global is strong, never replace it.
1214         if (GVEntry->hasExternalLinkage())
1215           continue;
1216 
1217         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1218         // symbol.  FIXME is this right for common?
1219         if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1220           GVEntry = &GV;
1221       }
1222     }
1223   }
1224 
1225   std::vector<const GlobalValue*> NonCanonicalGlobals;
1226   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1227     Module &M = *Modules[m];
1228     for (const auto &GV : M.globals()) {
1229       // In the multi-module case, see what this global maps to.
1230       if (!LinkedGlobalsMap.empty()) {
1231         if (const GlobalValue *GVEntry =
1232               LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) {
1233           // If something else is the canonical global, ignore this one.
1234           if (GVEntry != &GV) {
1235             NonCanonicalGlobals.push_back(&GV);
1236             continue;
1237           }
1238         }
1239       }
1240 
1241       if (!GV.isDeclaration()) {
1242         addGlobalMapping(&GV, getMemoryForGV(&GV));
1243       } else {
1244         // External variable reference. Try to use the dynamic loader to
1245         // get a pointer to it.
1246         if (void *SymAddr =
1247             sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName()))
1248           addGlobalMapping(&GV, SymAddr);
1249         else {
1250           report_fatal_error("Could not resolve external global address: "
1251                             +GV.getName());
1252         }
1253       }
1254     }
1255 
1256     // If there are multiple modules, map the non-canonical globals to their
1257     // canonical location.
1258     if (!NonCanonicalGlobals.empty()) {
1259       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1260         const GlobalValue *GV = NonCanonicalGlobals[i];
1261         const GlobalValue *CGV =
1262           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1263         void *Ptr = getPointerToGlobalIfAvailable(CGV);
1264         assert(Ptr && "Canonical global wasn't codegen'd!");
1265         addGlobalMapping(GV, Ptr);
1266       }
1267     }
1268 
1269     // Now that all of the globals are set up in memory, loop through them all
1270     // and initialize their contents.
1271     for (const auto &GV : M.globals()) {
1272       if (!GV.isDeclaration()) {
1273         if (!LinkedGlobalsMap.empty()) {
1274           if (const GlobalValue *GVEntry =
1275                 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())])
1276             if (GVEntry != &GV)  // Not the canonical variable.
1277               continue;
1278         }
1279         EmitGlobalVariable(&GV);
1280       }
1281     }
1282   }
1283 }
1284 
1285 // EmitGlobalVariable - This method emits the specified global variable to the
1286 // address specified in GlobalAddresses, or allocates new memory if it's not
1287 // already in the map.
1288 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1289   void *GA = getPointerToGlobalIfAvailable(GV);
1290 
1291   if (!GA) {
1292     // If it's not already specified, allocate memory for the global.
1293     GA = getMemoryForGV(GV);
1294 
1295     // If we failed to allocate memory for this global, return.
1296     if (!GA) return;
1297 
1298     addGlobalMapping(GV, GA);
1299   }
1300 
1301   // Don't initialize if it's thread local, let the client do it.
1302   if (!GV->isThreadLocal())
1303     InitializeMemory(GV->getInitializer(), GA);
1304 
1305   Type *ElTy = GV->getValueType();
1306   size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1307   NumInitBytes += (unsigned)GVSize;
1308   ++NumGlobals;
1309 }
1310